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Abstract. To design a monitoring network for estimating
CO; fluxes in an urban area, a high-resolution observing
system simulation experiment (OSSE) is performed using
the transport model Graz Mesoscale Model (GRAMMv19.1)
coupled to the Graz Lagrangian Model (GRALv19.1). First,
a high-resolution anthropogenic emission inventory which is
considered as the truth serves as input to the model to sim-
ulate CO, concentration in the urban atmosphere on 10 m
horizontal resolution in a 12.3 km x 12.3 km domain centred
in Heidelberg, Germany. By sampling the CO, concentra-
tion at selected stations and feeding the measurements into
a Bayesian inverse framework, CO, fluxes on a neighbour-
hood scale are estimated. Different configurations of possi-
ble measurement networks are tested to assess the precision
of posterior CO; fluxes. We determine the trade-off between
the quality and quantity of sensors by comparing the infor-
mation content for different set-ups. Decisions on investing
in a larger number or in more precise sensors can be based
on this result. We further analyse optimal sensor locations for
flux estimation using a Monte Carlo approach. We examine
the benefit of additionally measuring carbon monoxide (CO).
We find that including CO as tracer in the inversion enables
the disaggregation of different emission sectors. Finally, we
quantify the benefit of introducing a temporal correlation into
the prior emissions. The results of this study have implica-
tions for an optimal measurement network design for a city
like Heidelberg. The study showcases the general usefulness
of the inverse framework developed using GRAMM/GRAL

for planning and evaluating measurement networks in an ur-
ban area.

1 Introduction

A large share of greenhouse gases (about 70 % of anthro-
pogenic CO; emissions) are emitted in urban areas, repre-
senting a huge potential to reduce greenhouse gas emissions
(World Bank, 2010). To realise the full mitigation poten-
tial and to verify any emission reduction, solid knowledge
of local greenhouse gas emissions is required. In addition
to inventory-based (“bottom—up”) emission estimates, mea-
surements of greenhouse gases can be used in an inverse
framework to quantify emissions (“top—down”). In a top-
down approach, an atmospheric transport model is used to
transport a best estimate of surface fluxes forward to ob-
tain a simulated concentration field. The simulated concen-
trations are then compared with the measured concentra-
tion at the location and time of measurement. By varying
the surface fluxes within their given uncertainties, the dif-
ference between measured and simulated concentrations is
minimised to agree with the model-data uncertainties. In a
Bayesian inverse framework, the result is the so-called pos-
terior emission estimate. In the past few years, many city
CO;-monitoring networks have been formed at the local
level. Monitoring systems in urban areas can be found in the
San Francisco Bay Area (Turner et al., 2016; Delaria et al.,
2021), Indianapolis (Turnbull et al., 2019; Oda et al., 2017;
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Lauvaux et al., 2016; Turnbull et al., 2015; Richardson et al.,
2017; Deng et al., 2017; Davis et al., 2017; Balashov et al.,
2020; Miles et al., 2021), Salt Lake City (Mallia et al., 2020;
Kunik et al., 2019), Davos (Lauvaux et al., 2013), and Paris
(Lian et al., 2022; Wu et al., 2016; Bréon et al., 2015). In the
future, it is expected that more networks will be installed sup-
porting local mitigation endeavours (Jungmann et al., 2022).
In order to optimise the investment in a measurement net-
work and maximise the knowledge gained from these mea-
surements, several parameters need to be considered, prefer-
ably in the design phase. These parameters include the num-
ber and location of nodes, the uncertainty of the measure-
ments, and the co-measured species. They need to be opti-
mised under consideration of a limited financial budget.

Observing system simulation experiments (OSSEs) offer
a valuable tool for assessing different monitoring networks.
OSSEs provide a controlled and consistent framework for
assessing the performance of the inversion methods used.
In an OSSE, emissions as well as atmospheric transport are
known. The concentration is obtained by simulating the at-
mospheric transport of the emissions into the atmosphere.
The concentration at selected sites can then be used in an
inversion framework to estimate emissions. It is possible to,
e.g. add measurement uncertainty or model transport uncer-
tainty to the concentration, or to change the prior emissions
and evaluate the effect on the emission estimate by compar-
isons with the known true emissions. Isolating single factors
of the inversion enables the analysis of different factors in-
fluencing measurement network design. For instance, Turner
et al. (2016) conducted an experiment using the actual sensor
locations of the BEACON measurement network in the San
Francisco Bay Area to assess the trade-off between low-cost
sensors in higher quantities and fewer, but more expensive,
sensors with higher accuracy, by comparing the error in flux
estimates for various set-ups. Their findings reveal two types
of measurement network configurations: noise-limited con-
figurations, where the inversion improves more substantially
with higher sensor quality, and site-limited configurations,
where the improvement is greater with an increased num-
ber of sensors. While Turner et al. (2016) selected the sen-
sor locations randomly from a fixed set of sensor locations,
Mano et al. (2022) developed an algorithm to determine opti-
mal sensor locations for a measurement network. This algo-
rithm utilises the entropy of expected trace gas concentration
to identify ideal measurement positions. In a different study,
Thompson and Pisso (2023) applied a Monte Carlo approach
to optimise sensor locations. They were able to pinpoint the
optimal sensor placement for CHy flux estimation from a
set of possible sites in Europe. Thus, performing measure-
ments at the selected sites improves the posterior emission
estimates.

Furthermore, the CO;, estimate may benefit from mea-
suring co-emitted trace gases. For example, carbon monox-
ide (CO) is emitted together with CO;, during fossil fuel
combustion. The CO/CO; ratio varies with emission sectors
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and regions, which makes it potentially useful as a proxy
for CO, emissions from fossil fuel combustion in general,
and more specifically as a tracer for traffic emissions (Vo-
gel et al., 2010). Nathan et al. (2018) quantitatively analysed
the advantages of CO as a trace gas in the inversion set-up
using the INFLUX measurement network in Indianapolis.
By incorporating CO measurements in the inversion, Nathan
et al. (2018) successfully distinguished spatially overlapping
sources into two sectors. Furthermore, the uncertainty of
prior fluxes significantly affects the inversion process. Ku-
nik et al. (2019) conducted an OSSE using a measurement
network in Salt Lake City to examine the influence of the
prior flux uncertainty. They demonstrated that incorporating
realistic correlations in the prior between fluxes in the tem-
poral and spatial dimensions can substantially improve the
inversion results. Wu et al. (2018) obtained similar results re-
garding spatial correlation in the city of Indianapolis. These
examples highlight the possibilities of OSSEs in analysing
urban network monitoring taking into consideration various
aspects and site-specific characteristics. The resolution of ur-
ban OSSE:s is usually 1 km or coarser and limited by the large
computation time of the transport model as well as by the in-
version on a high resolution.

In our study, we employ the Reynolds-Averaged Navier—
Stokes Graz Mesoscale Model (GRAMM) coupled to the
Graz Lagrangian Model (GRAL) as a forward model
(GRAMM/GRAL). Both models assume hourly steady-state
conditions. Using the steady-state wind fields, GRAL sim-
ulates an hourly 10m x 10 m concentration field at five
heights per emission group within a 12.3km x 12.3km do-
main, accounting for the flow around buildings. This high
resolution exceeds the typical 1km resolution of previous
OSSEs, enabling the use of any 10m x 10 m grid cell as sim-
ulated concentration data for inversion, thus keeping the ag-
gregation errors small. The high resolution is possible due to
the comparatively cheap forward model when using the cat-
alogue approach (see Sect. 2), as well as due to the hourly
steady-state assumption of the model such that the Jaco-
bian, i.e. the linearisation of the forward model represent-
ing the sensitivity of the observation to the emissions, can
be easily determined (see Sect. 2.2). This property allows for
network optimisation considering many different parameters
and locations, including those affected by street channelling
and surrounding buildings. Specifically, this study focuses on
analysing sensor quantity versus quality, sensor location op-
timisation, the use of CO as an additional tracer, and the tem-
poral correlation of the prior for the first time at a high res-
olution of 10m x 10m within a 150 km? domain centred on
the Theodor Heuss Bridge in Heidelberg. With these first ex-
periments, we also seek to showcase the general ability of the
framework.
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2 Methodology
2.1 The atmospheric transport model GRAMM/GRAL

Emissions and concentrations are linked via the atmospheric
transport. Modelling the atmospheric transport is challenging
due to turbulence. Especially for heterogenic urban environ-
ments, models need to account for different land use types
and their associated properties, flow around buildings, and
topography, which influence the atmospheric transport. For
this task, there are two types of models which are commonly
used and which attempt to solve the Navier—Stokes equa-
tion: large eddy simulations (LES) and Reynolds-averaged
Navier-Stokes simulations (RANS). While LES models ex-
plicitly solve large turbulent structures and parameterise
small turbulent structures, RANS models use temporal av-
eraging to reduce the complexity of the problem and gen-
erate steady-state flow fields. Therefore, RANS models are
computationally cheaper compared to LES models (Blocken,
2018). The model GRAMM/GRAL is a RANS model. A
description of the model can be found in Berchet et al.
(2017a, b) as well as in Oettl (2019a, b).

GRAMM is a prognostic mesoscale model (Oettl, 2019a)
that computes hourly steady-state wind fields from synoptic
forcing given parameters associated with land use cover such
as surface roughness or thermal conductivity, and for a given
topography of the domain. The synoptic forcing is deter-
mined by wind direction, wind speed, and a stability class to
parameterise the turbulence. In this study, we chose a domain
size of 20 km x 20 km centred on the Theodor Heuss Bridge
in Heidelberg, Germany with a resolution of 100 m x 100 m.
GRAL uses the GRAMM wind fields as mesoscale input and
refines the wind fields to a higher resolution taking into ac-
count the flow around buildings. The GRAL domain size
is 12.3km x 12.3 km with a resolution of 10m x 10m. The
vertical resolution of the wind field is 2m with a total of
200 cells. The domain borders for GRAMM and GRAL are
shown in Fig. 1. Hourly concentration fields are obtained in
GRAL by transporting emissions in the GRAL domain for-
ward. The emission types can be point, line, and area sources
which can be grouped into up to 99 emission groups. An
emission group is a set of emissions which are stored and
optimised together. For each emission group, a concentration
field can be obtained.

In this study, the computational costs are further reduced
by utilising a catalogue approach. The catalogue approach
exploits the fact that for longer periods similar weather sit-
uations reoccur. Utilising the repetition of similar weather
conditions, a catalogue of wind fields is computed covering
all typical prevailing wind situations for the area. For Hei-
delberg, we use 1008 synoptic forcings, which are stored
and are hourly matched with wind measurements to provide
wind fields for the period considered. In particular, during
the matching, measured and pre-calculated simulated wind
speeds and directions are compared hourly to find the pre-
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calculated wind situation that minimised the difference with
the measurements for that hour. Details can be found in
Berchet et al. (2017a, b).

As the lifetime of CO; is much longer than the period
of interest, the concentration enhancement of CO; in the at-
mosphere is proportional to the magnitude of the emissions.
Using this linearity, a pre-computed concentration field can
be scaled linearly to account for a change in the emissions.
Emissions from an emission group can be scaled accounting
for, e.g. different temporal profiles due to a diurnal cycle of
emissions. Note that emission groups do not have to be ho-
mogeneous, but may have a sub-structure. However, scaling
the emission group then means scaling all emissions in their
sub-structure. The total concentration enhancement field for
a given time step is obtained as a sum of the concentration
fields for each emission group. The choice of the emission
groups should reflect the relative variability of the emission
sources such that grouped emissions should have a high cor-
relation. The division into emission groups is described in
Sect. 2.4.

2.2 The inverse framework

In this study, the inverse problem is estimating emissions x
(state vector of length m) from the forward-modelled concen-
tration measurements y (measurement vector of length n).
The relation between the measurements and the state vectors,
i.e. emission groups per time step, is given by the transport
model GRAL

y=Kx e, (1)

with €, as a vector of length n with Gaussian noise charac-
terising the statistical uncertainty of the measurements. Since
COg3 is inert on the time scales on which atmospheric trans-
port in the city takes place, the concentration is proportional
to the magnitude of the emissions, which means that the
model is linear. The Jacobian matrix K (m xn) fully describes
the linear forward model and scales the concentration fields
for each emission group. Each matrix K for a given meteoro-
logical situation is constructed by simulating a concentration
field for each emission group x; with i € (1, m). The matrix
entries K; ; are the sensitivities of concentration of a specific
measurement y; with je (1, n) to changes in the emissions
of the emission groups:
Y

Kij= . 2

Depending on the emission scenario, a different linear
combination of the emission groups forms the total concen-
tration field of a given hour. As the problem is typically
under-constrained and thus no unique solution exists, regu-
larisation is required to obtain a stable and realistic solution.
Therefore, we use a Bayesian inversion approach and con-
strain the solution x by introducing prior emissions x, (vec-
tor of length m) and prior error covariance S, (m x m matrix)
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Figure 1. The outer box shows the GRAMM domain, which has an extent of 20 km x 20 km with a resolution of 100 m x 100 m. The inner
box shows the GRAL domain with a size of 12.3km x 12.3km and a resolution of 10m x 10 m. The blue dots denote the meteorological
measurement stations for the matching algorithm. The administrative district borders lie within the GRAL domain and can be seen in Fig. C1

in the Appendix.

following Rodgers (2000):
5 Tg—1 1\ eTe—1
F=x,+(K'S;'K+8;1) KIS 0-Kxp).  ©)

The uncertainties in y and K are assumed to be Gaussian,
unbiased and independent of each other. Sy (m x m matrix)
denotes the measurement covariance matrix, which we ad-
just within the OSSE (see Sect. 3.1). It contains instrument,
model and representation errors. We assume that the ma-
trix S, is diagonal, i.e. has no covariances, implying that the
model and measurement errors are not correlated in time and
space.

The posterior covariance S; (n x n matrix) is then given as

S; = (K'S;'K+8,; 7. )

For the derivation, see Rodgers (2000).

For multiple time steps, we chain the different atmospheric
transport situations by concatenating the matrix K for each
time step r of te (¢1,...,1,) and construct a forward model
K for all time steps, which can be separated into ¢, inde-
pendent sets of linear equations if no correlation between
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states is assumed. The matrices K for each time step are on
the diagonal of the new matrix Kt as the model GRAMM/-
GRAL assumes steady-state conditions. This means that the
concentration field in an hour depends only on the emissions
of the respective hour and not on the hours before. If the at-
mospheric transport changes from one hour to the next, so
will the matrix K.

Yo Ko 0 0 X0 X0

Y1 0 K, 0 X X1

S Do : 1[R[ O
v, 0 0 .. K, X, X,

This equations simplifies and the number of state vectors de-
creases, if a constant diurnal cycle of the emissions is as-
sumed:

Yo Ko 0 .. 0

¥ 0 K ... 0

. . . X0 X0

’ : ; ' ’ X1 X1

Yoz |_| 0 0 ... Ky | K

Yu |~ K(%; KO g =Kr - ©
y.25 _25 X23 X23

S
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Solving for the posterior emissions X requires the prior
probability distribution, which is given as a multivariate
Gaussian distribution defined by the vector of the mean val-
ues for each state x, and the covariance matrix S,. In the
case of uncorrelated states, the prior covariance matrix is
S, = diag(c?) with the variances of the state 5,2 on the diag-
onal. For correlated states, a common choice of correlation
is an exponentially decaying correlation defined by a sin-
gle parameter per dimension (Kunik et al., 2019). The sin-
gle parameter defines the strength of the correlation along
a distance of a dimension. In principle, the correlation in
the prior reduces the total uncertainty of the prior and links
the different hours of the inversion making the inverse prob-
lem numerically more complex at the same time. We analyse
the influence of temporal correlation in the prior of fluxes in
Sect. 3.4. The correlation is defined by a correlation strength
7, for the time difference between states at the same position.
With that, the covariance is

|11 — 10
COV(Xi,t()a Xi,l‘l) = 0i,ty0i,1; €Xp (T— ’ (7)
t

with the standard deviation of state x; at time f¢ and time #;
as oj 4, and o; ;, respectively.

In Sect. 3.3, we analyse the benefit of measuring CO addi-
tionally for estimating CO, emissions. We assume that they
are both passive tracers and thus share the same forward
model matrix K. The CO, emissions can then be expressed
in terms of the CO emissions as

ycoz _ K 0 XCo, _ K 0 In
yeo ) \0 K J'\lxco /J7\0 K ) \Aco
w0 = (kg ) Xcon ®)

with Aco as a diagonal matrix with the flux-weighted mean
emission factors aco per sector with

Qo = sti,saCO,s
Y sacos

with x; ¢ as the CO; emissions of sector s in flux state vector
entry i and aco s as the emission factor for sectors. ) is the
sum over all sectors. We assume the emission factors to be
exact for the optimisation in the Bayesian inversion system.

€))

2.3 Evaluation metrics

To describe the properties of the inversion and evaluate
the set-ups of the OSSEs, we introduce evaluation metrics,
namely the information content, the relative improvement
and the root mean square error (RMSE). The metrics eval-
uate the quality of the inversion (result) and are sensitive to
slightly different aspects of the evaluation. Some require the
true emissions, while others are able to evaluate the quality of
the inversion without knowing the truth. Further, the metrics
differ in computational costs. For the analysis, we choose the
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metric that allows us to best analyse the system and highlight
the impact.

First, the information content of the measurement can be
derived from the concept of Shannon information, which is
similar to the physical entropy (Rodgers, 2000). The Shan-
non information for the difference of prior and posterior
probability for the Bayesian inversion in a linear case and
given Gaussian probability distribution is

1 1
H=—§1og(|s;(s;‘|)=—§1og|1,,—A|. (10)

A denotes the averaging kernel and I, is the identity matrix
with dimension n. For details on the concept and derivation,
see Rodgers (2000). One can see that the information content
increases with the averaging kernel getting close to identity.
The information content describes the quality of the set-up
independently of the actual difference between the prior and
the truth. It can therefore be used as a measure for the quality
of the inversion, in which the truth is not known. Since it is a
scalar quantity, it is useful for optimising observing systems
as well as characterising and comparing them. However, in
an OSSE, the truth is known, such that the difference between
truth and posterior emissions can also be used for evaluation
of the set-up. The RMSE over the entire domain is defined
as the difference between the sum of the two vectors Xy and
Xpe

R 1, 2
RMSE (o1 ¥io) = | = (Fronr = Xir,) ™ (1)

=0

The RMSE of the total fluxes gives quantitative informa-
tion on how close the total posterior flux X is to the true to-
tal x5, in the domain. In contrast to the information content,
it does not capture the complete probability distribution, but
rather the effect of the stochastically generated noise. How-
ever, it is computationally cheaper to calculate. Additionally,
the relative improvement can be calculated, if the true emis-
sions are known:

oy k
y 1 =l .
[lxa = x*[I2

with x, the prior flux, x the posterior flux, and x™* the true
emissions. The relative improvement scales the difference
between the posterior and the truth of each state by the differ-
ence between the prior and the truth of the states. The relative
improvement is 0 % if the RMSE of the posterior has not im-
proved compared to the prior and 100 % if the posterior and
the truth are identical.

2.4 Emission data and uncertainties

In this study, we simulate anthropogenic CO; enhancements.
In the following, we explain the data sets used to construct
the true emissions as well as the prior for the inversion.

Geosci. Model Dev., 17, 1885-1902, 2024
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The fluxes of the inventories have a high resolution (see
Sect. 2.4.1 and 2.4.2), but we group the fluxes into emis-
sion groups, which we use as basis vector for the inversion.
The emission groups are administrative districts from Open-
StreetMap. Therefore, only the total emissions per adminis-
trative district are optimised for, even though a district still
exhibits a higher resolved sub-structure. While there are ac-
tually 26 administrative districts, small districts and districts
at the domain border have been aggregated (see Fig. C1) such
that there are 19 districts which can be optimised. The rea-
son for choosing administrative districts is that the emission
information should meet the needs of the stakeholder (Jung-
mann et al., 2022) and should be well constrained by a rea-
sonable number of sensors. For Heidelberg, administrative
districts are a politically meaningful unit exhibiting an area
large enough to be constrained with a realistic number of
sensor nodes. We choose to aggregate smaller districts and
border districts as they are very difficult to constrain because
they contribute only weakly to an overall enhancement. To
assign area emissions on a district level, area sources are in-
terpolated to the GRAL grid of 10m x 10 m and each pixel
on the GRAL grid is assigned to the district with the maxi-
mum overlap.

2.4.1 True emissions

For the true emissions, we use data with a high spatial and
temporal resolution to reflect the expected heterogeneity and
variability of the emissions in the urban area. Traffic emis-
sions were taken from a OpenStreetMap-based emission esti-
mate (Ulrich et al., 2023) as line sources with street-resolving
(3 m) resolution. Combustion emissions are based on data
for the yearly consumption of natural gas, fuel, oil, liquid
gas, coal, wood and pellets in the municipality of Heidel-
berg, as provided by the public utility company of Heidel-
berg (“Wirme Atlas 2017 Aggregation”, version 001). The
emissions are primarily caused by residential heating and do
not include traffic emissions. The combustion data are ag-
gregated on a grid with a resolution of 100m x 100 m to
protect the privacy of the customers. For the same reason,
if there are fewer than five customers in a single grid cell,
the data are masked and not available in the inventory. We
treat masked emissions as if they do not contribute, i.e. set
these grid cells to zero. Finally, the remaining emissions from
Gridded Nomenclature for Reporting (GNFR) sector G to L
are additionally accounted for as true emissions. We use the
area emissions provided by TNO (Nederlandse Organisatie
voor Toegepast Natuurwetenschappelijk Onderzoek) as true
residual emissions. However, these area emissions contribute
only 1.4 % to total emissions (see Table 1). All true emissions
are then cut into administrative districts for division into base
vectors (see Fig. Cl1), but still have a sub-structure, as de-
scribed above and as illustrated in Fig. 2.

There are only two TNO point sources in the GRAL do-
main which are each treated as an individual group. The two
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TNO point sources in the domain are emitted as point sources
at stack heights of 85 and 120 m. A fixed diurnal and weekly
cycle of emissions is assumed following the profiles listed
for each GNFR sector by Denier van der Gon et al. (2011).

2.4.2 Prior emissions

We use emission data from the TNO inventory (Super et al.,
2020) as starting point for constructing the prior. The data set
consists of an inventory of area sources with a resolution of
1/60° longitude x 1/120° latitude (=~ 1 km x 1 km over Cen-
tral Europe) and point sources. TNO emissions are shown
for the Heidelberg GRAL domain in Fig. B1. While the data
set consists of 10 different emission maps which were con-
structed with a Monte Carlo approach, only the first reali-
sation of the set is used. Emissions are divided into emission
categories according to the GNFR category for both CO, and
CO. From this, the mean emission factor CO/CO, for each
GNEFR category for the entire GRAL domain is obtained. The
emissions and ratios for the Heidelberg domain are listed in
Table 1 and are used in Sect. 2.4.

TNO area emissions are divided into administrative dis-
tricts as described above. We further smooth out the area
TNO emissions such that the mean emissions per area are
equal for each district; however, they are not constant over
the domain because emissions per area still exhibit a sub-
structure within the district (see Fig. 2). The prior emissions
are set constant in time and do not have a diurnal cycle. The
reason for introducing smoothing across districts, as well as
the constant temporal profile for the prior, is to reflect a re-
alistic difference between prior and truth that would also be
expected in a real inversion. In addition to the area sources,
the TNO point sources are also accounted for in the prior.

The prior uncertainties for TNO point and area sources are
set to 100 % of the prior flux. Prior uncertainties for traffic
and combustion sources are set to 100 % of the true emissions
since the prior emissions for traffic and combustion sources
are zero.

In total, there are 59 emission groups consisting of two
point sources, and 19 districts with emissions from the TNO
area sources, the traffic simulations and the combustion data.
This choice of emission groups defines the dimension n of
the inversion framework. Figure 2 illustrates the three emis-
sion groups (area, combustion and traffic) belonging to the
district Weststadt. The temporal mean emission strength of
all emission groups is illustrated in Fig. 3 for prior, prior un-
certainty and truth.

Note the differences between the magnitude of the emis-
sion groups in the prior and the truth. As the prior and true
emissions are accounted for in different emission groups,
corresponding to different vector entries in state x, the in-
version needs to redistribute to the other source types to cor-
rectly estimate sectoral and spatial patterns. This configura-
tion pushes the limits of the current inversion set-up as it
tests the capabilities of the inversion system to identify spa-

https://doi.org/10.5194/gmd-17-1885-2024
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Table 1. CO; and CO emissions per year in Heidelberg and ratio of CO/CO; [ppb ppm_l] for different Gridded Nomenclature for Reporting
(GNFR) emission sectors as taken from TNO (Super et al., 2020). The ratio was calculated by converting from kilograms to parts per million
(ppm) or parts per billion (ppb) by taking into account the molecular mass of CO and CO,. The GNFR sectors are the basis for reporting
spatially distributed emissions of air pollutants by European countries.

GNFR  Sector name CO; emissions  CO emissions CO/CO,
[kga™'] lkga™']  [ppbppm~!]
A Public power 1.4e 408 2.8¢405 3
B Industry 5.4e + 08 9.6¢ 405 3
C Other stationary combustion 3.5¢+08 2.0e + 06 9
D Fugitives 0 0 NaN
E Solvents 5.5¢+06 3.0e + 04 9
F1 Road transport gasoline 6.6e +07 1.1e +06 25
F2 Road transport diesel 1.2¢ 408 8.7e +04 1
F3 Road transport LPG 2.2¢ +06 6.8¢ +03
G Shipping 7.4e + 05 1.2¢ +03 3
H Aviation 0 0 NaN
I Oft-road 6.6¢ + 06 2.3e+05 56
J Waste 0 1.8¢ 402 inf
L Agriculture other 1.0e — 07 0 0
Truth Prior Posterior

CO2 emissions
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Figure 2. For the city district Weststadt (“‘We”) three elements of the state vector are shown (three rows). The columns show the true, prior
and posterior emissions for TNO area emissions (a, b, ¢), combustion emissions (d, e, f) and traffic emissions (g, h, i). This plot illustrates
three of the state entries seen in Fig. 3. Note, that the prior (d, e, f) for combustion and traffic is zero, but exhibits the fixed sub-structure
of the truth. The combustion emission in the district exhibits white 100 m x 100 m squares, which are masked due to data protection policy.
The posterior emissions differ depending on the data assimilated and are illustrated here for 10 CO, measurements in the entire Heidelberg
domain with 1 ppm uncertainty. Posterior results are discussed in Sect. 3.

https://doi.org/10.5194/gmd-17-1885-2024 Geosci. Model Dev., 17, 1885-1902, 2024



1892

(a) Prior

(b) Prior SD

S. N. Vardag and R. Maiwald: OSSE for urban CO; flux estimation using GRAMM/GRAL

(c) Truth (Mean)

50000 A

40000

30000 -

20000 -

CO, emissions [kg h=1]

20 40 0
Emission group

S R STV R

20 40 0 20 40
Emission group

I TNO point
3 Line source
I TNO area
I Combustion

Emission group

Figure 3. Emissions of each state vector for prior (a), uncertainty of the prior as the standard deviation (SD) (b) and truth averaged over time
(c). The different emission groups contain emissions from the TNO point (blue) and area sources (green), the traffic simulations (orange) and

the combustion sources (red).

tially overlapping emission groups. For the entire domain,
prior and true emissions differ on average by 13.5 % ((truth—
prior)/truth).

2.5 Inversion experiments

This study examines the performance and design parame-
ters of a network of sensors that measure the CO, con-
centration in air in an urban environment by combining a
high-resolution atmospheric transport model on building-
resolving scale with an atmospheric inverse model. The in-
vestigation focuses on various aspects to gain initial insights
into the capabilities of a monitoring network in Heidelberg.
To systematically analyse different parameters of a measure-
ment network, we conduct four separate experiments, each
targeting different aspects of network design or inversion set-
up. We analyse the number of sensors versus the quality of
sensors (Sect.3.1), the optimal horizontal sensor placement
(Sect. 3.2), the benefit of utilising CO as an additional tracer
(Sect. 3.3) and the effect of introducing a temporal correla-
tion in the prior error covariance (Sect. 3.4). In all experi-
ments, the virtual sensors, which “sample” the atmospheric
trace gas concentrations, are placed at 2m above ground
level and positioned such that they form a rectangular grid
that covers the domain. Then, either all sensors are used or
they are sub-sampled from the grid as described for each re-
spective experiment in Sect. 3. The grid is chosen as a first
approach to find the optimal sensor placement. The inver-
sions are performed for wind situations during the period
of 22 July 2021 to 21 August 2021. For the experiments in
Sect. 3.1-3.2, 24 random hours are sampled from the first
300h of the period. For the experiments in Sect. 3.3-3.4,
the first consecutive 120h (5d) of the period are used for
the inversion to test whether the posterior estimate captures
the correct temporal pattern. For the inversion, we assume
constant emissions in Sect. 3.1-3.2 and a fixed diurnal cy-
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cle as described in Sect. 2.4 for Sect. 3.3-3.4. In the OSSE
conducted, the influence of biogenic CO; fluxes and back-
ground concentrations is not considered. Instead, the simu-
lated concentration fields specifically represent the increase
in CO, concentration resulting from anthropogenic fluxes
within the domain. This simplification corresponds to pe-
riods when biogenic influences in the city centre are very
small, most likely in winter, and exact background estima-
tions of CO, transported from outside the domain into the
domain are available. Both assumptions are not valid during
most parts of the year. However, the goal of this OSSE is
to evaluate the inversion framework and analyse the sensi-
tivity of network configurations to CO, emission estimates
as a starting point for optimal network design in Heidelberg.
As such, we do not claim completeness. We elaborate on the
limitation caused by these simplifications in Sect. 4.

3 Results
3.1 Sensor quality and quantity

The optimal design of a measurement network is constrained
by the total costs of the network limiting quantity and/or
quality of the sensors and transport model used. In this ex-
periment, the quality of the inversion is investigated for dif-
ferent numbers of sensors with different mismatch errors S,.
The mismatch error includes instrument errors, model errors
as well as representation errors. While all of the errors are
inevitable, the instrument errors deserve special focus as this
is a design variable for building a monitoring network. High-
cost sensors have better precision than mid-cost or low-cost
sensors, but are much more expensive such that we expect a
trade-off between quality and quantity for a given budget. We
follow the set-up by Turner et al. (2016) and conduct multi-
ple Monte Carlo experiments, each with N = 2000 runs. In
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a Monte Carlo experiment a model variable, in our case sen-
sor location, is sampled randomly to estimate the probability
of having a certain outcome, in our case of having a certain
information content of the inversion. We place 5, 10, 15, 20,
25 and 30 sensors randomly on a 5 x 6 grid within the do-
main (30 possible locations) with a total noise of 0.1, 0.5,
1.0, 2.0, 3.0, 4.0, 5.0, 10.0 ppm. We conduct the analysis for
24 randomly selected wind situations. For illustrative pur-
poses, Fig. 2 plots the true (left column), prior (middle col-
umn) and posterior emissions (right column) for the district
“Weststadt” on a map for the three emission groups, namely
for area emissions (upper panel), combustion emission (mid-
dle panel) and traffic emissions (lower panel). One can see
that an emission group is not flat, but exhibits a sub-structure.
Posterior emissions are shown for a specific setting (10 CO,
measurements with 1 ppm uncertainty). The mean posterior
result for each state (all districts, all sectors, same setting)
can be seen on the left in Fig. 4.

For quantitative analysis of the optimal configuration,
Fig. 5 shows the relative improvement of the estimation of
the city-wide emission flux for the different sensor noises
and number of sensors. The relative improvement increases
with quantity and with the decrease in model-data mismatch
error, e.g. by increasing the quality of sensors. Similar to
Turner et al. (2016), we can identify noise-limited configu-
rations (e.g. 25 sensors at 2 ppm uncertainty in Fig. 5) for
which the flux estimation improves more by increasing the
quality of the sensors and models and site-limited configu-
rations (e.g. S sensors at 2 ppm uncertainty in Fig. 5) where
the flux estimation improves more by increasing the num-
ber of sensors. While the quality of flux estimation increases
with the number of sensors and sensor quality, the budget for
a sensor network is limited. The best choice of network de-
pends on the monetary constraints for the sensor network and
the costs of each sensor.

The plot allows us to compare the relative improvement of
flux estimation for different networks in Heidelberg. One can
then utilise Fig. 5 to identify the configurations that are still
affordable (subset of squares in Fig. 5) and find the configu-
ration that maximises the relative improvement of the flux es-
timation. This implies that for any given budget one can base
a decision regarding whether to invest in more or in better
sensors (and models) on these results. Note that here we only
account for a random uncertainty in sensor noise assuming
uncorrelated measurement uncertainties among sensors. We
do not analyse systematic errors within the measurement net-
work, which could be present because of, e.g. temperature-
dependent drifts of the sensors (Delaria et al., 2021) or by a
background transport errors. Although analysing systematic
offsets was not the scope of this study, the inverse framework
established can be easily used to study such effects in the fu-
ture.
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3.2 Sensor placement

In Sect. 3.1 we randomly sub-sampled a number of sensors
froma 5 x 6 grid. Now, we analyse the optimal spatial distri-
bution of the sensors. We therefore compare the sensor place-
ment in a regular grid with a random selection of locations in
the domain. For the random selection, we run Monte Carlo
simulations (each N =2000) for different sensor numbers
again using 24 randomly selected wind situations and offer-
ing 100 (10 x 10 grid) different possible sensor positions at
2 m above ground. We analyse the information content for 9,
16, and 25 sensors for the random placement and for a regular
grid placement assuming a measurement precision of 1 ppm
(see Fig. 6). One can clearly see that the information content
increases with the number of sensors, as expected since more
sensors offer better information on the emissions. On aver-
age, the grid placement outperforms the random placement
as can be seen from the mean values in Fig. 6. This means
that without further information on the underlying emission
statistics, it is beneficial to place the sensors in a regular grid
rather than placing them randomly. This is expected since a
regular grid covers the entire domain and therefore is less
likely to be insensitive to emissions from specific areas. The
difference between random and grid placement, as well as
the distribution of the random placement, is especially large
for a low number of sensors. For a low number of sensors,
the random placement of sensors is more likely to be spa-
tially heterogeneous and therefore may be especially well
or badly placed contributing to lower and higher informa-
tion content than in the random placement. The distribution
of information content for the randomly placed sensors de-
creases for a higher number of sensors due to a better statis-
tic. Interestingly, the placements with the highest information
content are again random placements. We analysed the right
tail (10 best-performing sensor arrangements) of the random
distribution of nine sensors with high information content.
Figure 7 shows the locations of the configurations with the
highest information content. The locations with large inci-
dent number produce high information content in many me-
teorological situations and should therefore be considered
as optimal location for a measurement network. As the tail
of the distribution corresponds to individual realisations of
the Monte Carlo experiments, it remains unclear whether the
“high information content tail” is driven by a specific set of
wind situations or whether these measurement locations out-
perform the grid placement in all wind situations. For our
Heidelberg setting, one can see that the measurement loca-
tions providing the most information content are located in
the city centre and in the vicinity of higher emissions. In the
east of the domain, which is dominated by forest areas with
low anthropogenic CO; emission in the true emissions, only
few sensors are placed. In future work, we plan to extend this
study by considering also measurement stations at higher al-
titudes above ground since higher stations are less influenced
by local sources and are therefore likely to provide informa-
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Figure 4. Mean posterior emissions of each state vector (a), mean posterior uncertainty (b) and true emissions of each state vector (c¢). The
different states refer to emissions from the TNO point (blue) and area sources (green), the traffic simulations (orange) and the combustion
sources (red). Note that the prior emissions and uncertainties are given in Fig. 3.
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Figure 5. Relative improvement of the flux estimate for different
configurations of the number of sensors and the measurement error
of the sensors. The relative improvement increases with increasing
number of sensors and sensor noise.

tion on the emission patterns over a larger area. This might
be complementary to the ground-based sensors.

3.3 CO as additional tracer

CO is co-emitted when burning fossil fuels. Depending on
the source type, the CO/CO; ratio of the emissions differs
(see Table 1). As CO and CO, are nearly passive during
1 h, both tracers are transported linearly with the same atmo-
spheric transport. Therefore, measuring the atmospheric CO
concentration can provide additional information about the
specific emission groups and potentially also about the total
CO; emissions in general as both stem from anthropogenic
sources. We now analyse to which degree the estimation of
CO; emissions benefits from measuring CO enhancement as
an additional tracer along with CO,. Note that we neglect
biogenic CO emissions, which are normally expected to be
much smaller than anthropogenic CO emissions in cities.
While the mean CO/CO; ratio of all anthropogenic sources
in Heidelberg is 5 ppbppm™!, it is about 10 ppb ppm~' for
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traffic emissions (see GNFR sectors F1-F3 in Table 1) mak-
ing CO measurements especially sensitive to traffic emis-
sions.

In this experiment, we assume that all measurement sta-
tions measure both CO, and CO with uncorrelated measure-
ment errors of 1.0 ppm for CO;, and 2.0 ppb for CO. The in-
versions are performed for a period of 5d and the diurnal
cycle is assumed to be identical for each day. We conduct
this experiment using 10 sensors. The prior is constant dur-
ing the period and we do not introduce any correlation into
the prior.

Figure 8a shows the total anthropogenic CO, emissions
during the course of the day. While the prior is constant in
time, the truth actually shows a temporal profile with distinct
morning peak. One can see that both inversion results (poste-
rior with CO; only and with CO; and CO) differ from the flat
prior and are able to capture the profile of the true total emis-
sions. In the given setting, there is no significant improve-
ment in the posterior emissions of total CO, when including
CO in the inversion. Note that this finding only holds in our
setting when neglecting biogenic emissions. However, for fu-
ture studies, we encourage re-analysing the benefit of CO for
total anthropogenic CO2 when including biogenic emissions.
Figure 8b shows the traffic emissions. Again, both posterior
inversions differ from the flat prior emissions. However, the
posterior estimate using the CO as additional constraint in the
inversion is much closer to the true emissions. The same is
true for combustion emissions (see Fig. 8c). This means that
in our setting, for the given emission ratios and measurement
uncertainties, the additional measurement of CO is useful in
the inversion to separate different emission groups.

3.4 Temporal correlation of the prior

In the previous sections, we retrieved the CO; emissions
for every hour without assuming any correlation between
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Figure 7. Sensor positions of the 9 sensors with the 10 highest in-
formation content. The size of the dots indicates the incidence of
the sensor position of the 100 available positions in the experiment.

the states. Without temporal correlation, each hour of the
inversion is independent of the previous and the following
hour. We now examine the effect of considering temporally
correlated states to reflect the existence of temporal emis-
sion trends exceeding 1h time scales. A correlation in the
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prior reduces the total uncertainty of the prior. However,
the choice of the correct correlation length is vital. A larger
correlation length leads to a smoothed time series, as mea-
surements inform multiple emission states and thus exhibit
a larger corrective power over neighbouring hours. On the
other hand, smaller correlation lengths can better account for
spikes during the measurements. The choice of optimal cor-
relation length therefore depends on the underlying emission
patterns.

In the first analysis, we varied the correlation length 7, and
analysed how the RMSE of the CO; emissions for different
emission groups changes with correlation length (see Fig. 9).
This analysis is only possible in an OSSE when the truth is
known and an RMSE can actually be determined.

As the optimal correlation length depends on the tempo-
ral emission dynamics, it is also dependent on the source
type. Focusing on the total CO, emissions, we find a clear
minimum for about 2 h. This is driven by a shorter optimal
correlation length for point sources and longer optimal cor-
relation lengths for traffic, heating or other area emissions.
The curve for the point sources, which are emitted at heights
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of 85 and 120m, is qualitatively different from the curve
of the ground-based sources. While introducing any corre-
lation time has a positive effect on the RMSE for ground-
based sources, the effect can be detrimental for point sources.
For point sources, correlation times between 4 and 15h are
too strong for our setting. Here, we chose the 2h as corre-
lation strength to estimate posterior emissions and highlight
the importance of choosing the optimal correlation time es-
pecially for determining point sources. In Fig. 10a we anal-
yse the benefit of using a posterior correlation of 2 h to esti-
mate total CO, emissions. The estimation of total CO, emis-
sions improves when introducing the prior correlation. While
the benefit is only small for total CO;, emissions, the traffic
and combustion emissions improve substantially when intro-
ducing a prior correlation (see Fig. 10b and c). This finding
for our OSSE in Heidelberg is in accordance with the results
from Kunik et al. (2019) for Salt Lake City. This shows that
it is beneficial to introduce a temporal correlation of the prior
states if underlying emission dynamics are temporally corre-
lated, since neighbouring states can inform and correct for
each other.

4 Discussion

In this set of experiments, we analyse the trade-offs inherent
in balancing sensor quantity and sensor quality, we determine
the optimal sensor locations and we evaluate the advantages
of measuring CO along with the impact of introducing tem-
poral correlation into the inversion framework. These inves-
tigations are conducted within a simplified urban setting in
Heidelberg.

The information content and, consequently, the preci-
sion of emission estimates depend on both the quantity and
quality of the sensors deployed. The potential accuracy of
flux estimation increases with an increased financial budget,
enabling the installation of additional or superior sensors.
Through our experiments, we are able to determine the op-
timal sensor configuration — considering both quantity and
quality — tailored to any given financial constraint.

The experiments further suggest locations of preferred
sensor installation based on Monte Carlo simulations. The
GRAMMY/GRAL model proves especially advantageous for
assessing optimal sensor positions due to the storage of full-
concentration fields for each wind situation. Other models
often compute footprints for predefined sites, which makes
the analysis of a large number of possible sensor locations
less efficient. We analyse the performance of a network with
equally spaced sensors versus randomly placed sensors in-
side the domain. On average, equally spaced sensors outper-
form randomly placed sensors. This means that in the ab-
sence of information on the emission distribution, an equally
spaced sensor placement is a good starting point. However,
there are network configurations that yield better perfor-
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mance in terms of emission estimates, particularly when lo-
cated near emission sources and in the centre of the domain.

Moreover, we assess the advantages of incorporating CO
as an additional tracer. Although CO measurements do not
significantly enhance the overall estimation of total CO;
emissions in this setting, they do contribute to an improved
estimation of sector-specific emissions. The limited impact
of including CO for the estimation of total CO, emissions
can be attributed to the absence of biogenic emissions in
the presented setting. Consequently, the total CO; emissions
are already well represented by sampling the total simulated
CO; enhancements. In reality, the total CO; enhancement,
in contrast to total CO enhancement, is significantly influ-
enced by biogenic sources — especially in spring and summer.
Reassessing the benefit of CO as a tracer for anthropogenic
CO;, is therefore encouraged after including biogenic emis-
sions into the framework. Beyond that, it is possible to ad-
just CO/CO;, ratios of different sectors to mimic anticipated
changes in CO/CO; ratios, and evaluate the benefit of the
tracers under these circumstances again.

Finally, we analyse the influence of the prior probability
distribution on the inversion by introducing a temporal cor-
relation in the prior emission estimate. The introduction of
temporal correlation increases the overall uncertainty reduc-
tion. The optimal correlation length is source dependent, but
itis 2 h for the total emissions in our setting. Using this corre-
lation length improves the emission estimate and minimises
the discrepancy between the posterior emission estimate and
the true emissions, which again is in line with previous stud-
ies.

The results provide an initial indication on how to con-
struct a network and beyond that they show the principal ap-
plicability of GRAMM/GRAL in an inversion framework.
However, all results still exhibit uncertainties due to vari-
ous aspects: first, like any model, GRAMM/GRAL exhibits
transport errors. The performance of GRAMM/GRAL has
been assessed in multiple studies and has to be taken into ac-
count in the inversion (as model-data mismatch). Utilising a
wrong error for the model transport may distort the outcome
of the inversion. The same argumentation holds for instru-
mentation errors. So far, we have only considered random
noise for the model-data mismatch. However, the framework
makes it possible to evaluate systematic biases, e.g. due to
sensor drifts or emissions transported from outside the model
domain to the sensor locations.

Second, introducing biogenic emissions and analysing the
effect of background concentrations is essential for drawing
final conclusions on the design of the measurement network
in urban areas. Biogenic emissions enhance the total CO,
signal and thus mask the contributions from anthropogenic
sources. The effect of CO; transported into the model do-
main will be larger the smaller the domain. In Heidelberg, we
expect the effect of transported emissions to be considerable
as emissions from the city of Mannheim influence the con-
centrations in Heidelberg for typical west-wind situations.
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Figure 10. (a) Diurnal cycle of the total CO; emissions. The figure shows the posterior for an inversion with uncorrelated prior emissions
(blue) and with time-correlated prior emissions with a correlation length of 2h (orange). The shaded area is the standard deviation derived
from the posterior covariance. The dotted lines show the prior emissions (grey) and the truth (green). (b) Same as (a), but for traffic instead
of total CO, emissions. (¢) Same as (a), but for combustion CO, emissions instead of total CO, emissions.

The magnitude of concentration enhancement and its effect
on the emission estimation still needs to be explored in fu-
ture work. However, there are possibilities to account for the
transported emissions — either by setting up dedicated mea-
surement stations at the domain borders or by including an
uncertainty for the background enhancement into the inver-
sion framework, which will be explored in a next-generation
OSSE for Heidelberg.

Third, the choice of state vector will influence the result. In
future, one might consider changing from emissions grouped
into districts with fixed sub-district variation to, e.g. a high-
resolution regular grid. This would decrease the aggregation
error and account for finer spatial dynamics. However, as this
increases the dimension of the state vector, more measure-
ments will be necessary to determine the fluxes on higher
resolution equally well.

While an OSSE will never be able to mimic the real world
fully, approaching realistic settings in the model world is im-
portant in order to obtain the correct indications for sensor
network planning. Using the framework presented here, we
can now add further complexity and conduct numerous addi-
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tional experiments, such as exploring moving sensors, incor-
porating additional tracers, analysing different sensor heights
and extending to longer time periods.

5 Conclusions

We have developed a framework for conducting OSSEs using
the high-resolution transport model GRAMM/GRAL. This
framework allows us to perform various experiments to as-
sess the capabilities and sensitivity of a measurement net-
work to specific parameters.

The developed framework represents the first step towards
conducting atmospheric inversions using a transport model
with a resolution considerably below the kilometre scale. The
experiments enable comparisons between different network
parameters and therefore optimisation of the network design
based on high-resolution transport. We have demonstrated
the feasibility of estimating CO; emissions for Heidelberg
at a district level and give the first indications for sensor net-
work design. The main advantage of using GRAMM/GRAL
in the inversion lies in the cost-effective forward model em-
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ployed in the catalogue approach, as well as the assump-
tion of hourly steady state in the model. This steady-state
assumption enables easy determination of the Jacobian re-
quired for inversion. This advantageous characteristic facili-
tates network optimisation across various parameters and lo-
cations, even encompassing areas influenced by street chan-
nelling and buildings. This framework provides the basis for
efficient estimations of high-resolution CO; fluxes in an ur-
ban setting. In the next step, we can further enhance the real-
ism of the OSSE by incorporating additional complexities.

Appendix A: Abbreviations

Table A1. List of abbreviations used in the paper.

Abbreviation  Full name

CO carbon monoxide

CO,p carbon dioxide

GNFR Gridded Nomenclature For Reporting
GRAL Graz Lagrangian Model

GRAMM Graz Mesoscale Model

OSSE observing system simulation experiment
ppb parts per billion

ppm parts per million

TNO Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek
RANS Reynolds-averaged Navier—Stokes
RMSE Root mean square error

Appendix B: Emissions
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Figure B1. (a) TNO area emissions, (b) TNO point emissions for the GRAL domain in Heidelberg. Data are taken from Super et al. (2020).
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Appendix C: Districts chosen as state vectors for the
inversion
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Figure C1. The districts from OpenStreetMap used as states for
the inversion. The full names as well as the administrative districts
inside each district are listed in Table C1.

Table C1. Overview of the district names and the administrative
districts they represent. Smaller districts or district fragments are
grouped together.

Code Districts Name
Alt Altstadt

Bn Bahnstadt

Be Bergheim

Do Dossenheim

Ha Handschuhsheim

Neu Neuenheim

Pf Pfaffengrund

Sb Schlierbach

Sr Schriesheim

Sud Stidstadt

We Weststadt

Wb Wieblingen

GO Oftersheim, Kirchheim, Sandhausen Group 0
Gl Eppelheim, Plankstadt Group 1
G2 Edingen-Neckarhausen, Ladenburg Group 2
G3 Schonau, Ziegelhausen, Wilhelmsfeld, Weinheim ~ Group 3
G4 Emmertsgrund, Boxberg Group 4
G5 Gaiberg, Bammental, Neckargemiind Group 5
G6 Leimen, Rohrbach Group 6

Code and data availability. The inversion code can be
found at https://doi.org/10.5281/zenodo.8354902 (Mai-
wald and Liiken-Winkels, 2023) and https://github.com/
ATMO-IUP-UHEI/BayesInverse/tree/v.1.1 (last access: 26 Febru-
ary 2024). Code to read and process GRAMM/GRAL output:

Geosci. Model Dev., 17, 1885-1902, 2024

S. N. Vardag and R. Maiwald: OSSE for urban CO; flux estimation using GRAMM/GRAL

https://github.com/ATMO-IUP-UHEI/GGpyManager (last access:
23 February 2024) and https://doi.org/10.5281/zenodo.8375169
(Maiwald, 2023a). Code to conduct the experiments:
https://github.com/ATMO-IUP-UHEI/Experiments (last access:
27 February 2024; DOI: https://doi.org/10.5281/zenodo.8370230,
Maiwald, 2023b). Forward modelled concentration data
has been simulated using GRAMM/GRAL v19.1 (https:
//github.com/GralDispersionModel, last access: 23 February 2024)
and is archived on heiData: https://doi.org/10.11588/data/NHIVDO
(Vardag and Maiwald, 2023). The position of the ad-
ministrative  districts are  from  OpenStreetMap  (https:
/lopenstreetmap.org/copyright, last access: 10 August 2022).
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