
Geosci. Model Dev., 17, 1869–1883, 2024
https://doi.org/10.5194/gmd-17-1869-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
ethods

forassessm
entofm

odels

Accurate assessment of land–atmosphere coupling in climate models
requires high-frequency data output
Kirsten L. Findell1, Zun Yin1,2, Eunkyo Seo3,4, Paul A. Dirmeyer4, Nathan P. Arnold5, Nathaniel Chaney6,
Megan D. Fowler7, Meng Huang8, David M. Lawrence7, Po-Lun Ma8, and Joseph A. Santanello Jr.9
1Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, NJ 08540, USA
2Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ 18966, USA
3Department of Environmental Atmospheric Sciences, Pukyong National University, Busan, 48513, Republic of Korea
4Center for Ocean-Land-Atmosphere Studies, George Mason University, Fairfax, VA, 22030, USA
5NASA-GSFC, Global Modeling and Assimilation Office, Greenbelt, MD 20771, USA
6Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
7Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80305, USA
8Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
9NASA-GSFC, Hydrological Sciences Laboratory, Greenbelt, MD 20771, USA

Correspondence: Kirsten L. Findell (kirsten.findell@noaa.gov)

Received: 6 September 2023 – Discussion started: 12 October 2023
Revised: 2 January 2024 – Accepted: 8 January 2024 – Published: 29 February 2024

Abstract. Land–atmosphere (L–A) interactions are impor-
tant for understanding convective processes, climate feed-
backs, the development and perpetuation of droughts, heat-
waves, pluvials, and other land-centered climate anomalies.
Local L–A coupling (LoCo) metrics capture relevant L–A
processes, highlighting the impact of soil and vegetation
states on surface flux partitioning and the impact of sur-
face fluxes on boundary layer (BL) growth and development
and the entrainment of air above the BL. A primary goal of
the Climate Process Team in the Coupling Land and Atmo-
spheric Subgrid Parameterizations (CLASP) project is pa-
rameterizing and characterizing the impact of subgrid hetero-
geneity in global and regional Earth system models (ESMs)
to improve the connection between land and atmospheric
states and processes. A critical step in achieving that aim
is the incorporation of L–A metrics, especially LoCo met-
rics, into climate model diagnostic process streams. How-
ever, because land–atmosphere interactions span timescales
of minutes (e.g., turbulent fluxes), hours (e.g., BL growth
and decay), days (e.g., soil moisture memory), and seasons
(e.g., variability in behavioral regimes between soil moisture
and latent heat flux), with multiple processes of interest hap-
pening in different geographic regions at different times of
year, there is not a single metric that captures all the modes,

means, and methods of interaction between the land and the
atmosphere. And while monthly means of most of the LoCo-
relevant variables are routinely saved from ESM simulations,
data storage constraints typically preclude routine archival of
the hourly data that would enable the calculation of all LoCo
metrics.

Here, we outline a reasonable data request that would
allow for adequate characterization of sub-daily coupling
processes between the land and the atmosphere, preserv-
ing enough sub-daily output to describe, analyze, and bet-
ter understand L–A coupling in modern climate models. A
secondary request involves embedding calculations within
the models to determine mean properties in and above the
BL to further improve characterization of model behavior.
Higher-frequency model output will (i) allow for more direct
comparison with observational field campaigns on process-
relevant timescales, (ii) enable demonstration of inter-model
spread in L–A coupling processes, and (iii) aid in targeted
identification of sources of deficiencies and opportunities for
improvement of the models.
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1 Introduction

Much progress has been made in understanding and charac-
terizing land–atmosphere (L–A) interactions in recent years
(for an overview of some advances, see Santanello et al.,
2018). The importance of L–A interactions has been demon-
strated in the initiation, perpetuation, propagation, and ter-
mination of droughts (e.g., Otkin et al., 2018; Roundy et al.,
2013; Herrara-Estrada et al., 2019; Wu and Dirmeyer, 2020);
in the exacerbation of heatwaves (Findell et al., 2017; Al-
izadeh et al., 2020; Petch et al., 2020; Selten et al., 2020; Seo
et al., 2020; Dirmeyer et al., 2021; Benson and Dirmeyer,
2021); and in the timing of monsoon or rainy-season on-
set (e.g., west Africa: Berg et al., 2017; India: Tuinenberg
et al., 2014; the Amazon: Wright et al., 2017). These and
other studies collectively suggest the importance of accu-
rately modeling processes at the heart of these feedbacks and
interactions. However, output from climate model simula-
tions is rarely saved at high-enough frequencies to capture
the rapidly changing features and fluxes that are crucial to
the proper characterization of the many links in the chain of
L–A interactions (Santanello et al., 2011). These individual
linkages include the following:

– the impact of surface temperature, soil moisture, and
vegetation on turbulent fluxes at the L–A interface;

– the impact of those fluxes on boundary layer (BL) mix-
ing and moist static energy (MSE);

– the impact of BL processes (e.g., growth rate and buoy-
ancy) on entrainment of air above the BL; and

– their cumulative impact on

– the BL height, temperature, and humidity and

– the development of clouds and/or precipitation.

Figure 1 schematically demonstrates that individual met-
rics of L–A coupling capture different aspects of these com-
plex linkages. While some metrics focus on the physical pro-
cesses that operate within the diurnal cycle (e.g., mixing di-
agrams, Santanello et al., 2009, 2011), others focus on the
signal of L–A interactions emerging from long-term multi-
variate statistics (e.g., the triggering feedback strength or
TFS, Findell et al., 2011). Because of this complexity, we
cannot select just one variable, metric, or timescale to assess
the strength of a model’s coupling between the land and the
atmosphere.

The objects in Fig. 1 highlight the distinction between
metrics that elucidate physical processes directly (within the
diurnal cycle) and those that look at the statistical behav-
ior in data aggregated into long time series using sub-daily,
daily, or longer-term mean values in the statistical analyses.
Both classes of metrics provide useful information about L–
A coupling; when used to inform model development and
improvement, the statistical metrics can reveal symptoms of

model behavior, while the process-oriented metrics can po-
tentially diagnose causes (see Neelin et al., 2023, for a de-
tailed appreciation and application of process-oriented diag-
nostics to assess and improve model behavior). For the pur-
poses of demonstrating some of the critical information that
can be learned from analyzing observations and models at
sub-daily timescales, we will focus on the use of mixing dia-
grams (Santanello et al., 2009, 2011), two-legged metrics at
multiple scales (Dirmeyer, 2011; Yin et al., 2023; Seo and
Dirmeyer, 2022), and the triggering feedback strength (TFS,
Findell et al., 2011, 2015).

Recent observational field campaigns have included high-
frequency observations that can be compared to output from
models covering a wide range of purposes and scales (e.g.,
Earth system models or ESMs, regional climate models,
large-eddy simulations, and single-column land–atmosphere
models) to test assumptions about L–A behavior. These in-
clude the Land–Atmosphere Feedback Experiment (LAFE)
at the Southern Great Plains (SGP) site near Lamont, Ok-
lahoma, USA (Wulfmeyer et al., 2018); the Chequamegon
Heterogeneous Ecosystem Energy-balance Study Enabled
by a High-density Extensive Array of Detectors (CHEESE-
HEAD) in Wisconsin, USA (Butterworth et al., 2021); and
the Land surface Interactions with the Atmosphere over
the Iberian Semi-arid Environment (LIAISE) experiment in
northeastern Spain (Boone et al., 2021). For example, using
high-frequency data from three observational towers from
LAFE, Wulfmeyer et al. (2022) demonstrate some of the
shortcomings of Monin–Obukov similarity theory (MOST,
Monin and Obukhov, 1954) in the estimation of surface
fluxes of sensible heat, latent heat, and momentum in un-
stable conditions. The widespread use of MOST in many
model parameterizations speaks to the progress enabled by
its implementation. However, the recent acquisition of high-
frequency observations like those from LAFE and longer-
life-span land–atmosphere feedback observatories (LAFOs)
with the same instrumentation (Späth et al., 2023) exposes
model shortcomings which can only be evaluated with high-
frequency model output. While high frequency in the con-
text of GCMs means something different than in the context
of boundary layer turbulence (typically on the order of sec-
onds), the data request presented here will enable evaluation
of processes occurring on hourly to 3-hourly timescales, en-
abling a leap forward in understanding both the processes
themselves and ESM representations of those L–A coupling
processes.

The spatial scales of individual grid cells in ESM simula-
tions included in the most recent Coupled Model Intercom-
parison Project (CMIP6) typically range from 50 to 250 km,
with models run at resolutions finer than 50 km being eligible
for participation in the High-Resolution Model Intercompar-
ison Project (HighResMIP; Haarsma et al., 2016). These res-
olutions suggest that the footprint sampled from in situ obser-
vations (ranging from centimeter-scale soil moisture probes
to wind- and height-dependent flux tower sampling fetches
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Figure 1. LoCo metrics assess interactions between different parts of the Earth system (y axis) at different temporal (x axis) scales. Yin et
al. (2023) and Seo and Dirmeyer (2022) highlight the need to recognize that the two-legged metrics of Dirmeyer (2011) yield results that are
dependent on the temporal frequency of the input data, thus requiring a separation between hourly-to-daily (H2D) and monthly-to-seasonal
(M2S) versions of the two-legged metrics. Esit et al. (2021) show promising predictability benefits from soil moisture initialization, extending
the scope of soil moisture memory into the seasonal-to-decadal time frame. Modified from Santanello et al. (2018).

on the order of hundreds of meters) is substantially smaller
than individual ESM grid cells. This suggests that, when
possible, observational comparisons should be made against
sub-grid tiles representing fractional areas of differing land
use types. However, saving tile-specific high-frequency data
is likely not to be feasible for most modeling centers. Given
that reality, the data request outlined here will enable the
previously impossible assessment of grid cell mean behav-
ior throughout the diurnal cycle. Future work motivated by
the CLASP project can extend these lines of inquiry to issues
centered on sub-grid spatial heterogeneity or to comparisons
with global storm-resolving efforts like those of Stevens et
al. (2019).

While short-term simulations saving high-frequency out-
put would allow for a comparison of models with field cam-
paigns, to accurately capture the long-term signal of L–A
coupling characterized by the statistically based L–A met-
rics shown in Fig. 1, sub-daily output of fields at the L–
A interface must be saved as part of the routine diagnostic
output from long simulations. Furthermore, previous stud-
ies have demonstrated that metrics assessing interactions be-

tween directly observed variables (e.g., TFS is not directly
observed but assesses the relationship between observed
fluxes and precipitation) require longer datasets than the di-
rectly observed variables themselves (e.g., precipitation) to
adequately sample the joint parameter space and compute a
statistically robust climatology (Findell et al., 2015).

To assess the coupling strength and details of the inter-
actions in different parts of the L–A system of a GCM, a
comprehensive data request would include the following:

– hourly 3D atmospheric profiles of potential temperature
(θ ), humidity (q), and three-dimensional winds (u, v,
w);

– hourly 3D soil profiles of moisture content (SM) and
temperature (Tsoil); and

– hourly 2D fields of surface pressure; BL height (hPBL);
precipitation (P ); sensible heat flux (H ); evapotranspi-
ration (ET) and its component parts; near-surface (2 m)
temperature, humidity, and winds; net radiation (Rnet)
fields (incoming and outgoing short- and longwave ra-
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diation – SWdown, SWup, LWdown, and LWup); and land
surface temperature (LST).

The atmospheric profiles should cover the region from the
surface to the mid-troposphere in order to capture character-
istics of air entrained at the top of the BL. The soil profiles
should span from the top of the soil column down through
the root zone at minimum. These data would allow for calcu-
lation of a host of LoCo metrics, including all but one of the
metrics displayed in Fig. 1, at the timescales that are most
relevant to the daytime processes the metrics are meant to
describe (the GLACE-� metric can only be determined with
specific model simulations; see Koster et al., 2004). How-
ever, we recognize that this would require copious amounts
of archive capacity. Here, we aim to reduce that request sub-
stantially and include only two-dimensional fields. Our goal
is to define a data request which is reasonable in its storage
requirements but still provides enough information to char-
acterize the core aspects of the sub-diurnal processes central
to L–A interactions. More specifically, the goal is to define
a small but sufficient number of data samples per day from
two-dimensional fields capturing the sub-diurnal evolution
and variability of the following:

– boundary layer properties (BL height and vertically av-
eraged or representative mixed-layer heat content, hu-
midity, and advection)

– fluxes and radiation fields (precipitation, sensible and
latent heat fluxes, and net radiation or individual com-
ponents)

– a bulk measure of stability and humidity deficits above
the BL

– root zone and/or surface soil moisture and temperature
conditions.

In Sect. 2, we highlight the complexity of the L–A sys-
tem, showing the many interaction pathways between in-
dividual component parts. In Sect. 3, we demonstrate why
sub-daily data are required, use these results to provide sub-
stantive rationale for the minimum data frequency required
to adequately characterize the sub-daily processes of inter-
est, and share an example of the type of behavior that could
be routinely assessed if the requested data were regularly
made available for model development and/or evaluation. In
Sect. 4, we put forth our data request proposal, followed by
conclusions in Sect. 5.

2 Highlighting the complexity of the land–atmosphere
system

The novel pipe diagrams in Fig. 2 compile linkages as
coupling strength indices assessed from daily summertime
(June–July–August, JJA) data at the AmeriFlux tower at the

SGP field site, along with corresponding diagrams from two
versions of the National Oceanic and Atmospheric Admin-
istration (NOAA) United Forecast System (UFS) model for
the grid cell closest to the SGP site. These coupling strength
indices are modeled after the two-legged metrics, named in
recognition of the two phases of interaction: the terrestrial
leg, which assesses the connection between soil moisture and
surface fluxes, and the atmospheric leg, which focuses on
the connection between surface fluxes and the BL (Fig. 1;
Dirmeyer et al., 2011, 2014). Pipe diagrams from approx-
imately 170 flux tower locations were used during recent
model development, aiding the evaluation of UFS prototype
6 (P6) to prototype 7 (P7) (Seo et al., 2023). An advantage
of these diagrams is the ability to visualize a host of different
L–A linkages at once and thus to identify systematic model
biases or behaviors.

The individual coupling strength indices in Fig. 2 are all
indicative of both the sensitivity of a target variable T (e.g.,
latent heat flux) to a source variable S (e.g., soil moisture)
and the amount of observed variability:

σ (T )r (S,T ), (1)

where σ (T ) is the daily standard deviation of the target vari-
able, and r (S,T ) is the correlation between the two vari-
ables. In each pipe diagram, the absolute value of this index
is proportional to the width of the link, the strength of the
σ (T ) term is listed under each variable name and is visu-
ally revealed through the intensity of the green color in the
box around the variable name, and the strength of the corre-
lation term is enumerated with r = in each link and is visu-
ally represented by the color intensity of the link. The phys-
ically expected sign of the correlation between each source
and target variable is given by a red triangle in the link when
a positive correlation is expected (e.g., high soil moisture is
associated with high latent heat flux) and by a blue trian-
gle when a negative correlation is expected (e.g., high sen-
sible heat flux is associated with a low evaporative fraction:
EF= λE/(H + λE), where H is sensible heat flux, and λE
is latent heat flux, with E being the evaporation rate and λ
being the latent heat of vaporization). When the calculated
correlation is of the opposite sign compared to this expecta-
tion then the variability of the source term is not driving the
variability of the target term; thus, the feedback is severed,
and the link is represented with a dashed line.

Comparing Fig. 2a and b quickly reveals that, at the grid
cell closest to the SGP site, the UFS P6 model exhibits
stronger variability in surface fields and stronger coupling
between the soils (both moisture and temperature) and the
fluxes than is measured at the observational flux tower. Ad-
ditionally, the modeled fluxes exhibit stronger coupling to
2 m humidity and temperature than the observations show.
Though observations have inherent uncertainties from mea-
surement error and issues associated with the representative-
ness of a single point of the broader region characterized
by the model grid cell, this information was used during
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Figure 2. Land–atmosphere coupling pipe diagrams calculated
from data at the US-ARM Southern Great Plains site (36.61° N,
97.49° W) and UFS model grid cells containing that location,
demonstrating the complexity of land–atmosphere interactions, the
need for more than one measure to assess coupling, and some
of the potential inadequacies of modeled coupling at this exam-
ple location. Widths of pipes are proportional to coupling index
magnitude: |σ(T )r(S,T )|. Where the sign of the correlation be-
tween two terms is the opposite of the expected coupling behav-
ior, dashed blue links indicate severed feedbacks (see text for more
information). The three narrow, dashed, faint lines in the bottom
panel indicate weak, uncoupled correlations (faint-blue color) and
weak coupling index magnitude (very thin lines) for those vari-
able pairings. Daily standard deviations in boxes and coupling index
pipes list magnitudes and units; coupling correlations are shown as
r =. Adapted from http://cola.gmu.edu/dirmeyer/ufs/P6vP7_loco_
chains_AMX.html (last access: 15 December 2023).

the model development process, with changes being made
to both the land model (Noah in UFS P6 to Noah-MP in UFS
P7) and the boundary layer parameterization to improve the
full spectrum of coupling strengths manifesting in UFS P7
(details of changes between UFS prototype versions are pro-
vided in Stefanova et al., 2022). As a result, the UFS P7 pipe
diagram in Fig. 2c is a better match to the observations of
Fig. 2a than that of UFS P6 in Fig. 2b.

Pipe diagrams like Fig. 2 can be extended vertically to
include additional physical fields and states, accounting for
additional links in the LoCo process chain (Santanello et
al., 2018). For example, BL properties could include aver-
age BL potential temperature, humidity, or moist enthalpy;
BL height; and the height or pressure of the lifted conden-
sation level (LCL). A final layer at the top of these pipe di-
agrams could include information about clouds and precip-
itation. The myriad of possible links in the process chains
connecting individual elements within these pipe diagrams
– and, indeed, within the physical land–atmosphere system
– demonstrates the complexity of interactions between the
land and the near-surface atmosphere. Figure 2 demonstrates
that model parameterizations influence the modeled strength
and connectivity of different parts of the L–A system and
that confronting models with process-level observations from
different climate regimes can help expose model deficien-
cies and limitations. For that to be possible, however, model
output must be temporally equivalent to the observations on
hand, and it must adequately sample the behavior of the phys-
ical processes of interest. While daily data were successfully
leveraged to improve land–atmosphere coupling in the UFS
model, the next section demonstrates some of the processes
requiring sub-daily data.

3 Establishing the need for high-temporal-resolution
data

The triggering feedback strength (TFS, Findell et al., 2011) is
a measure of the sensitivity of afternoon rainfall occurrence
to morning-time evaporative fraction (EF= λE/(H + λE)).
Using 3-hourly data from the North American Regional Re-
analysis (NARR; Mesinger et al., 2006), Findell et al. (2011)
showed that high morning EF enhances the probability of af-
ternoon rainfall east of the Mississippi and in Mexico, with
higher EF leading to increases in afternoon rainfall probabil-
ity of between 10 % and 25 % in these regions. By contrast,
the intensity of rainfall was shown to be largely insensitive
to surface flux partitioning, as assessed by the amplification
feedback strength (AFS; Findell et al., 2011).

A follow-up study by Berg et al. (2013) showed that
the Geophysical Fluid Dynamics Laboratory (GFDL) model
AM2.1 exhibited similar sensitivity of afternoon rainfall like-
lihood to morning surface flux partitioning in the eastern US
and Mexico and a similar insensitivity of rainfall intensity
to surface flux partitioning. However, the similar TFS results
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from AM2.1 and NARR occurred for different reasons. Like
the two-legged metrics discussed above (Eq. 1), the TFS is
computed with a sensitivity term (the sensitivity of the prob-
ability of afternoon rain to variations in morning-time EF)
multiplied by a standard deviation term (σEF). In contrast to
the two-legged metrics, however, the calculation of the TFS
is a summation of purposefully binned or segmented data
to account for the possibility of non-uniform sensitivities in
different EF regimes; indeed, sensitivity strength is substan-
tially larger at EF > 0.6 than at smaller EF values (Findell
et al., 2011). Berg et al. (2013) showed that the regions with
high TFS values in AM2.1 were driven by larger EF vari-
ability (peak σEF values of 0.2 in NARR compared to 0.4
in AM2.1), while regions with high TFS values in NARR
were driven by larger mean rainfall sensitivities (peak mean
sensitivities above 2 in NARR compared to less than 1 in
AM2.1). The large values of σEF in the AM2.1 results also
explained an additional region of high TFS values in AM2.1
in the northern central Great Plains of the US, extending into
adjacent areas in southern Canada.

Figure 3 shows the June–July–August TFS (panel a) and
its two component parts (panels b and c) calculated from
hourly European Centre for Medium-Range Weather Fore-
casts 5th reanalysis data (ERA5; Hersbach et al., 2018,
2020). Comparison with Findell et al. (2011) and Berg et
al. (2013) shows that NARR, ERA5, and AM2.1 exhibit the
same range of sensitivity of afternoon rainfall triggering to
morning-time flux partitioning, but in the ERA5 data, the
peak TFS values of 15 %–25 % only manifest in Mexico,
with some extension into the southern part of the mountain-
ous US southwest. While the eastern US region shows up
with relatively elevated component contributions in ERA5
(Fig. 3b–c), the resultant TFS values are only 5 %–10 % in
most of the eastern US and approach 15 % in much of Florida
(Fig. 3a). The individual terms contributing to ERA5’s TFS
results have peak values matching the smaller EF variability
of the NARR data rather than the high variability of AM2.1
(Fig. 3c here and Fig. 6 of Berg et al., 2013) and sensitivities
matching the smaller AM2.1 values rather than those of the
NARR data (Fig. 3b here and Fig. 7 of Berg et al., 2013).
These differences across reanalysis datasets are likely im-
pacted by differences in the data assimilation protocols and
observational datasets ingested by ERA5 and NARR. In ad-
dition, the TFS may also be highly sensitive to each system’s
parameterizations of the surface layer, boundary layer, and
convection since the surface fluxes at the heart of the TFS
are not assimilated variables but are wholly model dependent
(Kalnay et al., 1996). Additional investigation is necessary
to better understand these differences between the reanalyses
and the model, but this behavior can only be exposed with
analysis of sufficiently high-frequency data. Here, data fre-
quencies of at least 3 h were essential to enable the separation
of morning-time fluxes and afternoon precipitation events.

While a paucity of high-frequency data has forced many
previous analyses of two-legged metrics (Eq. 1) to rely on

monthly mean data (e.g., Dirmeyer et al., 2014; Hu et al.,
2021; Lorenz et al., 2015), Yin et al. (2023) highlight the
need to recognize that the two-legged metrics yield results
that are dependent on the temporal frequency of the input
data (Fig. 4 and the H2D-M2S distinctions in Fig. 1), in part
because the magnitude of variability is dependent on the av-
eraging period of the data being analyzed and in part because
the inclusion of nighttime hours can mask the daytime feed-
backs that are at the heart of the sensitivity between the vari-
ables of interest. Figure 4 shows that the assessment of the
strength of the atmospheric leg measuring the impact of sen-
sible heat flux H on BL growth (as assessed by the pressure
of the lifting condensation level pLCL) can be very different
when using monthly (M), 24 h entire-day (E), or daytime-
only (D, 07:00 to 15:00 local time (LST)) time series. Dif-
ferent averaging periods of the input data effectively allow
one to ask different questions about coupling: monthly aver-
aged data tell us about the seasonal variability of the terms
being assessed and their coupling, while daytime-only data
are needed to tell us about the direct impact of surface fluxes
on BL properties, for example. In regions where the month-
to-month variability is small (e.g., where mean H and pLCL
values are similar for all summer months), substantial day-to-
day variability in these terms will not be captured by monthly
mean values (e.g., orange regions in Fig. 4). However, in
regions where the progression into deeper days of summer
tends to bring drier and drier conditions, differences across
summer months (e.g., June compared to August) can be sub-
stantial, so monthly mean time series will still show high
variability and potentially result in a diagnosis of a large cou-
pling strength (e.g., blue regions in Fig. 4). Comparing daily
to sub-daily scales, Fig. 4 shows about 30 % disagreement
in the highlighted regions with strong H–pLCL coupling de-
termined from E versus D time series. The nighttime compo-
nent of E was shown to obscure the diurnal coupling signal in
some areas, with complications caused by regionally specific
mechanisms (particularly in the very arid regions adjacent to
the Mediterranean Sea) or UTC-based time smoothing (Yin
et al., 2023). These differences highlight the need for sub-
daily data to accurately capture the process-level connections
between surface fluxes and the BL response.

Seo and Dirmeyer’s (2022) thorough evaluation of the
hourly evolution of BL temperature and humidity at flux
tower observational sites can be leveraged to determine the
minimum number of data points needed per day to ade-
quately capture both the thermal and the moisture evolution
of the BL. Figure 5a shows hourly mixing diagrams span-
ning all hours of the day based on Seo and Dirmeyer (2022),
plotting moisture (x axis) and heat (y axis) energy content
per unit mass within the mixed layer, averaged across the
10 % of the 230 stations that were the most moisture-limited
(red circles) and the most energy-limited (blue squares; see
Fig. S1 in the Supplement for a global map with station lo-
cations). Through their detailed analysis, Seo and Dirmeyer
(2022) highlight differences in the timing of the BL response
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Figure 3. (a) The triggering feedback strength (TFS; units of probability of afternoon (noon to 18:00 local time (LST)) rain) in summer
(JJA) based on ERA5 hourly data from 1991 to 2020. The TFS algorithm follows Findell et al. (2015) but with a 10-bin segmentation of
daily evaporative fraction (EF). Positive values indicate that the morning EF positively affects the probability of the occurrence of afternoon
precipitation. (b) The mean value of the sensitivity term contributing to the TFS (∂0(r)/∂EF) – thus the mean sensitivity of afternoon rainfall
to morning-time surface flux partitioning. (c) The variability term contributing to the TFS: the standard deviation of EF.

to moisture fluxes compared to heat fluxes, with the thermal
process chain often leading ahead of the moist process chain
by 2–3 h during the day and rapid thermal decoupling in the
late afternoon contrasted with a gradual decline in moist cou-
pling throughout the evening hours. They also highlight de-
pendence of the timing of humidity minimums on moisture
availability: Fig. 5a shows that the driest time for the BL is
during the early afternoon in moisture-limited regimes but
before sunrise in energy-limited regimes. Both moisture- and
energy-limited regions show a morning-time peak in BL hu-
midity (07:00–09:00 LST).

Findell et al. (2017) showed that some of these behav-
iors can be captured in a statistical sense using monthly
mean diurnal cycles of temperature and moisture, but a full
step-by-step understanding of these detailed processes and
interactions requires many data points per day. Figure 5b
shows that 3 h output generally captures the critical phases
and the maximum extent of the diurnal excursions in T − q
phase space, as well as the bulk of the diurnal asymmetry
of the T − q evolution. The numbers to the right of each
mixing diagram quantify the area within the curve (e.g.,

8.26× 106 J2 kg−2 in the water-limited diagram of Fig. 5a
compared to 1.23× 106 J2 kg−2 in the energy-limited com-
posite) and make it clear that, while the 3 h mixing diagrams
underestimate the diurnal asymmetry, the process-relevant
distinction of small asymmetry in energy-limited regimes
compared to large asymmetry in water-limited regimes re-
mains clear. While 6-hourly data (Fig. 5c) can capture the
approximate timing of the humidity minimums (late after-
noon versus early morning), such infrequent sampling can
miss the most rapidly changing portions of the daytime T −q
evolution (e.g., samples beginning at 00:00 LST), leading to
inaccurate assessments of the extent of the diurnal asymme-
try in T − q energetic phase space.

4 Justifying our choices on how to reduce the data
request

4.1 Strategy for the reduction in time frequency

To determine the optimal strategy for reducing the time fre-
quency of the data request while still achieving the coupling-
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Figure 4. Two-legged metric analysis demonstrating the impact of different averaging periods on the assessment of coupling strength in
summer (JJA and DJF for the Northern Hemisphere and the Southern Hemisphere, respectively). The diagnoses are based on the ERA5
(ECMWF reanalysis 5) reanalysis data from 1991 to 2020. The coupling strength between the sensible heat flux and pLCL is estimated by
the TLM algorithm (Dirmeyer et al., 2006). Strongly coupled regions (top 15 % of land grid cells) are diagnosed by using different time
series (i.e., D: daytime-only mean, E: 24 h entire-day mean, and M: monthly mean). The Euler diagram is employed to illustrate the spatial
differences between the three diagnoses. The areas of colored components in the Euler diagram are proportional to the sizes of specific sets.
Modified from Yin et al., 2023.

Figure 5. (a) The hourly mixing diagrams at water-limited (red) and energy-limited (blue) flux tower sites exhibit the coevolution of moisture
(x axis) and thermal (y axis) energy content per unit mass within the BL (modified from Fig. 5d in Seo and Dirmeyer, 2022). The marks are
shaded by the color determined by two-legged couplings corresponding to the local hour (referring to Fig. 5a in Seo and Dirmeyer, 2022). The
black-edged circle and square are the mean of the 24 h values in water- and energy-limited regimes, respectively. The colored numbers are
the area within the curves (multiply displayed value by 106; units: J kg−2); these values quantify the diurnal energetic asymmetry captured
by each mixing diagram. Dashed black lines are lines of constant relative humidity. Note that x- and y-axis ranges differ. (b) The 3 h mixing
diagrams in both climate regimes, computed with three different starting times: hour 0:00 (S0: solid), hour 01:00 (S1: dashed dot), and hour
02:00 (S2: dashed) LST. (c) The 6 h mixing diagrams as in (b) but with starting times at hours 00:00, 02:00, and 04:00 LST.

assessment goals discussed above, we consider two possible
strategies: (i) regular, gridded time intervals or (ii) time inter-
vals based on the local solar day (e.g., values for nighttime,
morning, and afternoon). Positive arguments for the first ap-
proach include the lack of subjectivity and the ease of im-
plementation. Counterarguments center around geographic

differences imposed by the gridded approach. For instance,
in the summertime, sunrise times along one longitudinal
band differ by about 2 h between high-latitude regions and
the Equator. Thus, a 05:00 LST data point on the summer
equinox would be after sunrise in Sweden but before sunrise
in the Congo, even though both have a longitude of 18° E.
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This poses difficulties for investigations of, for example, the
triggering feedback strength (TFS), meant to capture the im-
pact of early-morning evaporative fraction on afternoon pre-
cipitation (Findell et al., 2011). Capturing specific times of
day becomes more complicated with a reduced frequency
of data collection or archival. Since hourly data represent
15° longitudinal bands around the globe, coarser-frequency
data inherently require grouping broad longitudinal slices
into common time points. For 6 h data, an attempt to capture
early-morning conditions within one 90° longitudinal slice
would produce local times that might span six time zones,
potentially ranging from, for example, 03:00 LST at the west-
ern edge to 08:00 LST on the eastern edge. Clearly, processes
at the land surface and within the boundary layer differ sub-
stantially between these times of day. Higher-frequency data
would reduce the severity of these issues, albeit with more
archive space required.

Positive arguments for a data-archiving scheme linked to
the solar day include fewer data points (and thus less archive
capacity) being needed to capture the three main phases of
BL behavioral regimes (nighttime, morning, afternoon) and
a more uniform understanding of the solar conditions associ-
ated with each data point. However, any sub-daily selection
based on the solar day requires a priori decisions that might
be appropriate for one purpose but which would restrict the
appropriateness of further study. For example, mixing dia-
grams are useful tools to understand BL evolution within
each of the three solar-day phases mentioned above. Saving
average values within these three phases would eliminate the
possibility of any sort of mixing diagram analysis of model
behavior. Additionally, interpretation of solar-day-based data
would be complicated by each archived data point represent-
ing different numbers of hours, both from day to day at one
location and from location to location on each day. Further-
more, this strategy would require additional code being writ-
ten and implemented at each climate modeling center, and
thus, the possibility of differences in implementation quickly
emerges.

Here, we opt to make a request for regular, temporally
gridded data to avoid the complications of solar-day-based
archiving and to maintain flexibility for future data usage.
The negative features of the regular, gridded temporal data
requests can be reduced with increased frequency of data
storage. We propose 3 h data as a minimum request, with
1 or 2 h as improvements to that minimum. If this data re-
quest is still too cumbersome, a mask of oceanic regions
can potentially be used to reduce the data volume by up to
two-thirds, though these data may be useful for the study of
ocean–atmospheric boundary layer coupling processes.

4.2 Other issues to confront

In addition to decisions related to the reduction in the time
frequency of data archiving, our data request must tackle dif-
ficult decisions related to (i) capturing mean BL properties

while the height of the BL is changing, (ii) capturing ade-
quate measures of the temperature and humidity gradients
above the BL, and (iii) capturing soil conditions (moisture
and temperature) most relevant to the partitioning of energy
into surface fluxes of latent and sensible heat.

Determining average properties within the BL at any given
time requires knowledge of the height of the BL (hPBL).
Model-computed hPBL is determined using different meth-
ods in different models, producing values which are self-
consistent within each model’s framework, and therefore
should adequately capture the time evolution of the BL
height at a given location and the relative BL heights at dif-
ferent locations. However, nighttime values of BL average
properties will necessarily represent something different than
daytime values, and values during the transition times of day
will be tricky to compute and difficult to rely on. In addi-
tion, these times of day will change throughout the year. All
of these issues suggest that care is needed in implementing
these calculations and interpreting the results.

Finally, for characterization of soil conditions most rele-
vant to surface energy partitioning, a root zone soil moisture
would be most appropriate. However, since the root zone
is both dynamic and dependent on vegetation type, no sin-
gle depth can adequately capture the true root zone. Here,
we opt for a near-surface measure of the top 10 cm plus a
slightly deeper measure averaged over the 10–100 cm inter-
val. In both cases, we recognize that these are characteriza-
tions of the model’s soil wetness but that this variable is a
model-specific quantity that is different from in situ or re-
motely sensed measures of soil wetness and should be in-
terpreted with recognition of the model value’s mean and
variability (e.g., Koster et al., 2009; Benson and Dirmeyer,
2023).

5 The data request

Here, we present a concrete data request, dividing the request
into three categories based on the analyses that would be en-
abled and by the work required by model developers. Request
A is the highest-priority request and focuses on standard
model output of surface fields saved at higher-frequency in-
tervals than is currently routinely practiced, thus requiring no
additional work by model developers, just additional archive
space. This request includes both tier-1 and tier-2 variables.
Request B focuses on the archival of variables in the low-
est 300 mb of the troposphere and includes only tier-2 vari-
ables. Like request A, request B requires no additional work
by model developers, just additional archive space, while re-
quest C requires in-code modifications to calculate average
properties within and above the BL (tier-3 variables). After
each request, we briefly mention which metrics (mostly from
Fig. 1) and analyses would become possible with these addi-
tional data.
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Table 1. Specifics of request A. Grid cell average values are either 3 h time means (3 h) or are at an instantaneous point in time at the end of
the time interval (3 hPt).

Priority Variable long name Units CMOR name Frequency

1 Precipitation kg m−2 s−1 pr 3 h

1 Surface upward sensible heat flux W m-2 hfss 3 h

1 Surface upward latent heat flux W m−2 hfls 3 h

1 Surface net radiation W m−2 ∗ 3 h

1 Near-surface (2 m) air temperature K tas 3 hPt

1 Near-surface (2 m) specific humidity 1 huss 3 hPt

1 Surface air pressure Pa ps 3 hPt

1 Moisture in upper 10 cm of soil column kg m−2 mrsos 3 hPt

1 Temperature of soil (in single K tsl 3 hPt
near-surface layer)

1 Boundary layer depth m bldep 3 hPt

2 Components of surface net radiation: W m−2 3 h
Surface downwelling longwave radiation rlds
Surface upwelling longwave radiation rlus
Surface downwelling shortwave radiation rsds
Surface upwelling shortwave radiation rsus
Ground heat flux hfdsl

2 Components of evapotranspiration: kg m−2 s−1

Evaporation from canopy evspsblveg 3 h
Water evaporation from soil evspsblsoi 3 h
Transpiration tran 3 h

2 Moisture in 10–100 cm of soil column kg m−2 ∗ 3 h

The ∗ symbol indicates variables without standard Climate Model Output Rewriter (CMOR) names.

Table 2. Specifics of request B. The six requested pressure levels are every 50 hPa between 950 and 700 hPa. Grid cell average values are
instantaneous in time at the end of the time interval (3 hPt).

Priority Variable long name Units CMOR name Frequency

2 Eastward wind at six pressure levels m s−1 ua 3 hPt
2 Northward wind at six pressure levels m s−1 va 3 hPt
2 Omega (= dp/dt) at six pressure levels Pa s−1 wap 3 hPt
2 Air temperature at six pressure levels K ta 3 hPt
2 Specific humidity at six pressure levels 1 huss 3 hPt

The data length requirements of Findell et al. (2015) sug-
gest that a minimum of 10 years of data should provide for
robust statistical analyses. Thus, for any simulation and/or
time period of climatological interest, we request that these
data are saved for at least a 10-year block of time. For his-
torical and future scenario runs, it would be advantageous to
have 10-year blocks saved at the beginning and end of the
simulations.

5.1 Request A: high-frequency archival of surface
variables already included in standard model
output

Table 1 details the variables included in request A. The 10
tier-1 variables would allow for the computation of sev-
eral two-legged metrics at sub-daily timescales (including
all of those included in Fig. 2), soil moisture memory, TFS
and AFS, basic mixing diagrams, and the percentile soil
moisture–aridity index framework of Duan et al. (2023). As-
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Table 3. Specifics of request C. The BL mean properties should
be vertically integrated from 0.1×hPBL to 0.8×hPBL, while the
gradients across the BL top should be calculated over the interval
0.8×hPBL to 1.2×hPBL. CMOR names are not currently available
for these quantities.

Priority Variable long name Units Frequency

3 Mean BL heat content J kg−1 3 hPt
3 Mean BL moisture content J kg−1 3 hPt
3 BL heat advection tendency W kg−1 3 h
3 BL moisture advection tendency W kg−1 3 h
3 BL-top temperature gradient J kg−1 3 hPt
3 BL-top moisture gradient J kg−1 3 hPt

suming a 1° grid (for reference) without data compression,
archiving of tier-1 variables would require approximately
13 GB yr−1.

Request A also includes several tier-2 priority variables:
deeper soil moisture information and component terms of
net radiation and evapotranspiration. These additional terms
would allow for a more in-depth understanding of model de-
pictions of radiative processes and of the role of vegetation
in driving evaporative fluxes and feedbacks. However, they
would nearly double the required archival requirements and,
thus, have been deemed to be tier-2 priority variables.

Of the 10 tier-1 variables listed in Table 1, the first eight
were included at a 3 h frequency in the HighResMIP data
protocol (Haarsma et al., 2016), with soil temperature (tsl)
saved at a 6 h frequency and boundary layer depth (bldep)
saved monthly. HighResMIP also included 16 other variables
in their 3 h data request (for a total of 24 3 h variables), in-
dicating that saving all of the request-A variables is not an
insurmountable challenge.

5.2 Request B: high-frequency archival of data at
several specified lower-tropospheric pressure levels

Table 2 details the five variables included in request B for
archival of select lower-tropospheric pressure levels, specif-
ically temperature, humidity, and three-dimensional winds.
The priority here is to enable systematic exploration of BL
processes throughout various stages of growth, development,
and decay. Saving high-frequency data of full atmospheric
profiles is not realistic, but saving a few select pressure lev-
els would allow for the computation of atmospheric stability
and humidity deficits in the early-morning hours (i.e., metrics
like CTP and HIlow); mean properties within the BL; dθ/dz
and dq/dz above the BL; the heated condensation frame-
work; and more complex mixing diagrams than request A
would enable, including identification of advection and en-
trainment terms during multiple phases of BL growth and
development. The six specific pressure levels requested are
every 50 hPa between 950 and 700 hPa.

5.3 Request C: variables requiring code modifications
for internal computation

With request C, we aim to enable more accurate mixing di-
agram work than is possible with request B while simulta-
neously reducing the archive requirements needed to assess
mean properties within and above the BL. Request C entails
code modifications to determine, at each time step, the BL
mean thermal and moist energy content per unit mass (cpθ
and λq, respectively), changes in these terms due to advec-
tion, and the mean potential temperature and humidity gradi-
ents across the top of the BL given by hPBL (or the CMOR
variable name bldep in Table 1). For a standard definition
of hPBL, we suggest the bulk Richardson number definition
of Seidel et al. (2012), consistent with the data available in
reanalyses such as ERA5 and MERRA2. Specifically, we
request the mean BL properties vertically integrated from
0.1×hPBL to 0.8×hPBL and the mean θ and q gradients
over the interval closest to 0.8×hPBL to 1.2×hPBL, given
model-level constraints (see Turner et al., 2014, for the se-
lection of these vertical bounds). These properties should be
saved every 3 h.

While request C would reduce the archive requirements
for mixing diagram work and provide a fuller picture of mean
mixed-layer behavior, it would not allow for some of the
other metric calculations that request B does cover. Thus,
these are complementary requests rather than substitutes for
each other.

6 Conclusions

Increasing the time resolution of model output describ-
ing components of land–atmosphere coupling and processes
within the land–atmosphere interface is essential to fully
and accurately model, understand, and predict these pro-
cesses and to compare modeled processes with observational
datasets. The data request described here will allow us to
compare coupled Earth system and climate models with ob-
servations from field campaigns and to compare both diur-
nal and long-term properties of L–A interactions in different
models and during model development. These sorts of com-
parisons are essential to fully assess the land–atmosphere
coupling behaviors of different GCMs. Furthermore, these
improvements to our understanding of processes at the land
surface are essential to understanding the vulnerability of hu-
mans and ecosystems to changing climatic conditions and to
improving our resilience in the face of a likely increase in
extremes.

Code and data availability. The Copernicus Climate Change Ser-
vice (C3S) provides access to ERA5 data freely through its on-
line portal at https://doi.org/10.24381/cds.adbb2d47 (Hersbach et
al., 2023).
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The source code for calculating diurnal mixing diagrams is
shared on GitHub (https://github.com/ekseo/CLASP_LoCo.git, last
access: 6 July 2023; https://doi.org/10.5281/zenodo.8117559, ek-
seo, 2023).

The source code for data analysis and visualization of Figs. 3
and 4 and the corresponding diagnostic results (i.e., trigger-
ing feedback strength and two-legged metrics based on ERA5
reanalysis data) are freely available on GitHub (https://github.
com/yinzun2000/CLASP_LoCo, last access: 21 August 2023;
https://doi.org/10.5281/zenodo.8304156, Yin, 2023).

Flux tower observations used for Figs. 2 and 5 are
openly available from the FLUXNET2015 tier-1 data
(https://fluxnet.org/data/download-data/, Pastorello et al., 2020), the
AmeriFlux network (https://ameriflux.lbl.gov/data/download-data/,
Novick et al., 2018), and the Drought 2018 network
(https://doi.org/10.18160/YVR0-4898, Drought 2018 Team
and ICOS Ecosystem Thematic Centre, 2020).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-1869-2024-supplement.
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