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Abstract. We present a new framework for the reconstruc-
tion of climate indices based on proxy data such as tree rings.
The framework is based on the supervised learning method
Gaussian Process Regression (GPR) and aims at preserving
the amplitude of past climate variability. It can adequately
handle noise-contaminated proxies and variable proxy avail-
ability over time. To this end, the GPR is formulated in
a modified input space, termed here embedding space. We
test the new framework for the reconstruction of the At-
lantic multi-decadal variability (AMV) in a controlled envi-
ronment with pseudo-proxies derived from coupled climate-
model simulations. In this test environment, the GPR outper-
forms benchmark reconstructions based on multi-linear prin-
cipal component regression. On AMV-relevant timescales,
i.e. multi-decadal, the GPR is able to reconstruct the true am-
plitude of variability even if the proxies contain a realistic
non-climatic noise signal and become sparser back in time.
Thus, we conclude that the embedded GPR framework is a
highly promising tool for climate-index reconstructions.

1 Introduction

Climate indices are important measures to describe the evo-
lution of climate on regional, hemispheric or global scales
in a condensed way. They reveal relevant timescales of cli-
mate variability and, in some cases, also subspaces that are
important for predictability. Paramount examples are the El
Niño–Southern Oscillation, the North Atlantic Oscillation
and the Atlantic multi-decadal variability (AMV). To under-
stand whether the typical timescales and magnitude of cli-

mate variability have been stationary over time or whether
they have changed, e.g. with anthropogenic climate change,
we need a long-term perspective on these climate indices.
The index time series must not only cover the historical pe-
riod of the past 150 years but also the period of interest, e.g.
the past 1000–2000 years (Common Era). To obtain these
long time series we need information from so-called climate
proxies (e.g. tree rings and sediment cores) in combination
with sophisticated statistical models to reconstruct the cli-
mate indices from the proxy data. We present a new ma-
chine learning framework for climate-index reconstructions
and test its skill for reconstructing the AMV.

The AMV is an important index that describes the North
Atlantic climate variability on decadal and longer timescales.
Different definitions of the AMV have been developed over
time, but the basic definition relies on the low-pass-filtered
spatial average of sea surface temperature anomalies over the
North Atlantic. Observations starting in about 1850 indicate
that the AMV varies on typical timescales of 30–60 years.
The state of the AMV plays a key role for many relevant
climate phenomena such as Arctic sea-ice anomalies (Miles
et al., 2014), North American and European summer cli-
mate, hurricane seasons and Sahel rainfall (Zhang and Del-
worth, 2006; Zhang et al., 2007). Both atmospheric as well as
oceanic processes have been suggested as possible drivers of
the AMV (e.g. Clement et al., 2015; Zhang et al., 2019; Yan
et al., 2019; Garuba et al., 2018). It is not clear how much of
the AMV is generated by internal climate variability and how
much is generated by changes in external radiative forcing,
i.e. volcanic and anthropogenic aerosols, solar insolation and
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greenhouse gas concentrations (Haustein et al., 2019; Mann
et al., 2021).

The observational period of approximately 150 years is not
sufficient to provide a long-term perspective on the AMV or
in fact any climate index that describes variability on multi-
decadal and longer timescales. Therefore, longer time series
are needed. These time series are typically derived from cli-
mate reconstructions based on climate proxies such as tree
rings, bivalves or coral skeletons (e.g. Gray et al., 2004;
Mann et al., 2008; Svendsen et al., 2014; Wang et al., 2017;
Singh et al., 2018). This kind of reconstruction is based on
statistical models that link the target index with proxy time
series, using the observational period to calibrate their pa-
rameters. The trained models then use the much longer proxy
time series as input to provide an estimation of the target in-
dex in the past.

Existing AMV reconstructions disagree on the amplitude
and timing of AMV variability, especially prior to the be-
ginning of the 18th century (Wang et al., 2017). As a conse-
quence, they also provide conflicting views on the AMV re-
sponse to external forcing (Knudsen et al., 2014; Wang et al.,
2017; Zhang et al., 2019; Mann et al., 2022). Possible reasons
for this disagreement are numerous. In general, the recon-
structed variability will depend on the predictor data, i.e. the
number, quality and locations of the proxies. Previous AMV
reconstructions differed in their employed proxy networks
and types, using only terrestrial or also marine records. As an
example, including marine records seems to yield better re-
constructions of AMV variability (e.g. Saenger et al., 2009;
Mette et al., 2021). Proxy data are only available at a limited
number of locations on the globe (see e.g. PAGES2k, 2017),
and their availability decreases further back in time. Prox-
ies also contain varying amounts of non-climatic signals, i.e.
noise.

Existing reconstruction methods range from very simple
linear methods such as composite plus scaling (Jones and
Mann, 2004) or principal component analysis (e.g. Gray
et al., 2004), over more complex linear methods such as
Bayesian hierarchical modelling (Barboza et al., 2014) to
non-linear methods such as random forest (Michel et al.,
2020), pairwise comparison (Hanhijärvi et al., 2013) or data
assimilation (e.g. Singh et al., 2018). The presence of noise
or mutually unrelated variability may result in biased estima-
tions of parameters of the statistical models such as regres-
sion coefficients. Especially regression-based methods are
known to underestimate the true magnitude of variability, es-
pecially on lower frequencies (Zorita et al., 2003; Esper et al.,
2005; Von Storch et al., 2004; Christiansen et al., 2009). They
also tend to “regress to the mean”, i.e. they have difficulties
in reconstructing values that lie outside the range of the cal-
ibration data. This is further exacerbated by the presence of
strong warming trends and shortness of the available calibra-
tion period (approximately 150 years).

Thus, robust reconstruction methods are needed in order
to produce more reliable estimates of the amplitude of the

past variability of the AMV in order to better quantify its re-
sponse to external forcing. This is also a precondition for an
unbiased detection of any “unusual” observed trends and for
the subsequent attribution of those trends to a particular forc-
ing, e.g. anthropogenic greenhouse gases. To this end, we
need to design reconstruction methods which are more ro-
bust against noise and, importantly, do not strongly “regress
to the mean” when the predictors become more noisy or
scarce back in time. As in many disciplines, machine learn-
ing methods have successfully gained traction in the climate
reconstruction community (e.g. Michel et al., 2020; Zhang
et al., 2022; Wegmann and Jaume-Santero, 2023). Here, we
explore the potential of the non-linear supervised learning
method Gaussian process regression (GPR) for climate in-
dex reconstructions. GPR finds growing use in climate ap-
plications such as climate model emulators (Mansfield et al.,
2020) or reconstructions of sea level fields (Kopp et al., 2016)
and global mean surface temperature (Büntgen et al., 2021).

Unlike other machine learning methods, such as neural
networks, GPR offers greater transparency and is less of
a “black box”. The number of free parameters is usually
much smaller and ideally the parameters have a more di-
rect physical interpretation. A Gaussian process (GP) de-
scribes a distribution over functions with a given mean and
covariance structure. The covariance structure is chosen such
that the resulting functions best match a given set of obser-
vations. This setup appears as more intuitive and closer to
the more familiar family of regression methods than convo-
luted deep learning structures, which in the end may need
additional algorithms for their physical interpretation. GPR’s
non-parametric nature has the advantage that we do not need
to make any assumptions about the (non-)linearity of the
underlying reconstruction problem. As a Bayesian method,
GPR comes with its own uncertainty estimates, which is a
very important feature for paleoclimate applications.

We do not only test GPR as a climate index reconstruc-
tion tool but also propose a modified input space for the
GPR-based reconstructions. To this end, we embed the entire
available dataset (proxy data and the target index) in a virtual
space. The location of the data time series in this space are
based on the similarity between the time series. The result-
ing cloud of data points in this virtual space can be viewed
as a temporal sequence of images with missing values. The
covariance of the GP describes the cross-correlation between
the proxy records and the target index across time and vir-
tual space. We use the GPR to fill the missing values where
we do not have observations of the target index. This ap-
proach is somewhat similar to kriging in geostatistics, where
two-dimensional fields are reconstructed based on point mea-
surements and a known covariance structure. In our case, the
input space is not the geographical space but the virtual em-
bedding space and the covariance structure is learned from
the data. This setup has the additional advantage that it can
easily accommodate variable proxy availability in time and
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that the proxy-related uncertainty can be directly accounted
for by the parameters of the GP.

To fully judge the methodological performance and related
uncertainties, reconstruction methods need to be tested in
so-called pseudo-proxy experiments (Smerdon, 2012). Many
methods have already been tested in such controlled environ-
ments, but the evaluation often lacks a thorough assessment
of the method’s capability to reconstruct the magnitude of the
variability on different timescales. In particular, a reconstruc-
tion method must be able to capture extreme phases, again to
ascertain whether the AMV is sensitive to sudden changes in
the external forcing, e.g. after volcanic eruptions, but also to
capture possible large internally generated variations, which
could occur independent of external forcing. Here, we test
our proposed framework of the embedded GPR in such a
pseudo-proxy environment and place special emphasis on the
method’s skill of reconstructing extreme phases and the mag-
nitude of variability of the AMV.

2 Methods and data

2.1 Pseudo-proxies and simulated AMV index

We generate the pseudo-proxies from a simulation of the
Common Era (i.e. the past 2000 years) with the Max Planck
Institute Earth System Model (MPI-ESM). The model ver-
sion corresponds to the MPI-ESM-P LR setup used in the
fifth phase of the Coupled Model Intercomparison Project
(CMIP5, Giorgetta et al., 2013). A detailed description of the
simulation can be found in Zhang et al. (2022). The target
of the pseudo-reconstructions is the simulated AMV index
(AMVI). We define the AMVI as the spatial mean of annu-
ally averaged sea surface temperature anomalies (SST) in the
North Atlantic (0–70° N and 80° W to 0° E). The SST anoma-
lies are calculated against the mean over the entire simulation
period. We do not further detrend the AMVI because it is
difficult to define a meaningful trend period in the paleocon-
text. In the case of real reconstructions, all proxies and the
AMVI would be available for overlapping periods with dif-
ferent length, and it is not possible to define a meaningful
common trend that could be subtracted from all records.

The pseudo-proxies are defined as time series of the sim-
ulated temperature at the model grid points closest to exist-
ing proxy sites in the PAGES2k database (PAGES2k, 2017).
Over land, we use a 2 m annual mean air temperature and
over ocean we use annual mean sea surface temperature.
We do not use all available proxy sites from the PAGES2k
database but only a subset thereof. We limit our selection of
proxy sites to those within the North Atlantic domain (10–
90° N and 100° W to 30° E) with annual resolution or finer.
Out of these sites, we further select only those locations at
which the pseudo-proxies have a correlation of 0.35 or higher
with the AMVI during the last 150 simulation years. (In this
case, both the AMVI and the pseudo-proxies are detrended

before calculating the correlation.) The final proxy network
consists of 23 pseudo-proxies (Fig. 1a).

We design three sets of pseudo-proxies to account for dif-
ferent sources of uncertainty: in the first test case (TCppp),
we use perfect pseudo-proxies, i.e. the pseudo-proxies con-
tain only the temperature signal. In the second test case
(TCnpp), we use noisy pseudo-proxies, i.e. the pseudo-
proxies contain additional non-climatic noise. The non-
climatic noise is generated by adding white noise to the
perfect pseudo-proxies. The amplitude of the white noise
is defined such that the correlation between the noisy and
the perfect pseudo-proxies is 0.5, i.e. the amplitude of the
white noise corresponds to the standard deviation of the per-
fect pseudo-proxy times

√
3. This is a reasonable choice,

as the correlation for real proxies with observations ranges
from 0.3 to 0.7. The amount of white noise applied here
is also well within the range of other pseudo-proxy studies
(e.g. Smerdon, 2012). To ensure that the performance with
noisy data is independent of the specific noise realisation, we
create an ensemble of 30 noise realisations. In both TCppp
and TCnpp we assume that all records are available at ev-
ery point in time, i.e. that the network size remains con-
stant in time. In reality, different proxy records cover dif-
ferent periods and the network size is not constant (Fig. 1b).
Therefore, we set up a third test case (TCp2k) with realis-
tic temporal proxy availability from the PAGES2k database
and both perfect and noisy pseudo-proxies. In all three test
cases, the pseudo-proxy records have annual resolution. The
reconstruction period corresponds to the last 500 simulation
years for TCppp and TCnpp, and to the entire 2000 simula-
tion years for TCp2k.

To test the sensitivity of the method to the underlying
climate-model simulation, we repeat the test cases TCppp
and TCnpp with an analogously derived set of 25 pseudo-
proxies and AMVI from simulations with the Community
Climate System Model (CCSM4; Gent et al., 2011). We com-
bine the “past1000” simulation (Landrum et al., 2013; Otto-
Bliesner, 2014) and one “historical” simulation (Gent et al.,
2011; Meehl, 2014) from the CMIP5 suite and use the last
500 years of the combined dataset. From the historical sim-
ulations, we used the ensemble member r1i1p1. The results
are displayed in Appendix B.

2.2 Benchmark reconstruction

To have a benchmark for the GPR-based reconstruction in the
cases of TCppp and TCnpp, we use pseudo-reconstructions
with a multi-linear principal component regression (PCR).
PCR is well established as a climate-index reconstruction
method and has been used, for example, for reconstructions
of the global mean surface temperature (PAGES2k, 2019)
and the AMVI (Gray et al., 2004; Wang et al., 2017). The
selected proxy time series are first decomposed into princi-
pal components (PCs); the latter are then used as predictors
in a linear least-squares regression to obtain the AMVI for
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Figure 1. The selected pseudo-proxy records and resulting distance metrics based on the MPI-ESM simulation: (a) the locations of the
records, colour-coded with the correlation between the records and the AMVI during the last 150 simulation years (after detrending); (b) the
number of available proxy records at the selected locations within the PAGES2k dataset over time; (c) cross-correlation; (d) standard deviation
ratio; and (e) the resulting embedding distances from the combination of both. Matrix indices 1–23 are the selected pseudo-proxy records
as labelled in (a), and index 24 is the simulated AMVI. The diagonal entries in (e) are empty because zero cannot be displayed on the
logarithmic colour scale.

those time steps where proxies and AMVI overlap. In other
words, the AMVI is expressed as a function of PCs of the
original proxies (Eq. 1). We do not use all PCs but only re-
tain those with a cumulative explained variance of 99.5 %.
The trained model can then be used to reconstruct the AMVI
for time steps where we have only proxies available:

AMVI(t)= fPCR(PC1(t), . . .,PCn(t)). (1)

2.3 Gaussian process regression

2.3.1 The concept

Gaussian process regression is a Bayesian, non-parametric,
supervised learning method (Rasmussen and Williams,
2006). Just like a probability distribution describes random
variables, a Gaussian process (GP) describes a distribution
over functions with certain properties. A GP is determined
by a mean function and a covariance function:

f (x)∼ GP(µ(x),k(x,x′)). (2)

The mean function µ(x) describes the mean of all func-
tions within the GP at location x. In the absence of other
knowledge, it is typically assumed that the mean of all func-

tions within the prior GP is zero everywhere. The covari-
ance function k(x,x′) describes the statistical dependence
between the function values at two different points in the in-
put space. The exact covariance structure is prescribed by
a kernel function. Kernel functions range from very simple
(e.g. linear, radial basis functions) to more complex (e.g.
Matern functions, periodic). In principle, there is no limit to
the kernel complexity and finding the right kernel can be con-
sidered an art in itself (e.g. Duvenaud et al., 2013). Once a
general functional form of the kernel has been chosen (e.g.
radial basis function), the specific form is determined by the
kernel parameters. Since the underlying GP model itself is
non-parametric, kernel parameters are often also referred to
as hyperparameters (Rasmussen and Williams, 2006). These
hyperparameters are either prescribed a priori, if they are
known, or learned from the data through optimisation if they
are unknown (e.g. through maximum likelihood estimation).

Without being constrained by data, the prior GP is a dis-
tribution of all functions with the given mean and covariance
(Eq. 2). In order to use the GP for regression and predic-
tion, the prior GP is combined with the additional informa-
tion from the training data through the Bayes theorem (see
Appendix A and Rasmussen and Williams (2006) for a more
detailed description). Thus, the posterior GP is obtained, i.e.
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only those functions are selected that agree with the training
data in a given uncertainty range. Predictions at previously
unseen input points are then given by that posterior distribu-
tion of functions evaluated at those unseen input points.

2.3.2 Finding the right regression space

As described for the PCR, classical climate-index reconstruc-
tion methods formulate their underlying statistical model so
that the climate index is assumed to be a function of temper-
ature, the proxy values or, for example, the principal compo-
nents thereof. In other words, the regression is performed in
temperature/proxy/PC space; the proxies/PCs are the predic-
tors and the climate index is the predictand. If we reconstruct
the AMVI with GPR in this classical setup, the target AMVI
becomes the posterior mean function and the covariance is
estimated across the proxy space. With the trained GP model,
the AMVI can be reconstructed by evaluating the GP at the
proxy values that occurred during the reconstruction period.
Figure 2a shows the regression in proxy space for an exam-
ple where the AMVI is given as a function of two pseud-
proxy records p1 and p2. In this example, the posterior mean
AMVI function forms a surface in the space spanned by p1
and p2. (Note that in our pseudo-proxy experiments we use
23 pseudo-proxies (Fig. 1a), so the proxy space is actually
23-dimensional, which is impossible to visualise.)

In initial tests, the GPR reconstruction in proxy space did
not perform well: the variability of the AMVI was strongly
underestimated (not shown). A possible explanation is that
GPs are very good interpolators but bad at extrapolating to
regions of the proxy space that have not been sampled during
training (e.g. upper left and lower right quadrants in the ex-
ample of Fig. 2a) or where predictors become sparse (lower
left quadrant in Fig. 2a). In those cases, the GPR estimation
will fall back to the prior mean function (regression to the
mean) and the predictive skill becomes very small. From a
mathematical point of view, this setup of the regression in
proxy space is also actually not suitable for GPR. Real-world
proxies come with large uncertainties, and while GPs are
designed to handle uncertain targets, they assume that the
inputs are without uncertainty. Therefore, we approach the
problem differently and set up the GPR in a way that lever-
ages two GPR strengths: (1) being good interpolators and
(2) handling uncertain targets.

In our new approach, we embed the entire available dataset
(the selected pseudo-proxy records and AMVI at all points
in time where observations are available) in a virtual space.
The cloud of data points can be viewed as a sequence of im-
ages in this virtual space. The images contain missing val-
ues at time steps where we do not have AMVI observations
available. The climate-index reconstruction problem thus be-
comes similar to an image-reconstruction problem. The GPR
reconstructs the AMVI by filling the missing values based on
the surrounding proxy values. In this framework, the GPR in-
puts are the locations in the embedding space and the GPR

targets are the temperature anomalies of the proxies and the
AMVI:

1Ti = fGPR(t,xi), (3)

where 1Ti is either a proxy record pi or the AMVI, and xi
is the location of the respective record within the embed-
ding space. Figure 2b shows this embedding space for the
example with two pseudo-proxies and the AMVI. The loca-
tion of each time series within the embedding space is con-
stant, so that the temporal sequence of data of one particu-
lar time series forms a straight line parallel to the time axis.
The location of each record is based on its similarity to all
other records. The more similar two records are, the closer
they are located in the embedding space. To adequately re-
flect the distances between the proxy records and the AMVI,
the embedding space needs to have a dimension of (q − 1),
where q is the number of time series including the AMVI
time series. This is easiest to understand if one imagines the
case where all time series have the same distance from each
other (as shown in Fig. 2b). To arrange, for example, three
time series with equal distances from each other, one needs a
two-dimensional space (spanned by x1 and x2 in Fig. 2b). In
the case of the MPI-ESM-based proxy network, the embed-
ding space has thus 23 dimensions (23 proxy records and 1
AMVI). With time as an additional dimension, the resulting
space has a total of 24 dimensions. In the following, we will
use r to refer to a point in space and time, and x and t to refer
to points in only space and only time, respectively.

We then use the GP to find a function that fits the entire
dataset in this virtual space and to interpolate the AMVI at
the virtual locations xAMV for points in time where we do
not have observations. With the right kernel formulation (see
Sect. 2.3.4), we can account not only for cross-correlations
between the different time series but also for temporal auto-
correlation: a data point in the embedding space at time tm
is affected by all other surrounding points in the embedding
space at time tm and to a smaller extent also at times tn > tm
and tk < tm. The degree of influence is determined by the dis-
tance between the points in the embedding space and the typ-
ical length- and timescale of the kernel function. The closer
two points are, the larger their influence.

Thus, the AMVI is still reconstructed based on the infor-
mation from the pseudo-proxies, but we have formulated the
problem such that the GP can handle the proxy-related uncer-
tainty correctly, because the pseudo-proxies are now targets
and no longer inputs. An additional advantage is that we can
use this setup with variable proxy availability in time with-
out having to retrain the model each time the proxy availabil-
ity changes. Instead, the “images” simply have more missing
values as the number of proxies decreases further back in
time.
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Figure 2. Schematic visualisation of the regression spaces for an example with two proxy records p1 and p2 and the AMVI. Panel (a) shows
the GPR in the proxy space: the independent variables are the temperature anomalies of the proxy records; the dependent variable is the
AMVI (colour coded) Panel (b) shows the GPR in the embedding space: the independent variables are the locations in the embedding space
and time, and the dependent variables are the temperature anomalies of the proxy records and the AMVI (colour coded). In this simplified
example, the three time series are located such that the distance between them is equal for all respective pairs of records.

2.3.3 Defining the distance matrix

Finding the right position x for each proxy record and the
target index in the embedding space is an important and non-
trivial step. Since we care only about the relative distance in
the embedding space and not the absolute location, we can
specify the distance between each pair of q records (proxies
and AMVI) in a distance matrix D and determine the coordi-
nates via multi-dimensional scaling (MDS; e.g. Mead, 1992).
MDS uses the information of dissimilarity between objects to
place these objects in a Cartesian space of a given dimension,
such that the distance between the objects in the new space
reflects the dissimilarity in an optimal way. In our case, the
objects are the proxy records and the AMVI, and the given
dimension is 23.

We define the distance matrix based on an appropriate dis-
tance metric. This could in principle be any distance metric
such as the Euclidian distance or similar. To be used as a
distance metric in MDS, a metric must meet the following
three criteria: it needs to be (1) positive, (2) zero when it
is applied on the object with itself and (3) symmetric (e.g.
Mead, 1992). We chose to define the distance based on the
cross-correlation (CC; Fig. 1c) and the standard deviation ra-
tio (SR; Fig. 1d) of the respective records. The SR of two
time series pi and pj is defined as

SRij =

{ std(pi )
std(pj )

, if std(pi) > std(pj )
std(pj )
std(pi )

, if std(pi) < std(pj ).
(4)

This way, the SR is symmetric, fulfilling the third criterion
for the distance metric. Assuming that the records are all pos-
itively correlated, the distance measure between two time se-
ries pi and pj is defined as

Dij = (1−CCij ) ·SRij , (5)

i.e. the distance will be small when the CC is high and the
records have similar amplitudes of variability, and larger

when the CC is low and/or the records have very differ-
ent amplitudes of variability (Fig. 1e). This choice of dis-
tance metric outperforms equidistant coordinates and a met-
ric based solely on CC (not shown). With equidistant coor-
dinates all records determine the AMVI to the same degree,
regardless of their actual similarity to the AMVI. With a met-
ric based solely on CC, the reconstruction is dominated by
records with high variability and the resulting AMVI vari-
ability is overestimated. The additional SR scaling yields im-
proved variability estimates.

The final distance matrix D is then obtained by evaluat-
ing Eq. (5) for all pairs of records. For all pairs of pseudo-
proxies, the distance is estimated from the entire simulation
length. For calculating the distance between the AMVI and
the pseudo-proxies, we use only the last 150 years (years
1850 to 2000) and linearly detrend both AMVI and pseudo-
proxies before the calculation. The so-determined unitless
distances range from 0.02 to 3.91 for the MPI-ESM-based
network (Fig. 1e). The resulting distance matrix is then used
as input for the MDS algorithm to obtain the coordinates in
a 23-dimensional space. The embedding distance reflects the
actual geographical distance to a certain degree. Records that
are close in actual space tend to be close also in the embed-
ding space, as they have higher cross-correlations and similar
standard deviations (Fig. 1e).

2.3.4 Kernel design and hyperparameters

We choose a very simple kernel function, the radial basis
function (RBF), because we have no prior information that
would justify the use of a more complex kernel. Complex
kernels would introduce additional uncertainty and reduce
the interpretability of the results. We define the kernel as an
additive kernel of two RBF components:
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k1(ti, tj )= σ 2
f,t exp

(
1
2

(
|ti − tj |

lf,t

)2
)

(6)

k2(r i,rj )= σ 2
f,r exp

(
1
2

(
|r i − rj |

lf,r

)2
)
. (7)

The final kernel or covariance equation is then given as

k = k1+ k2. (8)

In Eqs. (6) and (7), | ∗ | is the Euclidian distance between
two points ti and tj or r i and rj . The lf and σ 2

f are the hy-
perparameters of the respective kernels. lf denotes a typical
length scale of the target function, while σ 2

f describes the sig-
nal variance, e.g. a function with small lf and large σ 2

f will
be very wiggly.

The first kernel k1 operates on the time dimension only,
i.e. it controls how much the neighbouring time steps at one
embedding location influence the value at time tj . This could
be considered as a mean typical timescale of variability in
the dataset. The second kernel k2 operates on all dimen-
sions of the embedding space, including the time dimen-
sion. This enables interaction between locations at time tj
and neighbouring time steps. This kernel setup outperforms
a kernel that consisted only of k2 and one where k2 did not
include the time dimension (not shown). The higher skill of
this kernel makes sense if one considers how the kernel de-
sign affects the interactions between the different time se-
ries. Having only k2 does not consider that the timescale
of auto-correlation may not be the same as the timescale of
cross-correlation. It therefore makes sense to have k1 oper-
ate across the time dimension only. If k2 operated only across
the embedding dimensions, no interaction between different
records across time would be possible.

Because k2 operates on both the time and the embedding
dimensions, we rescale the time steps to be of the same order
of magnitude as the distances between the records. This is
necessary to allow for the interaction across records and time.
Otherwise, the length scale of k2 would either be dominated
by the time step or by the embedding distance. One rescaled
time step equals the mean of the distance matrix D. In the
case of the MPI-ESM-based network (Fig. 1), the mean of
the distance matrix is 1.44. For the CCSM-based network
(Fig. B1), the mean of the distance matrix is 1.10.

A third additional hyperparameter σ 2
n denotes the likeli-

hood or noise variance (see also Appendix A). The noise
variance enables the GPR to handle target uncertainty. A
small σ 2

n indicates that the targets have low uncertainty and
the fitted function will be very strongly constrained by the
training data. If σ 2

n is larger, the targets come with large un-
certainty. The fitted function is then less constrained by the
training data and more robust against overfitting. Introducing
σ 2

n is similar to the so-called nugget effect in geostatistics.
The noise variance σ 2

n is assumed to be the same across all

dimensions, i.e. the learned estimate will be the same for all
pseudo-proxies and the AMVI. This is a simplification, be-
cause every pseudo-proxy contains its own level of noise. We
will show that this simplification is a good first approxima-
tion and enables the GPR to handle uncertain pseudo-proxies
well.

2.3.5 GP scaling behaviour

One known drawback of GPs is a bad scaling behaviour of
the computing time required to estimate the hyperparame-
ters with respect to the number of available observations,
also called batch size. The training time of a GP scales with
n3, where n is the batch size. This is mainly due to the ne-
cessity to invert the covariance matrix (e.g. Rasmussen and
Williams, 2006). Regression problems with more than 1000–
10 000 observations become difficult to handle with the orig-
inal GP formulation (hereafter full GP) due to time and
computing memory limitations. Even though paleodatasets
are not what we would typically call big data, they can al-
ready become challenging for GPs if the reconstruction pe-
riod spans 1000 years or more.

Various GP variants have been proposed to overcome this
limitation (e.g. Särkkä, 2013; Hensman et al., 2013). One
variant is the so-called stochastic variational GP (SVGP;
Hensman et al., 2013). The SVGP combines stochastic gra-
dient descent (i.e. training with mini-batches), variational in-
ference (i.e. inference through optimisation) and a low-rank
approximation of the covariance matrix based on so-called
inducing points. Simply put, the inducing points are a small
subset of the original dataset that represents the properties of
the complete dataset. In other words, the true GP posterior
is approximated by a GP that is conditioned on the inducing
points. The location of the inducing points in input space can
either be prescribed manually (e.g. randomly) or they can be
optimised along with the kernel hyperparameters. The train-
ing time of the SVGP scales withm3, wherem is the number
of inducing points (Hensman et al., 2013). Here, we test both
the full GP and the SVGP for climate-index reconstruction
in the embedding space. In the following, we will refer to the
embedded full GP as full emGP and the embedded SVGP as
sparse emGP.

2.3.6 Technical notes

Our scripts are based on the Python package GPflow
(Matthews et al., 2017). The hyperparameters are learned
through optimisation with the Adam Optimiser, which is a
stochastic gradient descent algorithm widely used in machine
learning applications (Kingma and Ba, 2014). We use the al-
gorithm as provided by GPflow. For the full GP, we repeat the
optimisation step 1000 times. For the sparse GP, we initialise
the inducing points as every tenth point in time and then op-
timise the locations along with the hyperparameters. We use
mini-batches with a size of 2000 and repeat the optimisation
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step 4000 times. The respective number of optimisation steps
is sufficient for the estimated likelihood of reaching an equi-
librium.

2.4 Training and testing

In the real world, SST measurements have been available
only since approximately 1850; therefore, AMV observa-
tions also only have been available since then. We use this
criterion to divide our pseudo-dataset into training and test-
ing data. The relationship between the pseudo-proxies and
the simulated AMVI can be inferred only from the last
150 years of the simulation, and the remaining years of the
simulated AMVI are used for testing. This may not be the
most effective way of splitting a dataset in the machine learn-
ing context, but it reflects best the actual data availability in
the paleocontext.

For the benchmark PCR reconstruction, which takes place
in the PCR space, the training inputs are the most recent
150 years of the retained principal components and the train-
ing targets are the corresponding 150 years of simulated
AMVI (i.e. 1850–2000). In the testing period, the AMVI is
reconstructed with the trained regression model and the re-
maining 350 years of the retained principal components as
inputs.

For the emGPR reconstructions, the training inputs are the
locations r i of the pseudo-proxies and the AMVI. For the
pseudo-proxies, all time steps are used for training (i.e. years
1500–2000); for the AMVI only the time steps correspond-
ing to the last 150 simulation years are used for training (i.e.
1850–2000). The training targets are the corresponding val-
ues of the 23 proxy records pi over the full 500 years and the
AMVI record over the last 150 years. During training, the
kernel hyperparameters and the noise variance are learned.
The AMVI is then reconstructed by evaluating the trained
emGP at the embedding location of the AMVI xAMV = x24
and the time steps corresponding to the remaining 350 simu-
lation years. This approach has the additional advantage that
the training set is much bigger than in the classical setup.
Thus, we increase the range of climate variability seen during
training and reduce the risk of reconstructing climate states
with which the model has not been trained.

3 Pseudo-reconstructions

3.1 TCppp: perfect pseudo-proxies

With perfect pseudo-proxies, the best overall reconstruction
is achieved by the full emGPR. The reconstructed AMVI
closely follows the target AMVI except for the period from
approximately 1630 to 1680 (Fig. 3a). This is reflected by the
high correlation with the target AMVI (0.93 for the smoothed
index). There is a weak negative mean bias, corresponding to
20 % of the target standard deviation, which stems mainly
from the 50-year period from 1630 to 1680. The GP related

uncertainty, as given by the 95th percentile of the poste-
rior distribution, is small for the years 1850–2000 where the
AMVI has been constrained during training. The uncertainty
increases for the reconstruction period. Overall, the poste-
rior uncertainty estimate appears to be a bit too large – i.e.
too conservative – because the true AMVI always lies within
the 95 % confidence interval. The full emGPR captures the
magnitude of variability very well. The standard deviation
ratio of 0.93 indicates only a small underestimation of 7 %.
Also, the period of very low AMVI following several vol-
canic eruptions between 1800 and 1850 is well captured, and
the reconstructed and target AMVI are almost indistinguish-
able. The spectrum of the reconstructed AMVI agrees well
with the spectrum of the target AMVI, and the full emGPR
captures the variability at all frequencies (Fig. 3b).

The sparse emGPR captures the main features of the tar-
get AMVI, but the reconstruction is less accurate (Fig. 3c).
The correlation is lower (0.79 for the smoothed index) and
there are more periods with larger deviations between the re-
construction and the target. Interestingly, the sparse emGPR
has large mismatches during different periods than the full
emGPR. The full emGPR has the largest mismatch in the
years 1630–1680 and the sparse emGPR has the largest mis-
matches in the years 1720–1830. The mismatches result in
a positive mean bias corresponding to 33 % of the target
standard deviation. The GP related uncertainty is the same
as the uncertainty from the full emGPR, but in the sparse
case, the uncertainty is approximately constant over the en-
tire period. The standard deviation ratio is 0.80, i.e. the vari-
ability is underestimated by 20 %. This is, for example, vis-
ible for the years 1800–1850, where the very low AMVI is
not captured as well as by the full emGPR. The spectrum
of the reconstruction still agrees well with the target spec-
trum, but there is a slight overestimation of variability at the
very high frequencies and an underestimation at lower fre-
quencies at timescales of 80–100 years (Fig. 3d). Differences
in the skill of the full and sparse emGP might partly be ex-
plained by different estimates of hyperparameters (see left
halves of Fig. 5a–c). We assume that the hyperparameters
learned with the full emGPR are closer to the truth. Both
the estimated timescale of auto-correlation (lf,t) and the sig-
nal variance (σf,t and σf,r) are underestimated by the sparse
emGP.

The PCR reconstruction achieves the highest correlation
(0.95 for the smoothed index) and comes with the smallest
uncertainty range, but at the cost of a larger underestimation
of variability and a systematic bias towards higher AMVI
values, for periods during which the AMVI is outside of the
range of the training period (Fig. 3e). This is especially ap-
parent during the period of the very low AMVI from 1800 to
1850, where the target AMVI lies outside of the PCR uncer-
tainty range. The mean bias corresponds to 79 % of the target
standard deviation. The standard deviation ratio of 0.65 indi-
cates an underestimation of the variability by 35 %. The un-
derestimation occurs systematically at lower frequencies in
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Figure 3. Reconstructions with perfect MPI-ESM pseudo-proxies based on (a, b) the full emGPR, (c, d) the sparse emGPR and (e, f) PCR.
Panels (a), (c), (e) show the smoothed reconstructed and target time series. The dashed line marks the separation between training and testing
periods. Shading indicates the 95 % confidence interval (CI). The CI is determined by the posterior GP distribution for the full and sparse
emGP. For the PCR, the CI is derived from the uncertainty in the regression coefficients, which is based on the t distribution. The metrics r ,
Rσ and b denote correlation, the ratio of standard deviations and the bias relative to the target standard deviation, respectively. The metrics
are calculated for the smoothed time series over the reconstruction period (1500–1850). Panels (b), (d), (f) show the Welch power spectra of
the target and reconstructed AMVI. Shading indicates the 95 % confidence interval as obtained from the χ2 distribution. The power spectral
density (PSD) is given in K2 per year.

the multi-decadal range, and the high-frequency variability
(timescales shorter than 30 years) is well captured (Fig. 3f).

With CCSM4-based pseudo proxies, the results for the
full and sparse emGPR are consistent with the MPI-ESM-
based reconstructions (cf. Figs. 3a–d and B2a–d). The PCR
performs much better in the CCSM environment, and both
the underestimation of variability and the systematic bias to
higher AMVI values are smaller in the CCSM4 case (cf.
Figs. 3e and B2e). Also, the low-frequency variability is bet-
ter captured (Fig. B2f). While the full emGPR clearly out-
performs the PCR in the MPI-ESM case, PCR and the full
emGPR perform similarly well in the CCSM4 case. The su-
perior performance of the PCR in the CCSM4 case can be
explained by a greater spatial coherence of the underlying
CCSM4 temperature field. The leading EOF explains 41 %
of the total variance in the CCSM4 case and only 27 % in the
MPI-ESM case (not shown). The difference in spatial coher-
ence is also reflected in the overall smaller embedding dis-
tances in the CCSM4 case (compare Figs. 1 and B1). The fact
that the full and sparse emGPR perform about equally well
for MPI-ESM and CCSM4 indicates that the emGPR is more
robust to different degrees of spatial coherence in the under-
lying field. This can be considered an additional strength of
the emGPR.

3.2 TCnpp: noisy pseudo-proxies

We calculate the reconstruction skill for each of the 30 noisy
reconstructions separately and provide the mean and spread
of the ensemble statistics. The distribution of the three skill
metrics for each reconstruction method can be found in Ap-
pendix C. For the full emGP, the individual ensemble mem-
bers are in reasonably good agreement with the target AMVI
(see Figs. 4a and C1a). The mean correlation of the smoothed
reconstructed AMVI with the target AMVI is 0.89± 0.06.
The mean bias is with 21 %± 15 % of the target standard
deviation, very similar to the bias from the TCppp case.
As with the TCppp test case, the bias mostly stems from
the years 1630 to 1680, where the mismatch between the
reconstructions and target is largest. The variability is still
captured remarkably well. The mean standard deviation ra-
tio is 1.01± 0.17, indicating that most ensemble reconstruc-
tions contain a realistic amount of variability. The main
loss of variability occurs at frequencies higher than decadal
(Fig. 4b). The lower-frequency variability range, which is of
main interest for studying the AMV, is well reconstructed,
and the reconstructed spectra lie well within the uncertainty
range of the target spectrum.
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Figure 4. Reconstructions with noisy MPI-ESM pseudo-proxies based on (a, b) the full emGPR, (c, d) the sparse emGPR and (e, f) PCR.
Panels (a), (c), (e) show the smoothed reconstructed and target time series. The dashed line marks the separation between training and
testing periods. Thin coloured lines show the individual ensemble members. The 95 % CI in the lower right of all three panels indicates
the CI averaged over time and all ensemble members. The metrics r , Rσ and b denote correlation, ratio of standard deviations and the bias
relative to the target standard deviation, respectively. The metrics are calculated for each smoothed ensemble member over the reconstruction
period (1500–1850), and the mean and spread (±2σ ) are reported here. Panels (b), (d), (f) show Welch power spectra of the target and
reconstructed AMVI. Thin coloured lines indicate the spectra of the individual ensemble members. Grey shading indicates the 95 % CI of
the target spectrum as obtained from the χ2 distribution. The power spectral density (PSD) is given in K2 per year.

The sparse emGPR also performs well with noisy pseudo-
proxies (Figs. 4c, d and C1b). The overall reconstruction skill
is even higher with noisy than with perfect pseudo-proxies.
This improved performance is also reflected in the estimated
timescale of auto-correlation. The estimate for lf,t is now
much closer to the estimate from the full emGP (Fig. 5a; we
will come back to this improved performance in Sect. 4). The
ensemble mean correlation of the smoothed AMVI with the
target AMVI is 0.87± 0.09. Also the mean bias is very small
with 11± 9 % of the target standard deviation, only a third
of the bias from the TCppp case. The mean standard devi-
ation ratio is 0.83± 0.14, corresponding to an underestima-
tion of the variability by 17 %± 14 %. This underestimation
is due to a complete loss of power at frequencies higher than
decadal (Fig. 4d). But as with the full emGPR, the frequency
range of interest for the AMV is well reconstructed.

The PCR still achieves high correlations but suffers a
strong underestimation of variability and an increased sys-
tematic bias towards the mean of the AMVI over the training
period (Figs. 4e, f and C1c). These deficiencies of the PCR
reconstructions with noisy data have been well documented
already (e.g. von Storch et al., 2009). The ensemble mean
correlation with the smoothed target AMVI is 0.81± 0.10.
The mean bias of 145 %± 26 % exceeds one standard devia-

tion of the target AMVI. The mean standard deviation ratio is
0.49± 0.09, corresponding to an underestimation of variabil-
ity by 51 %± 9 %. The loss of variability occurs mainly in
the range of frequencies lower than decadal, i.e. the frequen-
cies of interest for the AMVI are severely underestimated
(Fig. 4f).

The use of noisy pseudo-proxies has approximately dou-
bled the width of the 95 % confidence intervals for all three
methods. The mean uncertainty range over all emGP ensem-
ble members is ±0.57, which is again too conservative but
reasonable given the amount of non-climatic noise in the
pseudo-proxies. The mean PCR uncertainty range is ±0.21,
which is likely too confident in combination with the large
reconstruction bias.

Again, the reconstruction results with the noisy CCSM4-
based pseudo-proxies are broadly consistent with the MPI-
ESM-based reconstructions (Figs. B3 and 4). Still, some no-
table differences occur. The full emGPR has a larger nega-
tive mean bias of 75 %± 17 % of the target standard devia-
tion and slightly overestimates the variability on timescales
longer than 80 years (Fig. B3a, b). The best reconstruction
skill in the noisy CCSM4 case is achieved by the sparse
emGPR, with high correlations, a small mean bias and a good
estimation of the variability in the decadal to multi-decadal
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frequency range (Fig. B3c, d). A possible explanation for
the higher skill of the sparse emGPR can again be found in
the hyperparameters. In the sparse case, the uncertainty from
the noisy pseudo-proxies was correctly assigned to the noise
variance σ 2

n (Fig. B4c). In the full case, the large proxy noise
was instead interpreted as signal variance (σf,r; Fig. B4b).
We will return to this point in Sect. 4. With noisy pseudo-
proxies, the PCR shows the same deficiencies as in the MPI-
ESM case: a strong systematic bias towards the mean of the
AMVI during the training period and a strong underestima-
tion of variability on AMV-relevant timescales (Fig. B3e, f).

3.3 TCp2k: realistic PAGES2k proxy availability

Until now, we have assumed that the proxy availability is
constant in time. In the following, we assess the reconstruc-
tion skill of the two emGPR methods with realistic – i.e.
varying – data availability and over the full 2000 years. We
do this in three steps: first, we test how the emGPR per-
forms over the full 2000 years with perfect pseudo-proxies
and constant data availability (i.e. the same as TCppp but
over 2000 years). Second, we reconstruct the AMVI with
perfect pseudo-proxies and realistically varying data avail-
ability. To achieve realistic data availability, we clip the an-
nually resolved pseudo-proxy records at the start and end
years of the corresponding real-world proxy records from the
PAGES2k database. Third, we test the emGPR with noisy
pseudo-proxies and varying data availability. The third step,
even though still idealised, is closest to representing realistic
conditions for proxy-based reconstructions.

Because the full and sparse emGPR differ in the amount
of computing memory, we use two different approaches to
reconstruct the full 2000 years. In our current computing en-
vironment and with the selected MPI-ESM-based proxy net-
work of 23 locations, the full emGPR cannot handle much
more than 500 years at a time. We therefore train the full
emGPR on the most recent 500 years and use the estimated
hyperparameters to reconstruct the AMVI piece-wise in the
remaining three blocks of 500 years. For the first step, we
actually take the hyperparameters from TCppp (red stars in
Fig. 5). For the second step, we estimate the hyperparameters
again to see how much they differ when the data availabil-
ity changes (red diamonds in Fig. 5). For the full emGPR,
they turn out to be very similar, and therefore we use the hy-
perparameters from TCnpp in the third step in order to save
computing time (red dots in Fig. 5). The sparse emGPR can
be trained and evaluated over the whole 2000 years at once
with reasonable computational effort. Therefore, we retrain
the hyperparameters in each of the three steps (yellow dia-
monds in Fig. 5).

3.3.1 Full emGPR

The first step with the full emGPR shows that our approach
of piece-wise reconstruction works well. The reconstructed

AMVI closely follows the target AMVI also in the years 0–
1500 (Fig. 6a). This confirms that the hyperparameters es-
timated from the first 500 years are also representative of
the remaining periods (at least in this MPI-ESM-based set-
ting). The correlation of the smoothed reconstructed AMVI
and the target AMVI is with 0.87, a bit lower as in the TCppp
case. The mean bias of 8 % of the target standard deviation
is smaller than in the TCppp case. The variability is well re-
constructed, as indicated by both the standard deviation ratio
of 1.03 and the power spectrum (Fig. 8a).

With variable data availability in the second step, the full
emGPR still achieves a similarly high reconstruction skill
(Fig. 6b). The correlation of the smoothed reconstructed
AMVI and the target AMVI is 0.88 and the mean bias is neg-
ligible. Interestingly, the reduced data availability leads to
an overestimation of variability in some periods (e.g. in the
years 900–1100). This is also indicated by the standard de-
viation ratio of 1.19. This could be attributed to non-optimal
hyperparameters for the reduced proxy availability in this pe-
riod (see Sect. 4). The power spectrum also shows slightly
higher power in the multi-decadal frequency range (Fig. 8b).
On the other hand, there is a strong loss of power in the high-
frequency range (> 1/10 per year).

The third step confirms that the full emGPR can achieve
high reconstruction skill also under realistic conditions
(Figs. 6c and C2a). The mean correlation of the smoothed
AMVI reconstruction with the target AMVI is 0.67± 0.07
and the mean bias amounts to 12 %± 5 % of the target stan-
dard deviation. Many periods of extreme high and low AMVI
are well captured (e.g. around years 300 and 1150), but some
of these extreme periods are also underestimated (e.g. around
year 550). The mean standard deviation ratio is 1.06± 0.15,
indicating an overall realistic level of variability. Especially
the variability in the decadal to multi-decadal range is still
well captured (Fig. 8c). The only loss of variability occurs
again in the high-frequency range on timescales shorter than
decadal.

3.3.2 Sparse emGPR

In the first step, the sparse emGPR shows a slightly reduced
reconstruction skill as compared with the TCppp case. The
mean bias is very small, but the correlation is smaller and
the underestimation of variability is stronger (Fig. 7a). The
variability is underestimated both on interannual and multi-
decadal to centennial timescales (Fig. 8d).

With variable data coverage in the second step, the recon-
struction skill of the sparse emGPR remains similar and only
the underestimation of variability on multi-decadal to cen-
tennial timescales increases (Figs. 7b and 8e).

In the third step, the mean correlation of the smoothed
AMVI reconstructions with the target AMVI increases to
0.77± 0.07, confirming again that the sparse emGPR seems
to capture some details of the AMVI better in the presence
of noise (Figs. 7c and C2b), and the greater flexibility that
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Figure 5. The hyperparameters of the two GPR versions for different training periods with perfect MPI-ESM pseudo-proxies (left halves
of the panels) and the different white noise ensemble members (right halves of the panels). The hyperparameters are (a) the typical length
scales lf,t and lf,r, (b) the signal variance σ 2

f,t and σ 2
f,r, and (c) the noise variance σ 2

n . The subscript t indicates that the kernel operates only
on the time dimension. The subscript r indicates that the kernel operates on all dimensions, including time (see Eqs. 6 and 7). The length
scales are unitless, corresponding to the unitless distance of the embedding space. The length scale lf,t can be transformed into years through
division by 1.44. The signal and noise variance are given in K2.

Figure 6. The MPI-ESM-TCp2k reconstructions with the full emGPR. Panel (a) shows the first step with perfect pseudo-proxies and constant
proxy availability. Panel (b) shows the second step with perfect pseudo-proxies and realistic proxy availability according to the PAGES2k
database. Panel (c) shows the third step with white noise added to the proxies and realistic proxy availability.
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Figure 7. The MPI-ESM-TCp2k reconstructions with the sparse emGPR. Panel (a) shows the first step with perfect pseudo-proxies and
constant proxy availability. Panel (b) shows the second step with perfect pseudo-proxies and realistic proxy availability according to the
PAGES2k database. Panel (c) shows the third step with 3white noise added to the proxies and realistic proxy availability.

comes with a high estimate of noise variance in the GP hy-
perparameters (Fig. 5c). The underestimation of variability
remains large, both on interannual and multi-decadal to cen-
tennial timescales (Fig. 8f). Even though the sparse emGPR
obtains the worst reconstruction skill in this test case, the
overall skill is still higher than that of the PCR with full data
availability in the TCnpp case.

4 Discussion

We have tested two versions of GPR in a newly developed
input space (embedding space) for climate-index reconstruc-
tions in pseudo-proxy experiments with increasingly realistic
conditions. As a benchmark, we used a PCR-based recon-
struction. Under perfect conditions (TCppp), all three meth-
ods – full and sparse emGPR and PCR – achieve high re-
construction skill. The full emGPR outperforms the sparse
emGPR and performs at least as well as the PCR. With noise-
contaminated pseudo-proxies (TCnpp), the full emGPR has
the highest reconstruction skill with a realistic estimate of
variability on AMV-relevant timescales (i.e. decadal to multi-
decadal). The sparse emGPR achieves the second-best re-
construction skill with a realistic mean but increased vari-
ance loss. The PCR-based reconstruction is systematically
biased to the AMVI values of the training period and suffers
a strong loss of variance on AMV-relevant timescales. With

realistic proxy availability and noise-contaminated pseudo-
proxies (third step of TCp2k), the full emGPR is still able to
achieve a high reconstruction skill with a realistic mean and
variability on AMV-relevant timescales. Below, we re-assess
the overall performance of the methods, give possible expla-
nations for differences in reconstruction skill and discuss the
wider applicability of the emGP.

4.1 Non-climatic noise

Our results indicate that the emGPR (both full and sparse) is
able to perform well in the presence of non-climatic noise.
This property can most likely be explained by the hyperpa-
rameter of the noise variance σ 2

n (Fig. 5c). The noise vari-
ance describes the uncertainty in the regression targets. This
concept can only be meaningfully applied here because we
perform the GPR in the embedding space, where both the
proxy time series and the AMVI are the regression targets.
The noise variance can, therefore, capture the non-climatic
signal of the pseudo-proxies and give the emGPR the nec-
essary flexibility to filter the non-climatic part of the sig-
nal. Comparing the noise variance between the TCppp and
TCnpp cases illustrates this quite well. In the TCppp case,
the estimated noise variance (or likelihood) σ 2

n lies between
0.1 and 0.4 K2. In the TCnpp case, the estimated σ 2

n lies be-
tween 2 and 2.7 K2. This does reflect the actual mean magni-
tude of the noise which we added to the pseudo-proxies. The
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Figure 8. Welch power spectra of the MPI-ESM TCp2k reconstruc-
tions for the full (red) and sparse (yellow) emGPR. Panels (a),
(d) show the first step with perfect pseudo-proxies and constant
proxy availability. Panels (b), (e) show the second step with per-
fect pseudo-proxies and realistic proxy availability according to the
PAGES2k database. Panels (c), (f) show the third step with white
noise added to the proxies and realistic proxy availability. Grey
shading indicates the 95 % CI of the target spectrum. The power
spectral density (PSD) is given in K2 per year.

mean variance of the noise of all 23 records is approximately
2.1 K2. (For the individual records, the variance of the added
noise ranges from 0.3 to 4.9 K2.) Thus, the GPR training pro-
cedure seems to be able to learn a realistic magnitude of the
added noise.

Interestingly, the increased flexibility of the GP through
the higher σ 2

n not only yields robust reconstructions in the
presence of uncertain pseudo-proxies, it also seems to im-
prove the performance of the sparse emGPR. It is possible
that the presence of noise makes the sparse emGP less sen-
sitive to overfitting. To test this, we have repeated TCppp
and TCnpp for the sparse emGP with a network consisting of
only half the number of pseudo-proxies (randomly selected
from the original networks). We would expect the difference
in skill to decrease with the smaller networks, if overfitting
was indeed the reason. The difference between the recon-
struction with perfect and noisy data is indeed reduced with
respect to the full networks (Fig. D1). The TCppp reconstruc-
tion has a comparable reconstruction skill to single TCnpp
reconstruction members with both MPI-ESM and CCSM4-
based pseudo-proxies. We therefore conclude that the im-

proved performance of the sparse emGP with noisy data can
at least partly be attributed to a greater robustness against
overfitting in the presence of noise.

Here, we have only tested white noise pseudo-proxies, i.e.
we assume that the noise in the pseudo-proxy records is not
correlated in time. The typical noise model for σ 2

n , which
we apply here, also works with the assumption of uncorre-
lated Gaussian white noise. For real proxies this may not
always be the case. There are ways of adapting the noise
model to include, for example, correlated noise (see Ras-
mussen and Williams, 2006). The embedding space would be
a good starting point for this, as we explicitly take the time
dimension into account. The noise model would introduce
additional hyperparameters and make the calibration more
complex. If we simply used our current setup with correlated
noise, the model might interpret some of the noise correla-
tion incorrectly as actual data correlation. This could be the
subject of a follow-up study.

4.2 Hyperparameter estimation and overfitting

The full emGPR achieves generally higher reconstruction
skill than the sparse emGPR. (One exception is the TCnpp
case with CCSM4-based pseudo-proxies.) This could be ex-
pected, since the sparse emGPR approximates the covariance
matrix based on only a tenth of the available training data, i.e
the subset of selected inducing points. Possibly, the hyper-
parameters are more accurately learned from the full dataset.
Another possibility is that the location of the inducing points
is non-optimal. We have initialised the inducing points as ev-
ery tenth step in time and then optimised the location dur-
ing training. We have not tested other setups of the inducing
points. It is possible that a higher number or differently se-
lected inducing points would result in a higher reconstruction
skill.

The optimisation of the hyperparameters is an additional
source of uncertainty. The learned set of hyperparameters
may not always be the optimal set. We did not make any
sensitivity tests regarding, for example, initialisation of the
hyperparameters. But the fact that the training of the full
emGPR resulted in similar hyperparameters for all three
MPI-ESM-based test cases (TCppp,TCnpp and TCp2k) gives
us confidence that the estimated hyperparameters for the
full emGPR are accurate. The hyperparameters that have a
straightforward physical interpretation, i.e. the typical length
scale lf,t and variance σ 2

f,t of the first kernel and the noise vari-
ance σ 2

n , also appear reasonable in their magnitudes in most
cases (red stars in Fig. 5). The timescale of the full emGP is
on the order of 2.7 years, which is a reasonable timescale of
auto-correlation. As discussed above, σ 2

n captures the mag-
nitude of the mean added noise variance across all records.
The signal variance σ 2

f,t = 0.12 K2 indicates a temporal tem-
perature variability of approximately 0.35 K. For all selected
pseudo-proxies, the temporal variability ranges from 0.28 to
1.15 K. The estimated σf,t is thus on the lower end of plausi-
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ble values. The timescale lf,r and variance σ 2
f,r of the second

kernel are less straightforward to interpret, as they operate
across space and time. However, σ 2

f,r should somehow re-
flect the mean temperature variability across all records and
time. The estimate of σ 2

f,r = 0.51 K2 indicates a variability of
0.71 K. This is a fairly close estimate of the actual 0.82 K of
the underlying data.

Based on the comparison of the hyperparameters across all
experiments, we identify two possible cases of non-optimal
hyperparameters: first, the TCppp case with the sparse
emGPR, based on both MPI-ESM and CCSM4 pseudo-
proxies, in which the estimated typical timescale lf,t is much
shorter than that estimated from the full emGPR (left halves
of Figs. 5a and B4a; and second, the TCnpp case with the full
emGPR and CCSM4-based pseudo-proxies. In this case, the
noise variance was not correctly estimated. Instead, the noise
variance was attributed to the signal variance σ 2

f,r. The val-
ues of σ 2

n and σ 2
f,r appear switched compared with the other

TCnpp experiments (compare the right halves of Fig. 5b and
c, and Fig. B4b and c). Repeating the CCSM4-based TCnpp
experiment with switched σ 2

n and σ 2
f,r slightly increases the

reconstruction skill, but the skill remains lower than for the
TCnpp with the sparse emGPR (not shown). This illustrates
how difficult it is to find an optimal set of hyperparameters.

As with all reconstruction methods, it is possible that
the (hyper)parameters learned during training are not com-
pletely representative for the reconstruction period. To test
for the non-stationarity of hyperparameters in case of chang-
ing proxy availability, we have repeated the TCp2k experi-
ment with the full emGP for the years 1000–1500 (Fig. D2).
The new hyperparameters indicate a smaller signal variance
and shorter auto-correlation timescale (red and grey dia-
monds in Fig. D3). This improves the reconstruction skill
with respect to the original TCp2k experiment. However,
non-stationary hyperparameters are difficult to account for
with real-world data. By training the emGP with the max-
imum of available proxy data, we try to get the best mean
estimate but cannot fully avoid the effect of non-stationarity.

4.3 Embedding distance

As well as the hyperparameters, also the embedding dis-
tances are not constant in time (Fig. D4). Changing cross-
correlations may lead to under- or overestimation of individ-
ual records during certain periods. Again, this is something
which is difficult to account for with real-world data, and by
calculating the embedding distance over the entire periods of
proxy availability we try to find the best mean distance esti-
mate.

Another source of uncertainty is the choice of the dis-
tance metric on which the creation of the embedding space
is based. We have tested equidistant coordinates, cross-
correlation and cross-correlation with standard deviation ra-
tio, and we selected the latter metric. But of course, other
ways of constructing the embedding space could be possi-

ble. The optimal embedding space may differ for each proxy
network and proxy properties. This is definitely worthy of
further investigation.

4.4 Climate model dependence

The skill of all three methods, including the benchmark PCR,
depends to some degree also on the climate model from
which the pseudo-proxies are derived. This is a known is-
sue (Smerdon et al., 2011). The full emGPR performs better
in the MPI-ESM-based experiments, the PCR performs bet-
ter in the CCSM4-based experiments and the sparse emGPR
performs about equally well in both model worlds. The rea-
son for the different skill could be the differences in the net-
work size and location of the pseudo-proxies and differences
in the cross-correlation structure. It is, of course, difficult to
say whether a reconstruction with real proxies will behave
more like the MPI-ESM-based experiments or more like the
CCSM4-based experiments. But regardless of the differences
in skill, the fact that the emGPR has higher reconstruction
skill in the more realistic TCnpp case, and suffers from a
much smaller variability loss than the PCR in both model
worlds, gives us confidence that emGPR will also improve
the reconstructed variability in a real reconstruction.

4.5 Using real proxies and wider applications

The pseudo-proxy experiments give a good first impression
of how the reconstructions may behave with real proxies.
Nonetheless, even though the third step of TCp2k (noise con-
tamination and variable proxy coverage) is already quite re-
alistic, it is still idealised. For example, in the pseudo-proxy
setup, we calculate the distance matrix D based on the whole
length of the simulation. With real proxies, each proxy record
has a different length and covers a different period. In this
case, the distance matrix could be calculated based either on
a common time period where all records are available (this
could be a very short period) or it could be the period of
overlap for each individual pair of records.

In principle, the framework presented here can be applied
to any climate index that exhibits significant correlations
with local proxy sites. It is thus not limited to the AMVI ap-
plication presented here. With real proxies, which do not all
come in units of °C (e.g. lake sediments, tree ring width and
isotope ratios), it might make more sense to standardise all
records to unit variance. In this case, the embedding distance
would no longer need to include the SR scaling. A simple
dependence on the CC might be sufficient. This remains to
be tested.

In order to use this framework for indices that operate
on longer timescales, it might become necessary to include
records with lower temporal resolution. This would require
subsampling of all records to the lowest common resolution,
which is common practice in long-term reconstructions. It
might also be possible to train one emGP model for the high-
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resolution records and one for the low resolution-records.
The caveat here is that the observational period is often too
short to include enough training data for the low-resolution
records. But this is true for all reconstruction methods and
not unique to the emGP framework here.

In the TCnpp cases, we created 30 different white noise re-
alisations to estimate the noise-related uncertainty. With real
proxies, we only have one realisation of the data, of course,
and cannot run noise ensembles. But one could think of other
ways of generating ensembles, e.g. with slightly different
hyperparameters, slightly different ways of constructing the
distance matrix or inclusion of different noise models for σ 2

n .
This would instead give insight into the other more method-
ological sources of uncertainty.

5 Conclusions

We have developed and tested a new method for proxy-based
climate-index reconstruction. Our aim was to reduce the
underestimation of variability on AMV-relevant timescales
(decadal to multi-decadal), which is a common drawback of
established reconstruction techniques such as PCR. To this
end, we applied Gaussian process regression and developed
a modified input space, which we denoted as the embed-
ding space. We tested two versions of GPR, a full version
and a stochastic variational, i.e. sparse, version. The full ver-
sion is generally more accurate but comes at high computa-
tional costs and can only handle a limited amount of data. As
a benchmark comparison, we also computed AMVI recon-
structions with PCR.

Under ideal conditions (TCppp: pseudo-proxies contain
only the climate signal, all records available over the en-
tire reconstruction period), the embedded full GPR performs
at least as well as the PCR; in the pseudo-proxy experi-
ments based on MPI-ESM the embedded GPR achieves an
even higher reconstruction skill and suffers almost no vari-
ance loss. Under more realistic conditions (TCnpp: pseudo-
proxies contaminated with non-climatic white noise, all
records available over the entire reconstruction period), the
reconstruction skill of the PCR strongly decreases, and both
the embedded full and sparse GPR clearly outperform the
PCR. The GP-based reconstructions have an overall small
mean bias and reconstruct the variability on AMV-relevant
timescales much more accurately. Under even more real-
istic conditions (TCp2k: pseudo-proxies contaminated with
non-climatic white noise, records have different length and
cover different periods), the embedded sparse GPR still has
an overall small mean bias but suffers a strong variance loss,
while the embedded full GPR is still capable of reconstruct-
ing the variability on the timescales of interest accurately.

Of course, it remains to be seen how the embedded GPR
performs with real proxies. As a next step, we will perform
a real AMVI reconstruction based on the PAGES2k proxy
network. Based on the results presented in this study, we are

confident that climate-index reconstructions can be signifi-
cantly improved with embedded GPR. A more accurate re-
construction of the mean state and the magnitude of variabil-
ity will help advance our understanding of AMV dynamics,
e.g. especially during periods of extreme cooling following
volcanic eruptions.

Appendix A: Calculating the posterior predictive
distribution

Given a set of observed data y = yi = f (xi), the objective
is to provide the probability distribution at a yet unobserved
data point z, f (z), conditional on the available observations.
This is achieved by the application of the Bayes theorem.
Before the application of Bayes theorem, the prior for f (z)
is just the assumed probability distribution for the Gaussian
process, with mean µprior(z) and variance covprior = k(z,z).
Usually, µprior is assumed to be zero without loss of gener-
ality (e.g. by taking anomalies from the mean). It is also as-
sumed that observations are a realisation of a noisy Gaussian
process, which are contaminated by uncertainty in observa-
tions, i.e, yi = f (xi)+ε. The noise ε is assumed to be Gaus-
sian with variance σ 2

n and uncorrelated across the locations
xi . After the application of Bayes theorem, the mean and
variance can be calculated according to the following predic-
tive equations (for a detailed derivation see Rasmussen and
Williams, 2006):

µpost(z)= k(z,x)
T
[k(x,x)+ σ 2

n I]−1y (A1)

covpost(z)= k(z,z)− k(z,x)[k(x,x)+ σ
2
n I]−1

k(x,z), (A2)

where I is the identity matrix. These equations can be in-
terpreted as follows: the posterior mean is a linear combi-
nation of observations y and the process covariances be-
tween positions of the available observations and the new
position k(z,x). Usually, the kernel is assumed to decrease
with increasing separation between locations. This implies
that when the new position z is out of the range of avail-
able observations, the posterior mean will tend towards the
prior mean. The posterior variance is smaller than the prior
variance, since the available observations reduce the range of
likely values of f (z).
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Appendix B: CCSM4 pseudo-proxies

Figure B1. The selected pseudo-proxy records and resulting distance metrics based on the CCSM4 simulation: (a) the locations of the
records, colour coded with the correlation between the records and the AMV during the last 150 simulation years (after detrending); (b) cross-
correlation; (c) standard deviation ratio; and (d) the resulting embedding distances from the combination of both. Matrix indices 1–25 are the
selected pseudo-proxy records as labelled in (a), and index 26 is the simulated AMV index. The diagonal entries in (d) are empty because
zero cannot be displayed on the logarithmic colour scale.

Figure B2. Reconstructions with perfect CCSM4 pseudo-proxies based on (a, b) the full emGPR, (c, d) the sparse emGPR and (e, f) PCR.
Panels (a), (c), (e) show the smoothed reconstructed and target time series. The dashed line marks the separation between training and
testing periods. Shading indicates the 95 % confidence interval. The metrics r , Rσ and b denote correlation, the ratio of standard deviations
and the bias relative to the target standard deviation, respectively. The metrics are calculated for the reconstruction period (1500–1850).
Panels (b), (d), (f) show the Welch power spectra of the target and reconstructed AMVI. Shading indicates the 95 % confidence interval. The
power spectral density (PSD) is given in K2 per year.
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Figure B3. Reconstructions with noisy CCSM4 pseudo-proxies based on (a, b) the full emGPR, (c, d) the sparse emGPR and (e, f) PCR.
Panels (a), (c), (e) show the smoothed reconstructed and target time series. The dashed line marks the separation between training and testing
periods. Thin lines show the individual ensemble members and the bold line indicates the ensemble mean. The metrics r , Rσ and b denote
correlation, ratio of standard deviations and the bias relative to the target standard deviation, respectively. The metrics are calculated for each
smoothed ensemble member over the reconstruction period (1500 to 1850), and the mean and spread (±2σ ) are reported here. Panels (b), (d),
(f) show Welch power spectra of the target and reconstructed AMVI. Thin lines indicate the spectra of the individual ensemble members and
the bold line indicates the spectrum of the ensemble mean. Shading indicates the 95 % confidence interval of the ensemble mean spectrum.
The power spectral density (PSD) is given in K2 per year.

Figure B4. The respective hyperparameters for different training periods with CCSM4-based perfect pseudo-proxies (left halves of the
panels) and the different white noise ensemble members (right halves of the panels). The hyperparameters are (a) the typical length scales
lf,t and lf,r, (b) the signal variance σ 2

f,t and σ 2
f,r, and (c) the noise variance σ 2

n . The subscript t indicates that the kernel operates only on the
time dimension. The subscript r indicates that the kernel operates on all dimensions, including time (see Eqs. 6 and 7). The length scales are
unitless, corresponding to the unitless distance of the embedding space. The length scale lf,t can be transformed into years through division
by 1.10. The signal and noise variance are given in K2.

Geosci. Model Dev., 17, 1765–1787, 2024 https://doi.org/10.5194/gmd-17-1765-2024



M. Klockmann et al.: Towards variance-conserving climate-index reconstructions 1783

Appendix C: Metrics of TCnpp ensemble members

Figure C1. Distribution of skill metrics for the ensemble of recon-
structions with noisy MPI-ESM pseudo-proxies with (a) the full
emGPR, (b) the sparse emGPR and (c) PCR. The histograms show
the respective distributions and the vertical lines indicate the en-
semble mean. The printed values denote the mean and spread (2σ )
which are also reported in the text and Fig. 4.

Figure C2. Distribution of skill metrics for the ensemble of recon-
structions with noisy MPI-ESM pseudo-proxies and realistic data-
availability with (a) the full emGPR and (b) the sparse emGPR. The
histograms show the respective distributions and the vertical lines
indicate the ensemble mean. The printed values denote the mean
and spread (2σ ) which are also reported in the text and in Figs. 6
and 7.

Figure C3. Distribution of skill metrics for the ensemble of re-
constructions with noisy CCSM4 pseudo-proxies with (a) the full
emGPR, (b) the sparse emGPR and (c) PCR. The histograms show
the respective distributions and the vertical lines indicate the en-
semble mean. The printed values denote the mean and spread (2σ )
which are also reported in the text and Fig. B3.
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Appendix D: Sensitivity experiments

Figure D1. Sensitivity experiments similar to TCppp and TCnpp with the sparse emGP but with only half the number of pseudo-proxies.
Reconstructions based on (a) 11 MPI-ESM-based pseudo-proxies and (b) 12 CCSM4-based pseudo-proxies. The upper panels show the
reconstruction with perfect pseudo-proxies and the lower panels show the reconstruction with noisy pseudo-proxies.

Figure D2. Panel (a) shows a sensitivity experiment similar to
TCp2k with the full emGP, but the hyperparameters are estimated
for the period 1000–1500, where the proxy availability is strongly
reduced (see Fig. 1b). The AMVI during the years 1350–1500 has
been used for training. Panel (b) shows AMVI reconstruction for
the same period from Fig. 6b for comparison. Here, the hyperpa-
rameters were estimated for the period 1500–2000.

Figure D3. Hyperparameters of the sensitivity experiment shown
in Fig. D2. Red diamonds correspond to the period 1000–1500 and
grey diamonds to the period 1500–2000. (Grey diamonds here are
the same as the red diamonds in Fig. 5.) The hyperparameters are
(a) the typical length scales lf,t and lf,r, (b) the signal variance σ 2

f,t
and σ 2

f,r, and (c) the noise variance σ 2
n . The subscript t indicates

that the kernel operates only on the time dimension. The subscript r
indicates that the kernel operates on all dimensions, including time
(see Eqs. 6 and 7). The length scales are unitless, corresponding to
the unitless distance of the embedding space. The length scale lf,t
can be transformed into years through division by 1.10. The signal
and noise variance are given in K2.
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Figure D4. Changes in the embedding distance between the AMVI
and the pseudo-proxy records (Eq. 5) calculated over a running win-
dow of 151 years. The anomalies are calculated against the mean
distance over the entire period. Blue shading indicates a smaller
distance, i.e. more similar records. Red shading indicates a greater
difference, i.e. less similar records. The numbers on the y axis cor-
respond to the pseudo-proxy numbering in Fig. 1.

Code and data availability. The extracted pseudo-proxy data and
the simulated AMVI from the MPI-ESM and CCSM4 simula-
tions, as well as the Python scripts for the preparation of the
pseudo-proxy network, the preparation of the embedding space and
the GP regression, are provided in the Supplement. The Python
packages Scikit-learn (v.0.19.1), TensorFlow (v.1.12.0) and GPflow
(v.1.3.0) are publicly available. The PAGES2k database can be
downloaded at https://doi.org/10.6084/m9.figshare.c.3285353 (Kil-
bourne et al., 2017). The CCSM4 past1000 and historical simu-
lations can be obtained from the World Data Center for Climate
(https://doi.org/10.1594/WDCC/CMIP5.NRS4pk) (Otto-Bliesner,
2014) and https://doi.org/10.1594/WDCC/CMIP5.NRS4hi (Meehl,
2014), respectively.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-1765-2024-supplement.
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