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Abstract. This study investigates parameter estimation (PE)
to enhance climate forecasts of a coupled general circula-
tion model by adjusting the background vertical diffusiv-
ity coefficients in its ocean component. These parameters
were initially identified through sensitivity experiments and
subsequently estimated by assimilating the sea surface tem-
perature and temperature–salinity profiles. This study ex-
pands the coupled data assimilation system of the Commu-
nity Earth System Model (CESM) and the ensemble adjust-
ment Kalman filter (EAKF) to enable parameter estimation.
PE experiments were performed to establish balanced initial
states and adjusted parameters for forecasting the El Niño–
Southern Oscillation (ENSO). Comparing the model states
between the PE experiment and a state estimation (SE) ex-
periment revealed that PE can significantly reduce the uncer-
tainty of these parameters and improve the quality of analy-
sis. The forecasts obtained from PE and SE experiments fur-
ther validate that PE has the potential to improve the forecast
skill for ENSO.

1 Introduction

The coupled general circulation model (CGCM) is a promi-
nent tool that is widely utilized for predicting future cli-
mate. However, limitations arise in simulations and fore-
casts derived from CGCMs due to imperfections in model

physics, numerical schemes, and initial conditions. Coupled
data assimilation, referred to as state estimation (SE), can
enhance the accuracy and consistency of initial conditions
in CGCMs by integrating coupled models with available ob-
servation data. SE is commonly employed in current opera-
tional forecasting systems (Stammer et al., 2016; Balmaseda
et al., 2009). In addition to SE, researchers have developed
parameter estimation (PE) or parameter optimization (PO)
methods to mitigate model errors arising from uncertainties
in empirical parameters of diverse physical parameterization
schemes. These methods optimize model parameters using
observation data, leading to a substantial reduction in model
errors (Evensen et al., 1998; Zhang et al., 2020).

Recent studies have shown the potential of PE to enhance
forecast accuracy (Wu et al., 2012; Zhang et al., 2012) by
reducing model biases (Tong and Xue, 2008a, b). For in-
stance, PE experiments have been performed using concep-
tual models (Han et al., 2013), intermediate-complexity mod-
els (ICMs) (Wu et al., 2016), and CGCMs (Liu et al., 2014a)
to illustrate the capacity of PE to address model errors and
enhance the predictability of climate and weather events.
However, most of these studies were carried out under per-
fect model scenarios, and only a limited number of studies
have estimated parameters using real observation data. PE
presents various challenges in real-world scenarios, includ-
ing inconsistencies in initial conditions, biases in numerical
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models compared to reality, and difficulties in determining
the ideal value of unknown parameters (Zhao et al., 2019).

Despite these challenges, several examples of PE in actual
forecast models exist. For example, Menemenlis et al. (2005)
used Green’s function approach to estimate parameters in
an ocean general circulation model, demonstrating improved
estimations compared to the prior values. Hu et al. (2010)
performed parameter estimation in a weather model, con-
firming that optimized parameters can improve the model’s
forecast accuracy for real-world weather events. Kondrashov
et al. (2008) used observation data to estimate parameters in a
simplified ICM, verifying that optimized parameters can bet-
ter match observation results. Similarly, Zhao et al. (2019)
and Gao et al. (2021) performed parameter estimation in the
Zebiak–Cane model, another ICM, using real observations.
They both revealed that prediction skills for the El Niño–
Southern Oscillation (ENSO) were improved with the esti-
mated parameters.

There are still challenges when utilizing PE with observa-
tion data in CGCMs for the purpose of improving forecasts
and reanalysis (Zhang et al., 2020). To overcome these chal-
lenges, we employed the improved PE method proposed by
Shen and Tang (2022) in this study to estimate background
vertical diffusivity coefficients in the ocean model via PE ex-
periments. A coupled data assimilation system that is built
upon the Community Earth System Model (CESM) and the
ensemble adjustment Kalman filter (EAKF) method (Ander-
son, 2003) is used in this study. Specifically, we assimilated
various ocean observation data, such as satellite sea surface
temperature (SST) and temperature–salinity (T –S) profile
data, to provide optimal parameters for seasonal forecasting.
Additionally, we used the results obtained from PE to initial-
ize ENSO forecasting; these results were subsequently com-
pared to SE initialization results to illustrate the advantages
of PE in enhancing the CGCM’s ENSO-forecasting ability.

The paper is organized as follows: Sect. 2 introduces the
data assimilation system, observation data, PE method, and
experimental settings. Section 3 presents the results of the
sensitivity experiment while comparing the analyses and
forecasts using PE and SE. Lastly, Sect. 4 concludes the
study.

2 Data assimilation system and PE methods

It has been demonstrated that coupled models can provide
more compatible initial conditions via coupled data assimi-
lation (Fujii et al., 2009; Mulholland et al., 2015; Penny and
Hamill, 2017), which, in turn, improves seasonal predictions
(Jin et al., 2008; Kug et al., 2008). In a previous study, we
developed a coupled assimilation and ensemble forecasting
system based on the fully coupled model CESM (Chen et al.,
2022). The system employed the EAKF method to assimi-
late ocean observations from various sources and adjust the
state variables of the ocean model, thereby influencing other

model components through flux exchanges in the coupled
process. Notably, the assimilation results have demonstrated
significant improvement in terms of ENSO-forecasting skill
(Chen et al., 2023). In the current study, we extended this sys-
tem by incorporating a parameter estimation function, which
enabled the estimation of several critical parameters in the
ocean model.

2.1 The CESM model and the background vertical
diffusivity coefficients

The study utilized version 1.2.1 of the open-source global
coupled model CESM, developed by the National Center
for Atmospheric Research (NCAR). This integrated model
includes the Community Atmospheric Model version 4
(CAM4) (Neale et al., 2010), the Parallel Ocean Program ver-
sion 2 (POP2) (Danabasoglu et al., 2012), the Community Ice
Code version 4 (CICE4), and the Community Land Model
version 4 (CLM4), as well as other modules. The atmo-
spheric component has a horizontal resolution of 0.9°×1.25°
with 26 vertical levels, while the ocean component was inte-
grated at a nominal resolution of 1° with an enhanced merid-
ional resolution of 0.5° in the equatorial region and 60 verti-
cal levels.

In many OGCMs, vertical mixing can be parameter-
ized separately by region, including upper-boundary-layer
schemes and a diapycnal-mixing scheme for the ocean in-
terior. The K-profile parameterization (Large et al., 1994) is
widely used to parameterize vertical mixing in ocean mod-
els. It includes a background diffusivity parameter that deter-
mines the diapycnal mixing in the thermocline. It is critical
to the heat transfer between the upper boundary layer and the
ocean interior. The background diffusivity parameter is typi-
cally set to a constant value, and its magnitude is determined
by fitting the model to observations or theoretical considera-
tions. As identified by much of the previous work, the back-
ground diffusivity parameterization is a key factor in vertical
mixing parameterizations, and it has significant uncertainties
and contributes to a large bias in SST simulations (Jochum,
2009). Zhu and Zhang (2018) have shown that a better back-
ground diffusivity parameterization leads to more realistic
simulations of the cold tongue and equatorial thermocline,
which has the potential to affect the fidelity of simulated sea-
sonal to interannual variability in the tropical Pacific, such
as the ENSO phenomenon. Therefore, the present study fo-
cused on estimating the parameters in background diffusivity
parameterization.

The ocean model of CESM, POP2, was initially proposed
by Smith et al. (1992) to solve three-dimensional ocean dy-
namic primitive equations on a global grid under the as-
sumptions of Boussinesq and hydrostatic approximation. The
background diffusivity parameter, denoted as kw, is mainly
used to characterize mixing processes resulting from the
breaking of inertial internal waves (Smith et al., 2010). How-
ever, due to the uncertain propagation and dissipation behav-
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ior of these waves, the parameter value of kw has signifi-
cant uncertainty. Munk (1966) first estimated the averaged
diapycnal diffusivity of 10−4 m2 s−1 based on the advective–
diffusive balance, thus requiring a background diffusivity of
O(10−4 m2 s−1) to realistically produce the pycnocline in
numerical models (Bryan, 1987). However, microstructure
measurements generally give estimates that can be reduced
by 1 order of magnitude (Gregg, 1977; Ledwell et al., 1998).
Hence, a constant background diffusivity ofO(10−5 m2 s−1)

has typically been applied in many ocean and climate mod-
eling studies. Recently, observational evidence has indicated
that the assumed constant background diffusivity is not uni-
form but rather is spatially varying (Kunze et al., 2006). In
particular, microstructure measurements suggest that back-
ground diffusivity should be reduced near the Equator, with
a magnitude of O(10−6 m2 s−1) (Cheng and Kitade, 2014;
Gregg et al., 2003). Jochum (2009) adopted a latitudinal
structure of kw in the POP2 model and found that it sim-
ulated the ocean state better, which has been subsequently
accepted by follow-up studies. Specifically, POP2 utilizes
four independent background vertical diffusivity coefficients
(BVDCs) to simulate the latitudinal structure of the back-
ground diffusivity. Table 1 lists each coefficient’s default val-
ues and descriptions (Smith et al., 2010).

The BVDCs have a total of four constants, comprising a
coefficient v1 describing global diffusivity, a coefficient ve
describing equatorial diffusivity (Gregg et al., 2003), a coef-
ficient vp describing the diffusivity near latitudes of 28.9° S
and 28.9° N, and a coefficient vb describing diffusivity in
the Banda Sea region alone (Jochum and Potemra, 2008).
Among them, vp is also known as the maximum PSI-induced
diffusivity, representing the result of the parametric subhar-
monic instability (PSI) of the M2 tide (MacKinnon and Win-
ters, 2005). Therefore, in POP2, the background diffusivity
parameter kw has only a fixed form of spatial variation (Smith
et al., 2010). Except for the Banda Sea, which takes on a spe-
cific value, globally, kw varies only latitudinally and can be
expressed as follows:

kw = ve+ v1

(
θ

10

)2

+ vpe
−0.4(θ+28.9)

+ vpe
−0.4(θ−28.9), (1)

where θ is the latitude.
Therefore, the kw value has been modified from its typi-

cally constant value of 0.1 to 0.17cm2 s−1 (v1+ ve = 0.17)
almost everywhere in POP2, and there are regions where
different values are used: 1.0 cm2 s−1 in the Banda Sea
(vb), 0.3 cm2 s−1 in the latitude bands around 28.9° N and
S (v1+ ve+ vp), and 0.01 cm2 s−1 at the Equator (ve).

2.2 The data assimilation and ensemble prediction
system

The Data Assimilation Research Testbed (DART) was em-
ployed in this study to implement the data assimilation sys-
tem (Anderson et al., 2009; Karspeck et al., 2018). DART,
an open-source software, offers various filter methods’ im-
plementations. Previously, this data assimilation system was
used to study the impact of initial-state errors on assimi-
lation quality by assimilating ocean observations within a
quasi-weakly coupled data assimilation framework (Chen
et al., 2022). The EAKF method yielded the analysis en-
semble, serving as the initial condition for climate variabil-
ity forecasting. Notably, the system’s initial conditions facil-
itated the forecasting of significant climate variability, such
as ENSO and IOD (the Indian Ocean dipole), and conse-
quently directed a demonstrable improvement in forecasting
skill (Chen et al., 2023).

The description of the assimilation system is presented in
detail by Chen et al. (2022). In brief, it is a weakly coupled
data assimilation system since only ocean observations are
assimilated, and the coupled model is used for integration.
This study utilizes the ensemble adjustment Kalman filter
approach with 20 ensemble members. The ensemble mem-
bers are constructed using long-term spin-up integration re-
sults and then repeatedly assimilating the WOA18 (Garcia
et al., 2019) climatology data over 4 years to correct the cli-
matological bias. This approach is essential to ensure that the
initial ensemble can effectively incorporate all observations
during the data assimilation procedure.

Two sets of observation data are assimilated every 10 d.
One dataset is the Optimum Interpolation Sea Surface Tem-
perature (OISST) dataset version 2.1 retrieved from the Na-
tional Oceanic and Atmospheric Administration (NOAA).
The other is the EN4 profile dataset version 4.2.1 of the UK
Met Office. The OISST dataset has a daily 0.25° resolution
and was constructed by combining observations from differ-
ent platforms (satellites, ships, buoys, and Argo floats) on a
regular global grid. The EN4 profile dataset is a collection
of ocean temperature and salinity (T –S) profiles obtained
across global oceans from 1900 to the present. Quality con-
trol methods ensure good quality (Gouretski and Reseghetti,
2010).

The datasets were pre-processed before being assimilated
into the system. Regarding the data assimilation system that
assimilates SST and T –S profiles every 10 d, daily profiles
were merged and assigned to the final day of each sequence.
To prevent overfitting due to assimilating excessive profile
observations, the data at different depths were first interpo-
lated to 31 layers from 5 m to approximately 2100 m and then
averaged horizontally. Specific vertical depths were obtained
from the EN4 analysis data (Good et al., 2013). The mean
value of all the data in each 1°× 1° cell at each level was
regarded to be the observation value. Moreover, the OISST
data were thinned such that only data on the 1°× 1° grids
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Table 1. Background vertical diffusivity coefficients (BVDCs) of KPP parameterization in POP2.

Name list variable Parameter description Default value Notations
(m2 s−1)

bckgrnd_vdc1 Background diffusivity 0.16 v1
bckgrnd_vdc_eq Equatorial diffusivity 0.01 ve
bckgrnd_vdc_psim Maximum PSI-induced diffusivity 0.13 vp
bckgrnd_vdc_ban Banda Sea diffusivity 1.0 vb

were assimilated every 10 d. Previous studies have shown
that this processing method can produce effective state es-
timation results (Chen et al., 2022, 2023).

Localization was employed using the Gaspari and Cohn
function (Gaspari and Cohn, 1999), which employed a cut-
off half-width of 0.1 rad (approximately 600 km) for both ob-
servations. The SST and T –S profiles had vertical localiza-
tion half-widths of 250 and 1000 m, respectively. Addition-
ally, the application of covariance inflation involved utilizing
a constant inflation factor with α = 1.02 for model states.
These factors were determined empirically and verified in
prior studies (Shen and Tang, 2022; Chen et al., 2022, 2023).

2.3 Parameter estimation method

One approach to achieving PE is the state vector augmen-
tation method, in which parameters are treated as specific
model variables and included in the state vectors. By updat-
ing the augmented state vector with observations, the model
state and parameters can be estimated concurrently (Kivman,
2003; Annan and Hargreaves, 2004; Annan, 2005). Apply-
ing PE in a CGCM presents several technical challenges.
Firstly, many parameters in the GCM emanate from simplify-
ing underlying physical processes, which may display glob-
ally uniform values. Updating a few global parameters with
numerous data may lead to an accumulation of sample er-
rors, leading to PE failure. Since the parameters estimated
in this paper are four constants, this is the main challenge in
the experiments. To overcome this hurdle, we used the adap-
tive spatial averaging (ASA) method designed by Liu et al.
(2014b) for the CGCM. In each data assimilation step, we
transformed each parameter from a single scalar value into
a two-dimensional field, considering spatial dependence and
localization during the assimilation. Afterward, we use the
adaptive algorithm to average the two-dimensional parame-
ter fields to produce a scalar value incorporated into subse-
quent model integration. This algorithm calculates the ratio
of the a posteriori standard deviation to the a priori standard
deviation at each grid point after each update of the two-
dimensional parameters, which implies the strength of the
effect of assimilation, and then averages the parameter val-
ues at grid points where the ratio exceeds a certain threshold.
This threshold is chosen using an adaptive algorithm to en-
sure that a certain number of grid points (in this experiment,
10 000 out of a total of 80 000 grids) are included in the cal-

culation of the averaged parameters. For more details, refer
to Shen and Tang (2022).

A further challenge arises from covariance inflation. Stud-
ies have noted that the parameter ensemble’s spread (stan-
dard deviation) is generally relatively lower than that of
the state ensemble, primarily because parameters remain
constant for the mode integration. Consequently, ensemble-
Kalman-filter-based PE requires a larger covariance inflation
factor for the parameter ensemble. In a previous study, we
employed twin experiments to demonstrate the necessity of
covariance inflation for PE of BVDCs in CESM and devel-
oped a two-stage covariance inflation approach (Shen and
Tang, 2022). Specifically, the conventional covariance infla-
tion was applied to the augmented vector of the model states
and the 2-D parameter fields using a fixed inflation factor
of α = 1.02 before assimilation. Afterward, we average the
analysis data of 2-D parameter fields to obtain global scalars
and utilize a covariance inflation factor of αp = 1.25 solely
for the parameter ensemble. This factor is deduced by cal-
culating the average growth rate of the state variables in the
model integration. Figure 1 provides a schematic diagram il-
lustrating the PE process described above.

However, the conditional covariance inflation (CCI)
method is usually used in practical data assimilation to en-
sure that the ensemble spread does not fall below a lower
bound (Aksoy et al., 2006; Liu et al., 2014a). The CCI is
designed to inflate the parameter ensemble spread back to a
predefined threshold value when it is smaller than the thresh-
old. In this work, we intentionally do not use the CCI method
and let the parameter ensemble degenerate after several data
assimilation cycles. After that, all ensemble members use the
same improved parameters that no longer change value with
the subsequent data assimilation. This strategy allows the pa-
rameter ensemble to converge and makes subsequent ensem-
ble forecasting experiments easier to implement.

It is also worth noting that, in order to avoid unphysical
parameter values, after each parameter estimation, if an ab-
normal parameter value (e.g., negative value) occurs for an
ensemble member, we remove the parameter and use the pa-
rameter of the neighboring member to integrate the model.

2.4 Experimental design and verification data

Conducting sensitivity analyses (Navon, 1998) before PE is
necessary to ensure that the parameters have a significant im-
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Figure 1. Schematic diagram of the parameter estimation process in the CESM model.

pact on the observed variables. In this study, the sensitivity
experiment was initially conducted to show the sensitivity of
model temperature and salinity to the BVDCs. An ensemble
of size 20 was integrated using the same initial states but with
perturbed parameters. We perturbed each BVDC by adding
noise generated from a Gaussian distribution with a mean
value of 0 and a standard deviation of 30 % of its default
value. We measured the variable sensitivity to the perturbed
parameters by using the ensemble spread of each variable.

Subsequently, we conducted separate SE and PE experi-
ments using the initial ensemble introduced earlier. The as-
similation time window started in January 2005 and contin-
ued until December 2017. In the SE experiment, the SST
and T –S profiles were assimilated every 10 d to update the
model state variables that include temperature, salinity, sea
surface pressure, and surface current velocity. The BVDCs
listed in Table 1 were used in model integration during the
entire period. The PE experiment used the same observa-
tions to update the model state variables and the BVDCs
concurrently. As Zhang et al. (2012) showed, the signal-to-
noise ratio of the state–parameter error covariance in the cou-
pled model can be significantly improved after the state esti-
mation reaches quasi-equilibrium. Therefore, we performed
only pure state estimation in the first year of the PE ex-
periment and activated the PE function from the beginning
of the second year. That is, the parameter values changed
gradually from 2006 onwards. At this point, the observation-
constrained states can improve the parameter estimates more
effectively.

We compared the results of SE and PE experiments with
validation data to demonstrate the impact of PE on reducing
analysis errors. The temperature and salinity from the objec-
tive analysis data of EN4.2.1 (Good et al., 2013) are used
for validation. It should be noted that the EN4 profile dataset
for assimilation is a collection of profiles, and the EN4 ob-
jective analysis dataset is processed and gridded data. To en-

sure impartiality in the validation data, we also incorporated
high-quality reanalysis products such as the Ocean Reanal-
ysis System 4 (ORAS4) by Balmaseda et al. (2013) and the
Geophysical Fluid Dynamics Laboratory’s ensemble coupled
data assimilation (GFDL/ECDA) by Zhang et al. (2007).

The EAKF can provide initial conditions for ensemble pre-
diction by running an ensemble of members. The analysis
ensembles of SE and PE experiments were utilized as initial
conditions for climate forecasting with the coupled model.
We conducted ensemble forecast experiments from 2008 to
2017 using the analysis ensembles derived from both SE
and PE. The parameters obtained by PE were also employed
in the latter case. Predictions were issued at the beginning
of each January, April, July, and October, extending for 12
months. The Hadley Centre sea ice and sea surface tempera-
ture dataset (HadISST) (Rayner et al., 2003) served as a ref-
erence dataset to compare the produced prediction products.

The schematics in Fig. 2a–c show the sensitivity exper-
iment, the SE experiment, and the PE experiment, respec-
tively. It can be seen that the sensitivity experiment is a free-
integration experiment using the same initial condition and
different parameters. The SE experiment uses the ensemble
of state variables and the same default parameters. At the
same time, the PE experiment uses ensembles for both state
variables and parameters. PE experiments are divided into
three phases, which we will specify in the “Results and dis-
cussions” section. Moreover, it also shows that the state and
parameter estimation results are used in the later hindcast ex-
periments.

3 Results and discussions

3.1 Sensitivity experiment

Twenty identical ensemble members were utilized for the
parameter sensitivity experiment in the CESM integration,
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Figure 2. The schematic diagrams of (a) the sensitivity experiment, (b) the state estimation and prediction experiment, and (c) the parameter
estimation and prediction experiment.

which persisted for 5 years, with four parameters perturbed
simultaneously. It is worth noting that we tried experiments
where we perturbed the parameters one by one, and the
experimental results showed that perturbing the different
BVDCs had a comparable effect (not shown here), so we
used this simultaneous perturbation scheme. The ensemble
spreads of temperature and salinity variables, which measure
their sensitivity to the perturbed parameters, are shown in
Fig. 2. The global (66.5° S–66.5° N) and equatorial (5° S–
5° N) averaged temperature and salinity ensemble spreads
were demonstrated accordingly. Perturbing BVDCs in the
model leads to a rapid increase in temperature and salinity
ensemble spread within the first year, followed by relative
stability in the succeeding years. Figure 3 shows that tem-
perature variables have the maximum sensitivity to BVDCs
at approximately 100 m depth, with salinity variables being
most sensitive to these parameters at the sea surface. The in-
fluence of parameter uncertainty can extend up to a depth
of approximately 400 m. Additionally, the equatorial area is
highly sensitive to BVDC parameters in terms of temperature
at a depth of 50–100 m and in terms of salinity at the sea sur-
face. The surface temperature variability in Fig. 3a shows a

conspicuous seasonal cycle which can possibly be related to
the diverse rates of change in mean temperature instigated by
distinct ocean areas between the Northern Hemisphere and
the Southern Hemisphere.

The last 3 years’ outcomes were used to compute the mean
spread and analyze its spatial distribution. Figure 4 provides
additional validation that temperature variability is highest
within the equatorial range and most pronounced at a depth
of 100 m. In deeper layers, the parameters affect the temper-
ature more significantly in the western Pacific. Additionally,
salinity is highly sensitive to the parameters in the warm-pool
region of the tropical western Pacific, and the sensitivity of
salinity to parameters is highest in the shallow layers of less
than 50 m depth. Furthermore, in the extratropics, the temper-
ature and salinity in the Kuroshio Extension and Gulf Stream
regions are also sensitive to these parameters to some extent.

The sensitivity experiment shows that the model tem-
perature and salinity are sensitive to the uncertainty in the
BVDCs, strongly indicating that assimilating SST and T –S
profiles can potentially reduce the uncertainty.
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Figure 3. The global averaged (between 60° S and 60° N) ensemble spread of temperature (a) and salinity (b); (c) and (d) are the same as (a)
and (b) but were averaged over the Equator (between 5° S and 5° N).

Figure 4. Spatial distribution of the ensemble spread of sea temperature (left) and salinity (right) at different depths.

3.2 Estimated parameters

We conducted separate SE and PE experiments, assimilat-
ing observations during the period between January 2005
and December 2017. In the SE experiment, default values of
the BVDCs were consistently used in all ensemble members
throughout the entire period. However, the PE experiment
comprised three distinct phases. During the initial phase, we
utilized perturbed parameters to perform state estimation.
It spans a period of 1 year and brings the state estimation
process to approximately quasi-equilibrium, where the un-
certainty of coupled model states is sufficiently constrained
by observations. In the second phase, spanning from 2006
to 2007, we activated the PE function illustrated in Fig. 1.
This function facilitated continuous correction of the param-
eter ensemble through observations. Finally, during the third

phase, spanning from 2008 to 2017, these parameters re-
mained unchanged.

Figure 5 depicts a graphical representation of the 20 en-
semble members of the four BVDCs over time, with the en-
semble mean represented by the solid red line. Observations
gradually decreased the spread of the parameter ensemble,
resulting in less uncertainty. After approximately 2 years, the
parameter ensemble degenerated, and the spread reached 0.
Consequently, assimilating observations could no longer ad-
just the parameters.

Table 2 presents the final values of BVDCs. Notably, v1
and vp values are 20 % higher than the default values, while
vb is 10 % higher (except for ve, which is slightly lower than
the default value). It is also worth noting the almost glob-
ally increasing value of the background vertical diffusivity,
kw, as calculated through Eq. (1) and depicted in Fig. 6. The
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Figure 5. Evolution of each parameter since 2006, in which the solid red lines indicate the ensemble mean.

Figure 6. (a) Default latitudinal structure of background vertical diffusivity; (b) the increment of the background vertical diffusivity from
PE.

Table 2. PE final BVDC values.

Parameters v1 ve vp vb

Default value (m2 s−1) 0.16 0.01 0.13 1.0
PE final value (m2 s−1) 0.195 0.0091 0.161 1.10
Ratio of increase 21.9 % −9 % 23.8 % 10 %

left-hand side of Fig. 6 displays the band structure of the de-
fault background diffusivity, while the increment obtained by
PE is shown on the right-hand side, further validating the
achieved results.

3.3 Quality of the analysis

As previously mentioned, the parameters have remained un-
changed since 2008. Consequently, the third phase of the PE
experiment can be considered to be a distinct SE experiment
using the estimated parameters listed in Table 2. This study
focuses specifically on evaluating the analyses obtained from
the third phase by comparing the results of the PE and SE ex-
periments.

We compare our analysis fields to the gridded objective
analysis data from EN4 and other reanalysis products to
demonstrate the validity of our results. Figure 7 displays the
root mean square error (RMSE) of the temperature in the
analysis fields for the period of 2008–2017 by region. We
compared the results to EN4, ORAS4, and ECDA. The re-
gions are global (within 66.5° N–S), Pacific, Indian Ocean,
Atlantic, and intra-tropical (within 30° N–S). Similar find-
ings can be observed globally and in most regions using dif-
ferent datasets. When examining the global mean tempera-
ture, the depths with significant analysis errors are consistent
with the parameter-sensitive depths, indicating that parame-
ter uncertainty can impact the analysis accuracy. Moreover,
the reduced RMSEs of the PE experiment indicate that PE
improves the quality of the analysis. In particular, notice-
able improvements are observed below a depth of 100 m. The
most pronounced improvement is observed in the Atlantic
Ocean and in tropical regions. Figure 8 illustrates the salinity
errors in the analysis. The highest error is observed in the sea
surface layer, which is consistent with the depth most sensi-
tive to parameters (Fig. 3b and d). In contrast to temperature,
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Figure 7. The temperature RMSE of the data assimilation results with EN4 (top), ORAS4 (middle), and ECDA (bottom) for the period
of 2008–2017 by region. The regions are as follows: global (within 66.5° N–S), Pacific, Indian Ocean, Atlantic, and intra-tropical (within
30° N–S), from left to right.

Figure 8. The same as Fig. 7 but for salinity RMSE.

PE primarily enhances salinity accuracy in deep-Atlantic and
tropical regions.

Figure 9 displays the RMSEs of the SE experiment and
EN4 data in the tropics while emphasizing the disparity com-
pared to the PE experiment. As Fig. 9a shows, the most con-
siderable temperature errors appear in all oceans around the
depth of 100 m, which matches the sensitivity analysis re-
sult for temperature depicted in Fig. 9c. Figure 9e denotes an

improvement in PE for these errors, implying its usefulness
throughout the tropics. It is noted that there is improvement
in areas where the temperature is sensitive to the uncertainty
of those parameters. The temperature error in the deeper lay-
ers of the tropical oceans has also been reduced, especially
in the deeper Atlantic Ocean. Figure 9b, d, and f show the re-
sults for salinity. Although not as significant as temperature,
the depths and areas where salinity errors emerge in the SE
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Figure 9. The temperature (a) and salinity (b) RMSEs of the SE results and EN4 data in the tropics; the mean temperature (c) and salinity (d)
spreads of the sensitivity experiment results in the tropics; the difference between the temperature (e) and salinity (f) RMSEs of the SE results
and those of the PE results, respectively.

analysis align with those sensitive to parameters. Unsurpris-
ingly, PE partially mitigates these errors, most significantly
around the Andaman Sea, in waters near Indonesia, and in
the coastal West African waters where vertical mixing is in-
tensive.

The model bias of CESM is relatively large in the Atlantic
Ocean. Danabasoglu et al. (2012) have shown the zonal-
mean temperature and salinity of CCSM4 (which uses the
same ocean model as CESM) minus climatology from ob-
servations. They noted that the deep Atlantic Ocean remains
generally warmer than observed by about 0.58 °C in terms
of the mean. The local temperature and salinity maxima be-
tween 20 and 30° N at a depth of about 1000 m are asso-
ciated with the warmer- and saltier-than-observed Mediter-
ranean outflow through the Strait of Gibraltar. The largest
salty biases occur in the deep Atlantic Ocean. The upper-
ocean Atlantic north of 15° N remains mostly saltier than the
climatology. We show similar results in Fig. 10, which dis-
plays the zonal-mean temperature and salinity of the Atlantic
minus the climatology calculated from EN4 data using SE
results and PE results, respectively. By comparing the clima-
tology bias of the results from two experiments, it is seen
that the most significant improvement in the PE in relation
to the SE lies in the Atlantic Ocean at a depth of 1000 m
between 20 and 30° N. It strongly suggests the contribution
of improved background diffusivity parameters to reducing
model systematic biases. It can be inferred from the conclu-
sions of Danabasoglu et al. (2012) that this improvement also
stems from the improvement in the outward flow in the Strait
of Gibraltar. Although the sensitivity and analytical errors in

this region cannot be demonstrated directly in Fig. 9 due to
resolution, the effect of PE is demonstrated by affecting the
1000 m Atlantic Ocean between 20 and 30° N. This explains
the smaller deep-Atlantic RMSE in the PE results presented
in Figs. 7 and 8.

3.4 ENSO forecast experiment

This study utilized analysis ensembles from the coupled data
assimilation system to conduct ENSO forecast experiments
between 2008 and 2017 (as shown in the schematic diagram
in Fig. 2b and c). The Niño 3.4 index, calculated as the aver-
aged sea surface temperature anomalies between the latitudes
of 5° S to 5° N and longitudes of 190° E to 120° W, was em-
ployed to illustrate the variability of ENSO. The Niño 3.4 in-
dices of the SE and PE forecasts were computed against vari-
ous lead times. The anomaly correlation coefficients (ACCs)
of these outcomes with the index derived from HadISST data
were employed to measure the prediction skills, as shown in
Fig. 11a. Moreover, Fig. 11b depicts the RMSE of the fore-
casts against HadISST.

The prediction skills of both the SE and PE cases were
significantly superior to those of the persistence skills rep-
resented by a dotted black line. For lead times exceeding 5
months, the PE case exhibited higher ACCs compared to the
SE case. By setting the threshold value of an effective predic-
tion as a ACC of 0.5, which is equivalent to the 99 % statisti-
cal confidence level with an independent sample size of 30, it
was observed that the SE case effectively predicted ENSO at
a lead time of up to 9 months, which is 1 month in advance
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Figure 10. The zonal-mean temperature (a) and salinity (b) of the Atlantic minus the climatology calculated from EN4 data using the SE
results and the zonal-mean temperature (c) and salinity (d) of the Atlantic bias using the PE results.

Figure 11. Correlation coefficients (a) and root mean square errors
(RMSEs) and mean spreads (b) of the observed and forecasted Niño
3.4 index as a function of lead time.

compared to the PE case. To demonstrate the significance
of the PE advantage, ACCs were computed for each ensem-
ble member using HadISST. The shaded areas represent the
ACCs of the ensemble mean plus/minus the standard devi-
ation of the ACCs of each member, further confirming the
superior prediction ability of the PE case.

The root mean square errors (RMSEs) of the PE case were
also lower than those of the SE case, particularly after a lead
time of 5 months. Additionally, the ensemble spreads (dashed
colorful lines in Fig. 11b) of the PE results were larger com-
pared to those of the SE predictions. Since the spreads of
the PE results were closer to the RMSE than those of the
SE results, it is clear that the PE initial conditions are more
consistent.

Figure 12 illustrates the spatial correlation coefficient pat-
tern between the predicted sea surface temperature (SST)
anomaly and the corresponding HadISST data over the trop-
ical Pacific for the SE and PE cases. The SE and PE re-
sults showed no significant difference for lead times of 1 or
4 months. However, for longer lead times, the initial con-
ditions and parameters obtained through PE significantly im-
proved the SST anomaly in the tropical Pacific. As illustrated
in Fig. 9, the outcomes of our data assimilation experiments
reveal a notable reduction in analysis error within the ther-
mocline of the equatorial Pacific due to parameter estimation.
This yields improved initial conditions for ensemble predic-
tion. Simultaneously, the refined parameters contribute to en-
hanced global vertical mixing. Consequently, the SSTA in the
tropical Pacific, derived from our forecasts incorporating pa-
rameter estimation, exhibit a higher ACC with observational
data. In addition, since the advantage of the PE analysis in the
subsurface layer takes some time to affect the SST, the fore-
cast skill based on the PE results is only significantly greater
than that of the SE results at longer lead times.

The improvement in PE for ENSO forecasts is likely at-
tributable to better simulations of subsurface temperatures.
Previous studies have consistently shown that the accuracy
of initial subsurface conditions is crucial for ENSO event
prediction (Tang et al., 2003; Song et al., 2022). The PE
method not only enhances the accuracy of the initial subsur-
face conditions (as demonstrated in Figs. 7 and 8) but also
provides constrained parameters that more accurately repre-
sent the background diffusivity process in the ocean model,
leading to improved forecast skills.

4 Conclusions

Errors in the coupled model can arise from uncertainties in
the dynamic cores, numerical schemes, physical parameteri-
zation schemes, and empirical parameters. PE is the process
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Figure 12. Spatial pattern of the correlation coefficients between the predicted and observed SST anomalies (SSTAs) with SE initialization
(left column) and PE initialization (right column) at the 1-month, 4-month, 7-month, and 10-month lead times.

of adjusting or optimizing model parameters using observa-
tions; the method of PE is very similar to SE. However, PE
has additional complexity since parameters are indirectly re-
lated to model states, and the state–parameter covariance is
challenging to estimate.

In this study, the fully coupled CESM was used to per-
form the SE and PE experiments, in which satellite SST and
subsurface T –S profiles were assimilated using an ensem-
ble Kalman filter to estimate the model states and critical
parameters in vertical mixing parameterization. The SE sys-
tem was established and comprehensively evaluated by Chen
et al. (2022), and PE methods were developed using a new
solution to deal with constant parameter evolution (Shen and
Tang, 2022). In this work, we used these systems to conduct
experiments to compare the SE and PE in the CGCM.

The parameter sensitivity experiments were first con-
ducted to evaluate the sensitivity of the model variables to the
parameters, which were measured by the ensemble spread for
the temperature and salinity variables. Figures 3 and 4 show
that the BVDCs impact the model temperature and salinity
variables significantly. Therefore, the PE is theoretically fea-
sible using SST and T –S observations.

However, in this work, we intentionally do not use the CCI
method and let the parameter ensemble degenerate in the PE
experiment. At this point, all ensemble members can use the
same improved parameters to carry out the ensemble fore-
cast, which makes the ensemble forecast easier to carry out
and compare with other schemes. This may not be the opti-
mal solution for parameter estimation, but it is the most con-
venient solution for carrying out realistic forecasts. The ex-
periment in Shen and Tang (2022) also assimilates synthetic
T –S profiles and SST observations to estimate the vdc1 pa-
rameter in the same CESM model. As shown in their Fig. 10,

the amount of change in the parameter values after a period
of assimilation is very small as long as the proper parameter
covariance inflation coefficients are used (scenarios a–c), so
we believe that switching off the CCI also yields relatively
improved parameters.

The data assimilation results, using either SE or PE, were
assessed against the EN4 objective analysis dataset and the
other reanalysis datasets. The DA analysis errors (Figs. 7–10)
and the parameter sensitivity results have similar patterns, ul-
timately revealing that the model errors were partly caused
by uncertainties in these parameters. PE can reduce analy-
sis errors in sensitive domains by considering the parameter
uncertainties during assimilation.

One key challenge of using PE with real observations is
the verification of the parameters, which cannot be observed.
In this study, the estimated parameters and PE-derived initial
conditions are employed to perform ensemble ENSO predic-
tion. The prediction outcomes provide evidence of the bene-
fits of using PE. Figures 11 and 12 present evidence that us-
ing more accurate initial conditions and better parameters in
the PE method increases the prediction skill of ENSO, which
further verifies our conclusions.

This study brings forward the advancement of PE studies,
from the perfect Observing System Simulation Experiment
(OSSE) model scenario to real-world-observation assimila-
tion in CGCMs. The comparison between PE and SE high-
lights the potential of PE to improve coupled model reanal-
ysis and prediction. However, the results in Figs. 11 and 12
indicate that PE only slightly improves the prediction skill of
this coupled prediction system. However, the prediction skill
of ENSO is affected by many factors, such as predictabil-
ity, in addition to the initial conditions and model errors
(Liu et al., 2022). Therefore, every bit of improvement in the
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ENSO dynamical prediction skill is of some practical signif-
icance. Nevertheless, we will also pursue higher dynamical
prediction skill in future research.

In addition, to reduce the complexity of the problem, we
only estimated four parameters in the vertical mixing param-
eterization in this study. However, many parameters in vari-
ous physical processes exist that have impacts on the simu-
lation and prediction of ENSO (Gao and Zhang, 2017; Zhao
et al., 2019), which should be considered in future studies.
Moreover, the spatial distribution of the parameter sensitiv-
ity, as shown in Fig. 3, has not been used in the PE algorithm.
This may serve as a potential strategy (Shen et al., 2022) to
improve the efficiency of PE methods in CGCMs.

Code and data availability. The data used for assimilation and
validation in this study can be accessed online from the fol-
lowing sources: World Ocean Atlas 2018 (WOA18) (https:
//www.ncei.noaa.gov/access/world-ocean-atlas-2018, last access:
18 April 2021, Garcia et al., 2019), the Optimum Interpolation
Sea Surface Temperature (OISST) dataset (ftp://eclipse.ncdc.noaa.
gov/pub/OI-daily-v2/NetCDF-uncompress, last access: 14 Jan-
uary 2022, Huang et al., 2021), EN4 (https://www.metoffice.
gov.uk/hadobs/en4/download-en4-2-1.html, last access: 19 Octo-
ber 2021, Good et al., 2013), the Hadley Centre sea ice and
sea surface temperature dataset (HadISST) (https://www.metoffice.
gov.uk/hadobs/hadisst, last access: 18 January 2022; Rayner
et al., 2003), the Geophysical Fluid Dynamics Laboratory’s en-
semble coupled data assimilation (GFDL/ECDA) (https://www.
gfdl.noaa.gov/ocean-data-assimilation-model-output/, last access:
12 October 2021, Zhang et al., 2007), and the Ocean Re-
analysis System 4 (ORAS4) (https://www.ecmwf.int/en/research/
climate-reanalysis/ocean-reanalysis, ast access: 12 October 2021,
Balmaseda et al., 2013).

The Community Earth System Model (CESM v1.2.1)
and the Data Assimilation Research Testbed (DART), both
utilized and modified in this study for parameter estima-
tion, are archived on Zenodo under the following DOI:
https://doi.org/10.5281/zenodo.8115394 (Shen, 2023). The
repository also includes the experiment results and the scripts for
plotting.
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