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Abstract. We describe the development of the tangent lin-
ear (TL) and adjoint models of the Model for Prediction
Across Scales (MPAS)-CO2 transport model, which is a
global online chemical transport model developed upon the
non-hydrostatic Model for Prediction Across Scales – At-
mosphere (MPAS-A). The primary goal is to make the
model system a valuable research tool for investigating at-
mospheric carbon transport and inverse modeling. First, we
develop the TL code, encompassing all CO2 transport pro-
cesses within the MPAS-CO2 forward model. Then, we con-
struct the adjoint model using a combined strategy involv-
ing re-calculation and storage of the essential meteorolog-
ical variables needed for CO2 transport. This strategy al-
lows the adjoint model to undertake a long-period integra-
tion with moderate memory demands. To ensure accuracy,
the TL and adjoint models undergo vigorous verifications
through a series of standard tests. The adjoint model, through
backward-in-time integration, calculates the sensitivity of
atmospheric CO2 observations to surface CO2 fluxes and
the initial atmospheric CO2 mixing ratio. To demonstrate
the utility of the newly developed adjoint model, we con-
duct simulations for two types of atmospheric CO2 observa-
tions, namely the tower-based in situ CO2 mixing ratio and
satellite-derived column-averaged CO2 mixing ratio (XCO2 ).
A comparison between the sensitivity to surface flux cal-
culated by the MPAS-CO2 adjoint model with its counter-
part from CarbonTracker–Lagrange (CT-L) reveals a spatial

agreement but notable magnitude differences. These differ-
ences, particularly evident for XCO2 , might be attributed to
the two model systems’ differences in the simulation config-
uration, spatial resolution, and treatment of vertical mixing
processes. Moreover, this comparison highlights the substan-
tial loss of information in the atmospheric CO2 observations
due to CT-L’s spatial domain limitation. Furthermore, the ad-
joint sensitivity analysis demonstrates that the sensitivities
to both surface flux and initial CO2 conditions spread out
throughout the entire Northern Hemisphere within a month.
MPAS-CO2 forward, TL, and adjoint models stand out for
their calculation efficiency and variable-resolution capabil-
ity, making them competitive in computational cost. In con-
clusion, the successful development of the MPAS-CO2 TL
and adjoint models, and their integration into the MPAS-CO2
system, establish the possibility of using MPAS’s unique fea-
tures in atmospheric CO2 transport sensitivity studies and in
inverse modeling with advanced methods such as variational
data assimilation.

1 Introduction

Estimating CO2 fluxes through inverse modeling, using at-
mospheric chemical transport models and atmospheric CO2
measurements, is an important approach for understanding
the global carbon budget. Beyond providing seasonal flux
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estimates that are useful for understanding the magnitude
and phase of photosynthesis and respiration, it provides an-
nual mean flux estimates that shed light on the key processes
driving the response to climate change. When these annual
mean CO2 estimates are adjusted to account for lateral fluxes
(e.g., due to rivers or the transport of crops and wood prod-
ucts), it gives an independent means of validating carbon
stock change estimates from the terrestrial biogeochemical
models and inventories (Byrne et al., 2023). However, atmo-
spheric transport models, which play a key role in inverse
modeling, remain a significant source of uncertainty at both
regional and global scales (Schuh et al., 2019, 2022; Hurtt
et al., 2022).

Two classes of chemical transport models – online and of-
fline – are commonly used for simulating atmospheric CO2
transport. Offline models, such as TM5 (Krol et al., 2005;
Meirink et al., 2006), PCTM (Kawa et al., 2004; Baker et al.,
2006), and GEOS-Chem (Kopacz et al., 2009), solve the
tracer continuity equation using winds and vertical mixing
fields computed from an independent run of a meteorolog-
ical model or from a meteorological analysis. Online mod-
els, such as WRF-Chem (Grell et al., 2011), OLAM (Walko
and Avissar, 2008; Schuh et al., 2021), and MPAS-CO2 (Ska-
marock et al., 2012; Zheng et al., 2021), integrate chemistry,
transport, and meteorology simultaneously. Although offline
models typically have lower computational costs, the sep-
aration of chemistry and transport from meteorology leads
to a loss of information regarding atmospheric processes oc-
curring at timescales shorter than the meteorological model
output frequency (Grell et al., 2005). In comparison, online
models, owing to their simultaneous integration of meteorol-
ogy and chemistry, have the potential to improve transport
accuracy, particularly for vertical transport of chemistry. Re-
cent advances in computer power and parallelization have
greatly reduced the computational cost of online transport
models, making them increasingly more accessible and prac-
tical for atmospheric CO2 research.

A number of studies have demonstrated that transport
model accuracy can be improved by increasing the model’s
horizontal resolution (Feng et al., 2016; Agusti-Panareda
et al., 2019). Because global high-resolution CO2 trans-
port simulations are computationally demanding, limited-
area models (regional models) are often used instead (Pillai
et al., 2012; Lauvaux et al., 2012; Zheng et al., 2018). How-
ever, regional models introduce the lateral boundary condi-
tion, posing challenges for CO2 inverse modeling (Zheng
et al., 2019; Rayner et al., 2019). As a global online chemi-
cal transport model, the Model for Prediction Across Scales
(MPAS)-CO2 (Zheng et al., 2021) avoids the lateral bound-
ary condition problem. Like OLAM (Schuh et al., 2021),
MPAS-CO2 uses a global variable-resolution mesh to facil-
itate local grid refinement for high-resolution simulations in
specific regions without incurring prohibitively high com-
putational costs and avoiding the disadvantages of lateral
boundary conditions.

The primary objective of this study is to develop the tan-
gent linear (TL) and adjoint (AD) models associated with
the global online transport model MPAS-CO2 (Zheng et al.,
2021). Adjoint model techniques have been widely used
in both meteorological and atmospheric greenhouse gas re-
search (Errico, 1997; Courtier et al., 1994; Giering et al.,
2006; Meirink et al., 2008; Henze et al., 2007; Tian and Zou,
2021) and play critical roles in variational data assimilation
and sensitivity analyses (Baker et al., 2006; Zheng et al.,
2018; Tian and Zou, 2020).

The subsequent sections of this paper provide an overview
of the MPAS-CO2 forward model developed in Zheng et al.
(2021) (Sect. 2) and the development and verification of the
TL and AD models based on the forward model (Sects. 3
and 4). The utility of the newly developed AD model is
demonstrated with adjoint sensitivity analyses in Sect. 5. Fi-
nally, a summary and conclusions are given in Sect. 6.

2 MPAS-CO2 forward model

Zheng et al. (2021) documented the development of MPAS-
CO2, verifying its mass conservation and assessing its accu-
racy. Hereafter, we refer to MPAS-CO2 as the forward model,
whose TL and AD model counterparts we develop in the
present paper. A brief description of the forward model is
provided here; see Zheng et al. (2021) for comprehensive de-
tails. The forward model characterizes CO2 transport through
the continuity equation, as follows:

∂
(
ρ̃qCO2

)
∂t

=−
(
∇ · ρ̃qCO2V

)
ζ
+Fbl+Fcu, (1)

where qCO2 is CO2 dry-air mixing ratio, ρ̃ = ρd/(∂ζ/∂z), ρd
is dry-air density, ζ is the vertical coordinate, z is geometric
height, t is time, and V = (u,v,w) is the velocity vector (u,
v, and w are the zonal, meridional, and vertical wind com-
ponents, respectively). The meteorological variables, such
as wind velocity and dry-air density, are updated simultane-
ously with CO2 by the model’s dynamical core and physics
parameterizations. The left-hand side (LHS) of Eq. (1) is the
total CO2 time tendency (∂(ρ̃qCO2)/∂t). The first term on the
right-hand side (RHS) represents the contributions to CO2
time tendency from the advection. The second (Fbl) and third
(Fcu) terms of RHS represent the contribution from the verti-
cal mixing by the planetary boundary layer (PBL) and cumu-
lus convective transport parameterizations, respectively. Ad-
vection of CO2 in MPAS-CO2 is handled in the model’s dy-
namical core and can be expressed as Eq. (2), where the first
two terms on the RHS represent the horizontal advection, and
the third term represents the vertical advection:(
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CO2 vertical mixing by the PBL parameterization is im-
plemented based on the YSU scheme (Hong et al., 2006) and
can be expressed as[
∂qCO2

∂t

]
bl
=
∂

∂z

[
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(
∂qCO2
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)
−

(
w′q ′CO2

)
h

( z
h

)3
]
, (3)

where z is the vertical distance to the surface, h is the bound-
ary layer top height, and Kh is the vertical eddy diffusivity.
The second term on the RHS in the square bracket of Eq. (3)
represents the contribution from CO2 entrainment flux at the
inversion layer. The term [∂qCO2/∂t]bl from Eq. (3) is cou-
pled with dry-air density ρ̃ to form the term Fbl of Eq. (1).

Convective transport of CO2 is implemented based on the
Kain–Fritsch convection scheme (Kain, 2004), and it can be
expressed as Eq. (4):[
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]
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where qCO2 , qu
CO2

, and qd
CO2

are the CO2 mixing ratio in the
environment, updraft, and downdraft, respectively; Mu and
Md are the updraft and downdraft mass, respectively; ρ is
the environment air density;A is the horizontal area of a cell;
M = ρAδz is the mass of environmental air in a grid box; and
Mud andMdd are the detrainment from the updraft and down-
draft, respectively. The term [∂qCO2/∂t]cu of Eq. (4) is cou-
pled with dry-air density ρ̃ to form the term Fcu of Eq. (1).

3 Development of the MPAS-CO2 TL model

3.1 TL model development

The CO2 advective transport process described in Eq. (2)
is implemented by two different numerical schemes in the
forward model: (1) a monotonic scheme with hyperviscos-
ity (β) set to 0.25; and (2) a non-monotonic scheme with
β = 1.0 (Skamarock et al., 2012). The monotonicity in the
first scheme is achieved by applying a flux limiter in the
last step of the third-order Runge–Kutta solver (Wang et al.,
2009; Skamarock and Gassmann, 2011). While the second
scheme is linear in CO2, the first scheme is nonlinear due
to the application of the flux limiter. Because both the YSU
PBL and Kain–Fritsch convection schemes are linear in CO2,
using the linear advective scheme makes the forward model
a linear model in CO2. In this paper, we develop the TL and
adjoint models based on the linear version of the MPAS-CO2
forward model, which can be symbolically expressed as

xt =M(x0,e), (5)

where x0 and xt are the CO2 dry-air mixing ratio at the ini-
tial and forecast time (t), respectively. M( ) represents the
MPAS-CO2 forward model, and e represents a time series of

CO2 fluxes between times 0 and t . While both x0 and xt are
3-dimensional in space, e is 2-dimensional in space, indicat-
ing that CO2 flux is applied only to the model’s surface cells.
Equation (5) indicates that CO2 mixing ratio at a forecast
time (xt) is determined by the CO2 mixing ratio at an initial
time (x0) and the CO2 flux (e) through the forward model.

The TL and adjoint models are designed to calculate the
sensitivity of xt with respect to x0 and e. This is achieved
by introducing the TL and adjoint variables of their counter-
parts in the forward model (Giles and Pierce, 2000). While
the introduction of the TL and adjoint variables for the initial
CO2 mixing ratio (x0) is straightforward, it is a bit more com-
plex for the CO2 fluxes (e). This complexity arises from the
fact that CO2 flux, at each surface cell of the model, varies
with time throughout the model’s entire simulation period.
Depending on the underlying biosphere model and emission
inventory used, CO2 flux varies at a certain temporal fre-
quency, ranging from hourly to monthly. Although it is pos-
sible to introduce TL and adjoint variables for CO2 flux at
the flux’s temporal frequency, it is neither practical nor nec-
essary to do so. Instead, a common approach is to introduce
flux scaling factors (Henze et al., 2007; Zheng et al., 2018)
as follows:

e = S(k)ẽ, (6)

where ẽ are time-variant CO2 fluxes, typically from a process
model or inventory, and S(k) is a generic scaling function.
Equation (6) means that at each surface cell, the magnitude
of the CO2 flux (ẽ) is adjusted using a flux scaling factor be-
fore it is used to modify the cell’s CO2 mixing ratio. We im-
plemented Eq. (6) in the forward model in a way that allows
the flexibility of choosing the temporal frequency of the flux
scaling factor. For instance, for a 24 h forward model simu-
lation forced by 3 h CO2 flux, one can choose to have eight
scaling factors at each surface cell (one for each of the eight
3 h segments) or just one scaling factor for the entire time
period. All the MPAS-CO2 model runs used in the remainder
of this paper are conducted using a single scaling factor for
each surface cell that is repeated for each flux time step in
the entire simulation period. In this case, the scaling function
S(k) in Eq. (6) is a function of a scaling vector k that has
the same dimension as the model’s surface mesh. The intro-
duction of the flux scaling factors turns CO2 flux from active
variables to parameters, and the impacts of their variation on
CO2 mixing ratio are calculated through their correspond-
ing scaling factors k. Accordingly, the MPAS-CO2 forward
model can be symbolically expressed as

xt =M(x0,k). (7)

Equation (7) shows that for a given set of CO2 flux (ẽ), the
forecast time CO2 mixing ratio (xt) is a function of the initial
time CO2 mixing ratio (x0) and the flux scaling factor (k).

The TL counterpart of the MPAS-CO2 forward model rep-
resented by Eq. (7) can be symbolically expressed as the first
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Table 1. Results of the correctness check for the newly developed MPAS-CO2 tangent linear model. The results are from 1 month integration
(from 1 October 2018 at 00:00 UTC to 1 November 2018 at 00:00 UTC) of the forward and tangent linear models, using the 120–480 km
global variable-resolution mesh (Fig. 1). The terms in the table refer to Eq. (9).

α ‖M(x0, (1+α)k)−M(x0,k) ‖ ‖M(0,αk) ‖ ‖M(x0, (1+α)k)−M(x0,k) ‖ / ‖M(0,αk) ‖

1.0× 103 2.07316571683768× 101 2.07316571683768× 101 1.00000000000000
1.0× 102 2.07316571683768× 10−1 2.07316571683768× 10−1 1.00000000000000
1.0× 101 2.07316571683768× 10−3 2.07316571683768× 10−3 1.00000000000000
1.0 2.07316571683769× 10−5 2.07316571683768× 10−5 1.00000000000000
1.0× 10−1 2.07316571683765× 10−7 2.07316571683768× 10−7 0.99999999999998
1.0× 10−2 2.07316571683799× 10−9 2.07316571683768× 10−9 1.00000000000015
1.0× 10−3 2.07316571683735× 10−11 2.07316571683768× 10−11 0.99999999999984
1.0× 10−4 2.07316571692815× 10−13 2.07316571683768× 10−13 1.00000000004364

derivative of the forward model:

1xt =M(1x0,1k), (8)

where M( ) represents the MPAS-CO2 TL model, 1x0 and
1xt are the TL variable of CO2 mixing ratio at the initial and
forecast time, respectively, and 1k is the TL variable of the
flux scaling factor k. In essence, Eq. (8) shows that the TL
model computes the perturbation in the forecast time CO2
mixing ratio (1xt), given the perturbation in the flux scal-
ing factor (1k) and/or perturbation in the initial time CO2
mixing ratio (1x0).

Based on the source code of the forward model, we devel-
oped the TL code by differentiating each process relevant to
CO2 flux and transport, including advection, vertical mixing
by the YSU PBL scheme, convective transport by the Kain–
Fritsch scheme, and the CO2 emission driver that implements
Eq. (6). Automatic differentiation tools, such as Tapenade
(Hascoet and Pascual, 2013) and Tangent and Adjoint Model
Compiler (Giering and Kaminski, 1998), can be used to as-
sist TL and adjoint code generation. However, the code these
tools generate typically contains redundancies and is diffi-
cult to read, particularly for the adjoint code. To optimize the
computation efficiency and facilitate future code upgrading,
we manually developed the TL and adjoint code for MPAS-
CO2 with some minor assistance from Tapenade.

3.2 TL model validation

After the TL model is completed, a thorough examination of
its correctness was undertaken. As indicated in Eq. (8), the
TL model can calculate the sensitivity of xt with respect to
both x0 and k. The calculation of the sensitivity of xt with re-
spect to x0 involves the TL code of all the CO2 transport pro-
cesses, including advection, PBL, and convective transport.
In comparison, the calculation of the sensitivity of xt with re-
spect to the flux scaling factor k involves the TL code of the
CO2 emission driver in addition to the TL code of all the CO2
transport processes. Because the calculation of sensitivity to
k includes the TL code of all the processes in the TL model

and because both the transport processes and emission driver
are linear, the correctness of the entire MPAS-CO2 TL model
can be verified by checking whether the following equation
is satisfied (Errico, 1997; Tian and Zou, 2020):

8(α)=
‖M(x0, (1+α)k)−M(x0,k) ‖

‖M(0,αk) ‖
= 1, (9)

where M() is the TL model, M() is the forward model, and
α is a scalar. The second item in the numerator of Eq. (9),
M(x0,k), is a forward model run. The first item in the nu-
merator, M(x0, (1+α)k), is an identical forward model run,
except that its flux scaling factor at each surface cell is ad-
justed by multiplying 1+α. In the denominator,M(0,αk) is
a TL model run with its perturbation in the initial time CO2
mixing ratio set to zero (1x0 = 0) and perturbation in flux
scaling factor 1k = αk, which is the difference in the flux
scaling factors between the two forward model runs.

If the TL model is correctly coded with regard to the for-
ward model, Eq. (9) should be satisfied to the extent of ma-
chine accuracy until α is too small, so that the result is af-
fected by rounding-off errors and drifts away from unity. To
verify using Eq. (9), we ran a series of simulations using the
forward model and newly developed tangent linear model
with the scale factor α ranging from 1.0× 103 to 1.0× 10−4

(Table 1). All of the simulations start on 1 October 2018 at
00:00 UTC, run for 1 month, and end on 1 November 2018
at 00:00 UTC. The meteorological initial condition is from
the ERA5 reanalysis (Hoffmann et al., 2019), and the CO2
initial condition (x0) is from CarbonTracker (Jacobson et al.,
2020) v2022 (CT2022) posterior CO2 mole fraction at this
time. The 3 h CO2 fluxes for the biogenic, fire, fossil fuel, and
oceanic components from the CT2022 posterior are applied
throughout the 1-month simulation period for each model
run. Flux scaling factors of k = 1 were used in all our sim-
ulations here, with 1 being a vector the same length as k,
with ones in every element. The model simulations are con-
ducted using the global variable-resolution (VR) mesh shown
in Fig. 1. This VR mesh has a total of 15 898 cells, which
range from 120 km over most of the land regions to 480 km
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Figure 1. A MPAS-CO2 global variable resolution mesh ranging from ∼ 120 km over most of land regions to ∼ 480 km over oceans.
Also shown in the figures are the ground tracks of two Orbiting Carbon Observatory-2 orbits, which are used for the adjoint sensitivity
studies described in Sect. 5. The blue-colored ground track crosses North America from the Caribbean Sea northward between 18:31 UTC
and 18:48 UTC on 30 June 2016. The red-colored ground track crosses from South America to North America between 17:36 UTC and
18:13 UTC on 23 August 2016.

over oceans. Table 1 shows that the magnitudes of both the
numerator and the denominator in Eq. (9) decrease as α de-
creases. Moreover, the table also shows that the ratio remains
close to unity until α decreases to 1.0× 10−1, beyond which
rounding-off errors lead to a deviation from unity. These re-
sults confirm that the MPAS-CO2 TL model has been cor-
rectly developed with regard to the forward model. In the
next section, we proceed to develop the MPAS-CO2 adjoint
model.

4 Development of the MPAS-CO2 adjoint model

4.1 Adjoint model development

An adjoint model is an essential component of a variational
data assimilation system and is very useful for adjoint sen-
sitivity analysis (Tian and Zou, 2021; Zheng et al., 2018;
Bosman and Krol, 2023). Symbolically, the MPAS-CO2 ad-
joint model can be expressed as(
1x̂0,1k̂

)
=MT (

1x̂t
)
, (10)

where MT() is the MPAS-CO2 adjoint model, 1k̂ is the ad-
joint variable of the flux scaling factor, and 1x̂0 and 1x̂t are
the adjoint variables of CO2 mixing ratio at the initial and
forecast time, respectively. Equation (10) shows that starting
with 1x̂t at the forecast time, the MPAS-CO2 adjoint model
runs backward in time to the initial time, while ingesting CO2
observations along the way, resulting in the adjoint variable
of CO2 mixing ratio at the initial time (1x̂0) and the adjoint
variable of the flux scaling factor (1k̂).

Similar to its TL model counterpart, the development of
the MPAS-CO2 adjoint model was carried out through man-
ual implementation to avoid redundancy and optimize com-
putational efficiency. The calculation of the CO2 transport
needs access to the meteorological fields at each time step.
Since the forward and TL model both run forward in time,
this access is straightforward. However, because the adjoint
model runs backward in time, accessing the meteorological
fields is more challenging. One approach to this problem is
saving meteorological fields in memory during the adjoint
model’s forward sweep, enabling accessing during the sub-
sequent backward sweep (Guerrette and Henze, 2015; Zheng
et al., 2018). However, since the MPAS-CO2 adjoint model
is intended for long simulations, this approach becomes im-
practical due to the excessive memory it demands. As an al-
ternative strategy, we adopt an approach that combines both
recalculation and storage of the meteorological fields. This
strategy effectively divides a long simulation into segments,
and the forward and backward sweeps are carried out sequen-
tially for each segment, requiring internal memory only large
enough to accommodate one segment’s worth of meteorolog-
ical fields. This internal manipulation is handled seamlessly
by the adjoint model, enabling it to run as long as needed
without overburdening memory resources. Another strategy
we adopted for developing the adjoint code is to have the for-
ward sweep, save some immediate variables that are needed
by the subsequent backward sweep so that they do not need
to be recalculated. For instance, the values of some variables
related to mass fluxes in the Kain–Fritsch convection scheme
Kain (2004) are saved by the forward sweep in the memory
to speed up the subsequent backward sweep execution. This

https://doi.org/10.5194/gmd-17-1543-2024 Geosci. Model Dev., 17, 1543–1562, 2024



1548 T. Zheng et al.: Tangent linear and adjoint models of MPAS-CO2 v7.3

strategy not only increases the adjoint model efficiency but
also simplifies some of its code development.

4.2 Adjoint model validation

The correctness of the newly developed MPAS-CO2 adjoint
model can be verified using the following equation (Tian and
Zou, 2020):

〈1x,M(0,1k)〉 = 〈MT(1x),1k〉, (11)

where 〈 〉 represents the inner product operator, 1x is a per-
turbation of CO2 mixing ratio, and 1k is a perturbation of
CO2 flux scaling factor. If the adjoint model is correctly
coded with respect to the TL model, then Eq. (11) should
be satisfied for any choice of 1x and 1k. M(0,1k) on the
LHS of the equation is the perturbation in forecast CO2 mix-
ing ratio resulting from a TL model run whose perturbation
in initial CO2 mixing ratio is set to zero and perturbation to
flux scaling factor is set to 1k. The first item of the RHS,
MT(1x), represents the adjoint variable of flux scaling fac-
tor, which is an output from the adjoint model integration
from the forecast time backward to the initial time. The TL
and adjoint model runs on the two sides of Eq. (11) have the
same simulation time period, but the latter runs backward in
time.

We conducted two sets of experiments using the TL and
adjoint models following Eq. (11) to verify the correctness of
the newly developed adjoint model. In the first set of exper-
iments, we set 1k = 10−11, and 1x =M(0,1k). The ex-
periments were carried out in two steps. First, the TL model
was integrated 7 d from the initial time (1 October 2018 at
00:00 UTC) to the end time (8 October 2018 at 00:00 UTC),
with1k = 10−11, resulting inM(0,1k)which is the pertur-
bation in forecast time CO2 mixing ratio. Second, the adjoint
model is initialized on 8 October 2018 at 00:00 UTC, with
its adjoint variable for CO2 mixing ratio set to M(0,1k).
The adjoint model is then integrated backward in time for 7 d
to 1 October 2018 at 00:00 UTC, resulting in MT(1x). The
LHS and RHS of Eq. (11) are then calculated using the above
results (Table 2). The table shows that the agreement between
the LHS and RHS of Eq. (11) is about −5.16× 10−15. We
note that this value is not exactly zero due to the machine
rounding errors. This experiment is repeated with the same
configuration, but the simulation length is increased to 31 d,
ending on 1 November 2018 at 00:00 UTC. As expected, the
magnitude of both the LHS and RHS increased, and they
agreed to about −2.55× 10−16. In the second set of experi-
ments,1k = 10−11 (same as the first set of experiments) but
1x =M14 d(x0,k), which is the CO2 mixing ratio at the end
of 14 d forward model run (1 October 2018 at 00:00 UTC to
15 October 2018 at 00:00 UTC). We note that this forward
model run uses x0 from CT2022 posterior CO2 mole frac-
tion, and k = 1; however, Eq. (11) should satisfy for any con-
figuration and simulation period of the forward model. The
resulting LHS and RHS of Eq. (11) from the second set of ex-

periments are about 2 orders of magnitude larger than their
counterpart of the first experiments. This is caused by the
much larger 1x of the second set of experiments. The LHS
and RHS agree to about−3.42× 10−15 for the 7 d simulation
and about 2.66× 10−15 for the 31 d simulation (Table 2).

The results shown in Table 2 obtained from the experi-
ments based on Eq. (11) confirm that the MPAS-CO2 adjoint
model has been correctly developed with regard to the TL
model. As the TL model has already been confirmed correct
with respect to the forward model, it follows that both TL
and adjoint models are correct with respect to the forward
model of MPAS-CO2. This validation ensures the reliability
and integrity of the entire MPAS-CO2 model system, since
the forward model has already been validated in Zheng et al.
(2021). It allows MPAS-CO2 to be used as the basis of a vari-
ational assimilation system for carbon flux estimation and as
a platform for conducting sensitivity analyses in atmospheric
carbon research.

Table 3 presents the computational cost of model simula-
tions using the MPAS-CO2 system. Using the global 120–
480 km VR mesh (Fig. 1; 15 898 cells), the 1-month forward
model simulation completes in 20 min when using 128 pro-
cessors. Both the TL and adjoint model simulations using the
same configuration take approximately 10 % longer than the
forward model. This extra computation time for the TL/ad-
joint model is incurred by the execution of the TL/adjoint
code of the CO2 transport processes. Furthermore, we con-
ducted another set of 1-month simulations using the mod-
els on a global quasi-uniform resolution (UR) mesh of about
120 km, consisting of a total of 40 962 cells. Table 3 demon-
strates that the simulations with the VR mesh reduce the
computational cost by over 50 % for all three models, primar-
ily due to its substantially smaller number of cells. This re-
duction in computation cost, while preserving the high reso-
lution over areas of interest, should prove advantageous when
the models are applied in variational assimilation problems,
which typically require many iterations of forward and ad-
joint model runs.

5 Adjoint sensitivity analysis

5.1 Comparison with CT-L footprints

In addition to forming a key component of variational assim-
ilation systems (Baker et al., 2006; Zheng et al., 2018; Tian
and Zou, 2021), adjoint models are powerful tools for sen-
sitivity analysis (Errico and Vukicevic, 1992; Errico, 1997;
Zou et al., 1997; Tian and Zou, 2020). Studies focused on
carbon flux estimation are often interested in exploring the
sensitivity of atmospheric CO2 measurements to surface CO2
fluxes. This sensitivity is commonly referred to as observa-
tion influence functions or footprints (Cui et al., 2022). The
computation of observation footprints using forward models
requires a large number of model runs, making it imprac-
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Table 2. Results of the correctness check for the newly developed adjoint model of MPAS-CO2. All simulations are of the 120–480 km
variable-resolution mesh (Fig. 1). The LHS and RHS in the table refer to Eq. (11).

Integration length LHS RHS (LHS−RHS) /LHS

1k = 10−11 and 1x =M(0,1k)

7 d 1.436630106778291× 10−7 1.436630106778298× 10−7
−5.158974640379662× 10−15

31 d 2.073165716837682× 10−7 2.073165716837683× 10−7
−2.553561385538706× 10−16

1k = 10−11 and 1x =M14 d(x0,1)

7 d 2.273936055720336× 10−5 2.273936055720344× 10−5
−3.421966688503031× 10−15

31 d 7.640482494092126× 10−5 7.640482494092106× 10−5 2.660668452525361× 10−15

Table 3. The computational costs for a 30 d simulation of MPAS-
CO2 at ∼ 120 km quasi-uniform resolution and at a variable reso-
lution ranging from ∼ 120 to ∼ 480 km. Computational costs are
shown for the forward, tangent linear, and adjoint models. All sim-
ulations are conducted using 128 AMD Epyc 7H12 2.595 GHz pro-
cessors running in parallel.

Model Resolution Cost Time step
(km) (min) (second)

Forward 120 45 720
120–480 20 720

Tangent linear 120 48 720
120–480 22 720

Adjoint 120 48 720
120–480 22 720

tical, except for optimizing state vector elements at coarse
horizontal resolutions. In contrast, adjoint models can calcu-
late observation footprints much more efficiently. For point
measurements, such as those from tower data, Lagrangian
dispersion models offer an efficient alternative for obtain-
ing footprints (Lin et al., 2003; Stohl et al., 2005). For an
example of this, see the publicly available CO2 observation
footprints from CarbonTracker–Lagrange (CT-L) (Hu et al.,
2019), which are generated using the Lagrangian particle dis-
persion model STILT (Lin et al., 2003), driven by meteorol-
ogy generated by the Weather Research and Forecast (WRF)
model (Skamarock et al., 2008). This approach involves re-
leasing a certain number of particles from the observation
location/height and tracing their backward transport in time.
Note that CT-L is a regional modeling system that only pro-
vides observation footprints within the latitude range 10◦–
80◦ N and longitude 0–180◦W for up to 10 d backward in
time.

In this section, we perform sensitivity analyses using the
MPAS-CO2 adjoint model, which employs backward-in-time
integration to calculate two quantities: (1) the sensitivity of
atmospheric CO2 to the model’s initial CO2 mixing ratio and
(2) the sensitivity to the surface flux scaling factor. When a

spatially uniform time-invariant surface flux of a unity value
is used, and S(k)= k in Eq. (6), the sensitivity to the sur-
face flux scaling factor calculated by the MPAS-CO2 adjoint
model is the observation footprint. To compare with CT-L
footprints, all MPAS-CO2 adjoint model simulations con-
ducted in this section use a time-invariant CO2 surface fluxes
of 1.0 µmol (m2 s)−1 for all surface cells, including both land
and ocean cells. Because S(k)= k is used, Eq. (6) takes the
form of e = kẽ. The units of the CO2 flux (µmolm−2 s−1)
and the multiplicative nature of the flux scaling factor k de-
termine the units of the adjoint variable1k̂ (which represents
observation footprints) to be in ppm (µmolm−2 s−1)−1. Me-
teorological initial conditions for MPAS-CO2 model simula-
tions conducted in this section are from the ERA5 reanalysis
(Hoffmann et al., 2019). Footprints calculated by the MPAS-
CO2 adjoint model are of the 120–480 km variable resolution
grid, while the CT-L footprints are of 1◦× 1◦.

First, we conduct MPAS-CO2 adjoint model simulations
for in situ CO2 observations at two towers in the United
States, namely WKT, located at Moody, Texas (31.31◦ N,
97.33◦W), and WGC, located at Walnut Grove, California
(38.26◦ N, 121.49◦W). For each tower, the adjoint model is
initialized at 00:00 UTC on 31 March 2018. We add an ad-
joint forcing of 1 ppm CO2 at that time to the model grid cell
closest to the tower location and the intake height (457 m at
WKT and 483 m at WGC). The forcing is turned off for sub-
sequent time steps, and the adjoint model is run backward
in time for 30 d, ending at 00:00 UTC on 1 March 2018.
The resulting sensitivity of CO2 at the WKT tower to the
model’s CO2 mixing ratio, which is 3-dimensional, is shown
as a column average in the left column of Fig. 2. The right
column of Fig. 2 shows the observation footprint (sensitivity
to the surface flux scaling factor) at the corresponding times.
The figure panels show that the sensitivity to the initial CO2
is highest and concentrated closest to the tower site at the
time closest to the measurement, i.e., 5 d. With the increas-
ing length of the backward-in-time integration, the sensitiv-
ity spreads over a larger area, and its magnitude decreases.
After 30 d, the sensitivity to the initial condition has propa-
gated across most of the Northern Hemisphere. Figure 2 also
indicates that the spatial variation in the sensitivity magni-
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Figure 2. Sensitivity of CO2 mixing ratio at the WKT tower at 00:00 UTC on 31 March 2018 to the initial CO2 mixing ratio (a–d; units in
ppm ppm−1) and the surface flux scaling factor (e–h; units in ppm (µmolm−2 s−1)−1. The four rows from top to bottom show the sensitivities
at 5, 10, 20, and 30 d before the observation. The sensitivities to the initial CO2 mixing ratio (a–d) are plotted as the column average. The
WKT tower (31.3149◦ N, 97.3269◦W) measurements used here are taken at 457 m above the ground level and labeled by the red color cross
in the figures of the left column (a–d).
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Figure 3. The variation over time in the standard deviation (σ ) of
two quantities: the sensitivity to the initial CO2 mixing ratio and the
sensitivity to the flux scaling factor (footprint). The standard devi-
ations were calculated from MPAS-CO2 adjoint model simulations
starting on 31 March 2018 at 00:00 UTC, running 30 d backward
in time, and ending on 1 March 2018 at 00:00 UTC. Panel (a) is
for the WKT tower (457 ma.g.l.) while panel (b) is for the WGC
tower (483 ma.g.l.). In each figure, the triangles represent the stan-
dard deviation of sensitivity to the CO2 mixing ratio field (units
in ppmppm−1), and the circles represent the standard deviation of
footprint (units in ppm (µmolm−2 s−1)−1).

tude decreases with time. To examine this, we calculated the
standard deviation (σ ) of sensitivity for each day of the 30 d
(Fig. 3). The triangles in Fig. 3 show that the magnitude of
the standard deviation of the sensitivity to the initial CO2
mixing ratio decreases rapidly with the increasing length of
the adjoint model simulation for both towers. On the other
hand, the sensitivity to the surface flux scaling factor (foot-
print) exhibits a different pattern from the sensitivity to the
initial CO2 mixing ratio. As shown in Fig. 2, the footprint
spreads spatially but the near-field to the tower maintains
a much higher magnitude than the far-fields. By the end of
30 d, the footprint of the WKT tower covers almost the en-
tire Northern Hemisphere, with the area north and northwest
of the tower within the contiguous United States exhibiting a
much higher magnitude than the more distant area. The cir-
cles in Fig. 3 indicate that the standard deviation of the foot-
print increases with time, but the rate of increase diminishes
substantially after about 10 to 15 d. The finding suggests that
extending the adjoint model integration further backward in

time will still result in changes to the footprint but with a
much-reduced change rate.

For comparison, in Fig. 4, we plot the MPAS-CO2 adjoint
model-calculated 10 d footprints in the CT-L geographic do-
main. The figure reveals that the MPAS-CO2 adjoint model-
calculated WKT tower footprint spans most of the western
and northwestern United States, with the highest sensitivity
in Texas, Missouri, Iowa, Kansas, and Nebraska. Addition-
ally, the footprint extends to a substantial area over the north-
eastern Pacific Ocean. The spatial pattern of the CT-L calcu-
lated footprint (Fig. 4c) is similar to that from the MPAS-
CO2 adjoint model, but it is visibly less continuous. Figure 4
also shows that the MPAS-CO2 adjoint model-calculated
footprint for the WGC tower covers northern California, Ore-
gon, west Nevada, and a portion of the northeastern Pacific
Ocean. The CT-L-calculated footprint exhibits a similar spa-
tial pattern and magnitude. Overall, both the MPAS-CO2 ad-
joint model and CT-L provide valuable information on the
sensitivity of atmospheric CO2 measurements to the surface
flux; there are similar spatial patterns, although with some
differences due to resolution and the Lagrangian/Eulerian
framework difference.

In the second set of experiments, we compare CT-L and
MPAS-CO2 adjoint model footprints for a swath of Orbiting
Carbon Observatory-2 (OCO-2) XCO2 measurements. The
ground track of the OCO-2 orbit used in the experiments
is indicated by the blue line in Fig. 1. This orbit crosses
North America from the Caribbean Sea to Canada’s North-
west Territories in a northward direction between 18:31 UTC
and 18:48 UTC on 30 June 2016. Since OCO-2 XCO2 rep-
resents the column average of atmospheric CO2, CT-L cal-
culates XCO2 footprints at 14 discrete height levels, ranging
from 50 to 14 000 m above the ground. For each height level,
footprints are computed by placing a number of particles at
that specific height. To ensure consistency with the CT-L ap-
proach, the MPAS-CO2 adjoint model is configured to apply
the adjoint forcing at the corresponding vertical levels within
the model. This is done by interpolating the CT-L’s 14 height
levels to MPAS-CO2 model’s 55 vertical levels. This config-
uration allows for a direct comparison between the footprints
calculated by the MPAS-CO2 adjoint model and the CT-L
footprints.

Figure 5 shows the footprints of a point located south of
Jamaica in the Caribbean Sea (17.82◦ N, 77.88◦W) at four
different height levels: 500, 2000, 4500, and 10 000 m. The
top three rows of Fig. 5 show that both the MPAS-CO2 ad-
joint model and CT-L footprints largely extend eastward over
the Atlantic Ocean, indicating transport from the surface due
to the influence of the easterly trade winds. Additionally,
the MPAS-CO2 adjoint model-calculated footprint includes
a branch that crosses the Equator and extends southeastward
to the Southern Hemisphere between 30 and 40◦W longi-
tude. This feature is not shown in the CT-L footprint due
to its limited area domain. The bottom row of Fig. 5 shows
that the footprints of 10 000 m calculated by both the MPAS-
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Figure 4. The 10 d backward in time CO2 measurement footprint (units in ppm (µmolm−2 s−1)−1) given by two tall towers, namely WKT
and WGC. The figures in the top row are the footprint of the WKT tower calculated using the MPAS-CO2 adjoint model (a) and CT-L (c).
The figures in the bottom row are the footprint of the WGC tower calculated by the MPAS-CO2 adjoint model (b) and CT-L (d). The location
of the towers is marked by the black crosses in the figures in the right column (c, d).

CO2 adjoint and CT-L feature a primarily counterclockwise
extension, covering the Gulf of Mexico and Texas. More-
over, there is a second segment extending westward from
Texas toward the west coast. Upon closer examination, we
observe that the CT-L-calculated footprint has a lower mag-
nitude than the MPAS-CO2 adjoint model at the 500, 2000,
and 4500 m height levels but not at the 10 000 m height level.
The distinct patterns in both systems’ footprints at different
height levels indicate significant differences in horizontal and
vertical transport patterns.

Figure 6 shows the corresponding footprints for an OCO-
2 XCO2 sounding location in eastern Kentucky (36.8◦ N,
82.9◦W) for the same four height levels as shown in Fig. 5.
The figure shows that the footprints of 500 and 2000 m ex-
tend predominantly northward, covering the Great Lakes re-
gion and part of the Canadian Shield. In comparison, the
footprint for 4500 m is mostly directed to the west. An-
other notable difference is that the highest-magnitude por-
tion of the 500 and 2000 m footprints are in close proximity
to the sounding location, while the 4500 m footprint is not in
proximity at all. These differences among the height levels
are evident in both the MPAS-CO2 adjoint model and CT-
L calculated footprints. Figure 7 shows the footprints of an
OCO-2 sounding location on the southwest coast of Hudson

Bay, Canada (56.96◦ N, 91.89◦W), for the four height lev-
els. Both the MPAS-CO2 adjoint and CT-L footprints for 500
and 2000 m are largely either close to or north of the sound-
ing location, indicating that surface fluxes from these regions
have a significant influence on the atmospheric CO2 at the
two height levels. In comparison, the footprint of 4500 m is
located more than 2000 km northwestward, mostly covering
Alaska; the particles move that far in a horizontal manner in
the time it takes them to advect and mix 4500 m in the verti-
cal. These findings emphasize the significant impact of verti-
cal mixing on the spatial distribution of footprint at different
altitudes, highlighting the unique patterns of horizontal and
vertical transport in each case.

In additional MPAS-CO2 adjoint model runs, we quanti-
tatively compare the footprints of the entire OCO-2 track at
each of the 14 height levels with the CT-L footprints. This
comparison is conducted by performing a single MPAS-CO2
adjoint model run for each height level to calculate the foot-
print at the end of the 10 d backward-in-time integration. We
then compare these resulting footprints with their CT-L coun-
terparts. Figure 8 shows the comparison at four height levels
of 500, 2000, 4500, and 10 000 m above the surface. At each
height level, the value in the figure represents the average
of the footprints of all the cells that are part of the OCO-2
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Figure 5. Comparison of footprints calculated by MPAS-CO2 adjoint model and CT-L of an OCO-2 sounding (17.82◦ N, 77.88◦W) (red
crosses; a–d) along the ground track shown in Fig. 1 (blue color). The footprints are calculated at four different heights: 500, 2000, 4500,
and 10 000 m, and 10 d backward in time.
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Figure 6. Same as Fig. 5, except for a different OCO-2 sounding location (36.8◦ N, 82.9◦W).

Geosci. Model Dev., 17, 1543–1562, 2024 https://doi.org/10.5194/gmd-17-1543-2024



T. Zheng et al.: Tangent linear and adjoint models of MPAS-CO2 v7.3 1555

Figure 7. Same as Fig. 5, except for a different OCO-2 sounding location (56.96◦ N, 91.89◦W).
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Figure 8. The footprint of the OCO-2 ground track shown in Fig. 1 (with blue color) calculated by the MPAS-CO2 adjoint model (a–d) and
by CT-L (e–h). The footprints are calculated by placing the adjoint forcing (for the MPAS-CO2 adjoint model) or releasing particles (for
CT-L) at four different height levels above the ground: 500, 2000, 4500, and 10 000 m. The footprints are computed for 10 d backward in
time.
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track. The figure reveals that the footprints calculated by the
two systems have similar spatial patterns within the limited-
area domain of CT-L. However, it is important to note that a
substantial portion of the footprints extends beyond the CT-L
domain. For instance, the footprints of 2000 and 4500 m lev-
els have significant coverage over Siberia in Russia, while the
footprint of the 10 000 m level extends from the eastern Pa-
cific Ocean to northeastern and western China, both of which
are outside the CT-L model domain.

In order to compare the footprints from the two systems
quantitatively, we aggregated the footprints onto a 2◦× 3◦

(lat× long) grid within the area covered by the CT-L model
domain for each of the 14 height levels. Figure 9 shows the
comparison for each of the 14. In the figure, the CT-L cal-
culated footprints are on the x axis, and MPAS-CO2 adjoint
model calculated footprints are on the y axis. The solid line
in each subfigure of Fig. 9 is the 1 : 1 line, and the dashed line
is a linear fit without intercept. The correlation coefficient R2

is labeled in each subfigure. The figure demonstrates that the
agreement between the two systems is better for footprints at
lower heights, particularly between 250 and 1500 m, with R2

all greater than 0.7. Footprints from the two systems agree to
a much lesser degree at between 3500 and 14 000 m, where
R2 is less than 0.5 in all cases. The linear fit lines (dashed
lines) show that the MPAS-CO2 adjoint model calculated
footprints are of greater magnitude in general than their CT-L
counterparts at heights ranging from 50 to 1000 m. Between
1500 and 2500 m, the two sets of footprints are of similar
magnitude on average, and at 3500 m and above, the CT-L
footprints are of larger magnitude in general.

These differences in magnitude between the two systems
could be attributed to various factors, including differences
in model configurations, spatial resolution, and treatment of
vertical mixing processes. Previous studies have shown that
Lagrangian models, such as CT-L, can sometimes have dif-
ferent vertical mixing behavior compared to Eulerian mod-
els, especially at high altitudes (Karion et al., 2019).

5.2 Influence of vertical distribution of OCO-2
soundings on footprints

In a final experiment, we use the MPAS-CO2 adjoint model
to examine the impact of different vertical distributions on
footprint calculation. Two adjoint model simulations were
conducted for the OCO-2 orbit that crosses South America
and North America between 17:36 UTC and 18:13 UTC on
23 August 2016 (the red color track in Fig. 1). Both simula-
tions have the same adjoint forcing of 1 ppm XCO2 added
to each MPAS-CO2 model cell along the orbital track at
18:00 UTC on 23 August 2016 and run backward in time
for 30 d. The difference between the two simulations lies in
the vertical distributions of the adjoint forcing. For the first
simulation, we adopt profile 1, which is obtained by combin-
ing the XCO2 averaging kernel and pressure weight function
(O’Dell et al., 2018). In contrast, profile 2 prioritizes XCO2

information in the lower part of the troposphere (Fig. 10).
The 20 pressure levels in the figure are interpolated to the
MPAS-CO2 model’s 55 vertical levels for the adjoint forcing
placement. This experiment aims to highlight how these dif-
ferences in vertical distribution impact the footprint calcula-
tion, leading to variations in flux estimation using variational
assimilation. The results of this experiment will provide valu-
able insights to the importance of selecting appropriate ver-
tical distribution when using the adjoint model for CO2 flux
estimation.

The top two panels of Fig. 11 show the footprints result-
ing from MPAS-CO2 adjoint model simulations using the
two distinct vertical distribution profiles for the adjoint forc-
ing (Fig. 10). Although the two footprints may initially ap-
pear very similar, substantial differences become evident, as
shown in the bottom panel in Fig. 11. Specifically, the foot-
print calculated using Profile 1 exhibits lower magnitudes
compared to that obtained using Profile 2 in most extrat-
ropical regions in both the Northern Hemisphere and South-
ern Hemisphere. Conversely, over some of the tropical re-
gions, particularly the tropical Pacific Ocean, the footprint
calculated using Profile 1 shows slightly higher magnitudes
than for Profile 2. Since the two adjoint model simulations
have the same meteorology, these differences in the resulting
footprints might be explained by how the convective trans-
port of CO2 impacts the two distinctive vertical distribution
profiles of the adjoint forcing. The prevalence of deep con-
vection over the tropical Pacific Ocean can more effectively
transport surface CO2 flux to the upper atmosphere than over
the extratropics, where surface CO2 flux is more likely to be
confined in the lower atmosphere. Thus, Profile 1’s higher
amount of adjoint forcing in the upper atmosphere results
in its higher-magnitude footprint over the tropical Pacific
Ocean but not over the extratropics, where its lower amount
of adjoint forcing in the lower atmosphere leads to its lower-
magnitude footprint. These findings underscore the critical
importance of selecting an appropriate vertical distribution
for the model–data difference when using an adjoint model
during variational assimilation.

6 Conclusions

The MPAS-CO2 system consists of forward, TL, and adjoint
models that are built upon the variable-resolution capability
of the compressible non-hydrostatic MPAS-A model (Ska-
marock et al., 2012). It promises to be a useful tool for carbon
flux inverse modeling at the global and regional scales. The
forward model of MPAS-CO2 is documented by Zheng et al.
(2021). In this paper, we focus on the development of its tan-
gent linear and adjoint models. Through rigorous testing, we
have confirmed the correctness and accuracy of the newly de-
veloped MPAS-CO2 TL and adjoint models. A key challenge
in developing the adjoint model was efficiently accessing me-
teorological variables during the model’s backward-in-time
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Figure 9. Comparison of the OCO-2 ground track footprints from the MPAS-CO2 adjoint model and CT-L after 10 d backward-in-time
integration. For each of the 14 height levels, the values of the footprints (units in ppm (µmolm−2 s−1)−1) are extracted as the average value
of 2◦× 3◦ boxes within the range of the CT-L spatial domain (10–80◦ N, 0–180◦W). The solid line in each subfigure is the 1 : 1 line, and
the dashed line is a linear fit with zero intercept. The correlation coefficient R2 of the linear fit is also labeled in each subfigure.

integration. We have successfully implemented a strategy
that combines recalculation and storage of meteorological
variables. This approach significantly reduces the memory
requirement, making the adjoint model feasible for long sim-
ulations, which are often necessary for CO2 inverse model-
ing.

The results of the sensitivity analysis using the newly de-
veloped MPAS-CO2 adjoint model provide valuable insights
for designing CO2 data assimilation systems. The increas-
ing homogeneity of the sensitivity to the initial atmosphere
CO2 mixing ratio with longer integration length highlights
the importance of selecting an appropriate assimilation win-

dow length. The comparison of the CO2 observation foot-
prints between the MPAS-CO2 adjoint model and the NOAA
CT-L system demonstrates good agreement, validating the
accuracy of the adjoint model’s footprint calculations. The
comparison of OCO-2 XCO2 footprints reveals differences
in sensitivity between the two systems at different altitudes.
MPAS-CO2 adjoint model-calculated footprints tend to have
higher magnitudes at low altitudes and lower magnitudes at
high altitudes compared to CT-L. These differences in foot-
prints could be caused by the differences in configuration,
spatial resolution, and vertical mixing processes between
the two model systems. Last, the sensitivity analysis using
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Figure 10. Two different profiles for vertically distributing a unit
(ppm) of XCO2 . Profile 1 is determined by OCO-2 XCO2 averag-
ing kernel and pressure weight functions. Profile 2 is based on a
redistribution of Profile 1 that gives more weight towards CO2 in
the lower troposphere than in the upper part of the atmospheric col-
umn. The circles of profiles are on the 20 pressure levels of OCO-2
XCO2 pressure weight function. Both profiles integrate to unity.

two different vertical distribution profiles for adjoint forcing
highlights the importance of correctly mapping model–data
difference in XCO2 to the transport model’s vertical levels.

In addition to being a powerful tool for sensitivity analy-
sis, the adjoint model plays a critical role in CO2 variational
data assimilation (Bosman and Krol, 2023; Tian and Zou,
2021; Zheng et al., 2018). Our future research efforts will fo-
cus on integrating the forward and adjoint models of MPAS-
CO2 into such a system. This integration has the potential to
bridge a significant gap by establishing an online Eulerian-
transport-model-based global variational assimilation system
for CO2 that targets high resolution in critical regions while
at the same time avoiding the pitfalls associated with the lat-
eral boundaries needed in regional domain inversions.

Code and data availability. The MPAS-CO2 forward, TL,
and adjoint models v7.3 described in this paper can be
downloaded from the CERN-based Zenodo archive at
https://doi.org/10.5281/zenodo.8226620 (Zheng, 2023a). This
includes the model source code, instructions for compilation, and
an example script for running models. Instructions for how to

Figure 11. MPAS-CO2 adjoint model-calculated footprints (units
in ppm (µmolm−2 s−1)−1) obtained after 30 d of backward-in-time
integration starting on 23 August 2016 at 18:00 UTC (the time of
the OCO-2 measurement). The top panel (a) is obtained when using
Profile 1 (Fig. 10) to vertically distribute 1 ppm of adjoint forcing.
The middle panel (b) is the footprint using Profile 2. The bottom
panel (c) is the difference in footprint between the two profiles.

compile and run the models are provided in the package. The
computation and plotting scripts used to produce the figures in this
article can be downloaded from the CERN-based Zenodo archive at
https://doi.org/10.5281/zenodo.10425739 (Zheng, 2023b). Carbon-
Tracker CO2 flux and posterior mixing ratio data can be obtained
from the NOAA website at https://doi.org/10.25925/Z1GJ-
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3254 (Jacobson et al., 2020). CT-L footprints can be obtained
from the NOAA website at https://gml.noaa.gov/aftp/products/
carbontracker/lagrange/footprints/ctl-na-v1.1/ (NOAA Global
Monitoring Laboratory, 2014).
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