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Abstract. Motivated by reducing errors in the energy bud-
get related to enthalpy fluxes within the Energy Exascale
Earth System Model (E3SM), we study several physics–
dynamics coupling approaches. Using idealized physics, a
moist rising bubble test case, and the E3SM’s nonhydrostatic
dynamical core, we consider unapproximated and approxi-
mated thermodynamics applied at constant pressure or con-
stant volume. With the standard dynamics and physics time-
split implementation, we describe how the constant-pressure
and constant-volume approaches use different mechanisms
to transform physics tendencies into dynamical motion and
show that only the constant-volume approach is consistent
with the underlying equations. Using time step convergence
studies, we show that the two approaches both converge but
to slightly different solutions. We reproduce the large in-
consistencies between the energy flux internal to the model
and the energy flux of precipitation when using approximate
thermodynamics, which can only be removed by considering
variable latent heats, both when computing the latent heat-
ing from phase change and when applying this heating to
update the temperature. Finally, we show that in the nonhy-
drostatic case, for physics applied at constant pressure, the
general relation that enthalpy is locally conserved no longer
holds. In this case, the conserved quantity is enthalpy plus
an additional term proportional to the difference between hy-
drostatic pressure and full pressure.

1 Introduction

The primary motivation of this study is to improve en-
ergy treatment in the atmospheric component of the En-
ergy Exascale Earth System Model (E3SM) (Golaz et al.,
2019, 2022). This component, called the E3SM Atmosphere
Model (EAM) (Rasch et al., 2019), is a close cousin of the
Community Atmosphere Model (CAM) (Neale et al., 2012)
of the Community Earth System Model (CESM), and the de-
sign choices regarding thermodynamics in EAM are inher-
ited from CAM (Williamson et al., 2015).

A recently published comprehensive overview by Lau-
ritzen et al. (2022) of thermodynamics in global atmospheric
models describes a few deficiencies in EAM/CAM, includ-
ing the inconsistent treatment of enthalpy (or energy) fluxes
of water forms, both within the atmosphere and across its sur-
face boundaries. In particular, there is a large disagreement
between the enthalpy fluxes internal to the model as com-
pared to the enthalpy fluxes implied by the associated mass
fluxes (Harrop et al., 2022; Lauritzen et al., 2022). This in-
consistency is the result of a few design decisions: (1) there is
an absence of water forms, except for the water vapor, in the
total mass of moist air; (2) specific heat capacities of dry air
are used in place of specific heat capacities of water forms;
(3) there is a constant moist pressure assumption, which re-
quires a moist pressure adjustment process; (4) each atmo-
spheric process, including the moist pressure adjustment, is
required to conserve energy, which has led to the use of fix-
ers; and (5) the atmosphere and surface components explic-
itly exchange only mass fluxes of water, not energy fluxes.

Some of the abovementioned issues, numbered (1)–
(5), are present in other climate models; for example,
nearly all of them, except for the Centre National de
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Recherches Météorologiques Earth system model (CNRM-
ESM1) (Séférian et al., 2016; Termonia et al., 2018), use spe-
cific heat capacities of dry air for water forms. In the E3SM
version 1 (E3SMv1) (Golaz et al., 2019), inconsistency (5)
is corrected by a so-called internal energy flux (IEFLX), a
global energy flux based on the heat capacity of liquid water.
However, by design, IEFLX is another global energy fixer,
which balances the energy budget of coupled simulations
(i.e., simulations with active atmosphere and ocean compo-
nents) but does not address all deficiencies in the atmospheric
models described above.

To eliminate the need for energy fixers and to properly
transfer energy of water forms within the atmosphere and at
its interface, we first introduce into the model close to theo-
retical (or unapproximated) specific heat capacities of water
forms and include contributions of all water forms into the
moist mass. Second, we reconsider how moist physics pack-
ages use the first law of thermodynamics to compute temper-
ature tendencies from phase changes. Interpretations of the
first law of thermodynamics in physics–dynamics coupling
are the primary focus of this study.

For this, we introduce a few assumptions and consider-
ations and derive coupling mechanisms between the moist
physics and the adiabatic dynamical core for constant-
pressure and constant-volume approaches. Our constant-
pressure approach is an extension of the coupling method
that is currently used in EAM/CAM and is applicable to the
nonhydrostatic dynamics. For comparison, we also investi-
gate two coupling mechanisms that resemble the coupling in
EAM/CAM. One uses the specific heat capacity of the dry air
for all species in the moist air, and the other one uses approxi-
mated specific heat capacities (in contrast to unapproximated
ones mentioned above) of water forms.

Using HOMME, the standalone setup of the dynamical
core of EAM, and a simplified moist physics package from
Reed and Jablonowski (2012), we provide comparisons of
simulations with coupling mechanisms for a test case with a
moist rising bubble. This test is commonly used in the litera-
ture (Bryan and Fritsch, 2002; Bendall et al., 2020; Liu et al.,
2022). Unlike typical large-scale tests for climate modeling,
the moist rising bubble test is characterized by an unstable
initial state with strong vertical velocities, which quickly trig-
ger phase changes crucial for our studies.

In the setup presented here, we show that the constant-
volume and constant-pressure approaches can be signifi-
cantly different with large time steps. We also show that us-
ing approximations where the specific heat function is held
constant when computing the latent heat release (as done in
EAM’s physics parameterizations) always results in large in-
consistencies between the change in the atmosphere’s energy
and the energy flux of sedimentation. Fixing this inconsis-
tency in EAM requires the use of variable latent heats both
when computing the latent heat of phase change and when
using this heating term to update the temperature.

2 Time-split physics

Many global atmospheric models use a time-split or
fractional-step method to separate the dynamics from
the physical parameterizations (henceforth referred to as
physics), including EAM. In this section, we apply time-
splitting to a system of equations, which include phase
change and external heating but no external mass fluxes.
Splitting the dynamics from the physics, we derive the
standard constant-volume and, in the case of hydrostatic
dynamics, constant-pressure fractional physics steps with
near-exact thermodynamics. In the nonhydrostatic case, the
constant-pressure update is inconsistent with the time-split
equations, and we derive the nonhydrostatic fractional step
based on conservation of energy and on a local heating as-
sumption.

We start by considering a system of equations written as

∂

∂t
X(t)+H (X(t), t)= F (X(t), t), (1)

where X(t) represents a state vector of all our prognos-
tic variables at time t , H represents the dynamical terms,
and F represents the forcing terms usually computed by the
physics. We use a standard time-split approach and advance
the model by one time step 1t via two fractional steps:

X1 =X(t)+1tF (X(t), t) (2)
X(t +1t)=X1−1tH (X1, t), (3)

with X1 denoting the intermediate state after applying the
physics fractional step. System (2)–(3) represents a first order
in time approximation to Eq. (1). In this example, both frac-
tional steps are being advanced in time with a forward Euler
discretization. In practice, for the dynamics time step, more
advanced methods are used, such as HEVI–IMEX (Satoh,
2002; Weller et al., 2013; Lock et al., 2014).

HOMME uses a vertically Lagrangian approach (Lin,
2004). Because of this, each dynamics fractional step (3)
can advance from a state X1 given on arbitrary level posi-
tions given by geopotential φ and mass coordinate values
π , based on hydrostatic pressure. This in turn allows us to
consider physics fractional steps that arbitrarily change the
state variables, including mass, pressure, and volume, within
each model layer. Below we consider physics applied either
at constant pressure or at constant volume.

To apply time-splitting to our full set of equations, we start
with a generic form of the vertically Lagrangian equations
with a terrain-following coordinate s and the material deriva-
tive D/Dt .

Du

Dt
+Du = fu (4)

D
Dt

(
c∗vT

)
+p

Dα
Dt
=−

∑
i

Lifqi + fT (5)

D
Dt

(
c∗pT

)
−α

Dp
Dt
=−

∑
i

Lifqi + fT (6)
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Dφ
Dt
− gu3 = 0 (7)

D
Dt

(
∂π

∂s

)
+
∂π

∂s
∇ ·u=

∂π

∂s

∑
i

fqi = 0 (8)

Dqi
Dt
= fqi (9)

For completeness, we give the equation of state (EOS) and
related mass coordinate identities,

pα = R∗T , α =
1
ρ
=−

∂φ

∂s

/∂π
∂s
=−

∂φ

∂π
. (10)

In the above equations, u is the 3D velocity; u3 is the verti-
cal or radial velocity component; T is temperature; p is the
full nonhydrostatic pressure; ρ is density with α = 1/ρ; φ is
the geopotential height; π is the mass coordinate/hydrostatic

pressure;
∂π

∂s
is the mass coordinate pseudo-density; and qi

is a generic total mass mixing ratio that can represent dry
air (qd), vapor (qv), liquid water (ql), or ice (qf). For sim-
plicity, we have represented the dynamics terms in the veloc-
ity equation by Du. For the HOMME dynamical core used
here, the dynamics terms are given in Taylor et al. (2020).
We assume the surface elevation, φs, is held fixed in time and
impose a pressure boundary condition at the model top, tak-
ing ptop = πtop, set to a global constant based on the desired
vertical domain size. We give two different formulations of
the thermodynamic equation, Eqs. (5) and (6). The choice
of which one to use depends on whether physics is predom-
inantly applied at constant pressure (δp = 0) or at constant
volume (δφ = 0).

We use the unapproximated thermodynamics (or variable
latent heats, as explained further in Sect. 4.3) from Eldred
et al. (2022), which is equivalent to the near-exact thermo-
dynamics from Staniforth (2022). The specific heats c∗p and
c∗v are given in terms of specific heats of dry air, vapor, liq-
uid, and ice and their mixing ratios; R∗ is a function given
in terms of the gas constants for dry air and vapor and their
mixing ratios,

c∗p = c
d
pqd+ c

v
pqv+ clql+ cfqf,

c∗v = c
d
vqd+ c

v
vqv+ clql+ cfqf, R∗ = c∗p − c

∗
v; (11)

and Ll and Lv are latent heat constants. The f∗ terms in the
above represent the forcing tendency terms, where fu cor-
responds to the momentum fluxes and fqi denotes sources
and sinks of water mass from phase changes. The right-hand
side of the thermodynamic equation includes the energy flux
from phase change (

∑
iLifqi ), as well as any external heat-

ing denoted by fT . The above equations allow for mass flux
between species qi via phase changes but have assumed no
net mass flux (

∑
ifqi = 0).

In this work we focus on the physics fractional step (2)
derived from time-splitting Eqs. (4)–(9). We first expand
the material derivative into partial derivatives and dynamics

terms and then apply time-splitting, with all the f∗ physics
forcing terms put in the physics fractional step (3) and all
remaining terms put in the dynamics fractional step (2). We
then assume a forward Euler discretization for the physics
fractional step partial derivatives, which we represent by δ
(as in δu= (u(t +1t)−u(t))/1t). This results in the fol-
lowing physics equations:

δu= fu (12)

δ
(
c∗vT

)
+pδα =−

∑
i

Lifqi + fT (13)

δ
(
c∗pT

)
−αδp =−

∑
i

Lifqi + fT (14)

δφ = 0 (15)

δ

(
∂π

∂s

)
=
∂π

∂s

∑
i

fqi = 0 (16)

δqi = fqi , (17)

where we have again given two formulations of the thermo-
dynamic equation.

2.1 Energy density and column energy

With the unapproximated thermodynamics, the energy den-
sity in mass coordinates π can be written as

e =
1
2
u2
+ ei +φ (18)

=
1
2
u2
+h−pα+φ (19)

=
1
2
u2
+h+ (π/p− 1)R∗T +

∂

∂π
(πφ), (20)

where we have introduced internal energy (ei = c∗vT +
Lvqv+Llql) and enthalpy (h= c∗pT+Lvqv+Llql). The third
expression for e given above is useful for certain calcula-
tions below and comes from using the identity (πφ)π =

φ+π(φ)π = φ−πα and the equation of state. The total col-
umn energy is given by

E =
1
g

(∫
edπ +πtopφtop

)
, (21)

where the additional term represents the potential energy of
the atmosphere above the model top (φtop). We scale all en-
ergy integrals by 1/g and use a normalized horizontal inte-
gral so that the global quantities are in units of J m−2. Con-
serving the total column energy will take into account the
work required to change φtop.

Our fractional physics step (12–17) conserves the total col-
umn energy E in the sense that the change in E will be given
by the net external heating, δE = 1

g

∫
fT dπ .

2.2 Constant-volume and constant-pressure updates

From our time-split physics equations (Eqs. 12–17), we see
that the only way to obey the geopotential equation (Eq.
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15) is to apply physics at constant volume. In Sect. 2.3 we
give the constant-volume procedure to update the prognostic
variables following Eqs. (12)–(17), which we refer to as the
constant-volume update.

We also consider two additional physics updates that are
designed for constant pressure, δp = 0. In Sect. 2.4 we show
that with the hydrostatic equations, which omit Eqs. (7) and
(15), time-splitting naturally leads to a δp = 0 update. In the
nonhydrostatic equations, it is not possible to impose both
δp = 0 and δφ = 0, and a constant-pressure update cannot
be consistent with our physics equations. In Sect. 2.5 we
propose an alternative energy-conserving δp = 0 update. De-
spite it being inconsistent with our physics equations, nu-
merical results in Sect. 5 demonstrate that it can be practi-
cal. Note that modifying the constant-volume update to obey
δp = 0 as well is impossible because it leads to an overde-
termined system which in general will not have energy-
conserving solutions.

For the derivations of these updates, we simplify the alge-
bra by neglecting momentum tendencies by taking fu = 0.
We also note that for all updates we have δπ = 0, which
comes from our assumption of no mass fluxes (8).

2.3 The constant-volume update

The constant-volume update is given by the direct applica-
tion of the time-split system (12–13 and 15–17), with con-
stant volume a direct result of Eq. (15). Combined with our
assumption of no mass fluxes, we also have constant density
(δα = 0). The time-split system reduces to (neglecting the
prognostic variables which do not change)

δ
(
c∗vT

)
=−

∑
i

Lifqi + fT (22)

δqi = fqi . (23)

For this update, the model updates qi , c∗v , and T to obey the
above, and then p is updated from the equation of state, hold-
ing φ constant. This approach represents a first-order approx-
imation to the original system (Eq. 1); thus it is expected to
converge to the correct solution as the time step is decreased.
This is the standard physics update used by constant height
coordinate models, and it can be straightforwardly used by
vertically Lagrangian mass coordinate models. This update
conserves energy locally in the sense that the change in en-
ergy is given by the external heating (δe = fT ), which can be
seen directly from Eq. (18).

2.4 The constant-pressure update – hydrostatic

Physics parameterizations are often applied at constant pres-
sure (δp = 0). An update which holds pressure constant
while allowing the volume to change is impossible to derive
via time-splitting for the nonhydrostatic equations, since the
prognostic equation for layer positions does not have any tra-
ditional physics tendency terms; thus any dynamics/physics

time-split approach will lead to δφ = 0 for the update. How-
ever, for the hydrostatic equations, which replace Eq. (15)
with a diagnostic equation for φ (e.g., for CAM/EAM; see
Eq. (12.5) in Taylor, 2011), time-splitting the remaining
prognostic equations, Eqs. (12), (14), (16), and (17), results
in δp = 0, and we do have a constant-pressure update, given
by

δ(c∗pT )=−
∑
i

Lifqi + fT (24)

δqi = fqi . (25)

The hydrostatic energy is given by

EH =
1
g

(∫
eH dπ +πtopφtop

)
,

eH =
1
2
u2
+h+

∂

∂π
(πφ), (26)

where eH comes from Eq. (20) and makes use of p = π (total
pressure equals to the hydrostatic pressure). The hydrostatic
time-split step conserves the hydrostatic column energy in
the sense that change in column energy equals the net exter-
nal heating,

δEH =
1
g

∫
fT dπ.

The conservation can be seen by integrating δeH and making
use of the fact that the surface elevation φsurf remains fixed
so that δφsurf = 0.

Changing the volume of a cell does some work on the cells
above it, increasing or decreasing their potential energy; thus,
any constant-pressure update that conserves column energy
will not in general satisfy δe = fT within each cell. For this
hydrostatic update, the local changes in energy, internal en-
ergy, and enthalpy are given by

δeH =
∂

∂π
(πδφ)+ fT δei =−πδα+ fT δh= fT .

2.5 The constant-pressure update – nonhydrostatic

In the nonhydrostatic case, one cannot derive a δp = 0 up-
date consistent with the time-split equations since the com-
bination δp = 0 and δφ = 0 prohibits changes to any state
variables. Instead, we look for a δp = 0 update that has the
same local energy relation as in the hydrostatic equations,

δe =
∂

∂π
(πδφ)+ fT . (27)

We start from this form since it automatically conserves the
correct column energy as can be seen by expanding δe using
Eq. (20) and integrating Eq. (27), as in the hydrostatic case.

Expanding δe using Eq. (20) allows us to write (27) as
δh+ (π −p)δα = fT , which can then be written in terms of
our prognostic variables as

δ(c∗pT )+ (π/p− 1)δ(R∗T )=−
∑
i

Lifqi + fT (28)
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δqi = fqi , (29)

where the model updates qi , c∗p, and T to obey the above,
and then φ is updated from the equation of state, holding p
constant. For this nonhydrostatic update, the local changes in
energy, internal energy, and enthalpy are given by

δe =
∂

∂π
(πδφ)+ fT , δei =−πδα+ fT ,

δh+ (π/p− 1)δ(R∗T )= fT . (30)

There are other energy-conserving δp = 0 updates, but the
update in Eqs. (28)–(29) is unique in that it is the only one
where phase change or heating localized to a particular layer
will induce temperature changes only in that layer and no
other layers (shown in Appendix A). We refer to this con-
dition as local heating. We give an example of a non-local
heating update in Appendix B.

Note that for this fractional step, the update of φ from
the equation of state could be cast as a forcing term for the
geopotential equation.

2.6 Dynamical differences between constant pressure
and constant volume

A key difference between the constant-pressure and constant-
volume approaches is in how latent heat release is trans-
lated into physical motion. In the constant-volume approach,
during the physics fractional step, each cell’s volume and
Cartesian position remain fixed, and heating will result in
increased pressure. Localized heating will thus result in a
pressure gradient, which will induce motion in the dynamics
fractional step and in general will result in both vertical and
horizontal mass transport. In the constant-pressure approach,
in the physics fractional step each cell’s pressure will remain
constant, and the heating will result in vertical expansion of
the cell, representing vertical motion. Localized heating will
lead to a gradient in the geopotential, which will induce hor-
izontal motion in the dynamics fractional step.

2.7 Enthalpy formulations of the first law of
thermodynamics

The first law of thermodynamics states that the energy of
the system is conserved up to fluxes. In the hydrostatic case,
the first law under constant-pressure assumption is given by
the thermodynamic equation δh= fT . This form of the first
law holds across such a wide range of systems that the first
law is often interpreted as local conservation of enthalpy.
But here, in the nonhydrostatic case for physics processes
that are applied at constant pressure, we must change the
above thermodynamic equation in order to conserve energy
and to obey the first law. In this case, we derive a new ther-
modynamic equation. When expressed in terms of enthalpy,
this energy-conserving thermodynamic equation for nonhy-
drostatic δp = 0 processes can be written as δh+ (π/p−
1)δ(R∗T )= fT , not δh= fT .

3 Sedimentation

Lauritzen et al. (2022) present an overview of challenges and
possible solutions regarding modeling sedimentation. The
challenges include interactions of the hydrometeors with the
surrounding atmosphere and raise questions about represen-
tation of different velocities for different species, falling and
not falling, and subsequent frictional heating. In the simple
moist physics used here, rain falls out of the atmosphere in-
stantaneously with no additional interactions. As with phase-
change physics, we consider sedimentation updates appropri-
ate for constant-pressure and constant-volume approaches. In
both cases we hold the temperature constant. In the constant-
volume case, we hold volume constant, update π based on
the mass flux, and then update the pressure to be consistent
with the EOS. We note that the constant-volume sedimenta-
tion procedure can be derived from the time-split equations if
one generalizes Eqs. (13) or (14) to include additional terms
induced by the mass fluxes.

For sedimentation used with constant-pressure physics, we
cannot hold the pressure constant due to the mass flux, so we
update π based on the mass flux and hold the nonhydrostatic
component of the pressure, p−π , constant. We then update
the volume to be consistent with the EOS. The constant p−π
sedimentation procedure has the advantage that if the state is
in hydrostatic balance, it will remain in hydrostatic balance.

4 Numerical simulations for the moist rising bubble

This section covers the setup for our numerical simulations
with the physics updates introduced in Sect. 2, applied to un-
approximated and approximated thermodynamics in a rising
bubble test case with a simplified physics package. It also
explains that we evaluate energy fluxes due to sedimentation
in each simulation by introducing a baseline, a flux of the
internal energy of precipitation.

4.1 Description of simple Reed–Jablonowski moist
physics

The simple moist physics package from Reed and
Jablonowski (2012) consists of a two-stage procedure. First,
an amount of condensed water is computed, and a temper-
ature tendency is derived from condensation. For this stage,
we compare several different physics updates from Sect. 2.
Second, all condensed liquid water is instantaneously re-
moved from the moist air, which can be interpreted as rain
falling with infinite speed. For this stage, we use the sedi-
mentation updates given in Sect. 3. In Reed and Jablonowski
(2012), for condensation, the temperature tendency given by
the conservation of enthalpy is computed using a first-order
Taylor series with respect to temperature for the saturation-
specific humidity, qsat = qsat(T ,p). Here we instead use va-
por tendency 1q = q − qsat(T ,p) explicitly for the current
values of T and p.

https://doi.org/10.5194/gmd-17-1429-2024 Geosci. Model Dev., 17, 1429–1442, 2024
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4.2 Setup of simulations

All runs are performed with the HOMME nonhydrostatic dy-
namical core with a planar two-dimensional domain (Bogen-
schutz et al., 2023). The initialization procedure for the moist
rising bubble is described in Liu et al. (2022). We use the
reference state with θ0 = 300 K, zero background relative hu-
midity, and domain size of [−10000,10000]×[0,20000]m.
In notations used by Liu et al. (2022) the initial conditions
for the moist warm bubble are given by the potential tem-
perature perturbation maximum 1θ = 4.0 K, the relative hu-
midity perturbation maximum 1h= 1.0 (not to be confused
with enthalpy h from above), and a cosine-bell perturbation
in the form of an ellipse centered at (0,2000)m, with 5000 m
and 1000 m axis lengths for horizontal and vertical direc-
tions, respectively. All simulations use 128 vertical levels and
128 fourth-order spectral elements for the horizontal domain
(Taylor, 2011), which corresponds to an approximate hori-
zontal resolution of 1x ' 52 m.

In simulations, we vary only time step, 1t ∈

{4.0,2.0,1.0,0.4,0.2,0.1,0.04,0.02,0.002} s, and the
physics updates, which are described below in more detail.
We consider physics updates with unapproximated thermo-
dynamics, as well as several approximations. In all cases, for
energy diagnostics, we use the definition of energy given by
Eq. (21).

4.3 Physics updates

Following considerations presented in Sect. 2 that connect
conservation of column energy E in Eq. (21) with local tem-
perature updates in parameterizations, we investigate five up-
dates given in Table 1. The first three updates use unapprox-
imated thermodynamics (or variable latent heats), including
a constant-volume approach which makes no approximations
other than time-splitting. The remaining two updates intro-
duce specific heat-related approximations.

Since latent heats of phase changes are defined as a dif-
ference of enthalpies of the two phases (Emanuel, 1994), un-
approximated thermodynamics that uses specific heat capac-
ities of water species close to theoretical represents variable
(with respect to temperature) latent heats of phase changes.
That is, whether we impose variable or constant latent heats
depends on the choice of specific heat capacities of water
forms.

The first update, named CP-VL-NH, is based on the
constant-pressure approach and is formulated as

δ

(
c∗pT +

(
π

p
− 1

)
R∗T +Lvqv+Llql

)
= 0,

δπ = 0, δp = 0. (31)

As explained in Sect. 2, this update conserves Eq. (21). Its
alias is translated to constant pressure (CP) and variable la-
tent heats (VL), where variable latent heats means that the

correct specific heats for each water species are used in en-
thalpy expressions. In other words, VL in the name of the
update indicates that we use the full unapproximated ther-
modynamics, including the use of c∗p, not cd

p (specific heat
capacity of the dry air), in Eq. (31). NH in the name of the
update stands for nonhydrostatic and denotes that the update
conserves nonhydrostatic energy (21). Later, we use HY in
the names of updates that conserve only the hydrostatic ver-
sion of energy (26) and its modifications for updates that use
specific heat approximations.

The second update, CV-VL-NH, is the only one presented
here that is based on the constant-volume (CV) approach. It
is given by

δ
(
c∗vT +Lvqv+Llql

)
= 0, δπ = 0, δφ = 0, (32)

where, similarly to CP-VL-NH, we use variable latent heats.
As explained in Sect. 2, this update conserves Eq. (21).

The third update, CP-VL-HY, is a slight modification of
CP-VL-NH,

δ
(
c∗pT +Lvqv+Llql

)
= 0, δπ = 0, δp = 0. (33)

It is of interest because we suspect that the nonhydrostatic
term in Eq. (31) is negligible. The results from both CP-VL-
NH and CP-VL-HY prove to be indistinguishable for our ris-
ing bubble test case.

The other two updates, CP-CL-HY and CP-AL-HY, are
inspired by the EAM design. CP-CL-HY is given by

δ(cd
pT +Lvqv+Llql)= 0, δπ = 0 δp = 0 (34)

and mimics the current EAM. Its name is based on constant
latent heats (CL), since the update uses cd

p, not c∗p.
Since it would require a significant effort to rewrite moist

parameterizations in EAM for update (31), one could con-
sider a design where temperature tendencies from a parame-
terization are computed using c∗p instead of cd

p, but c∗p is held
constant during the phase-change physics and only updated
after sedimentation. Thus, the CP-AL-HY update is given by

δ
(
c∗pT +Lvqv+Llql

)
= 0,

δπ = 0, δp = 0, δ(c∗p)= 0. (35)

The shorthand AL in its name indicates that only approxi-
mate variable latent heats are used.

As for the other updates above, for updates CP-CL-HY
and CP-AL-HY we use the definition of the total column en-
ergy (21) when computing energy diagnostics.

4.4 Energy of precipitation and its relation to change of
energy in the model

As mentioned in the Introduction, in EAM there is a large
disagreement between the change in atmospheric energy as
compared to the net flux of energy carried into and out of the
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Table 1. List of physics updates considered. CP and CV stand for constant pressure and constant volume, VL denotes variable latent heats, CL
denotes constant latent heats, and AL is for approximate latent heats. HY stands for hydrostatic and NH stands for nonhydrostatic. For more
details on updates, see Sect. 4.3. The choice of Tref is explained in Sect. 4.4. P denotes precipitation mass flux. The energy flux discrepancy
is the difference between the change in the total atmosphere energy (Ẽt ) and the energy carried out of the model from precipitation (FP ), as
explained in Sects. 4.4 and 5.

Name of update,
formulation

Energy flux discrepancy Plots Similarities

CP-VL-NH, Eq. (31) ∼ 0 Figs. 1, 2a, 3a, b, 4a–d
CV-VL-NH, Eq. (32) ∼ 0 Figs. 1, 2b, 3a, b, 4e–h
CP-VL-HY, Eq. (33) ∼ 0 Figs. 1, 3a, b very similar to CP-VL-NH
CP-CL-HY, Eq. (34) ∼ (cv

p − cl)TrefP Figs. 1, 2c, 3a, b
CP-AL-HY, Eq. (35) ∼ (cv

p − cl)TrefP Figs. 1, 2d, 3a, b, 4i–l very similar to CP-CL-HY

Figure 1. Self-convergence with respect to time step for all five up-
dates using definition (37). Uncertainty, presented by the horizon-
tal dashed line, is the normalized difference between the reference
solutions for simulations with CP-VL-NH (red curve) and CV-VL-
NH (green curve). Other curves are CP-VL-HY (black), CP-AL-HY
(blue), and CP-CL-HY (yellow).

model by evaporation and precipitation. This error is signif-
icant, and in order to balance the energy budget for simula-
tions with an active ocean component a global fixer must be
used (Golaz et al., 2019).

To examine this error in our idealized setup, we look at
the total atmospheric energy changes for each of the updates
in Table 1 and compare them to the approximate flux FP
coming from the internal energy of the precipitation P ,

FP = clPTref, Tref = 290K. (36)

Per discussions in Lauritzen et al. (2022), we define
Eq. (36) not with varying temperature but with constant tem-
perature, Tref. Obviously, the true energy flux from precipita-
tion would not be described by Eq. (36). However, Eq. (36)
is a very good approximation for the energy of precipitation,

as shown in Golaz et al. (2019) and later by our simulations.
Using it gives us the same baseline to compare energy of pre-
cipitation for simulations with different updates.

Note that definition (36) does not include terms with Lv or
Ll from Eq. (18). The energy of precipitation correspond-
ing to these terms in all updates in Table 1 (as well as
in EAM) is treated accurately, unlike the terms that corre-
spond to internal or potential energy. Therefore, in our anal-
ysis we focus only on the discrepancy between the glob-
ally integrated energy flux without L terms Ẽt , where Ẽ =
E− 1

g

∫
(Lvqv+Llql)dπ and FP is defined by Eq. (36).

Based on the results from our simulations presented be-
low, we conclude that only updates with full variable latent
heats, which correctly treat internal energy of liquid water,
accurately represent energy of precipitation.

5 Numerical results

5.1 Time step convergence

We first examine the error introduced by the physics–
dynamics time-splitting. To do this, we consider a fixed spa-
tial discretization so that our system of equations can be
represented as a system of ordinary differential equations
(ODEs), and we consider the discretization of these ODEs
in time. We study the convergence of this ODE system as
the time step goes to zero. This approach follows Wan et al.
(2015), where CAM physics is shown to converge with re-
spect to time step with fixed horizontal resolution. The time
discretization includes the time-splitting error and the trun-
cation error in the forward Euler method used for the physics
step and in the Runge–Kutta method used for the dynamics
step. These errors are all formally first order or better in 1t ;
thus, if the ODE has a solution, we expect our discretization
to converge to this solution with first-order accuracy.

For each update in Table 1, we perform simulations with
time step1t varying from 4.0 to 0.002 s, as given in Sect. 4.2.
Simulations with 0.002 s are used as reference solutions for
convergence studies. Per discussion in Sect. 2, we do not ex-
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Figure 2. Globally integrated over the domain precipitation rate for different updates for different 1t (given in the labels in seconds) with
respect to simulated time (horizontal axes). A plot for CP-VL-HY is not shown, but it is identical to plot (a) for CP-VL-NH.

pect the two unapproximated updates (CP-VL-NH and CV-
VL-NH) to converge to the same unique solution, since only
CV-VL-NH is consistent with the time-split approach. Nor
do we expect the different approximated updates (CP-VL-
HY, CP-CL-HY, and CP-AL-HY) to agree with any of the
other updates. Instead, we study self-convergence for each
update, defining the error with respect to each update’s own
reference solutions via

error :=

√∑
iai(θi − θref,i)2√∑

iaiθ
2
ref,i

, (37)

where a set of θi represents a potential temperature field from
a simulation with 1t > 0.002 s, θref,i is the potential temper-
ature field given by a reference solution with 1t = 0.002 s,
and ai represents the horizontal area weights associated
with each nodal value. Sets θi and θref,i are remapped to a
uniform-in-height vertical grid for the domain [0,15000]m,
and a few horizontal levels at the top and at the bottom of
the domain are discarded. The error is computed at t = 800 s
after the bubble has evolved quite substantially. Plots of θ at
t = 800 s are shown below in Fig. 4.

In Fig. 1 we present self-convergence results for all five
updates. There CP-VL-NH and CP-VL-HY are given by red
and black curves, which are practically identical. CV-VL-
NH is represented by the green curve. All of the VL updates
show the expected first-order convergence and have similar
errors for small time steps, although CV-VL-NH has notice-
ably larger errors for large time steps, which does result in
visible differences in θ that are shown below in Fig. 4. The
convergence of the non-VL updates, CP-AL-HY and CP-CL-
HY, is given by blue and yellow curves. These updates have
similar errors and show the expected first-order convergence
down to about four digits but then fail to continue to con-
verge.

We consider the reference solution for the CV-VL-NH up-
date the most accurate. For our fixed spatial discretization,
the only remaining discretization errors in the CV-VL-NH
update come from time discretization and are driven to zero
by time step convergence as shown in Fig. 1. The CP-VL-
NH update has an additional source of error in that it ap-
plies a constant-pressure assumption, which is not consistent
with the time-split equations. To approximate this error, we
measure the difference between the CP-VL-NH and CV-VL-
NH reference solutions using Eq. (37). At t = 800 s, this dif-
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Figure 3. Plot (a) contains globally integrated mass fluxes for all simulations for 1t = 0.002 s, and these fluxes are very similar for all
simulations. Plot (b) compares the outflux of energy of precipitation, FP (in purple, given by Eq. (36)), and Et, both globally integrated, for
simulations with 1t = 0.002 s for all five updates.

ference is 0.0026 (shown as the dashed line in Fig. 1). For
these two VL updates, the potential temperature fields agree
to more than three digits and are visually very close, as shown
below in Fig. 4. We consider this difference a crude esti-
mate of the uncertainty introduced by imposing the constant-
pressure constraint in the physics update.

Figure 2 shows the time evolution of the globally inte-
grated over the domain precipitation rates P for CP-VL-NH
(panel a), CV-VL-NH (panel b), CP-CL-HY (panel c), and
CP-AL-HY (panel d) plotted against the simulated time for
each time step. A plot for CP-VL-HY is nearly identical to
the plot for CP-VL-NH, and the two reference solutions for
these two updates differ by only 3.8×10−5 using Eq. (37), so,
CP-VL-HY is not included in the figure. Precipitation plots
can be used to evaluate the sensitivity of each update with
respect to different time steps. Qualitatively, all updates have
very similar global precipitation rates. We note that the two
constant-pressure VL updates (panel a) have very little sensi-
tivity, significantly lower than the remaining updates (panels
b–d), which we consider to be an advantage of CP-VL-NH
or CP-VL-HY.

5.2 Energy flux discrepancy

Next we compare energy flux Ẽt and the approximate pre-
cipitation energy flux FP as given by Eq. (36), both glob-
ally integrated over the domain, for the reference solutions
for each of five updates. Since FP depends on the mass
of precipitation, we first confirm that overall globally inte-
grated over the domain mass fluxes from precipitation for all
simulations are reasonably close to each other, as shown in
Fig. 3a. There, CP-VL-NH (red), CP-VL-HY (black), and
CV-VL-NH (green) curves are clustered together, while the
non-VL methods, CP-AL-HY (blue) and CP-CL-HY (yel-
low), are positioned separately from the other three but next
to each other. In Fig. 3b, we first plot in purple FP com-
puted for the precipitation rates of each simulation. Then we

plot Ẽt '1Ẽ/1t , where 1Ẽ is the difference of the total
energy of the model (given by Eq. (21) and summed for all
columns) for before and after the physics fractional step, ad-
justed for L terms as discussed in Sect. 4.4. As expected,
energy fluxes from the unapproximated VL updates, CP-VL-
NH (red), CP-VL-HY (black), and CV-VL-NH (green), are
very close to FP . A small difference between FP and Ẽt
for these three updates is due to the temperature variations;
the temperature of precipitation in the simulations is slightly
smaller than Tref. Another term that possibly could affect the
difference between FP and Ẽt is the potential temperature
of precipitation, but it is negligible compared to its internal
energy.

For the non-VL updates CP-AL-HY (blue) and CP-CL-
HY (yellow), which have nearly identical values of Ẽt , the
difference between Ẽt and FP is significant,

Ẽt −FP ' (c
v
p − cl)PTref. (38)

Since cv
p = 1870.0 and cl = 4188.0 J kg−1 K−1, we see that

error Ẽt −FP is 50 % of the desired flux clPTref. This is
due to the fact that the originally precipitating water in the
model is represented by water vapor, with its enthalpy ap-
proximately given by cv

pPTref. For both the AL and the CL
updates, the phase change physics followed by sedimentation
appears to remove vapor from the atmosphere instead of liq-
uid water, which results in Ẽt ' cv

pPTref, which in turn leads
to (38). In other words, the discrepancy between energies of
precipitable water and Ẽt in CP-AL-HY and CP-CL-HY is
due to the fact that the energy of the liquid water is not prop-
erly accounted for throughout the physics update.

5.3 Qualitative comparisons

Figure 4 plots the potential temperature of the bubble at the
end of the simulated time, 800 s, for three updates, CP-VL-
NH (top row), CV-VL-NH (middle row), and CP-AL-HY
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Figure 4. Potential temperature field in Kelvin for CP-VL-NH (a–d), CV-VL-NH (e–h), and CP-AL-HY (i–l). The units for time steps 1t
in the captions are seconds.

(bottom row). The results in each column correspond to a dif-
ferent time step size, 1t = 4.0, 0.4, 0.04, and 0.002 s, from
left to right. Note that simulations with a 0.002 s time step
(the rightmost column) are the reference solutions from the
convergence plot in Fig. 1. Bubbles from CP-VL-HY and
CP-CL-HY are not shown: CP-VL-HY plots are identical to
the bubbles from CP-VL-NH, and CP-CL-HY bubbles are
very similar to the bubbles from CP-AL-HY.

One of the most interesting observations is that while bub-
bles for CP-VL-NH and CV-VL-NH at smaller time steps
are very similar, their trajectories towards the reference solu-
tions differ. The shapes in the constant-pressure approach be-
come indistinguishable starting at a time step of 0.4 s, while
for the constant-volume approach, only the solution for the
0.04 s time step is comparable to the reference solution by

eye. In other words, if we consider either reference solution,
in panel (d) or panel (h), acceptable, then for this particular
test case CP-VL-NH appears more accurate than CV-VL-NH
when using large time steps.

Separately, for the coarse 4.0 s time steps, the bubble in
the constant-volume simulation is more distorted and more
turbulent than the bubble from CP-VL-NH. It is explained in
Sect. 2 that in CV-VL-NH, the energy from condensation is
not transferred into moving vertical layers until the dynam-
ics fractional step, while in the case of the constant-pressure
approach, a part of this energy transfers into vertical motion
during the physics fractional step.

Compared to the first two rows, the bubbles from CP-AL-
HY in panels (i)–(l) (and CP-CL-HY, not shown) appear to
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be warmer and, as a result, moving upward faster, consistent
with their approximated temperature update.

The primary focus of this paper is to study different up-
dates in Table 1 at the condensation stage in physics. One
could argue that in this case, all simulations should use the
same sedimentation routine. To investigate this further, we
performed simulations with CV-VL-NH for condensation
and the constant-pressure sedimentation. The quantitative re-
sults of such simulations and plots are almost identical to
those presented. For example, there are no detectable differ-
ences in the green convergence curve in Fig. 1. There are
only very minor differences for the precipitation and energy
flux plots in Figs. 2 and 3. For the bubble plots in the middle
row of Fig. 4, switching to the constant-pressure sedimenta-
tion does not affect the overall structures of the bubbles. It
also does not change our conclusions about computational
feasibility of the simulations with CV-VL-NH. Therefore,
for simulations with condensation based on CV-VL-NH, we
chose to apply a sedimentation routine based on the constant-
volume approach, too, since both obey a time-split integra-
tion concept.

6 Conclusions

Moist physics packages are designed to conserve energy
from phase changes of water forms. A particular form of
conservation rule defines how state variables like tempera-
ture, pressure, and geopotential are updated during physics–
dynamics coupling. We focus on the two most common ap-
proaches, constant pressure and constant volume. Consider-
ing that the current EAM design is based on a time-split inte-
gration of physics and dynamics, our analysis shows that for
the nonhydrostatic model, the constant-volume approach is
consistent with the underlying system of equations, while the
constant-pressure approach is not. The constant-pressure ap-
proach is attractive for global models since if the initial state
is in hydrostatic balance, this balance will be preserved by
the physics update, including in the presence of mass fluxes
such as sedimentation.

Thermodynamic processes which occur at constant pres-
sure are often shown to locally conserve enthalpy, mean-
ing that changes in enthalpy match the external forcing,
and the thermodynamic equation can be written as δh=
fT . This relation holds very generally, including in the hy-
drostatic equations, but it will not conserve energy in the
nonhydrostatic equations. For the nonhydrostatic equations
we derive the constant-pressure energy-conserving update
δh+(π/p−1)δ(R∗T )= fT and show that this is the unique
update which has the additional property that external heat-
ing and phase change will only result in local temperature
changes. In the rising bubble test case used here, the effect of
this correction was negligible.

In order to have the model’s energy budget properly ac-
count for the energy of the precipitation flux, we study ef-

fects of variable, constant, and approximate latent heats dur-
ing phase transitions in physics. We show that only by us-
ing variable latent heats throughout the physics computations
can one expect correct accounting of energy fluxes from pre-
cipitation. To extend our conclusions for more practical ap-
plications like EAM, proper modeling of water energy fluxes
would require updating both the moist physics packages and
the code which applies the physics tendencies to incorporate
unapproximated thermodynamics of water forms.

Appendix A: Uniqueness of the NH update

In this section we give the derivation of the unique non-
hydrostatic δp = 0 update, Eqs. (28)–(29), which will con-
serve column energy and ensure a concept of local heating.
We consider the model presented in Sect. 2 with both phase
changes and external heating fT but no net mass flux or mo-
mentum flux. The phase changes are given by δqi = fqi with
associated heating

∑
iLifqi . We then seek updates for T and

φ that obey the following constraints:

1. constant pressure (δp = 0);

2. conservation of column energy (δE =
∫
fT dπ );

3. local heating, meaning that latent heat and other sources
of external heating will be applied locally, in particu-
lar, in regions with

∑
iLifqi = 0 and fT (π)= 0, then

δT (π)= 0.

In Sect. 2.5, we show that under the δp = 0 constraint, the up-
date given by δh+(π/p−1)δ(R∗T )= fT conserves column
energy. By inspection one can also see that it obeys the local
heating constraint. To show that such an update is unique, we
now show the converse: if one assumes δp = 0, conservation
of the column energy, and local heating, then it must be that
δh+ (π/p− 1)δ(R∗T )= fT .

Given the first two requirements, and using Eq. (20), we
start with conservation of column energy,

δE = δ

πsurf∫
πtop

edπ + δ
(
πtopφtop

)
=

δ

πsurf∫
πtop

(
1
2
u2
+h+ (π/p− 1)R∗T +

∂

∂π
(πφ)

)
dπ

+ δ
(
πtopφtop

)
=

δ

πsurf∫
πtop

(
1
2
u2
+h+ (π/p− 1)R∗T

)
dπ

+ δ (πsurfφsurf)=

∫
fT dp. (A1)

Since we are not considering momentum flux or external
mass flux, we have δu= 0,δπ = 0. Combined with δp = 0,
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we derive
πsurf∫
πtop

δ(c∗pT )+ (π/p− 1)δ(R∗T )dπ =

πsurf∫
πtop

Qdπ

Q=−
∑
i

Lifqi + fT , (A2)

where we have introduced Q to denote the sum of the la-
tent and external forcing terms. This integral relation must
hold for all possible Q. Combined with our third require-
ment (δT = 0 where fqi = 0 and fT = 0) we can show that
this integral relation can only hold for all Q if the inte-
grands in Eq. (A2) are equal. To see this in the discrete
case, consider heating only in a single arbitrary model layer
[π1,π2]. Outside that model layer we have no phase change
(δc∗p = δR

∗
= 0), and also fT = 0; thus δT = 0 by our lo-

cal heating assumption. Thus, outside this region, both in-
tegrands are zero, and the integral relation for energy con-
servation reduces to an integral over the single model layer
[π1,π2],

π2∫
π1

δ(c∗pT )+ (π/p− 1)δ(R∗T )dπ =

π2∫
π1

Qdπ.

The discrete version of this integral is computed as dπ times
the layer midpoint values of the integrand; thus these layer
midpoint values must be equal, and we have that δ(c∗pT )+
(π/p− 1)δ(R∗T )=Q must hold at every model layer. This
equation is equivalent to Eqs. (28)–(29) and the different
forms given in Eq. (30). In the continuum, a similar argu-
ment can be made by choosing a sequence ofQ’s which con-
verge to a Dirac delta function at an arbitrary layer π and by
examining the convergence of Eq. (A2) with respect to this
sequence.

Appendix B: Pressure work in NH constant-pressure
updates

Here we investigate other ways to derive constant-pressure
updates for the nonhydrostatic model and how the form of
the update is connected to the form of the first law of ther-
modynamics.

In Sect. 2.5 we derive update CP-VL-NH by considering
the energy equation

δe =
∂

∂π
(πδφ)+ fT , (B1)

which leads to the internal energy equation δei =−πδe+fT .
In the literature, the first law of thermodynamics is often
presented as δei =−pδα+ fT with quantity pδα defined
as the pressure work, but this version of the thermodynamic
equation does not conserve column energy (21) for constant-
pressure processes. It follows that in update CP-VL-NH the

pressure work is given by quantity πδα = pδα+ (π −p)δα,
not pδα.

One can be motivated to explore a constant-pressure up-

date with the right-hand side given by
∂

∂π
(pδφ)+ fT in

Eq. (B1). Following Sect. 2, the formulations of this update
in terms of e, ei , and h are given by

δe =
∂

∂π
(pδφ)+ fT ,

δei =−pδα+

(
∂p

∂π
− 1

)
δφ+ fT ,

δh+

(
1−

∂p

∂π

)
δφ = fT . (B2)

Therefore, this update has yet another definition of the pres-

sure work, pδα+
(

1−
∂p

∂π

)
δφ. We attribute inconsisten-

cies in the definition of the pressure work in NH constant-
pressure updates as compared to quantity pδα to the fact that
these updates do not obey a time-split approach and thus vi-
olate our thermodynamic equation (Eq. 13).

As noted in Sect. 2, update (B2) cannot be local. Consider
that, in the whole vertical column of the model, there is only
one vertical level where a phase change triggers heat release.
Then the level expands and the geopotential for the levels
above it changes, too. To conserve the total column energy,
the h equation from (B2) needs to be satisfied at those lev-
els, which leads to a temperature tendency at levels without
a phase change. However, if the locality of the update is not
essential for the computational performance, it is to be de-
fined whether update CP-VL-NH is preferable to the update
(B2) or to any other non-local update.

Code and data availability. The code was developed as a part of
the dynamical core (HOMME) code base, which itself is a part
of the E3SM repository and is available under a BSD 3-clause li-
cense. The code, running scripts, and plotting scripts are archived at
https://doi.org/10.5281/zenodo.8336379 (Foucar et al., 2023). For
instructions, navigate to file components/homme/docs-to-save-for-
paper-provinance-july22/HOW-TO-MAKE-PAPER-PLOTS. Plot-
ting and running scripts use NCL and Python.
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