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Abstract. Statistical bias adjustment is commonly applied to
climate models before using their results in impact studies.
However, different methods based on a distributional map-
ping between observational and model data can change the
simulated trends as well as the spatiotemporal and inter-
variable consistency of the model, and are prone to mis-
use if not evaluated thoroughly. Despite the importance of
these fundamental issues, researchers who apply bias adjust-
ment currently do not have the tools at hand to compare dif-
ferent methods or evaluate the results sufficiently to detect
possible distortions. Because of this, widespread practice in
statistical bias adjustment is not aligned with recommenda-
tions from the academic literature. To address the practical
issues impeding this, we introduce ibicus, an open-source
Python package for the implementation of eight different
peer-reviewed and widely used bias adjustment methods in
a common framework and their comprehensive evaluation.
The evaluation framework introduced in ibicus allows the
user to analyse changes to the marginal, spatiotemporal and
inter-variable structure of user-defined climate indices and
distributional properties as well as any alteration of the cli-
mate change trend simulated in the model. Applying ibicus
in a case study over the Mediterranean region using seven
CMIP6 global circulation models, this study finds that the
most appropriate bias adjustment method depends on the
variable and impact studied, and that even methods that aim
to preserve the climate change trend can modify it. These

findings highlight the importance of use-case-specific selec-
tion of the method and the need for a rigorous evaluation of
results when applying statistical bias adjustment.

1 Introduction

Even though climate models have greatly improved in re-
cent decades, simulations of present-day climate using both
global and regional climate models still exhibit biases (Vau-
tard et al., 2021). This means that there are systematic dis-
crepancies between the statistics of the model output and the
statistics of the observational distribution (Maraun, 2016).
These discrepancies between the two distributions become
especially relevant when using the output of climate models
for local impact studies, which often require a focus on spe-
cific threshold metrics such as dry days; for example, when
running hydrological (Hagemann et al., 2011) or crop models
(Galmarini et al., 2019).

To account for and potentially correct these biases, it has
become common practice to post-process climate models us-
ing statistical bias adjustment before using their output for
impact studies. The idea behind statistical bias adjustment
is to calibrate a statistical transfer function between the ob-
served and climate model distributions of a chosen variable.
A variety of statistical bias adjustment methods have been
developed and published in recent years, ranging from sim-
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ple adjustments to the mean to trend-preserving adjustments
by quantile and further multivariate adjustments (Michelan-
geli et al., 2009; Li et al., 2010; Cannon et al., 2015; Vrac
and Friederichs, 2015; Maraun, 2016; Switanek et al., 2017;
Lange, 2019, and more). While this paper focuses primarily
on methods that are applied at each grid cell individually, the
use of multivariate methods is further discussed in Sect. 5.

Despite widespread use both within the scientific commu-
nity (see, for example, IPCC, 2021, 2022) as well as by cli-
mate service providers and practitioners (see, for example,
climate scenarios used by central banks across the world,
NGFS, 2021), bias adjustment is known to suffer from fun-
damental issues. These issues have been highlighted, among
others, by Maraun et al. (2017), who show that bias ad-
justment not only has limited potential to correct misrepre-
sented physical processes in the climate model, but it can
also introduce new artefacts and destroy the spatiotemporal
and inter-variable consistency of the climate model. To avoid
misuse, Maraun et al. (2017) recommend the evaluation of
non-calibrated aspects, the development of process-informed
bias adjustment methods based on an understanding of cli-
mate model errors, and the selection of climate models that
represent the large-scale patterns and feedback relevant to the
impact sufficiently well.

We argue that the remedies mentioned above are not com-
mon practice due to practical issues with statistical bias ad-
justment. As Ehret et al. (2012); Maraun (2016); Casanueva
et al. (2020) highlight, different bias adjustment approaches
are appropriate for different use cases. However, methods
that exist in the academic literature are published either only
as papers, as bias-adjusted datasets (Dumitrescu et al., 2020;
Mishra et al., 2020; Navarro-Racines et al., 2020; Xu et al.,
2021, and more), or as stand-alone packages across multiple
programming languages (Iturbide et al., 2019; Lange, 2021b;
Vrac and Michelangeli, 2021; Cannon, 2023, and more), of-
ten without accompanying evaluation or evaluation frame-
works. This gives users who are not necessarily experts in
these methods limited options to choose the bias adjustment
method most appropriate for their use case and evaluate the
results sufficiently to detect issues.

In this paper, we introduce ibicus, an open-source Python
package for the implementation, comparison and evaluation
of bias adjustment for climate model outputs. The contri-
bution of ibicus is twofold. Firstly, it introduces a unique
unified interface to apply eight different peer-reviewed and
widely used bias adjustment methodologies. The imple-
mented methods include scaled distribution mapping (Swi-
tanek et al., 2017), Cumulative Distribution Function trans-
form (CDFt) (Michelangeli et al., 2009), quantile delta map-
ping (Cannon et al., 2015) and ISIMIP3BASD (Lange,
2019). Further, it develops an evaluation framework for as-
sessing distributional properties and user-defined climate in-
dices (covering, but not limited to, the ETCCDI (Expert
Team on Climate Change Detection and Indices) indices —
Zhang et al., 2011) along not only marginal but also tem-
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poral, spatial and multivariate dimensions. Applying ibicus
in a case study over the Mediterranean region, we find that
the most appropriate method indeed depends on the variable
and impact studied and that the evaluation of spatiotemporal
metrics can identify issues with bias adjustment that would
not be found when only marginal, i.e. calibrated aspects are
evaluated. Further, we find that even methods that aim to pre-
serve the trend of the climate model can modify it, and that
bias adjustment modifies the overall climate model ensemble
spread.

The remainder of this paper is structured as follows. Sec-
tion 2 gives an introduction to statistical bias correction
methodologies, and Sect. 3 presents ibicus, covering both the
details of the different bias adjustment methodologies and
evaluation metrics implemented as well as the software de-
sign of the package. In Sect. 4, we present the results of the
case study, and we draw conclusions in Sect. 5.

2 Background
2.1 Statistical bias adjustment of climate models

Climate model biases can be defined as “systematic differ-
ence between a simulated climate statistic and the corre-
sponding real-world climate statistic” (Maraun, 2016). These
biases mostly stem from the imperfect representation of
physical processes such as orographic drag, convection or
land—atmosphere interactions. This leads to the incorrect rep-
resentation of features such as the mean and variance of ob-
served temperature or the spatial properties of extreme rain-
fall over a certain area.

Bias adjustment methods for climate models have their
origin in methods developed for the post-processing of nu-
merical weather prediction (NWP) models. The rationale is
to calibrate a statistical transfer function between model sim-
ulations and observations over the historical period, which is
then applied to the model simulation for the period of inter-
est, often in the future. However, in contrast to NWP mod-
els, there is no direct correspondence between the time series
of observations and the climate model in historical simula-
tions. This means that typical regression-based approaches
used for NWP are not applicable. Rather, properties of the
statistical distribution of the two variables, such as the mean
or quantiles, are mapped to each other when bias-adjusting
climate models. Furthermore, the magnitude of the biases in
climate models can be much larger, whereas NWP forecasts
are tightly constrained by recent observations.

The most common approaches to the bias adjustment of
climate models include a simple adjustment of the mean (lin-
ear scaling), a mapping of the two entire cumulative distribu-
tion functions (quantile mapping), or more advanced meth-
ods that also aim to preserve the trend projected in the cli-
mate model (such as CDFt or ISIMIP3BASD). Most of these
methods, however, should rather be seen as method families

https://doi.org/10.5194/gmd-17-1249-2024



F. R. Spuler et al.: ibicus v1.0.1

that have some core characteristics — quantile mapping, for
example, always implements a correction in all quantiles —
as well as some interchangeable components, such as their
handling of dry days, that they might share with other meth-
ods. The distinction between core characteristics and inter-
changeable components varies from method to method, as
will be discussed in more detail in the description of the
software package. An alternative approach, often termed the
delta change method, adjusts the historical observations to
incorporate the climate model trend (see, for example, Ols-
son et al., 2009; Willems and Vrac, 2011; Maraun, 2016).
The practice of using bias adjustment methods to also down-
scale the climate model has been criticized in various pub-
lications (von Storch, 1999; Maraun, 2013; Switanek et al.,
2022), so this paper focuses on the bias adjustment of climate
models purely for the purpose of reducing biases at constant
resolution.

The use of bias adjustment methods has become standard
practice in academic climate impact studies and, increas-
ingly, outside of academia (in national assessment reports
or other climate services). For example, the ISIMIP3BASD
methodology (Lange, 2019) is the only bias adjustment
method implemented as a standard pre-processing step in
the Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP) impact modelling framework that is used in the
climate risk scenarios published by central banks (NGFS,
2021). However, applying statistical bias adjustment to cli-
mate models raises a number of important considerations and
issues, which we categorize into fundamental and practical
issues for the purpose of this paper.

2.2 Fundamental issues with statistical bias adjustment
and evaluation

Climate model biases in statistics at the grid-cell level can
stem from larger-scale biases of the model, such as biases
in larger drivers such as El Nifio, the lack of local feedback
to these drivers or the misplacement of storm tracks in a re-
gion. However, univariate statistical bias adjustment meth-
ods are only as capable as their assumptions and input data
and therefore correct only the impact these larger-scale bi-
ases have on the distribution of the variables at grid cell level
(Maraun et al., 2017).

Univariate bias adjustment might also deteriorate the spa-
tial, temporal or multivariate structure of the climate model.
This is particularly problematic for compound events which
have been argued to be of particularly high societal rele-
vance due to their elevated impacts and neglect in standard
extreme event evaluation approaches (Zscheischler et al.,
2018, 2020). As this issue will not be detected in location-
wise cross-validation approaches, it is necessary to evaluate
bias-adjusted data with a particular focus on spatial, temporal
and multi-variable components (Maraun et al., 2017; Maraun
and Widmann, 2018a).
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Furthermore, bias adjustment can modify the climate
change trends simulated by the model, in particular those of
threshold-sensitive climate indices such as dry days (Dosio,
2016; Casanueva et al., 2020). This holds in general for non-
trend-preserving methods, but can also be the case for any
trend-preserving methods such as ISIMIP3BASD. Reasons
for the modification of the trend by “trend-preserving” meth-
ods can be traced to the underlying statistical method and as-
sumptions, such as the specific treatment of values between a
variable bound and another threshold, or parametric and non-
parametric distribution fits used in different stages of the bias
adjustment.

To justify any kind of trend modification by the bias ad-
justment method, it is necessary to make an assumption about
how present-day bias relates to biases in the future period
(Christensen et al., 2008). This can be based on the assump-
tion that climate model biases are stationary in time (Go-
biet et al., 2015): for example, based on this assumption,
Ivanov et al. (2018) developed a theoretical model to jus-
tify future trend modifications by the bias adjustment method
based on present-day biases. However, Chen et al. (2015);
Hui et al. (2019) show that while temperature biases can
be approximated as stationary, precipitation biases cannot.
Similarly, Van de Velde et al. (2022) show a clear impact
of non-stationarity on bias adjustment, in particular for pre-
cipitation. Trend-preserving bias adjustment methods, on the
other hand, assume, at least to some degree, that the raw cli-
mate model trend constitutes our best available knowledge
for subsequent impact studies. In line with this, Maraun et al.
(2017) argue that the modification of the trend of a climate
model based purely on statistical reasoning is not defendable
and should rather be based on physical process understand-
ing and reasoning about the large-scale drivers involved.

Some options are available to cope with these fundamental
issues in impact studies. The first is to discard climate models
that misrepresent large-scale circulation relevant to the prob-
lem at hand. The second is to conduct a careful evaluation
of multivariate aspects of the bias-adjusted climate model
to identify potential artefacts and discard methods that in-
troduce these before proceeding with the impact study. The
third is to develop process-informed multivariate bias adjust-
ment methods that, for example, include large-scale covari-
ates such as weather patterns (Maraun et al., 2017; Verfail-
lie et al., 2017; Manzanas and Gutiérrez, 2019). These more
elaborate methods require even more careful case-by-case
model selection and evaluation.

2.3 Practical issues with bias adjustment and the
availability of open-source software

Attempts to address these fundamental issues and improve
the application of bias adjustment are impeded by a number
of practical issues.

The first practical issue is that the comparison of different
bias adjustment methods and their adaptation to a specific ap-
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plication is not easily achieved by a user. This is because the
code to implement different methodologies is published, if at
all, across different software packages and languages, imped-
ing interoperability. Users also have the option of download-
ing already bias-adjusted datasets, which improves ease of
access but does not allow for any custom adjustments (Dobor
et al., 2015; Famien et al., 2018; Dumitrescu et al., 2020; Xu
et al., 2021). The second practical issue is that available soft-
ware packages are not accompanied by evaluation methods
beyond marginal aspects. As the evaluation of bias adjust-
ment is not straightforward, this makes it difficult for a user
to detect artefacts or identify improper results by assessing
multivariate properties of the climate model, rendering bias
adjustment prone to misuse (Maraun et al., 2017).

These practical issues jeopardize the current implementa-
tion of statistical bias adjustment. Addressing these issues
does not solve the more fundamental issues but can improve
common practice and enhance transparency.

An example of good practice is the MIdAS package, which
introduces a new bias adjustment method that is compared to
other methods in Berg et al. (2022). However, even though
the package is, in principle, extendable, other methods are
not implemented in practice and an adjustable evaluation
framework has not been developed.

3 ibicus - an open-source software package for bias
adjustment

To address the practical issues outlined in the previous sec-
tion, we introduce ibicus, an open-source Python package
for the bias adjustment of climate models and evaluation
thereof. ibicus introduces a unified, modular software ar-
chitecture within which eight state-of-the-art peer-reviewed
and widely used bias-adjustment methodologies are imple-
mented. This enables researchers to apply different methods
through a common interface and to modify components of
the methods, such as the treatment of dry days, based on the
region and impact of interest. The code implementation of
each methodology is based on the cited academic publication
as well as available accompanying code that was re-written
and modularized to fit the developed interface. Consistency
with the original implementation was ensured through rigor-
ous testing and correspondence with the authors of the differ-
ent methodologies. The package provides an extensive evalu-
ation framework covering spatial, temporal and multivariate
aspects. As part of this, we develop a generalized threshold
metric class that allows the user to evaluate frequently used
climate metrics, such as frost days or dry days, as well as to
define their own threshold metrics targeted to the specific im-
pact study. The spatiotemporal evaluation of threshold met-
rics enables the user to detect artefacts and evaluate com-
pound events before and after bias adjustment. ibicus is de-
signed to be flexible and easy to use, facilitating both the “off
the shelf” use of methods as well as their customization and
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allowing its use in notebook environments all the way up to
integration with high-performance computing (HPC) pack-
ages such as Dask (Rocklin, 2015). This section provides an
overview of the key features of ibicus. A more complete user
guide and tutorials can be found on the documentation page
of the package.

3.1 Data input

Bias adjustment requires observational data and climate
model simulations during the same historical period and cli-
mate model simulation for the (future) period of interest. ibi-
cus operates on a numerical level, taking three-dimensional
(time, latitude, longitude) NumPy arrays as input and return-
ing arrays of the same shape and type. This choice was made
to ensure interoperability with different geoscientific com-
puting packages such as Xarray (Hoyer and Hamman, 2017)
or Iris (Met Office, 2010) as well as operation in different
computing environments and integration with Dask (Rock-
lin, 2015).

3.2 Bias adjustment

ibicus represents each bias adjustment methodology as a
class which inherits generic functionalities from a base “de-
biaser” class, such as the common initialization interface and
a function applying the debiaser in parallel over a grid of lo-
cations. The base debiaser class makes the package easily ex-
tendable, as a new bias adjustment methodology can inherit
these generic functionalities and requires only the specifica-
tion of a function which applies the methodology for a given
location (“‘apply_location™).

Each debiaser object is initialized separately for each vari-
able and requires several class parameters. These are spe-
cific to the bias adjustment methodology and include pa-
rameters such as the distribution used for a parametric fit
or the type of trend preservation applied. For a number
of methodology-variable combinations, default settings ex-
ist that are described in the documentation. Default settings
are labelled “experimental” if they have not been published
in the peer-reviewed literature but are proposed by the pack-
age authors after extensive evaluation. It is possible to, and
the user is encouraged to, modify the parameters even when
default settings exist to adapt the method to a given use case.
For example, if precipitation extremes are of special interest,
the user could choose to modify the parametric fit for this
variable, as the gamma distribution — an often-used default
— might underestimate precipitation extremes (Katz et al.,
2002). After initialization, each debiaser object has an “ap-
ply” method to apply the bias adjustment to climate model
data. This takes a three-dimensional NumPy array of obser-
vations as well as historical and future climate model simu-
lations as input, together with optional date information for
running windows. The apply function can be run in parallel
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to speed up execution and integrates with Dask for deploy-
ment in HPC environments.

Table Al provides an overview of the methodologies cur-
rently implemented in ibicus; these were chosen to cover
some of the most widely used bias adjustment methods
in current practice. These methods are based on different
assumptions, making them suitable for different applica-
tions. For example, ISIMIP3BASD is a parametric trend-
preserving quantile mapping which might be appropriate
if the variable approximately follows a known parametric
structure and the climate change trend in all quantiles is
judged to be realistic. If these assumptions are not valid,
a non-parametric method such as CDFt or a non-trend-
preserving method such as quantile mapping might be more
appropriate. Alternatively, if changes in extremes are of spe-
cial interest, a parametric method based on extreme value
theory might be adequate. As noted in the “Background” sec-
tion, different methods should rather be viewed as method
families that have core characteristics and interchangeable
components in their ibicus implementation. An example of
this is the treatment of dry days in different methods: while
the treatment of dry days is entangled in the method design
for SDM, CDFt and ISIMIP and cannot be changed by the
user, QM methods allow for different treatments of dry days
depending on the use case. Table 1 highlights further method-
ological considerations differentiating different method fam-
ilies. A detailed description of each individual component
of each method is beyond the scope of this paper but can be
found in the detailed ibicus software documentation provided
online.

3.3 Evaluation

Physical consistency in space, time or between variables is
not ensured when using univariate bias adjustment methods.
Furthermore, the trend of the climate model might be modi-
fied, and the bias of some statistics or impact metrics might
be increased through some bias adjustment methods — even
if it is removed in certain quantiles. The ibicus evaluation
framework offers a collection of tools to identify these issues
and compare the performance of different bias adjustment
methods for variables of interest, building on previous ef-
forts such as the VALUE evaluation framework for statistical
downscaling (Maraun et al., 2019).

3.3.1 Metrics and design

The evaluation framework consists of two components:
(1) the evaluation of bias adjustment over a validation/test-
ing period that enables a comparison of the bias-adjusted
model with observations, and (2) the analysis of trend preser-
vation between the validation and the future or between any
two future periods. The latter component is necessary as bias
adjustment methods can modify the climate change trend,
even when using methods that are designed to preserve it,
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as demonstrated by the case study in Sect. 4. In the absence
of evidence to the contrary, trend-preserving methods should
be preferred, as statistical bias adjustment methods usually
do not have an underlying physical reasoning for modifying
a particular trend.

In both components of the evaluation framework, there are
two kinds of metrics that can be evaluated using ibicus: sta-
tistical properties and threshold metrics. Statistical proper-
ties allow the user to compare properties of the observational
distribution and the climate model distribution — such as the
mean or different quantiles — before and after bias adjust-
ment. Threshold-based climate indicators are often of special
interest for climate impact studies — for example, frost days
by time of year could be of interest for agricultural or biodi-
versity impacts — and where the success of bias adjustment
methods is particularly desirable (Dosio et al., 2012; Dosio,
2016). A number of threshold metrics are implemented by
default in the package. A new threshold metric can be spec-
ified by the user along the dimensions in Table 2. Accumu-
lations such as monthly total precipitation can also be esti-
mated. Using these definitions, the evaluation module cov-
ers but is not limited to the indices developed by the ETC-
CDI (Zhang et al., 2011), which are used in many application
studies.

Since location-wise evaluation is not sufficient to decide
whether a bias adjustment method is fit for the use case, the
module offers the functionality to evaluate location-wise, as
well as spatiotemporal and multivariate metrics both in terms
of threshold metrics and statistical properties. Table 3 gives
an overview of the implemented methods.

Finally, different bias adjustment methods rely on dif-
ferent assumptions, such as that certain parametric distri-
butions provide suitable fits. The evaluation framework in-
cludes functions to assess the fits of parametric distributions
and the seasonality of the variable to help the user make de-
cisions on how to customize the bias adjustment method to
their application.

4 Implementation of ibicus in the Mediterranean
region

We demonstrate the comparison and evaluation of differ-
ent bias adjustment methods by applying ibicus over the
Mediterranean. Rather than conducting a comprehensive
evaluation for a single use case, our aim is to highlight the
use-case dependency of the method choice more broadly and
hence the necessity of targeted evaluation beyond marginal
aspects. We, therefore, choose to limit this case study to the
bias adjustment of global climate models, even though spe-
cific impact studies often, but not always (IPCC, 2021), use
higher-resolution models over the target region.

Geosci. Model Dev., 17, 1249-1269, 2024
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Table 1. Distinctions between different bias adjustment methods and important considerations motivating the choice. For definitions of the
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abbreviations used, see Tables Al and A2.

Statistic/quantiles

Methods for bias adjustment range from simple adjustments to the mean (linear scaling — LS)
or mean and variance (LS) to adjustments to all quantiles of the distribution.

Parametric or non-parametric
methods

Non-parametric methods are restricted to the range of observed/modelled data in their “histori-
cal period” and might not handle extremes well, while parametric methods introduce additional
assumptions. ibicus allows users to implement all methods non-parametrically by modifying
method attributes. Based on the default arguments, QM, QDM, ECDFM and SDM are para-
metric methods, while CDFt is non-parametric and ISIMIP3BASD is semi-parametric. Each
method using a parametric distribution can be exchanged with a different one.

Time window

Some methods include a running window to calculate different transfer functions depending
on seasonality (QDM, ISIMIP3BASD and CDFt are applied by month), whilst others do not
account for seasonality explicitly.

Trend preservation and station-
arity assumption

Methods such as quantile mapping can modify the trend in the climate model. This might be
sensible if the trends are taken to be unrealistic and related to present-day biases, as discussed
in the “Background” section (Boberg and Christensen, 2012; Gobiet et al., 2015; Doblas-Reyes
et al., 2021). However, in other cases, the trend might be considered credible and should be
preserved. Methods can be designed to preserve trends in the mean (DC, LS, dQM), mean and
variance (dQM), or all quantiles (CDFt, ECDFM, QDM, ISIMIP3BASD, SDM) — although,
even then, they are not guaranteed to do so. Often, additive trends (such as for temperature)
are distinguished from multiplicative trends (such as for precipitation, where trends in intensity
occur), but not all methods share this distinction. The question of trend preservation is related
to the assumption made that the bias is “stationary”, as mentioned in the “Background” section.
This assumption is explicitly made by quantile mapping. SDM explicitly relaxes the assump-
tion, while CDFt and QDM account for it by including a running window over the future period
in addition to one over the year.

Treatment of dry days and
extremes

Different methods have different ways of handling certain aspects of the distribution, such as
extreme values or dry days in the case of precipitation. For extremes, some methods use an
extrapolation based on a parametric distribution, which can be modified by the user should (for
example) a mapping based on extreme value theory be required. For dry days, the ISIMIP, SDM
and CDFt methods provide explicit handling that might be appropriate in some situations but
not in others. QDM treats the mapping of dry days as a censoring problem and adjusts them
together with the body of the distribution, whilst for methods like QM and ECDFM, the user
has the choice of different treatment methods.

Table 2. Attributes of the threshold metrics class.

Threshold attribute ~ Description

Name Name of the threshold

Value(s) Values that define the threshold (to compare the climate model or observations against)

Description Brief description of the threshold

Type Whether values shall fall above, below, outside or between threshold(s)

Scope Whether the threshold(s) is (are) defined daily, monthly, seasonally or overall (different for each time category, or not)
Locality Whether the threshold is defined location-wise or globally (different at each location, or not)

4.1 Data and methods

We consider the Mediterranean region between 35-45°N
latitude and from 18°W to 45°E longitude and apply
bias adjustment to seven Coupled Model Intercomparison
Project Phase 6 (CMIP6) models selected based on their
use in previous studies in the Mediterranean region (Zappa
and Shepherd, 2017; Babaousmail et al., 2022). The cho-
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sen models include ACCESS-CM2, CMCC-ESM2, IPSL-
CM6A-LR, MIROC6, MPI-ESM1-2-LR, MRI-ESM2-0 and
NORESM2-MM. Table B1 in the Appendix provides more
details on these models. We use the historical runs as well
as the SSP5-8.5 experiments. We compare four widely used
bias adjustment methods that are implemented in ibicus:
ISIMIP3BASD (Lange, 2019) applied amongst others by
(Jagermeyr et al. (2021); Pokhrel et al. (2021) as well as im-

https://doi.org/10.5194/gmd-17-1249-2024



F. R. Spuler et al.: ibicus v1.0.1

Table 3. Overview of evaluation categories implemented in ibicus. CDF is cumulative distribution function.

Statistical properties

Threshold metrics

Location-wise

Calculation: location-wise bias (absolute and percentage) in
different distributional properties (quantile, mean) of the cli-
mate model before and after applying different bias adjustment
methods.

Visualization: boxplot across locations and spatial plot. Plot-
ting functions for visual inspection of observed and climate

Calculation: location-wise bias (absolute in days/year and per-
centage) in the frequency of singular threshold exceedance
events in the climate model before and after bias adjustment
methods.

Visualization: boxplot across locations and spatial plot.
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model distributions (histogram and CDF).

Temporal -

Calculation: distribution of spell lengths of threshold ex-
ceedances (for example, dry spell length).
Visualization: plot of empirical CDF.

Spatial

RMSE of spatial correlation matrices at each location.

Calculation: distribution of spatial cluster size of threshold ex-
ceedances (for example, spatial size of heatwaves).
Visualization: plot of empirical CDF.

Spatiotemporal -

Calculation: distribution of spatiotemporal cluster size of
threshold exceedances (for example, spatiotemporal extent of
heatwaves).

Visualization: plot of empirical CDF.

Multivariate
each location.
Visualization: spatial plot.

Calculation: correlation between chosen pair of variables at

Calculation: conditional probability of threshold co-occurrence
(such as dry and hot days) in observations and the climate model
before and after bias adjustment.

Visualization: boxplot.

Trend Calculation: location-wise bias in the multiplicative or additive trend of a threshold metric or distributional property (mean,
quantiles) — percentage change between climate model before and after bias adjustment.

Visualization: boxplot across locations and spatial plot.

pact models run under the ISIMIP framework); scaled distri-
bution mapping (Switanek et al., 2017, applied amongst oth-
ers as a pre-processing step to assess changes in high-impact
weather events over the UK in Hanlon et al., 2021); and quan-
tile mapping (applied in impact studies such as Babaousmail
et al., 2022) and linear scaling, which are used as reference
methods. These four methods are applied to daily total pre-
cipitation (pr) and daily minimum near-surface air tempera-
ture (tasmin), chosen to cover two different types of variables
(bounded vs. unbounded, different distributions, etc.) that are
both highly relevant for many impact studies. The bias ad-
justment methods are used with their ibicus default settings
for both variables (for more details, see Table Al and the
software documentation). This means that the ISIMIP and
SDM methods provide an explicit adjustment of dry day fre-
quencies, whilst for QM they are treated as censored and the
method based on Cannon et al. (2015) is applied; LS provides
no explicit adjustment, scaling all values. We use ERAS re-
analysis data (Hersbach et al., 2020) as an observational ref-
erence; these are conservatively regridded to match the res-
olution of the selected climate models. The historical data
ranges from 1 January 1959 to 31 December 2005, with the
data from 1 January 1959 to 31 December 1989 serving as
the historical/reference period and used as a training dataset
and the subsequent period (1 January 1990 to 31 Decem-
ber 2005) used for validation purposes. Bias adjustment is
applied to the validation period as well as the future period:
1 January 2080 to 31 December 2100.
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We demonstrate four bespoke impact metrics that are re-
lated to daily minimum temperature and daily total precipi-
tation and defined using the ibicus threshold metrics class:

— tasmin < 10°C (283.15 K), which was chosen based on
Droulia and Charalampopoulos (2022), who estimate
climate impacts on viniculture, noting that grapevines
are in their optimal photosynthesis zone above > 10 °C.

— tasmin greater than the seasonal 95th percentile of the
daily minimum temperature in each grid cell during the
historical period (1959-1989). This can be an indicator
of the impacts of heatwaves (Raei et al., 2018).

— Dry days (daily precipitation < I mm) and very wet
days (daily precipitation > 10 mm) as two ETCCDI in-
dices.

4.2 Results

4.2.1 Evaluation of the location-wise bias in the
validation period

Figures 1-3 show the marginal bias of the climate model with
respect to observations over the validation period before and
after bias adjustment across locations in the study area.

We find that most methods reduce but do not eliminate
the marginal bias in the mean (shown for the ACCESS-
CM2 model and minimum daily temperature in Fig. 1), while
the range of reduction is varied: ISIMIP and linear scaling
achieve more significant reductions in the bias than quan-
tile mapping or scaled distribution mapping. This result also

Geosci. Model Dev., 17, 1249-1269, 2024
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Figure 1. Distribution across locations of the marginal minimum daily temperature bias of the ACCESS-CM2 climate model before bias ad-
justment (raw) and after applying the ISIMIP3BASD bias adjustment method (ISIMIP), quantile mapping (QM), scaled distribution mapping
(SDM) and linear scaling (LS). (a) The distribution of the absolute bias (in K) in the mean and 0.05 and 0.95 quantiles. (b) The distribution
of the absolute bias in the threshold metrics: minimum daily temperature below 10 °C and minimum daily temperature above the 95th sea-
sonal percentile defined for this grid cell, both in units of d yr—!. Bias (location-wise) is defined as the difference between the metric for the
(bias adjustment) climate model in the validation period and the metric for the observational data in the validation period (in each grid cell,
metrics were calculated in the temporal dimension). This figure shows the standard ibicus output distribution of location-wise bias for a set
of specified statistics and threshold metrics. The boxplot shows the median and the first and third quartiles as a box, the outer range (defined
as 01—1.5 x IQR to Q3 + 1.5 x IQR) as whiskers, and any points beyond this as diamonds.

Absolute bias in [days / year]

MPI-ESM1-2-LR (b) MIROC6 (c) IPSL-CM6A-LR
100 [} 100 ¥ 100
[] ) . raw
¢ z T4 QM
75 Y ’ ‘ 75 75 . SIMIP
: s = SDM
¢ $ ¢ = LS
50 ~ 50 50 4
. H .
25 I 25 25 l
0 ¢ -+ %— - o+f8-- - 0+= %— +
8 ¢ 2 8
@ @ @
-25 -25 ‘ -25
1 ¢
¢
L ¢
—s0{ * ¢ N -50 01 § ¢
¢ 0
: ¢
=75 1 =75 =75 ¢ "
: '
-100 ¢ ¢ -100 -100 4
¢
Dry éays Very wét days Minimum témperature Dry éays Very wét days Minimum telmperature Dry éays Very wét days Minimum telmperature
(< 1 mm/day) (> 10 mm/day) ° (< 1 mm/day) (> 10 mm/day) °! (< 1 mm/day) (> 10 mm/day) <10°C

Metric Metric Metric

Figure 2. Distribution of marginal bias across locations before bias adjustment (raw) and after applying the ISIMIP3BASD bias adjustment
method (ISIMIP), quantile mapping (QM), scaled distribution mapping (SDM) and linear scaling (LS). Three climate models (MPI-ESM1-
2-LR, MIROC6 and IPSL-CM6A-LR) and three threshold metrics — minimum daily temperature below 10 °C, dry days (defined as a total
precipitation below 1 mm) and very wet days (defined as a total precipitation above 10 mm) — are evaluated. The bias in minimum temper-
ature < 10 °C of the climate models after applying quantile mapping is particularly large, exceeding 300 %. For improved readability of the
plot, we have omitted this bias adjustment—metric combination here, but we show the full plot in the Appendix.
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Figure 3. Spatial plot of marginal absolute bias in very wet days (defined as total precipitation above 10 mm), given in dyr_l. Results
are shown for seven climate models (ACCESS-CM2, CMCC-ESM2, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-LR, MRI-ESM2-0 and
NORESM2-MM) before bias adjustment (raw) and after applying the ISIMIP3BASD bias adjustment method (ISIMIP), quantile mapping

(QM), scaled distribution mapping (SDM) and linear scaling (LS).

holds for extremal quantiles and threshold metrics, and we
even observe a slight inflation of the raw climate model bias
observed in certain instances for both quantile mapping and
scaled distribution mapping.

Furthermore, in Fig. 2 we see that that the success of a
bias adjustment method depends on the use case, meaning
the variable, metric and climate model studied. While scaled
distribution mapping somewhat reduces the median bias in
dry days for two of the climate models, it inflates the bias
in dry days for the third. On the other hand, the method re-
duces the bias in the minimum temperature threshold met-
ric for the IPSL-CM6A-LR model but inflates the bias in
this metric for the MIROC6 model. ISIMIP3BASD, on the
other hand, reduces the bias in dry days for the MPI-ESM1-
2-LR model but increases it for the MIROC6 model. Quantile
mapping performs reasonably well for the wet-day metric but
quite badly for the dry-day and minimum temperature met-
rics. These differences in the performance of bias adjustment
methods can be due to the assumptions (a parametric distri-
bution fit might not replicate the correct tail behaviour) and
the method (whether they are tailored to a specific variable
or whether event frequency adjustment is implemented) ap-
plied as well as the physical source of the bias in the climate
model.

When investigating the spatial distribution of the bias
(Fig. 3), we find that certain methods can homogenize the
spatial pattern of the bias across climate models. For exam-
ple, linear scaling (LS) shifts climate models to an overesti-
mation of very wet days in similar regions, even for models
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like NORESM2-MM which previously underestimated these
days. In other cases, methods can perform well in certain re-
gions but not in others. Quantile mapping (QM) seems to
perform reasonably well over the Iberian peninsula but has
difficulties over Italy, especially for MPI-ESM1-2-LR, where
a strong underestimation is shifted into a strong overestima-
tion. This highlights the importance of investigating the spa-
tial distribution of the marginal bias, as this varies across the
different regions in the Mediterranean.

4.2.2 Evaluation of the bias in spatiotemporal
characteristics in the validation period

Moving on to the investigation of spatiotemporal characteris-
tics, Figs. 4 and 5 show the cumulative distributions of spell
length and spatial extent for the dry-day and minimum tem-
perature heatwave days metrics, respectively. The plots de-
pict the standard visualization output that the ibicus software
package produces for this type of evaluation.

The spatiotemporal characteristics investigated exhibit bi-
ases between the reanalysis data and raw climate model out-
put. For example, it is ~ 1.6 times more likely for a dry spell
to exceed 20d in the raw climate model IPSL-CM6A-LR
compared to the reanalysis data.

We find that the bias in these spatiotemporal metrics can
be reduced with some bias adjustment methods: for example,
ISIMIP3BASD reduces the spell length bias for dry days, and
scaled distribution mapping reduces the bias in both spell
length and spatial extent for minimum temperature heat-

Geosci. Model Dev., 17, 1249-1269, 2024
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Figure 4. Cumulative distribution functions of spell length (a) and spatial extent of dry days (b). The spell length is defined as the length
of a temporal sequence longer than 3 d during which a single grid cell exceeds the specified threshold. The spatial extent is defined as the
fraction of cells exceeding the specified threshold, given that a single cell exceeds the threshold. These plots show the cumulative distribution
functions of individual spell lengths and spatial extents at single points in time across the entire Mediterranean region in the observational
data (ERAS) and in the climate model IPSL-CM6A-LR before bias adjustment (raw) and after applying the ISIMIP3BASD bias adjustment
method (ISIMIP), quantile mapping (QM), scaled distribution mapping (SDM) and linear scaling (LS).
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Figure 5. As Fig. 4, but investigating the threshold of minimum daily temperature exceeding its 95th seasonal percentile defined per grid cell

for the climate model ACCESS-CM2.

wave days. However, this result is again inconsistent across
methods and variables, and different bias adjustment meth-
ods frequently appear to increase the spatiotemporal bias:
scaled distribution mapping increases the bias in spell length
and spatial extent of dry days, as do quantile mapping and
ISIMIP3BASD when investigating the spatial extent.

Geosci. Model Dev., 17, 1249-1269, 2024

These results are to some extent expected, as the selected
methods are univariate methods, meaning they are calibrated
location-wise and do not incorporate spatiotemporal infor-
mation. However, the results highlight the need to evaluate
how bias adjustment changes spatiotemporal characteristics,
as these are often implicitly used in downstream impact stud-
ies.
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F. R. Spuler et al.: ibicus v1.0.1

4.2.3 Evaluation of the climate change trend before
and after bias adjustment

As mentioned in the “Background” section, the modifica-
tion of the climate change signal through bias adjustment has
been reported and discussed in various publications and has
stimulated the development of methods that aim to preserve
the climate signal.

In the analysis of the dry day trend, shown in Fig. 6,
we find that a non-trend-preserving method such as quan-
tile mapping significantly alters the climate change trend.
The axes in Fig. 6 were limited to =100 % for the sake of
readability; however, a limited number of data points show
even larger biases after applying quantile mapping. The un-
restricted version of this plot can be found in the Appendix.

We also find that methods that aim to preserve the trend,
such as ISIMIP3BASD or scaled distribution mapping, mod-
ify it by up to 100 % at some locations. For the ISIMIP
method, this is presumably due to the fact that the “future
observations” through which the trend preservation is imple-
mented are mapped using empirical CDFs, whereas the bias
adjustment itself is parametric. It has been argued that the
normal distribution for temperature or the gamma distribu-
tion for precipitation might not adequately capture the tail
behaviour of these variables (Katz et al., 2002; Nogaj et al.,
2006; Sippel et al., 2015; Naveau et al., 2016). This is partic-
ularly relevant when investigating the trends of high or low
quantiles as well as threshold metrics that do not sit at the
centre of the distribution. Additionally, for bounded variables
such as precipitation, the frequency beyond two outer thresh-
olds is adjusted separately in the ISIMIP3BASD methodol-
ogy, which could lead to the change in the dry day trend
shown in Fig. 6.

We find a much smaller change in the trend of the mean
minimum daily temperature across methods, shown in Fig. 7.
In fact, linear scaling barely modifies the trend at all, which
is to be expected since the method only subtracts the mean
bias from the future and the validation period, based on the
strong assumption that the bias affects the mean only and is
stationary over time.

4.2.4 Evaluation of the variation in the climate model
ensemble before and after bias adjustment

Figure 8 shows that the climate model ensemble spread of
the trend in mean seasonal precipitation is modified in dif-
ferent ways by different bias adjustment methods, which is
in line with previous findings in the literature (Maraun and
Widmann, 2018b; Lafferty and Sriver, 2023). Interestingly,
the variation (often interpreted as the uncertainty range) is
not necessarily narrowed, as has been postulated by some
authors (Ehret et al., 2012); it is even extended and shifted
in some cases. From this finding, it follows that the range
of uncertainty and possible worst-case scenarios analysed in
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subsequent impact studies might depend on the bias adjust-
ment method used to pre-process the climate model.

The interpretation of this shift in uncertainty is related
to the previously discussed questions on trend preserva-
tion, namely whether the change in the climate model trend
through a statistical bias adjustment method is justified or
not. This issue was mentioned by Maraun and Widmann
(2018b), who discussed that a minimum requirement to jus-
tify a change in the uncertainty spread through bias adjust-
ment should be a critical evaluation of the validity of the re-
sults and the assumptions of the underlying statistical model.
Given the finding in the previous section, namely that the
best bias adjustment method depends on the variable, region
and impact variable studied, it follows that indiscriminately
applying a bias adjustment method across regions and vari-
ables without evaluation can shift the spread of the results of
subsequent impact studies in an unjustified manner.

5 Conclusions

Statistical bias adjustment is a useful method when work-
ing with climate models to understand future climate im-
pacts. However, there are fundamental as well as practical
issues in how bias adjustment is currently used both in aca-
demic research and by practitioners in the private and gov-
ernment sector. One practical issue impeding good practice
is the availability of open-source software to compare dif-
ferent bias adjustment methods and evaluate non-calibrated
aspects.

This paper demonstrates that the success of a bias adjust-
ment method depends on the variable and impact studied, and
that bias adjustment should therefore be evaluated for and
adapted to the region and use case at hand. Depending on the
climate model and variable of interest, different methods can
reduce or increase biases by a large range and can impair
spatiotemporal coherence or leave it relatively unaffected.
This is non-systematic across bias adjustment methods, cli-
mate models and variables/metrics of interest. Furthermore,
we find that even trend-preserving methods can modify the
trend in statistical properties and climate indices, and each
bias adjustment method changes the climate model ensem-
ble spread slightly differently.

With the Python package ibicus, we aim to provide a re-
source to address some of these practical issues. For one, the
evaluation framework allows users to evaluate non-calibrated
aspects and identify potential issues in bias-adjusted data.
Second, the common interface developed for different bias
adjustment methods allows for a relatively easy comparison
between different methods and the selection of the method
most appropriate for the use case. Finally, the ibicus soft-
ware implementation modularizes certain components of dif-
ferent methods, such as the treatment of dry days. This allows
the user to examine the impact of detailed methodological
choices for their application and select the most appropriate

Geosci. Model Dev., 17, 1249-1269, 2024
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Figure 6. Distribution of location-wise change in the additive climate trend in dry days introduced through the bias adjustment method, as
computed by computing the additive trend between the validation period and the future period in both the raw and the bias-adjusted models
and taking the percentage difference between the two trends. The magnitude of the raw projected change in dry days depends on the climate
model and, across different locations, lies between 10 fewer and 30 more dry days on average per year.
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Figure 7. As Fig. 6, but for the trend in mean minimum daily temperature. The magnitude of the raw projected change in mean minimum
daily temperature again depends on the climate model and, across different locations, lies between 2—5 K.

option, which has so far not been possible due to the dis-
persed implementations of different methodologies.

So far, the package has implemented univariate bias ad-
justment methods, meaning that the bias adjustment is cali-
brated and applied to each grid point separately. Multivari-
ate bias adjustment methods that correct spatial, temporal
or inter-variable structures next to marginal aspects have
been published by, amongst others, Piani and Haerter (2012);
Vrac and Friederichs (2015); Sippel et al. (2016); Cannon
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(2016, 2018); Vrac (2018); Francgois et al. (2020). We have
so far chosen to focus on univariate methods, as the need for
careful model selection and evaluation becomes even more
pertinent when using multivariate methods (Maraun et al.,
2017; Francois et al., 2020; Van de Velde et al., 2022). Our
aim was therefore to first establish a robust workflow and
evaluation for widely used univariate methods, thereby ad-
dressing one of the key practical issues impeding more rigor-
ous evaluation.
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Figure 8. Ensemble spread of seven selected climate models
(ACCESS-CM2, CMCC-ESM2, IPSL-CM6A-LR, MIROC6, MPI-
ESM1-2-LR, MRI-ESM2-0 and NORESM2-MM), showing the
trend in average seasonal precipitation between the validation and
future period without applying bias adjustment (raw) and after ap-
plying ISIMIP3BASD, quantile mapping and scaled distribution
mapping.

The package remains under active development and main-
tenance, and we would like to invite collaboration from the
community to extend and further develop its functionalities.
Aside from adding further methods, the modularity of the
different methods can be further improved, enabling even
more flexible use of different methods by the user. In addi-
tion, a systematic review of different available software tools
and methods for bias adjustment could be of use to the com-
munity. Furthermore, the implications of bias adjustment for
the outcomes of impact modelling studies could be examined
based on the evaluation and comparison of different methods
within the ibicus package. The ibicus evaluation can also be
used as a starting point to further examine physical sources
of climate model biases, which can inform improvements
in the representation of physical processes within the cli-
mate model itself. Also, both the choice of validation period
and the choice of observational dataset and the uncertainty
therein have been shown to affect the results of bias adjust-
ment (Casanueva et al., 2020). While this is not explicitly
explored in this publication or package, the evaluation tools
available through ibicus enable the investigation of these is-
sues.

Finally, the results presented in this paper raise a number
of important broader questions regarding the use and future
development of bias adjustment methods. The finding that
different bias adjustment methods lead to very different re-
sults raises the question of whether bias adjustment should
be seen as an additional source of uncertainty, as suggested
by Lafferty and Sriver (2023). However, the paper also shows
that different methods perform better or worse depending on
the region and variable studied, which constitutes a clear rea-
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son to evaluate and select the bias adjustment targeted to
the use case rather than viewing different methods as an-
other source of uncertainty. This then raises questions about
whether choosing a “standard” bias adjustment method to
render results comparable is valid and useful in many ap-
plications. These questions can serve as a starting point to
re-consider both the application of bias adjustment as well
as to initiate the future development of methods suitable to
address the different fundamental issues facing bias adjust-
ment. Existing research avenues include approaches to post-
process the entire climate model ensemble (Chandler, 2013;
Rougier et al., 2013; Sansom et al., 2021) or conditioning
the bias adjustment on specific relevant large-scale processes
(Maraun et al., 2017; Verfaillie et al., 2017; Manzanas and
Gutiérrez, 2019).

Geosci. Model Dev., 17, 1249-1269, 2024



1262

Appendix A

Table A1l. Bias adjustment methods currently implemented in ibicus, with variables covered and details of their functioning. Here x refers
to observations x,ps or climate model values during the historical/reference period x¢m, pist or future period xcp, fy, and F refers to a
cumulative distribution function (CDF) fitted either parametrically or non-parametrically. Covered variables indicate variables for which
the bias adjustment method currently has default settings, and climatic variables with an * symbol are variables with experimental default
settings. Those are settings that were not published in the peer-reviewed literature but were found to give good performance. The references

F. R. Spuler et al.: ibicus v1.0.1

given are the references used for the implementation of the method in the ibicus package.

Name References

Details

ISIMIP3BASD Hempel et al. (2013);
Lange (2019, 2021a)

Method: semi-parametric quantile mapping-based method that aims to
be trend preserving in all quantiles. Generates “pseudo future obser-
vations” by applying the model’s climate change trend to observations
either additively, multiplicatively or in an alternative way. Applies quan-
tile mapping between the modelled future values and the pseudo future
observations either non-parametrically or parametrically, depending on
the variable, and optionally with an event likelihood adjustment, as in
Switanek et al. (2017). The core method is applied in a running window
to account for seasonality, and trends in both observations and model
are removed prior to applying the method.

Covered variables: hurs, pr, prsnratio, psl, rlds, rsds, sfcWind, tas, tas-
range, taskew.

CDF-transform Michelangeli et al. (2009);
(CDFt) Vrac et al. (2012, 2016);
Famien et al. (2018)

Method: non-parametric quantile mapping that aims to be trend pre-
serving in all quantiles. CDFt constructs a CDF of future observations
and then applies a quantile mapping between the CDF of the future
climate model values and the CDF of the future observations:

Xem, fut = F(;,é, fut (Fem, fut(Xem, fu)) =

Fc:nl’ fut(ch, hist(F[;);’ hist(chs fut (Xem, fur))))-

Because non-parametric CDFs will not be able to map values outside
the range of the data, an additive or multiplicative shift can be applied
to the future and historical climate model data prior to fitting CDFs. The
additive or multiplicative bias in the mean can be subtracted/divided
out first. CDFt can be run separately for each month of the year to
account for seasonality as well as in a running window over the future
period to smooth discontinuities and relax the stationarity assumption.
To correct precipitation occurrences in addition to amounts, stochastic
singularity removal (Vrac et al., 2016) is applied.

Covered variables: hurs*, pr, psl*, rlds*, rsds*, sfcwind*, tas, tasmin,
tasmax, tasrange™, taskew™.

Scaled distribution Switanek et al. (2017)
matching (SDM)

Method: parametric quantile mapping that aims to be trend preserv-
ing in all quantiles. Conceptually similar to quantile delta mapping and
ECDFM. Scales CDFs by projected absolute (temperature) or relative
(precipitation) changes, whilst at the same time also adjusting the likeli-
hood of individual events by adjusting return intervals prior to mapping.
Covered variables: pr, tas, tasmin®, tasmax™.
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Table Al. Continued.

Name References Details

(Detrended) quantile Cannon et al. (2015); Method: quantile-by-quantile mapping of observational and climate model dis-

mapping (dQM) Maraun (2016) tributions. Forms the basis of most of the other methods listed. Trends in the
mean can be adjusted for using detrended quantile mapping, which removes
trends before quantile mapping and reapplies them afterwards, either additively
or multiplicatively.

—1
Xem, fut = Fop (Fem, hist (Yem, fut))
Covered variables: hurs*, pr, psl*, rlds*, sfcWind*, tas, tasmin*, tasmax*.

Quantile delta Li et al. (2010); Method: parametric quantile mapping methods that aim to be trend preserving
mapping Wang and Chen (2014);  in all quantiles, with a special focus on high quantiles. Quantile delta mapping
(QDM)/equidistant Cannon et al. (2015) applies the following transformation to the future climate model values x¢p, fut
CDF matching if relative changes are to be preserved (e.g. for precipitation):

ECDFM FLEW .
( ) Xcm, fut, bc(l):xcm, fut(?) - obs Lo, e fu (1))

Fc:nl, hist(ﬁéz, fut (Xem, fut)) ’
and the following for absolute changes (e.g. for temperature):

Xem, fut, be () = Xem, fut(t) + Fobi (ﬁc(:li fut Kem, fut (1)) —

Fc:nl, hist(Fc(rtli, fut(xcma fut))-

Quantile delta mapping for absolute changes is equivalent to the ECDFM
method by Li et al. (2010); however, the parameters chosen, especially the
distributions used for the CDF fits, are different. In quantile delta mapping, the
CDF for future climate model values is fitted in a running window over the
future period to account for long-term changes in the trend. A running window
over the year is also included to account for seasonality. This is not the case for
ECDFM.

Covered variables: hurs*, pr, psl*, rlds*, sfcwind*, tas, tasmin™*, tasmax™.

Linear scaling (LS) Maraun (2016) Method: simple correction method that adjusts biases in the mean (additive
case):
Xem, fut = Xem, fut — (Fem, hist — Xobs)
or in the mean and variance (multiplicative case):

Xobs
Xcm, fut = Xcm, fut Fem. hist "

Covered variables: hurs*, pr, psl*, rlds*, rsds*, sfcWind*, tas, tasmin, tasmax.

Delta change (DC) Maraun (2016) Method: technically not a bias adjustment method. Adds a climate model trend
to observations either additively or multiplicatively. Similar to linear scaling,
but it adjusts the observations and not the climate model.

Covered variables: hurs*, pr, psl*, rlds*, rsds*, sfcWind*, tas, tasmin, tasmax.
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Table A2. Treatment of precipitation (pr) dry days by bias adjustment methods currently implemented in ibicus.

Method Treatment of dry days

ISIMIP3BASD Explicit adjustment of future dry-day frequencies as outlined in Lange (2019) and Lange (2021a).

CDF-transform (CDFt)  Either mapping using the stochastic singularity removal technique (Vrac et al., 2016, default) or the use
of empirical CDFs.

Scaled distribution Adjustment as in Switanek et al. (2017): set all values below a certain threshold to zero and explicitly

matching (SDM) calculate the amount of bias-corrected future rainy days. Note: the current method does not support

correcting the number of precipitation days upwards, meaning that transforming dry days into wet days
is not possible.

(Detrended) quantile Flexible:

mapping (dQM) — Mapping using a censored CDF, as in the QDM method
— Mapping using a precipitation hurdle model
— Adjustment of intensities only.

Quantile delta Adjustment as in Cannon et al. (2015): (1) randomize values between 0 and a fixed threshold; (2) fit

mapping (QDM) censored parametric CDFs assuming that values below the fixed threshold are censored; (3) apply the
QDM method using the CDFs and set values under the threshold to zero again.

Equidistant CDF Flexible:

matching (ECDFM) — Mapping using a censored CDF, as in the QDM method

— Mapping using a precipitation hurdle model
— Adjustment of intensities only.

Linear scaling (LS) Currently no explicit adjustment of dry days.
Delta change (DC) Currently no explicit adjustment of dry days. The number of dry days stays the same as in the observa-
tions.

Absolute bias in [days / year]

(a) MPI-ESM1-2-LR (b) MIROC6 (c) IPSL-CM6A-LR
 raw
=3 oM
. ISIMIP
300 - 300 300 [ SDM
= LS
200 - 200 -
200 4
100 A ‘ ‘ 100 4 :
(]
8 1004 ¢ 1y 8 8 $
% 5
0+ -%ﬁ"—- - ~100 A =100+ *
¢ ¢ ¢
' o !
_ | =200 ¢ —200 'Y
100 ¢ ¢ ¢
N ¢ ¢
. . —300 . =300 1 $
Dry tljays Very wét dayMinimum telmperature Dry (Iiays Very wét dayMinimum telmperature Dry (Iiays Very welt dayMinimum témperature
(< 1 mm/day) (> 10 mm/day) <10°C (< 1mm/day) (> 10 mm/day) <10°C (< 1 mm/day) (> 10 mm/day) <10°C
Metric Metric Metric

Figure A1l. As Fig. 2, but including quantile mapping for minimum temperature.
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Bias (%) in dry day trend
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Figure A2. As Fig. 6, but without axis limits at 100 %.

Appendix B

Table B1. Overview of the CMIP6 models (and their developers) used in the case study in Sect. 4.

Model name Institution

ACCESS-CM2 Commonwealth Scientific and Industrial Research Organisation (Australia)

CMCC-ESM2 Euro-Mediterranean Centre on Climate Change (Italy)
IPSL-CM6A-LR Institut Pierre-Simon Laplace (France)
MIROC6 Japan Agency for Marine-Earth Science, University of Tokyo, National Institute

for Environmental and RIKEN Centre for Computational Science (Japan)
MPI-ESM1-2-LR  Max Planck Institute for Meteorology (Germany)
MRI-ESM2-0 Meteorological Research Institute (Japan)
NORESM2-MM  Norwegian Climate Centre (Norway)
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Code and data availability. The current version of ibicus is
available from PyPI (https://pypi.org/project/ibicus/, last access:
5 February 2024) under the Apache License version 2.0, and
is described in detail in https://ibicus.readthedocs.io/en/latest/
(last access: 5 February 2024). The source code is avail-
able via GitHub (https://github.com/ecmwf-projects/ibicus, last ac-
cess: 5 February 2024). The exact version of ibicus used to
produce the results used in this paper is archived on Zen-
odo (https://doi.org/10.5281/zenodo.8101898, Spuler and Wessel,
2023), as are input data and scripts to run ibicus and pro-
duce the plots for all the simulations presented in this pa-
per (https://doi.org/10.5281/zenodo.8101842 Wessel and Spuler,
2023). The ERAS5 and CMIP6 data used were accessed via
the Copernicus Climate Data Store under the Copernicus li-
cence: https://doi.org/10.24381/cds.143582ct (Hersbach et al.,
2017) and https://doi.org/10.24381/cds.c866074c (Copernicus Cli-
mate Change Service, Climate Data Store, 2021) respectively.
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