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Abstract. Streamflow variability plays a crucial role in shap-
ing the dynamics and sustainability of Earth’s ecosystems,
which can be simulated and projected by a river routing
model coupled with a land surface model. However, the sim-
ulation of streamflow at large scales is subject to considerable
uncertainties, primarily arising from two related processes:
runoff generation (hydrological process) and river routing
(hydraulic process). While both processes have impacts on
streamflow variability, previous studies only calibrated one
of the two processes to reduce biases in the simulated stream-
flow. Calibration focusing only on one process can result in
unrealistic parameter values to compensate for the bias re-
sulting from the other process; thus other water-related vari-
ables remain poorly simulated. In this study, we performed
several experiments with the land and river components of
the Energy Exascale Earth System Model (E3SM) over the
Pantanal region to disentangle the hydrological and hydraulic
controls on streamflow variability in coupled land–river sim-
ulations. Our results show that the generation of subsurface
runoff is the most important factor for streamflow variabil-
ity contributed by the runoff generation process, while flood-
plain storage effect and main-channel roughness have sig-
nificant impacts on streamflow variability through the river
routing process. We further propose a two-step procedure to
robustly calibrate the two processes together. The impacts of
runoff generation and river routing on streamflow are appro-
priately addressed with the two-step calibration, which may
be adopted by developers of land surface and earth system
models to improve the modeling of streamflow.

1 Introduction

Streamflow represents a critical component in the water cy-
cle and an essential freshwater resource to humanity. As the
response of the land surface to atmosphere forcings (pre-
cipitation, temperature, radiation, etc.), streamflow exhibits
strong seasonality and annual variability that vary regionally
(Dettinger and Diaz, 2000). It is vital to understand stream-
flow variation for any region, since it has critical impacts on
water management (Dobriyal et al., 2017), irrigation (Slater
and Villarini, 2017), flooding control (Xu et al., 2021), and
ecosystem services (Knight et al., 2014). As the hydrological
cycle is intensified by global warming, streamflow character-
istics (Xu et al., 2021; Milly et al., 2005; Gudmundsson et
al., 2021; Hirabayashi et al., 2013; Bloschl et al., 2017) such
as magnitude, seasonality, and frequency may also be modu-
lated. Robust predictions of streamflow variation are crucial
for adapting to the consequences of global warming in the
future.

Land surface models (LSMs) coupled with river trans-
port models (RTMs) and fully coupled earth system models
(ESMs) have been used to predict the variability in stream-
flow at large scales to assess water availability and flood risk
(Hirabayashi et al., 2013; Milly et al., 2002; Schewe et al.,
2014). However, it remains challenging for the current gen-
eration of large-scale models to capture the streamflow sea-
sonality accurately (Xu et al., 2021; Zhang et al., 2016). In
addition, the sensitivity of streamflow to climate change is
not well represented in existing model simulations (Lehner et
al., 2019; Xu et al., 2022a), resulting in inevitable low con-
fidence in the future projections. Although multiple down-
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scaling approaches that use observations as constraints have
been applied to reduce model biases in their future projec-
tions (Knutti et al., 2017; Lehner et al., 2019; Tebaldi et al.,
2005; Yang et al., 2017), the corresponding uncertainty may
not be constrained appropriately due to the resolution mis-
match between observations and simulations (Xu et al., 2019;
Smith et al., 2009). Therefore, it is necessary to improve the
model performance before any reliable conclusions on future
projections can be made. The most common way of improv-
ing the performance is to calibrate model parameters, which
contribute an important source of model uncertainty (Ricci-
uto et al., 2018; Qian et al., 2018, 2016; Cheng et al., 2021).

The uncertainties of simulated streamflow variability stem
from two major natural processes: runoff generation and river
routing. Specifically, runoff is first generated in the LSMs
(or land component in ESMs), whose variability is controlled
by hydrological processes, such as infiltration, evapotranspi-
ration, wetland inundation, and soil water dynamics. TOP-
MODEL (Beven and Kirkby, 1979; Niu et al., 2005) and
Variable Infiltration Capacity (VIC; Liang et al., 1994) are
the two most widely used runoff generation parameteriza-
tions (Sheng et al., 2017). It has been demonstrated that
calibrating relevant parameters in LSMs leads to improved
performance in the simulated runoff at site level (Denager
et al., 2023), the watershed scale (Hou et al., 2012; Huang
et al., 2013; Liao and Zhuang, 2017), the continent scale
(Troy et al., 2008; Yang et al., 2019), and the global scale
(Yang et al., 2021; Xu et al., 2022a). The simulated runoff is
then routed as streamflow to the outlet through the river net-
work in RTMs (or river component in ESMs). Global RTMs
routinely solve kinematic or diffusion wave approximations
of 1D Saint-Venant equations to achieve computational effi-
ciency (Shaad, 2018). Although the physical process of fluid
motion is simplified, the performance of river routing is ac-
ceptable in large basins at the monthly time steps, particu-
larly after considering water management effects (Li et al.,
2015; Yamazaki et al., 2011; Zhou et al., 2020). Topographic
characteristics and channel geometry parameters, which can
be derived from finer-resolution topography data, have sig-
nificant impacts on the simulated hydrograph (Wu et al.,
2011; Yamazaki et al., 2009). However, those parameters still
need to be calibrated to improve the routing process descrip-
tion (Hirpa et al., 2018; Jiang et al., 2021; Xu et al., 2022b)
due to resolution mismatch between the model and river net-
works in the real world (Liao et al., 2022).

Although parameters from both the runoff generation (i.e.,
hydrological control) and river routing processes (i.e., hy-
draulic control) significantly influence the streamflow vari-
ability, previous studies only focus on one of the processes
for calibration (Hirpa et al., 2018; Huang et al., 2013; Yang
et al., 2019, 2021; Mao et al., 2019; Xu et al., 2022b). Cal-
ibrating only one process can result in unrealistic parame-
ters to compensate for bias resulting from the other process.
Furthermore, a comprehensive calibration needs to consider
both processes together, requiring a better understanding of

the separate controls from these two processes on streamflow
variability. In this study, we aim to disentangle the hydrolog-
ical and hydraulic controls on the streamflow variability in
the coupled land–river configuration of the Energy Exascale
Earth System Model (E3SM; Golaz et al., 2019), a fully cou-
pled ESM. The Pantanal region is selected as our study do-
main because it is challenging for coupled land–river models
to simulate its streamflow variability accurately (Schrapffer
et al., 2020; Bravo et al., 2012). Specifically, the streamflow
seasonality of the Pantanal region is much delayed relative
to the precipitation seasonality (e.g., ∼ 5 months). Schrapf-
fer et al. (2020) found the floodplain storage effects explain
the 5-month delay, but the impacts of hydrological processes
were not investigated, making it unclear how the delay is at-
tributed to runoff generation and river routing processes. The
significant delay in streamflow seasonality makes the Pan-
tanal region an ideal test domain to investigate the separate
impacts of hydrological and hydraulic processes on stream-
flow variability in models. This is because a general water-
shed has streamflow seasonality closer to precipitation sea-
sonality; hence, the uncertainty from atmosphere forcings
can be more significant than that from parameterizations. In
Sect. 2, we briefly introduce the model configuration, study
domain, experiment designs, and calibration procedure. We
also introduce a modified wetland inundation scheme to im-
prove the representation of wetland inundation processes in
our model. The results of experimental simulations are first
presented in Sect. 3, followed by validation of our two-step
calibration results against multiple reference datasets. Sec-
tion 4 concludes the study.

2 Methods

2.1 Model description

In this study, we ran the E3SM Land Model (ELM) coupled
with MOSART, the river component of E3SM, to investi-
gate the control factors of streamflow variability in coupled
land–river models. ELM was developed based on Commu-
nity Land Model 4.5 (CLM4.5; Oleson et al., 2013), and the
same parameterizations of canopy water, snow, runoff gen-
eration, and soil water dynamics were used. MOSART is a
physically based river routing model that has been coupled
with ELM to simulate water transport, including hillslope
routing, subnetwork routing, and main-channel routing (Li
et al., 2013). Luo et al. (2017) coupled a macro-scale flood-
plain inundation scheme with MOSART to simulate riverine
inundation processes, which is necessary to improve the river
model performance (Yamazaki et al., 2011; Decharme et al.,
2012; Schrapffer et al., 2020). Water management also plays
a crucial role in shaping the streamflow variability (Voisin
et al., 2013), but it does not have a significant impact in the
Pantanal region (Jardim et al., 2020).
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2.2 Study domain

The Pantanal region, located in the upper Paraguay river
basin (Fig. 1a), is the world’s largest wetland (Ivory et al.,
2019; Erwin, 2009). The wetland region may be formed
due to the low-lying surface elevation that is surrounded
by mountains (Fig. 1b). The precipitation of this region has
strong seasonality: high in January and February and low
during June, July, and August (Fig. 1c). However, the stream-
flow at the outlet shows a shift of about 5–6 months in the
seasonality compared to precipitation (Fig. 1c). The time
shift between the streamflow and precipitation is more sig-
nificant in the downstream subbasins (e.g., subbasins 4, 5,
and 6) than the headwater subbasins (e.g., subbasins 1, 2,
and 3) (Fig. S1). While the travel distance of runoff in the
headwater subbasins is not very long, the streamflow season-
ality is delayed by up to 3 months relative to the precipitation
seasonality (Fig. S1c and d). We hypothesize the significant
delayed response of streamflow to precipitation attributes to
both hydrological and hydraulic processes.

2.3 Model setup

We ran one-way coupled ELM–MOSART (i.e., runoff sim-
ulated by ELM is send to MOSART for routing) simula-
tions at a spatial resolution of 0.5◦× 0.5◦ for 1979–2009.
The simulations were forced by CRUNCEPv7 atmosphere
forcing in this study, since it was found to be most accurate
over the Pantanal region (Schrapffer et al., 2020). CRUN-
CEPv7 is a 6-hourly 0.5◦× 0.5◦ global forcing dataset that
was generated based on Climatic Research Unit Time-Series
Version 3.24 (CRU TS v3.24; Harris et al., 2014) and NCEP
reanalysis (Kalnay et al., 1996). The time step for ELM and
MOSART is 30 and 60 min, respectively, with a coupling fre-
quency of 180 min.

We performed nine experiments as listed in Table 1 to
investigate the sensitivity of streamflow to different pro-
cesses. The first experiment is the control simulation, using
the default ELM surface data and parameters and the default
MOSART parameters. In experiment 2, floodplain inunda-
tion was turned on to show the impact of floodplain water
storage on the streamflow seasonality. Experiment 3 tested
the uncertainty of river geometry, and experiment 4 tested
the uncertainty of main-channel Manning coefficient (nr ).
In experiment 5, we perturb the decay factor for the sub-
surface runoff generation (fdrai), which has been identified
as the most sensitive parameter for subsurface water dynam-
ics (Huang et al., 2013; Bisht et al., 2018). In experiment 6,
we aim to understand how streamflow is affected by wet-
land inundation processes, for which fover and fc are critical
parameters (see Sect. S1). Experiment 7 represents the cal-
ibration of river routing processing, including both geome-
try and Manning coefficient as uncertain. Experiment 8 cali-
brates both subsurface and surface water dynamics processes
in the runoff generation process. Lastly, experiment 9 is the

proposed two-step calibration with all the parameters from
experiments 3–6 included (details can be found in Sect. 2.5).
We used the diffusion wave routing in MOSART for all the
experiments to include backwater effects.

River geometry is assumed to be rectangular (Fig. 1a of
Luo et al., 2017), and the main-channel bankfull width (w)
and depth (d) can be derived with the equations proposed by
Andreadis et al. (2013):

w = awQ
0.5, (1)

d = adQ
0.3, (2)

where Q is the 2-year return period daily streamflow, which
is estimated at each grid cell by aggregating daily runoff
of the Global Reach-level Flood Reanalysis dataset (GRFR;
Yang et al., 2021) from the corresponding upstream area,
and aw and ad are curve-fitting parameters. Andreadis et
al. (2013) found the 95 % confidence intervals for aw and
ad are [2.6, 20.2] and [0.12,0.63], respectively. Subsurface
runoff (Rdrai) is parameterized as the exponential function of
fdrai and water table depth (z∇):

Rdrai = qdrai,max exp(−fdraiz∇) , (3)

where qdrai,max is the maximum drainage rate. A surface wa-
ter storage (i.e., depression areas where excess runoff accu-
mulates) (Ekici et al., 2019) was introduced in ELM to sim-
ulate wetlands and subgrid waterbodies, and details can be
found in Sect. S1 of the Supplement. A modified wetland
scheme of Xu et al. (2023a) is adopted here to improve the
wetland inundation simulation (see details in Sect. S1), and
two parameters were found to be sensitive for the wetland
inundation: fover and fc.

In summary, aw, ad , and nr are the parameters in
MOSART, and experiments 2, 3, 4, and 7 are hydraulic sen-
sitivity experiments. fdrai, fover, and fc are the parameters in
ELM, and experiments 5, 6, and 8 are hydrology sensitivity
experiments.

2.4 Data

Multiple datasets of site observations, satellite observations,
and reanalysis products were used in this study for model cal-
ibration and evaluation. The simulated streamflow was vali-
dated at monthly and annual timescales. We used monthly
streamflow observations at the Porto Murtinho gauge sta-
tion (basin outlet shown in Fig. 1a) and six internal sub-
basin gauges (Fig. 1a) that are archived in Global Stream In-
dices and Metadata (GSIM; Do et al., 2018; Gudmundsson
et al., 2018). The three global runoff datasets that were used
to benchmark the performance of annual streamflow include
Global Runoff Reconstruction (GRUN; Ghiggi et al., 2019),
Linear Optimal Runoff Aggregate (LORA; Hobeichi et al.,
2019), and Global Reach-level Flood Reanalysis (GRFR;
Yang et al., 2021). The global surface water dynamics dataset
from Global Land Analysis and Discovery (GLAD; Pickens
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Figure 1. (a) Study domain of the upper Paraguay basin. The red line shows the river network, and the green square denotes the streamflow
outlet (i.e., station Porto Murtinho) used in this study. The green triangles are the subbasin (SB) gauges that were used for evaluation. The
blue area represents the floodplain according to the Global Lakes and Wetlands Database of Lehner and Döll (2004). (b) DEM at 90 m
resolution from Hydrological Data and Maps Based on Shuttle Elevation Derivatives at Multiple Scales (HydroSHEDS; Lehner et al., 2008).
(c) Precipitation seasonality derived from CRUNCEPv7 (bar plot relies on left y axis) and observed streamflow seasonality from the outlet
of the upper Paraguay basin (solid red line relies on right y axis) during 1979–2009.

Table 1. Simulation experiment designs.

No. Experiment Inundation mode Parameters Objective Number of simulations

1 Default off Default Streamflow seasonality 1
2 Inundation on Default Streamflow seasonality 1
3 Geometry on aw ∼ U(2.6,20.2)

ad ∼ U(0.12,0.63)
Streamflow seasonality 100

4 Manning coefficient on nr ∼ U(0.01,0.2) Streamflow seasonality 100
5 Subsurface runoff on fdrai ∼ U(0.1,5) Streamflow seasonality 100
6 Wetland inundation on fover ∼ U(0.1,5)

log(fc)∼ U(1× 10−3,1×
10−0.155)

Streamflow seasonality 100

7 MOSART calibration on aw, adnr Streamflow seasonality 1000
8 ELM calibration on fdraifover, fc Streamflow seasonality 1000
9 Two-step calibration on aw, adnr , fdraifover, fc Multi-objectives 2000
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Figure 2. Streamflow seasonality derived from GSIM observations during 1979–2009 (solid blue line) and seasonality of surface water
dynamics from GLAD dataset (solid red line) at subbasins in the Pantanal region.

et al., 2020) was used to validate the simulated surface water
fraction (SWF), which is the sum of ELM-simulated inun-
dation and MOSART-simulated inundation in E3SM (Xu et
al., 2023a). GLAD provides global monthly, annual, and sea-
sonal surface water and permanent water layer derived from
Landsat images during 1999–2020 at 0.00025◦× 0.00025◦

(∼ 30 m× 30 m) resolution. We used seasonal GLAD and re-
moved the permanent water to exclude the rivers and lakes
from the SWF. The GLAD was upscaled to 0.5◦× 0.5◦ by
averaging the values from all the finer-resolution grid cells
within the coarse-resolution grid cell to compare with the
model simulations. The gridded energy flux data (FLUX-
COM; Jung et al., 2019) and Global Land Evaporation Am-
sterdam Model version 3 (GLEAMv3; Martens et al., 2017)
product were used to evaluate evapotranspiration (ET).

2.5 Calibration procedure

We propose a two-step calibration procedure in this study
to appropriately resolve hydrological and hydraulic impacts
on streamflow variability. In step 1, we run 1000 simulations
with runoff-generation-related parameters (fdrain, fover, and
fc) randomly sampled from the prior distributions given by
experiment 8 in Table 1. A multi-objective function was pro-
posed by Yang et al. (2019) to calibrate a land surface model,
which is adopted in this study. The best parameter was cal-
ibrated in each individual grid cell to minimize the follow-
ing objective function (obj) to capture SWF, baseflow index

(BFI), and annual streamflow trend (Trend) simultaneously:

obj= w1 ·

∣∣∣∣log
(

SWFsim

SWFglad

)∣∣∣∣+w2 ·

∣∣∣∣log
(

BFIsim

BFIGSCD

)∣∣∣∣
+w3 ·

∣∣∣∣log
(

Trendsim

Trendobs

)∣∣∣∣ , (4)

where SWFsim represents annual averaged simulated sur-
face water fraction from the coupled ELM–MOSART sim-
ulations, and SWFglad is the GLAD annual averaged sur-
face water fraction. SWF was estimated between 1999–
2009, when the simulation period overlapped with GLAD
temporal availability. We note the simulated SWF includes
both ELM-simulated and MOSART-simulated inundation.
But only the ELM-relevant parameters were calibrated to
optimize Eq. (4), as routing process is not considered in
the step-1 calibration. Therefore, the SWF in the objec-
tive function Eq. (4) is only affected by ELM processes.
BFIsim and BFIGSCD are the baseflow index (i.e., the ratio
of subsurface runoff to total runoff) from simulations and the
Global Streamflow Characteristics Dataset (GSCD; Beck et
al., 2013), respectively. “Trend” denotes the trend of annual
runoff quantified by Sen’s slope (Sen, 1968). Because there is
no reliable gridded dataset of the long-term runoff trend, we
assumed Trendobs to be constant over the whole basin, and
the value was derived from observed streamflow at the out-
let. This assumption may introduce uncertainty in the model
for capturing the heterogeneity of runoff sensitivity to cli-
mate change. Although several internal subbasin gauges ex-
ist, their temporal coverages are shorter than the simulation
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period, so they cannot be used to derive annual runoff trends
within the watershed. Due to the different bias magnitudes
and uncertainty patterns, the assignment of weights is sub-
jective (Yang et al., 2019). In step 2, another 1000 simula-
tions were performed with river routing parameters (aw, ad ,
and nr ) randomly sampled from the uniform distribution in
Table 1 and the calibrated hydrological parameters from step
1. The best aw, ad , and nr were calibrated at basin level by
maximizing the correlation coefficient between monthly sim-
ulated and observed streamflow at the outlet. As suggested
by Shen et al. (2022), we used all the streamflow observa-
tions for calibration without splitting the validation period.
We further validate the calibrated model at six internal sub-
basin gauges (Fig. 1a), which are not used during the calibra-
tion process.

3 Results and discussion

3.1 Streamflow variability in the Pantanal region

Figure 2 illustrates the observed streamflow seasonality
from six selected subbasins in the Pantanal region, with the
streamflow peaks shifting from March in the headwater (sub-
basins 1, 2, and 3) to June downstream of the river (subbasin
6). Streamflow variability reflects the combined effects of
routing surface runoff and subsurface runoff. Surface runoff
is closely related to the surface water dynamics, which are
controlled by the hydraulic factor, such as floodplain inunda-
tion processes. However, the surface water dynamics have
a much earlier seasonality (i.e., peak in March) than the
streamflow at the downstream gauges (subbasins 4, 5, and
6). The differences in the seasonality between surface water
dynamics and outlet streamflow imply the significant con-
tribution of subsurface runoff to the streamflow variability.
The subsurface runoff generation is the hydrological process,
simulated by a land surface model (e.g., ELM). Therefore,
both hydrological and hydraulic processes have impacts on
the significant shift in the seasonality between precipitation
and streamflow in the Pantanal region.

3.2 Impacts of MOSART on streamflow variability

The default coupled ELM–MOSART simulation (i.e., exper-
iment 1) fails to capture the streamflow seasonality over the
Pantanal region. Specifically, the default simulation shows
streamflow peaks around March, which is much earlier than
the observed streamflow peaks in July (Fig. 3). Previous stud-
ies found that the late responses of streamflow peaks to pre-
cipitation are caused by the storage effects of the floodplain
(Schrapffer et al., 2020). However, in our inundation exper-
iment (i.e., experiment 2), turning on the inundation mode
only delays the streamflow seasonality by 1 month compared
to the default configuration, which still cannot capture the ob-
served seasonality well (Fig. 3). This discrepancy suggests
significant uncertainties exist in other river-routing-related

Figure 3. Simulated streamflow seasonality of default simulation
(experiment 1 in Table 1) and default simulation with inundation
mode (experiment 2 in Table 1). The seasonality is derived from
1979 to 2009.

or runoff-generation-related parameters. For example, our
geometry experiment (i.e., experiment 3) demonstrates that
smaller aw and ad lead to a higher model performance of
capturing streamflow seasonality, such as a higher correlation
coefficient of monthly streamflow between the simulations
and observations (Fig. 4a). Smaller aw and ad (i.e., smaller
cross-section area) correspond to less channel capacity, im-
plying that more water will inundate on the floodplain during
the flooding period; therefore, the peak streamflow is delayed
to a later time. Although the streamflow seasonality is im-
proved by reducing channel cross-section area, it results in
smaller temporal variations in monthly streamflow, such as
the ratio of standard deviation (rSD) between the simulations
and observations being less than 0.85. The smaller rSD indi-
cates the regulation of the floodplain is magnified; therefore,
it is not reasonable to accept such small channel geometry.

The Manning coefficient of the main channel affects the
streamflow seasonality through its impacts on flow velocity.
In the Manning coefficient experiment (i.e., experiment 4),
increasing the main-channel Manning coefficient will at most
shift the occurrence of peak streamflow to June (Fig. 4b),
while the corresponding value (nr ≥ 0.16) is much higher
than the generally used main-channel Manning coefficient in
global river transport models (e.g., 0.03–0.06; Yamazaki et
al., 2011; Li et al., 2013; Decharme et al., 2012). A larger
Manning coefficient means slower flow velocity along the
river direction, and then the water will accumulate in the
channel and inundate the floodplain when it exceeds the
channel capacity. Notably, such high main-channel Manning
coefficients lead to an unrealistic flatter hydrograph with
rSD< 0.7. Using a Manning coefficient at around 0.1 repro-
duces the monthly variability best (e.g., rSD= 1), which is
still higher than the typical value, but such a range may be
reasonable in this region because of the vegetated surface and
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Figure 4. Sensitivity of streamflow seasonality and variability to (a) river geometry and (b) main-channel Manning coefficient. In (a), aw
and ad are the parameters for river width and depth, respectively (Eqs. 1 and 2), and the correlation coefficient between the simulated
streamflow and observed streamflow at monthly scale is used to indicate the model performance of simulating streamflow seasonality. The
scatter size is proportional to the ratio of standard deviation (rSD) between the simulated streamflow and observations. The dashed black line
in (b) represents the averaged streamflow seasonality derived from observations, and the scatter on the right shows the relationship between
the main-channel manning coefficient (y axis) and rSD (x axis).

complex river network (i.e., meandering) according to Chow
(1959). The subnetwork and hillslope manning coefficients
in MOSART are not included in our experiments because
they have negligible impacts on the shape of the hydrograph
(Fig. S4).

Although calibrating channel geometry and Manning co-
efficient improves the performance of the coupled ELM–
MOSART model in simulating streamflow, some discrepan-
cies in the streamflow seasonality and variation between the
simulations and observations exist. Floodplain effects cannot
completely explain the streamflow seasonality in the Pan-
tanal region. Additionally, other variables in the water cy-
cle remain highly biased, which cannot be fixed by cali-
brating river-routing-related parameters. First, the simulated

BFI averaged over the basin is about 0.15, which signifi-
cantly underestimates the values (e.g., 0.69) estimated by the
Global Streamflow Characteristics Dataset (GSCD; Beck et
al., 2013) (Fig. 5a and b). Second, the surface water dynamics
are poorly simulated with a low spatial correlation coefficient
(0.03) and high percentage bias (821 %) as compared to the
upscaled GLAD dataset (Fig. 5c and d). Third, the Pantanal
region has become drier in the past several decades (Libon-
ati et al., 2020), which can be detected from the observed
annual streamflow time series (Fig. 5e). While the model
is able to capture the drier trend of annual streamflow dur-
ing the simulation period (negative Sen’s slope with p value
= 0.05), the magnitude of the decreasing trend is underes-
timated (Fig. 5e). The above discrepancies can be reduced
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Figure 5. Performance of ELM–MOSART with default configuration. (a) Base flow index (BFI) from GSCD BFI3, (b) simulated BFI with
default parameter, (c) surface water fraction (SWF) from GLAD, (d) simulated SWF (floodplain inundation plus wetland inundation) with
default parameter, and (e) annual streamflow time series of observations (dashed black line) and default simulation (solid red line) at basin
outlet.

by calibrating the runoff-generation-related processes (e.g.,
hydrological control) because the river routing process only
impacts the shape of the hydrograph.

3.3 Impacts of ELM on streamflow variability

The subsurface runoff experiment (i.e., experiment 5)
demonstrates the subsurface runoff generation process has a
critical control on the streamflow seasonality as well (Fig. 6).
It is shown in Fig. 6a that the simulated streamflow tends to
peak later as fdrain decreases. A decrease in fdrain means the
subsurface storage capacity increases (Huang et al., 2013),
therefore leading to a higher base flow index (Fig. 6b). This
explains the response of total runoff to rainfall being delayed

when smaller fdrain was used due to the slower mechanism of
subsurface runoff (Vivoni et al., 2007). Furthermore, smaller
fdrain leads to increased annual streamflow magnitude but
reduced monthly streamflow variability (Fig. 6c). We ac-
knowledge unrealistically high streamflows (e.g., mean >
5000 m3 s−1) with minimal month-to-month variability (e.g.,
rSD < 0.4) are found in the simulations when fdrain is close
to 0.1; thus a more reasonable lower bound of f ′drains should
be modified to a relatively larger value (e.g., 0.25). Moreover,
the trend of annual simulated streamflow can be affected by
fdrain, though all the simulations tend to underestimate the
trend detected in the observations. The decreasing trend is
more significant and closer to the observed trend when fdrain
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Figure 6. Sensitivity of (a) streamflow seasonality, (b) base flow index, (c) annual streamflow mean and rSD, and (d) annual streamflow trend
to fdrain. rSD denotes the ratio of monthly standard deviation between the simulations and observations. Note that Sen’s slope is normalized
by the annual averaged streamflow.

decreases (Fig. 6d), except two problematic simulations with
very small fdrain.

The sensitivity of the annual runoff trend (i.e., annual
streamflow trend) to fdrain results from the impacts of fdrain
on ET processes. As a conceptual example, the runoff will
not have a trend in time if precipitation and ET have simi-
lar decreasing trends (e.g., P and E1 in Fig. 7a). Runoff will
show a trend in time when the changing rate of ET is different
from precipitation (e.g., P andE2 in Fig. 7a). The subsurface
runoff experiment shows that the ET is less sensitive to pre-
cipitation decreases with smaller fdrain (Fig. 7b), thus lead-
ing to a larger decreasing trend in annual runoff (light green
line in Fig. 7a). Based on the above analyses, it is reasonable
to argue that a good selection of fdrain in this region should
be smaller than the default value (i.e., 2.5), which will yield
later streamflow seasonality and better estimates of base flow
index, monthly variability, and the annual trend compared to
reference data or observations.

Parameters fover and fc control the streamflow variabil-
ity through wetland inundation processes based on our wet-

land inundation experiment (i.e., experiment 6) (Fig. 8a) and
previous study (Xu et al., 2023a). Wetland inundation is
only sensitive to fc when fover is smaller than 0.5, as small
fover leads to a higher saturated fraction, at which infiltra-
tion from the wetlands is constrained and inundation occurs
(Fig. S3a). In contrast to the impacts of floodplain inun-
dation, higher wetland inundation is associated with earlier
streamflow peaks (Fig. 8b). This is because high wetland in-
undation is caused by precipitation when the saturation frac-
tion is high (e.g., lower fover); consequently, a larger frac-
tion of precipitation is converted to surface runoff. Hence,
the streamflow seasonality is very close to precipitation sea-
sonality when high wetland inundation is simulated, since
surface runoff responds quickly to precipitation. The annual
streamflow magnitude and trend are also sensitive to the wet-
land inundation processes (Fig. 8c and d), especially when
parameter fover falls in the lower range (e.g., less than 1.5).
Specifically, the annual streamflow magnitude increases, and
the trend becomes less negative as fover decreases.
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Figure 7. (a) Conceptual plot of annual precipitation (P ) and two different annual evapotranspiration time series (i.e., E1 and E2), with
the decreasing trend of E1 being larger than that of E2. Panel (b) shows the sensitivity of annual ET trend (e.g., Sen’s slope of annual
basin-averaged ET during the simulation period) to fdrain.

3.4 Single-process calibration

We further conducted two independent calibrations for both
the river routing process in MOSART and the runoff gen-
eration process in ELM using experiments 7 and 8 (Ta-
ble 1), respectively. Specifically, the objectives of both in-
dependent calibrations are to maximize the correlation coef-
ficient between the simulated and observed streamflow time
series. Both calibrations can improve the streamflow season-
ality significantly as compared to the default configuration,
with correlation coefficients increasing from 0.02 to 0.75 and
0.67, respectively (Fig. 9a and b). The long-term averaged
annual streamflow remains similar in the default configura-
tion and two calibrations, with all underestimating the ob-
servations by about 10 %. However, the temporal variations
in simulated streamflow time series in the two calibrations
show divergent bias patterns, with the MOSART calibration
resulting in a smaller standard deviation (e.g., rSD= 0.74)
and the ELM calibration leading to a slightly higher standard
deviation (e.g., rSD= 1.06) (Fig. 9b).

The individual MOSART calibration can lead to a very
high Manning coefficient (e.g., nr = 0.17) and a smaller
cross-section of the main channel to capture the streamflow
seasonality. Consequently, the flow velocity is slower, and
more river water inundates the floodplain due to backwater
effects, which results in a significant underestimation in the
temporal variation in simulated streamflow (Fig. 9b). The in-
dividual ELM calibration leads to an unreasonably higher
baseflow index (Fig. 9b), implying the subsurface and sur-
face water dynamics are not well represented. Overall, only
calibrating the parameters related to one process results in

unrealistic parameter values to compensate the bias from the
other process. Therefore, the impacts of both runoff genera-
tion and river routing processes on streamflow must be con-
sidered together in calibrating the streamflow simulation to
ensure all the processes of the water cycle are well calibrated.

3.5 Two-step calibration

We propose a two-step calibration procedure in this study
(Sect. 2.5) by first calibrating the runoff-generation-relevant
parameters in ELM and then calibrating the river-routing-
relevant parameters in MOSART. Since it is unclear how
much the streamflow delay is attributed to the runoff gen-
eration process, we use other objectives (i.e., independent
of streamflow variability) in the ELM calibration (Eq. 4).
It is implied from the analyses of runoff-related parameters
that the runoff seasonality is related to the objectives used
in Eq. (4). Therefore, we assume the delay of streamflow at-
tributed to the runoff generation process can be addressed
by minimizing Eq. (4). In the multi-objective function, we
found w1 = 0.15, w2 = 0.7, and w3 = 0.15 yield the best re-
sults. The calibrated simulation shows good skill in captur-
ing the spatial pattern of baseflow index and surface water
fraction with correlation coefficients of 0.7, and 0.64, respec-
tively, as compared to the reference data (Fig. 10a and b). The
absolute biases are significantly reduced as well. Moreover,
the calibrated simulation shows a statistically significant de-
creasing trend in the annual streamflow with Sen’s slope
equal to −1.80 % yr−1 after normalizing with averaged an-
nual streamflow magnitude. As a benchmark, we found other
calibrated or bias-corrected runoff datasets cannot capture ei-
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Figure 8. (a) Sensitivity of wetland inundation to fc and fover. (b) Impacts of wetland inundation on streamflow seasonality. Sensitivity of
(c) annual streamflow and (d) annual streamflow trend to fc and fover. Note that Sen’s slope is normalized by the annual averaged streamflow.

ther the annual magnitude or annual trend (Fig. 10c). The un-
certainty of the annual magnitude may stem from the forcing
uncertainty, while the trend bias is because model sensitiv-
ity to climate change is not well constrained. This suggests
including the trend as a performance metric in the objective
function is necessary for calibrating ESMs, which are com-
monly used to project the change in the water, energy, and
carbon cycle under a warmer climate. Although water table
depth is not included in the objective function, the simulated
water table depth is more consistent with the dataset of Fan
et al. (2013) than the default configuration, which simulates a
very shallow water table (Fig. S5). The improved representa-
tion of groundwater table depth is because the subsurface and
surface runoff are correctly separated (e.g., a better-simulated
baseflow index).

With hydrology parameters determined from the step-1
calibration, the model shows good performance of simulat-
ing monthly streamflow after the step-2 calibration (Fig. 9c).
Specifically, the correlation coefficient between the simula-
tions and observations at the monthly scale is 0.74, indicat-
ing the streamflow seasonality is well captured. Compared

to the individual MOSART or ELM calibration, the two-step
calibration shows better skill in both monthly variation (e.g.,
rSD= 0.95) and baseflow index (e.g., BFI= 0.72) (Fig. 9b).
However, the two-step calibration exhibits higher biases in
the annual streamflow magnitude (e.g., 21 % underestima-
tion or 32 mm yr−1 in absolute magnitude), stemming from
the following reasons: (1) uncertainty of upscaled flow di-
rections in MOSART because of the relatively coarse spa-
tial resolution (∼ 50 km× 50 km) (Liao et al., 2022). For ex-
ample, the contributing area of the selected outlet estimated
using the modeled flow direction underestimates ∼ 5 % of
the contributing area that is delineated with the 1 km Hydro-
logical Data and Maps Based on Shuttle Elevation Deriva-
tives at Multiple Scales (HydroSHEDS) DEM. (2) Another
reason is the uncertainty of the forcing data. Specifically,
the annual averaged precipitation in CRUNCEPv7 is lower
than the mean of multiple precipitation products (Fig. S6a).
Considering the selected precipitation ensemble (Table S1),
the uncertainty of CRUNCEPv7 precipitation varies between
−73–49 mm yr−1. Biases may exist in other forcing variables
(e.g., humidity and radiation) as well (Fig. S7), resulting in
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Figure 9. Comparison of hydraulic, hydrological, and two-step calibrations with the default configuration. Panel (a) shows the seasonality
from the simulation period, and panel (b) denotes the correlation coefficient (ρ), annual streamflow ratio (AR), ratio of standard deviation
between the simulations and observations (rSD), and baseflow index (BFI). Panel (c) presents the monthly time series of simulated streamflow
after the two-step calibration.

an overestimation of evapotranspiration during the dry pe-
riod (e.g., May to July) as compared to FLUXCOM (Fig. 11).
For the reference ET of the GLEAM dataset, the simulated
ET is higher for all the months. The overestimation of simu-
lated annual averaged ET is 54 and 154 mm yr−1 compared
to FLUXCOM and GLEAM, respectively. In addition, Xu
et al. (2023b) also reported that the energy partition algo-
rithm in current ESMs tends to overestimate ET likely due
to the uncertainty in surface conditions and parameteriza-
tions of aerodynamic and stomatal resistance. In summary,
while our calibrated model underestimates streamflow mag-
nitude, the result is reasonable as the negative bias is con-
sistent with the smaller contributing area, lower precipita-
tion forcing, and higher evapotranspiration estimates. Fur-
thermore, CRUNCEPv7 shows a notable reduction in pre-
cipitation from January to February, while other precipitation
products show a similar precipitation volume in January and
February (Fig. S6b). The underestimation of precipitation in
February further explains the slightly earlier streamflow sea-
sonality after the two-step calibration.

After the two-step calibration, both the runoff generation
and river routing processes are robustly improved in E3SM
over the Pantanal region. For example, the objective func-
tion of Eq. (4) reduces from 20.8 to 4.1 after the step-1 cal-
ibration, and the correlation between the simulated stream-
flow and observed streamflow at the outlet increases from

0.2 to 0.74 after the step-2 calibration. Although only the ob-
served streamflow at the basin outlet was used during the
calibration, the performances of simulated streamflow are
improved at selected subbasin gauges compared to the de-
fault configuration (Fig. 12). Specifically, compared to the
default simulation, the step-1 calibration shifts the stream-
flow by about 1 month. The step-2 calibration further de-
lays the simulated streamflow seasonality, especially for the
downstream subbasins (subbasins 5 and 6). Overall, the cali-
brated model captures the streamflow monthly variation at all
the subbasin gauges well with correlation coefficient larger
than 0.6. While the seasonality is well captured, the cali-
brated model cannot reproduce the magnitude of streamflow
well at the headwater subbasins (subbasins 1, 2, and 3) likely
due to the uncertainty of precipitation in the forcing and bias
of flow direction represented in MOSART (Fig. S8). The rel-
ative higher uncertainties in small subbasins are expected in
the context of ESMs, as large-scale coupled land–river mod-
els are commonly evaluated at major global river basins (Ya-
mazaki et al., 2011; Li et al., 2015; Decharme et al., 2019).
We note that the number of simulations in the two-step cal-
ibration, such as a total of 2000 simulations, is enough to
identify the parameter values that approximate the best pa-
rameter values. As shown in Fig. S9, the improvements in
model performance reach a plateau when the number of cal-
ibration simulations is larger than 200 in both steps.
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Figure 10. Performance of ELM–MOSART with calibrated ELM parameters for (a) base flow index (BFI), (b) surface water fraction (SWF),
and (c) annual streamflow trend. Three other runoff datasets are used to provide benchmarks for annual streamflow. The dashed black line
represents the observations from the outlet, with the annual trend (i.e., Sen’s slope) being −2.1 % yr−1 and the corresponding p value less
than 0.05.

Figure 11. Comparison of latent heat flux between simulations and
references.

Figure S10 shows the calibrated parameter values, and
we note it is hard to identify the relationship between the
calibrated parameters and watershed characteristics due to
the coarse spatial resolution of ESMs and simplifications in
physical processes. As process-based models, some param-
eters in ELM and MOSART are derived from surface and
subsurface conditions and properties. For example, in ELM,

saturated hydraulic conductivity and specific yield are esti-
mated based on soil types, maximum drainage rate is deter-
mined by topographic slope, etc. In MOSART, river length
and slope are derived from a high-resolution DEM. How-
ever, some other parameters should be determined based on
sensitivity analysis and calibration, such as the parameters
selected in this study. This is because ESM resolutions are
typically too coarse to represent some small-scale physical
processes, and empirical functions are used to parameter-
ize those processes with simplifications. Specifically, fdrain
and fover are decay factors of the exponential function in the
subsurface and surface runoff generation processes, respec-
tively. According to the development of the runoff scheme in
our model (e.g., simple TOPMODEL-based runoff param-
eterization), fdrain and fover should be determined through
sensitivity analysis or calibration against a hydrograph reces-
sion curve (Niu et al., 2007, 2005). fc is a threshold below
which no single connected inundated area spans the grid cell.
It is used to quantify the fraction of the inundated portion of
the grid cell that is interconnected according to percolation
theory. In other words, fc determines the maximum inunda-
tion extent, above which the water will drain from the inun-
dated area. Although the maximum inundated area should be
controlled by topographic variation, high-resolution data that
capture the topographic variation under the inundated areas
are not available. Observations of river width and depth exist
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Figure 12. Simulated streamflow seasonality during 1981–2010 for the selected subbasins with default parameter values (dashed red line) and
calibrated parameter values after step 1 (dashed blue line) and step 2 (solid blue line). The solid black line denotes the observed streamflow
seasonality.

at very high spatial resolution, but it is challenging to upscale
the observed river width and depth to ESM resolution (e.g.,
∼ 1◦) (Liao et al., 2022). The relationship between discharge
(or drainage area) and river channel geometry is commonly
used to determine the river width and depth in global river
transport models (Xu et al., 2022b; Decharme et al., 2012).
However, such a relationship varies from watershed to wa-
tershed. It is not possible to use a single factor to derive the
river geometry as it is affected by multiple factors such as dis-
charge magnitude, seasonality, lithology, and channel slope.

To assess the transferability and robustness of our ap-
proach, we implemented the two-step calibration procedure
in a watershed located in a distinct climate and biome, specif-
ically the Susquehanna River Basin. Figure S11 shows that
the performance of simulating BFI, SWF, and streamflow
seasonality is improved after the calibration with the pro-
posed method.

4 Conclusion

In this study, we investigated the impacts of the runoff gen-
eration process and river routing process on streamflow vari-
ability in the coupled land and river configuration of E3SM
using the Pantanal region as a case study. Previous studies
argued that floodplain storage effects are critical in captur-
ing streamflow seasonality in global river transport models
(Schrapffer et al., 2020; Yamazaki et al., 2011; Decharme
et al., 2012), but we found that the impacts of the runoff

generation process on the streamflow variability should not
be ignored. Calibrating either the runoff-generation-relevant
or river-routing-relevant parameters can improve the perfor-
mance of simulated streamflow variability, but the system as
a whole is not well captured, as the baseflow index, sen-
sitivity of streamflow to climate change, water table depth,
and surface water dynamics remain highly biased. This im-
plies that only calibrating one of the two processes results
in overfitting and problematic parameter values; i.e., the im-
pact of one process compensates for the bias resulting from
the other process. Consequently, such a calibration causes the
unrealistic simulation of other relevant variables. Therefore,
a two-step calibration procedure is proposed for large-scale
coupled land–river simulations to reconcile their impacts on
streamflow variability. Specifically, the first step is to cali-
brate the hydrological parameters at the grid cell level with
multiple selected objectives, followed by the second step to
calibrate the river model at the basin level in terms of stream-
flow performance. The two-step calibration exhibits robust
performance in the water cycle simulation. The sensitivity of
streamflow to climate change was improved as well in our
two-step calibration, suggesting the importance of including
the annual runoff trend in the hydrological parameter cali-
bration, since trend analysis is of particular interest in earth
system modeling. The two-step calibration method demon-
strates robust performance in calibrating the E3SM coupled
land–river configuration at a watershed with a different cli-
matology and biome.
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Although we validated our two-step calibration method in
an independent watershed (i.e., Susquehanna River Basin), it
remains unclear if it can improve the model performance in
other watersheds with different characteristics and climatol-
ogy. Additional evaluations and careful analysis are needed
to apply the proposed calibration method to E3SM or other
large-scale hydrological models at global scales. Further-
more, other challenges exist for the global calibration. First,
streamflow observations are needed in the two-step calibra-
tion, but many watersheds at global scales are not gauged.
Machine learning methods can be used to derive bench-
mark streamflow for the ungauged watersheds (Kratzert et
al., 2019). Second, it is computationally expensive or even in-
feasible to run 2000 global simulations for calibration. How-
ever, as demonstrated in Fig. S9, a much smaller number
of calibration simulations are needed to find approximately
good parameter values. In conclusion, while different objec-
tive functions can be used in other model calibrations, we
suggest that both runoff generation and river routing pro-
cesses should be carefully considered together to improve
streamflow simulations with coupled land–river models.

Code and data availability. E3SM V2 is available from the
E3SM project website: https://github.com/E3SM-Project/E3SM
(last access: August 2023) under a 3-clause BSD license
(https://github.com/E3SM-Project/E3SM/blob/master/LICENSE,
last access: August 2023). The exact version of E3SM is
published at https://github.com/donghuix/E3SM/releases/tag/
v2-new-wetland-scheme (last access: August 2023) and is
available at Zenodo: https://doi.org/10.5281/zenodo.6982264
(Xu, 2022). Instructions of running E3SM V2 can be found
at https://e3sm.org/model/running-e3sm/e3sm-quick-start/ (last
access: August 2023). MATLAB version R2019b Update 4
was used to preprocess datasets for simulations, postprocess
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MATLAB pre- and postprocessing codes, and the script to
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