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Abstract. Ensemble geophysical datasets are foundational
for research to understand the Earth system in an uncertainty-
aware context and to drive applications that require quan-
tification of uncertainties, such as probabilistic hydro-
meteorological estimation or prediction. Yet ensemble esti-
mation is more challenging than single-value spatial inter-
polation, and open-access routines and tools are limited in
this area, hindering the generation and application of en-
semble geophysical datasets. A notable exception in the last
decade has been the Gridded Meteorological Ensemble Tool
(GMET), which is implemented in FORTRAN and has typ-
ically been configured for ensemble estimation of precipi-
tation, mean air temperature, and daily temperature range,
based on station observations. GMET has been used to gen-
erate a variety of local, regional, national, and global me-
teorological datasets, which in turn have driven multiple
retrospective and real-time hydrological applications. Mo-
tivated by an interest in expanding GMET flexibility, ap-
plication scope, and range of methods, we have developed
the Python-based Geospatial Probabilistic Estimation Pack-
age (GPEP) that offers GMET functionality along with ad-
ditional methodological and usability improvements, includ-
ing variable independence and flexibility, an efficient alter-
native cross-validation strategy, internal parallelization, and
the availability of the scikit-learn machine learning library
for both local and global regression. This paper describes
GPEP and illustrates some of its capabilities using several
demonstration experiments, including the estimation of pre-
cipitation, temperature, and snow water equivalent ensemble
analyses on various scales.

1 Introduction

Meteorological datasets are essential for hydrometeorolog-
ical and climate analysis and a wide range of related ap-
plications, from hydrometeorological forecasting to century-
scale water security studies. Numerous gridded meteorologi-
cal datasets exist based on a variety of estimation approaches,
including the spatial interpolation of ground stations (Daly et
al., 1994; Harris et al., 2020; Livneh et al., 2015; Maurer et
al., 2002), remote sensing measurements from satellite sen-
sors and weather radars (Huffman et al., 2007; Joyce et al.,
2004; Shen et al., 2018; Zhang et al., 2016), and atmospheric
and Earth system modelling (Gelaro et al., 2017; Hersbach
et al., 2020; Kobayashi et al., 2015; Muñoz-Sabater et al.,
2021). Among these datasets, those based on ground-station
observations offer the most accurate meteorological records
and are thus often used in the production of high-quality re-
gional, national, and global gridded datasets. Station obser-
vations may be the sole input to the datasets, along with geo-
physical features that aid in a “smart interpolation” to ac-
count for terrain and other influences, or they may be used
for bias correction of remote sensing and model estimates or
as the calibration reference for multi-source merging (Baez-
Villanueva et al., 2020; Beck et al., 2019; Sun et al., 2018).

Methods for the spatial interpolation of station obser-
vations range in complexity from simpler strategies, such
as Thiessen polygons, distance-based weighting, linear in-
terpolation, and nearest neighbour selection, to more com-
plex procedures such as Kriging interpolation, geograph-
ically weighted regression (GWR), and machine learning
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techniques. Many widely used deterministic meteorological
datasets are produced using these methods or their variants,
such as the Global Precipitation Climatology Centre (GPCC)
dataset (Schamm et al., 2014) and the Climatic Research
Unit gridded Time Series (CRU TS) dataset (Harris et al.,
2020). Yet spatial interpolation is an imperfect process that
leads to ubiquitous uncertainties in gridded meteorological
datasets. Few meteorological datasets provide explicit ana-
lytical uncertainty estimates, and even fewer provide prob-
abilistic or ensemble estimates, members of which can be
advantageous in quantifying uncertainties and characterizing
extreme events (Tang et al., 2023). To address this problem,
several recent studies have developed station-based ensem-
ble meteorological datasets, including the Hadley Centre/-
Climate Research Unit Temperature version 4 (HadCRUT4)
global temperature dataset (Morice et al., 2012), the Spatially
COherent Probabilistic Extended Climate dataset (SCOPE
Climate) in France (Caillouet et al., 2019), the ensemble
precipitation and temperature datasets in the United States
and parts of Canada (Newman et al., 2015, 2019, 2020),
the Ensemble Meteorological Dataset for North America
(EMDNA; Tang et al., 2021a), and the Ensemble Meteo-
rological Dataset for Planet Earth (EM-Earth; Tang et al.,
2022). Several deterministic datasets such as the Europe-
wide E-OBS (Haylock et al., 2008; Cornes et al., 2018)
and Canadian Precipitation Analysis (CaPA; Mahfouf et al.,
2007; Fortin et al., 2015; Khedhaouiria et al., 2020) also
offer probabilistic realizations. In addition to these station-
based datasets, there are also reanalysis ensembles such as
ERA5 Ensemble of Data Assimilations (Hersbach et al.,
2020) and satellite-based ensemble generation methods such
as the satellite rainfall error model (Hossain and Anagnos-
tou, 2006; Hartke et al., 2022), which are beyond the scope
of this study.

However, the rise of ensemble meteorological datasets
also brings new challenges or amplifies existing ones. First,
like many other historical datasets, ensemble datasets are of-
ten built on open-access station collections, with fixed peri-
ods and resolutions and limited variables, which may not be
updated routinely once the production is finished. Second,
ensemble datasets often have large data sizes increasing with
the number of members, posing challenges in downloading,
storage, and processing. Third, ensemble estimation methods
generally have much higher complexity compared to single-
value spatial interpolation methods, making it difficult for
researchers and practitioners to produce their datasets fol-
lowing dataset and method description publications. There-
fore, open-access tools for creating ensemble meteorological
datasets are equally important and sometimes more useful
to the community compared to public datasets. Several such
spatial interpolation tools are available in various stages of
development, such as the Topographically InformEd Regres-
sion (TIER; Newman and Clark, 2020), GStatSim (MacKie
et al., 2022), TFInterpy (Chen and Zhong, 2022), and mul-
tiscale GWR (MGWR; Oshan et al., 2019), but well-tested

tools for meteorological ensemble estimation remain rare. A
notable exception is the Gridded Meteorological Ensemble
Tool (GMET: https://github.com/NCAR/GMET, last access:
7 February 2024) which can be used to generate ensemble
meteorological analyses (i.e., gridded surface forcings) us-
ing the locally weighted spatial regression method outlined
in Clark and Slater (2006). After an initial FORTRAN devel-
opment effort (Newman et al., 2015), GMET has been fur-
ther refined and expanded in the course of sequential applica-
tion projects, producing a number of regional to continental
datasets (Bunn et al., 2022; Liu et al., 2022; Longman et al.,
2019; Newman et al., 2015, 2019, 2020; Wood et al., 2021a).

Successful GMET applications to date motivated interest
in enhancements to allow for a broader range of uses and
available methods. GMET’s FORTRAN basis enables it to
be computationally efficient and fast but is more cumber-
some for adding or linking to new methodological modules
than the widely used scripting and programming language
Python, for which many relevant method libraries exist, par-
ticularly including machine learning (ML) techniques. In ad-
dition, GMET’s development to date has only afforded a sub-
set of the potential user control over implementation choices,
and some settings that would be required for more flexible
implementation are currently hardwired. For instance, the
most common application is to generate ensembles of pre-
cipitation, mean air temperature, and air temperature range;
and certain assumptions, functions, and settings specific to
precipitation and temperature must be changed in the code
if other variables are of interest. Future development to en-
hance the FORTRAN GMET toward greater flexibility and
user control is a viable option, but we view Python as provid-
ing a more convenient and extensible development environ-
ment and one that can engage a potentially larger community
of contributors. The major downside of pursuing future de-
velopment in Python relative to FORTRAN is its relatively
slower computational speed, a tradeoff that we view as being
acceptable given the benefits.

We have thus developed the Python-based Geospatial
Probabilistic Estimation Package (GPEP). GPEP includes
and expands upon most of the current functionalities of FOR-
TRAN GMET, bringing new methodological and usability
enhancements. These include (1) a flexible and configurable
user control for input/output variables, run parameters, pre-
dictors, and weight functions; (2) options for using basic ML
techniques for local and global regression; (3) an alternative,
efficient approach for cross-validation; and (4) more flexible
input formatting, especially for dynamic gridded predictor
inputs. GPEP draws from and formalizes some functions that
were previously applied in the production of the continental
EMDNA (Tang et al., 2021a) and the global EM-Earth (Tang
et al., 2022) datasets, while mimicking GMET functionality
(such as cross-validation and usage of both static and time-
variant predictor information) from Bunn et al. (2022).

GPEP is a powerful tool for both research and applications
of deterministic and ensemble distributed geophysical anal-
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ysis estimation, including the production of meteorological
datasets to support retrospective and real-time modelling on
various scales. This paper summarizes the GMET method-
ology and GPEP enhancements and illustrates some of its
capabilities using several experimental applications.

2 Probabilistic estimation methodology

2.1 The theory of GMET

The core GMET methodology for probabilistic meteorolog-
ical ensemble analyses assumes that the estimate of a me-
teorological variable at a specific time and location can be
described by a parametric probability distribution. For mean
air temperature and daily temperature range (i.e., the differ-
ence between maximum and minimum daily temperature),
the normal distribution is used by GMET in the form of
X ∼N(µ,σ 2), where µ and σ are the mean value and stan-
dard deviation, respectively. µ represents the deterministic
estimation of a variable, and σ represents the uncertainty of
the µ estimation. Ensemble estimates can be obtained by
sampling from the normal distribution. For variables such
as precipitation with skewed distributions, transformation
methods such as Box–Cox are applied to convert variables
into normal (Gaussian) space. Although the GMET method-
ology was originally developed for precipitation and temper-
ature estimation, it can also be applied to any variable that
can be described using the normal distribution, either directly
or through transformation.

2.2 Deterministic estimation

The premise of probabilistic estimation is obtaining µ and
σ parameters. GMET adopts the locally weighted linear re-
gression (LWLR) to obtain deterministic gridded estimates
of µ. Let xo be the raw or transformed station observation,
then the LWLR estimate x̂ for the target point and time step
is obtained as below:

xo = x̂+ ε = β0+

n∑
i=1

Aiβi + ε, (1)

where Ai is the ith predictor, β0 and βi are regression coeffi-
cients, and ε is the residual (or error term). The initial imple-
mentation uses static terrain-related predictors such as lati-
tude, longitude, elevation, topographic slope, and aspect (as
in Clark and Slater, 2006, and Newman et al., 2015). GMET
version 2.0 added the ability to use time-varying dynamic
predictors such as precipitation and temperature from atmo-
spheric models to further improve the accuracy of gridded
estimates (Bunn et al., 2022).

To estimate σ , GMET version 2.0 also implemented k-fold
cross-validation (including leave-one-out, LOO, as a partic-
ular case), which enables the use of predictive rather than
calibration uncertainty in ensemble generation and provides

an invaluable method for predictor screening and selection.
σ is the uncertainty of gridded regression estimates µ based
either on the standard error of the regression or the prediction
error (e.g., root mean squared error from cross-validation).

In addition to µ and σ , for intermittent variables like
precipitation, the probability of an event is required to de-
termine whether an event occurs or not. GMET uses a lo-
cally weighted logistic regression to estimate the probabil-
ity of precipitation (POP) to enable its probabilistic estima-
tion: that is, the binary probability of the event (0 or 1) is re-
gressed against the static and/or dynamic predictors (Eq. 2),
which are also used in a precipitation amount regression.
This method can be applied to other intermittent geospatial
variables.

POP=
1

1+ exp(−β0+
∑n
i=1Aiβi)

(2)

While GMET employs locally weighted linear/logistic re-
gression for its deterministic estimation, this component
within the probabilistic estimation framework is method ag-
nostic. It is designed to be compatible with a variety of
geospatial estimation methods, a versatility that has been re-
alized in GPEP.

2.3 Probabilistic estimation

GMET generates distributed, spatiotemporally correlated
random fields (SCRFs) that are used to sample the distributed
regression models, generating ensembles that each maintain
the spatial and temporal correlation structures of the input
variables (Newman et al., 2015). For SCRF, the spatial corre-
lation length (Clen) is used to represent the spatial correlation
structure over the entire domain:

ci,j = exp
(
−
di,j

Clen

)
, (3)

where di,j is the distance between grids i and j , and Clen
is the spatial correlation length determined for each variable
using station data. The random number for a given target grid
point is conditioned based on previously generated points,
utilizing a nested simulation strategy to enhance calculation
efficiency. Please refer to Clark and Slater (2006) for more
details.

The temporal correlation structure is represented using the
lag-1 auto-correlation of a variable to link the SCRF at two
consecutive time steps. In addition, if a variable shows a de-
pendent relation with another variable, the cross-correlation
between the two variables can be used to correlate their
SCRFs. For GMET, the lag-1 auto-correlation of tempera-
ture and the cross-correlation between precipitation and daily
temperature range are used to represent the temporal correla-
tion structure and intervariable relationship (Eq. 4).{
Rt,T = ρlag-1Rt−1,T+

√
1− ρ2

lag-1Rt−1,T,

Rt,P = ρcrossRt,TR+
√

1− ρ2
crossRt−1,P,

(4)
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where t and t − 1 are the current and previous time steps, re-
spectively. RT, RTR, and RP are two-dimensional SCRFs of
mean air temperature, and precipitation, respectively. ρlag-1
is the lag-1 auto-correlation of temperature. ρcross is the
cross-correlation between precipitation and daily tempera-
ture range. For t = 0, the SCRF is generated for each variable
based only on the spatial correlation structure. The spatial
correlation length, ρlag-1, and ρcross can be estimated from
station observations.

After obtaining µ, σ , the POP, and SCRF, GMET can gen-
erate any number of ensemble members. Let R be the ran-
dom number from the SCRF for a specific location and time
step, the probabilistic estimate (xT) for temperature variables
can be obtained using the temperature uncertainty σT to per-
turb the deterministic temperature estimation µT (Eq. 5). The
number of R or SCRFs is the number of ensemble members.

xT = µT+R · σT (5)

For precipitation, non-zero values are generated in propor-
tion to the POP. Let FN(y) be the cumulative density func-
tion (CDF) of the standard normal distribution, and FN(R)

is the cumulative probability corresponding to the random
number R. Note that y is precipitation undergoing the Box–
Cox transformation (Sect. 2.1). Let p0 be the POP for a spe-
cific location and time step; for an ensemble member, a pre-
cipitation event occurs only when FN(R) is larger than p0. If
an event occurs, we need to calculate the scaled cumulative
probability of precipitation (pcs):

pcs =
FN(R)−p0

1−p0
. (6)

The probabilistic estimate of precipitation is expressed simi-
larly to Eq. (5) using the precipitation uncertainty σP to per-
turb the deterministic precipitation estimation µP:

y =

{
0 if FN(R)≤ p0,

µP+F
−1
N (pcs) · σP if FN(R) > p0,

(7)

where y is the precipitation in the normal space and F−1
N (pcs)

is the random value corresponding to pcs. y is back-
transformed to obtain the final precipitation values (xP).

Details of the GMET methodology are introduced in pre-
vious development and dataset studies (e.g., Clark and Slater,
2006; Newman et al., 2015; Tang et al., 2021a; Bunn et al.,
2022). Although Eqs. (5)–(7) are implemented for precipita-
tion and temperature in GMET, the probabilistic estimation
theory is generic and applicable to other variables.

3 GPEP

GPEP offers both methodological (Table 1) and usability (Ta-
ble 2) features that expand on GMET, and these are described
in Sect. 3.1 and 3.2, respectively. Like many software tools,

GMET was first written for a specific application, and a key
motivation for GPEP was to generalize a number of the hard-
coded options to enable broader usage. Figure 1 shows the
schematic of GPEP. A GPEP case is controlled by configu-
ration files, with several templates available in the package.
Once set up, GPEP engages in two key processes: (1) prob-
abilistic estimation model fitting, corresponding to outputs
from Sect. 2.2, and (2) ensemble generation, corresponding
to outputs form Sect. 2.3.

3.1 Methodological improvements

Here we introduce some major methodological improve-
ments of GPEP compared to GMET. These changes enhance
GPEP’s flexibility as a tool not only for dataset production
but also for scientific research aimed at achieving higher es-
timation accuracy or comparing the performance of different
methodological strategies.

Variable selection flexibility

The original GMET code was implemented to estimate pre-
cipitation, mean daily air temperature (Tmean), and daily
temperature range (Trange), although it has also been used
to estimate only precipitation. The spatial regression method
and design, however, are applicable to arbitrary spatiotem-
poral variables; thus, GPEP brings the variable selection and
associated details into the user control (“configuration”) file.
This versatility enables GPEP to generate ensemble analyses
for other variables; in the Earth science or geophysical con-
text, these might include other meteorological variables such
as radiation, wind speed, humidity, and air pressure, which
are commonly required for hydrological models, or even hy-
drological variables for which observations or other analyses
exist, such as snow water equivalent (SWE).

Spatial interpolation

GMET supports only locally weighted linear and logistic re-
gression, whereas GPEP expands the options beyond these
two basic capabilities to also support any supervised learning
method from the scikit-learn package (Pedregosa et al., 2011)
that can use the fit function to train the model and use the pre-
dict/predict_proba to predict the output. Such techniques in-
clude ridge regression and classification, BayesianRidge re-
gression, Lasso regression, and ElasticNet regression (among
others) for locally weighted regression and regressors and
classifiers of random forest (RF), multi-layer perceptron, and
support vector machine (among others) for global regression.
Global regression builds one model for the entire study do-
main at every time step, which is far more efficient than the
local regression methods, whereas users need to caution that
global regression may have degraded accuracy compared to
local regression which needs in-depth investigation for case
studies. Users can define the method for continuous and clas-
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Table 1. Comparison of GPEP and GMET methodological features.

GMET v2.0 GPEP

Variable Fixed: precipitation, air temperature, and
temperature range

User defined

Spatial interpolation – Locally weighted regression Local regression
– Linear regression – Linear regression
– Logistic regression – Logistic regression

– scikit-learn methods
Global regression
– scikit-learn methods including machine learning

methods such as random forest and multi-layer
perceptron

Prediction uncertainty
estimation

– k-fold sample cross-validation (including
leave-one-out) for each target grid point

– Cross-validation at station points only, with
interpolation to grid points

– Leave-one-out for local regression
– k-fold cross-validation for global regression

Spatial correlation – User defined – User defined; or
length – Direct estimation from station data

Static predictors Fixed: latitude, longitude, elevation, north–south
gradient, west–east gradient

User defined

Dynamic predictors – Same fixed spatial/temporal format for all – Independent settings for different variables
dynamic variables – Flexible spatial/temporal formats

– Allow spatial interpolation and transformation for
any variable

Distance-based
weights

Fixed formulation with empirical weight function
or unweighted option

User defined formulation

Table 2. Comparison of GPEP and GMET usability and technical features.

GMET GPEP

Environment Requires a FORTRAN compiler and associated
libraries (e.g., OpenBLAS) and uses standard
FORTRAN compilation approaches.

Requires a Python 3 environment and associated
libraries (e.g., xarray, dask) and uses standard
Python package installation approaches.

User settings – A small number of necessary run settings and
parameters are set in the user control files

– A larger number of run settings and parameters
are set in the user control files

– Fixed variable and dimension names for domain
and attribute files (do not need to be set)

– Variable and dimension names are defined in the
configuration file (must be set)

Input file format – Individual station data files and a metadata file – Individual station files and a metadata file; or
– A combined station file including metadata

Variable input and – Probability of precipitation – Probability of events for any variable
output control – Fixed Prcp-Trange dependence – Any pair of variables can be linked

– min/max temperature inputs to mean and range of
temperature outputs

– Arbitrary transformation from input variables to
output variables

Neighbouring stations Fixed number defined by users Min/Max number defined by users

Relative speed Fast Slow

Parallelization External (accomplished through time-space domain
splitting)

Internal (accomplished through multipool
processing)
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Figure 1. The schematic of GPEP. To set up a GPEP case, users first need to prepare configuration files based on the templates provided
in the package. The GPEP will then implement (1) probabilistic estimation model fitting, which can also output deterministic geospatial
estimates, and (2) ensemble generation of any number of members.

sification regression and define model parameters following
scikit-learn formats in the configuration file.

Uncertainty estimation

GMET has the option to use a standard k-fold cross-
validation to obtain the uncertainty of each grid cell spe-
cific regression estimate, where the number of folds is speci-
fied by the user. The use of k-fold cross-validation increases
the computational demand in proportion to the number of
folds, which was feasible in GMET but is not in GPEP, due
to its slower speed and relatively costlier operation. Con-
sequently, GPEP adopts an alternative cross-validated un-
certainty estimation strategy: (1) obtaining regression esti-
mates at all station points, using leave-one-out validation
for local regression and N -fold cross-validation for global
regression; and (2) interpolating the resulting root mean
square error from the station points to each grid cell using
a distance weighted (i.e., locally weighted) averaging. The
GPEP method achieves generally similar uncertainties with
the standard method at less computational cost. The simi-
larity of the two error estimation outcomes, however, will
depend on the nature of the station and grid datasets being
used.

Spatial correlation length

This parameter is critical for generating SCRFs for ensemble
member generation. GMET requires prescribed length val-
ues, whereas GPEP supports either user-specified correlation

lengths or a data-driven option, in which the length is inferred
from raw station inputs. Users can also set various thresh-
olds for the correlation calculation. For example, a positive
threshold such as 10 mmd−1 can be used to focus only on
heavy precipitation. With the data-driven option, users need
to ensure that the input data length is enough for robust esti-
mation of the correlation; the prescribed option is useful for
smaller datasets (such as an operational forecast application)
that are inadequate to define such correlation lengths.

Static and dynamic predictors

GMET uses a fixed grid for both the static and dynamic pre-
dictors, has a hard-coded default list of static predictors, and
uses the same predictors for all target variables (with a minor
exception of dropping slope from low-relief prediction situa-
tions, the threshold for which is also hard-coded). In contrast,
GPEP allows users to define the static and dynamic predic-
tors used for different target variables. GPEP supports the
regridding and transformation of dynamic input data as well.

Distance-based weight

GMET v2.0 calculates local weights for the regression using
a hard-coded exponential function based on the distance be-
tween two points, or allows for unweighted regression, and
these choices can have a strong influence on regression esti-
mation. GPEP more generally supports any user-defined dis-
tance functions based on the two parameters: dist (distance
between points) and maxdist (max distance in weight cal-
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culation). This feature facilitates research on the impact of
weight functions on regression and ensemble generation per-
formance.

3.2 New technical and usability features in GPEP

GPEP has a different code design compared to GMET, lever-
aging features of Python to facilitate its implementation, de-
bugging, and future improvement. A key consideration in the
design of GPEP was providing backward compatibility with
most input and run mode configuration features of GMET, to
ease user transition and facilitate intercomparison.

Environment

The FORTRAN-based GMET has certain prerequisites in
terms of computational environment, such as the availability
of a FORTRAN compiler and libraries to support NetCDF
file standards and linear algebra libraries (e.g., OpenBLAS).
GPEP relies on the installation of at least Python 3, along
with Python packages including scikit-learn, scipy, xarray,
and dask. Whether GMET or GPEP is more accessible for
a user will depend on the user’s familiarity and facility with
FORTRAN-related or Python-related computational depen-
dencies. In general, both GMET and GPEP are designed
with the use of common and/or open-source dependencies.
Given the increasing prevalence of Python usage in the Earth
science community, however, we believe that shifting fu-
ture GMET development to a Python foundation will foster
broader engagement by users and developers from more var-
ied computational backgrounds.

User control

As is common with all models and software, GMET has
a mixture of hard-coded settings or parameters and those
that are exposed in configuration files to give the user con-
trol over the GMET application. As it has developed, more
parameters have been exposed to increase GMET flexibil-
ity, and with GPEP we accelerate this trend, either through
bringing parameters of interest into the user control file or
providing more methodological options. Examples include
the spatial correlation length for Tmean and Trange or Box–
Cox transformation exponent. The GPEP user can specify (in
the configuration file) previously fixed implementation de-
tails such as the names of the input dataset dimensions and
static predictor variable names (e.g., “elevation”). Although
not strictly necessary for GMET and GPEP operation, these
settings allow the user to avoid pre-processing inputs to ex-
acting formats and may enhance the tool’s usability.

Input station data file format

GMET was coded to read station data time series from indi-
vidual files, along with a single *.CSV metadata file, whereas
GPEP can either use this input file organization or a single

netCDF file that combines all stations and their metadata
attributes. The latter approach may be more convenient for
users who prefer to bundle the station time series into a sin-
gle file, and the single self-documenting file is faster to read
than individual files. It may be less convenient if the station
dataset changes frequently (either in the number of stations
or length). If used with individual station data files, GPEP
will write a merged NetCDF station file to provide the user
with both options on subsequent runs.

Input and output variable specifications

GMET is currently coded for its most common application,
i.e., reading precipitation and temperature extrema (mini-
mum and maximum) and writing precipitation and tempera-
ture mean and range (over the time step), which are estimated
as the mean and difference of the extrema, respectively. For
many daily meteorological applications, these are the most
widely available and used variables. For ensemble member
generation, the SCRFs of precipitation and temperature are
explicitly linked (via cross-correlation). One of the most im-
portant new features of GPEP is to generalize GMET to al-
low the user to specify arbitrary input and output variables
and linkages and transformations between them. In the con-
figuration file, arithmetic expressions can be used to convert
input variables to output variables, and the concept of POP
is generalized to “probability of event” (POE), which can be
estimated for any variable and can also use a user-defined
event threshold. Users can also define the interdependence
of variables in the ensemble generation step directly in the
configuration file.

Neighbouring stations

GMET allows users to define a fixed number of neighbouring
stations used in local regression, while GPEP allows users to
define the minimum and maximum numbers of neighbouring
stations. This feature responds to the reality that for large do-
mains users may want to use different numbers of neighbour-
ing stations for areas with different station densities. For ex-
ample, it may be optimal to use fewer neighbouring stations
in remote areas (e.g., northern Canada) to avoid involving
stations without notable correlation to the target point, while
more neighbouring stations can be used in densely gauged
areas (e.g., the eastern USA).

Reproducibility and random field output

GMET by default uses a random seed when generating en-
semble output, whereas GPEP gives users the option to fix
(set) the seeds that control the random processes, such as
SCRF generation and machine learning initial states. Fixing
the random seeds will obtain the same ensemble outcomes
from each GPEP run, enabling reproducibility that can be
useful in debugging and development. GPEP also provides
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users with an option to output SCRF values, which may be
of interest in development or for certain applications.

Parallelization

Computational efficiency is critical for operational applica-
tion. Python is inherently slower than FORTRAN for many
operations, and GPEP’s production of ensemble analyses
overall appears to be between 10 and 50 times slower than
GMET, based on exploratory benchmarking. For instance,
Python is around 10 times slower than FORTRAN for least-
square linear regression functions. For complex computa-
tions and loops, the speed gap could be larger. Thus, we
have parallelized GPEP’s most time-consuming parts using
the multiprocessing package to improve its speed (future ver-
sions may use other packages such as dask). To demonstrate
the parallel efficiency, we tested two locally weighted re-
gression methods (LWR: LWR1 and LWR2) and a global
regression method (i.e., RF) for the GMET version 2.0 test
case of daily meteorological forcing generation for February
2017 in California, USA (Bunn et al., 2022). Figure 2 shows
that the default LWR1 functions are faster than LWR2, but
both methods are slower than the global regression method
RF. LWR2 is slower than LWR1 due to multiple factors, in-
cluding the complexity and overhead of scikit-learn and the
implementation difference (LWR1 is translated from FOR-
TRAN codes using lower–upper decomposition). We ob-
served a significant speedup for LWR1/LWR2 when CPUs
increased from 1 to 25 and for RF when CPUs increased from
1 to 15. The speedup for RF diminishes because the com-
pute time is relatively short for lower numbers of CPUs. The
number of valid grids for this experiment is 12 419, based
on which users may have a rough estimate of local regres-
sion time for their own LWR experiments. For generating
ensemble members, parallel efficiency remains high with in-
creasing CPU numbers up to 35, as different ensemble mem-
bers can be generated simultaneously and can fully utilize the
available CPUs.

3.3 GPEP documentation and applicability

GPEP comes with extensive documentation that is avail-
able on the GitHub repository and provides detailed in-
formation on how to set up the environment and pre-
pare the configuration file and run GPEP. The docu-
mentation includes a comprehensive list of all the avail-
able parameters and options that can be used to cus-
tomize the GPEP input and output (i.e., the ./doc-
s/How_to_create_config_files.md). A Jupyter Notebook is
provided, demonstrating the downloading and running of test
cases (i.e., the ./docs/GPEP_demo.ipynb). The test cases are
available at https://doi.org/10.5281/zenodo.8222852 (Tang
and Wood, 2023b).

4 Demonstration experiments

We demonstrate a subset of GPEP capabilities through a
small number of experiments described in this section. The
first (Sect. 4.1) compares GPEP outcomes to those of GMET
for the primary GMET test case, a 0.0625◦ resolution daily
meteorological ensemble generation for California, that is
included in the GMET version 2.0 repository (Bunn et al.,
2022). The second demonstration (Sect. 4.2) is for meteoro-
logical ensembles in a higher resolution (0.01◦ or approx-
imately 1 km) domain including the US Rocky Mountain
headwaters of the Colorado Headwaters; the third (Sect. 4.3)
illustrates the use of GPEP to generate ensemble analyses of
SWE for the same domain.

4.1 GMET and GPEP comparison

In this experiment, we compared the outputs of GPEP and
GMET using the GMET version 2.0 test case in California,
USA. Figure 3 depicts the agreement between the GMET and
GPEP regression model mean estimation of the four primary
GMET output variables, focusing on the locally weighted
linear and logistic regression method based on static predic-
tors only. For precipitation, Tmean, and Trange, the GPEP
and GMET estimates are almost identical for all samples,
with the data pairs for all time steps and grid cells in the
domain mainly located along the 1–1 line. For Tmean and
Trange, some subtle differences within±0.1 ◦C are observed
in the eastern parts of the domain. The minor discrepan-
cies, especially in the probability of precipitation, come from
slight numerical differences in data inputs, attributed to dif-
ferences in double precision or single precision in GPEP and
GMET codes. These minor variations can be magnified dur-
ing iterative processes of logistic regression. GPEP tends to
generate lower precipitation POE than GMET for low pre-
cipitation probability, while for high POE GPEP generates
higher probabilities. The positive and negative differences
do not show observable spatial patterns. In general, GPEP’s
mean precipitation POE is slightly higher than that of GMET
by 0.005 (∼ 1 %), which is negligible.

These results demonstrate that GPEP can reproduce
GMET’s grid cell regression estimates with the most com-
mon configuration used in GMET applications to date. Note
that we do not compare the ensemble member outputs here.
The random fields generated by GMET are challenging to
reproduce exactly in GPEP for a meaningful comparison,
and the transformation of the regression models to ensem-
ble members through the application of SCRFs is a straight-
forward arithmetic operation. Furthermore, the conclusions
drawn by Henn et al. (2018), which evaluated the disparities
between gridded precipitation datasets such as the GMET-
based contiguous United States (CONUS) dataset (Newman
et al., 2015) and Daymet (Thornton et al., 2021) in the west-
ern CONUS, are also pertinent to GPEP-based estimates em-
ploying the identical configuration. Consequently, we do not
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Figure 2. The CPU scaling of the time cost (a, c, e) and speedup (b, d, f) of precipitation (prcp) regression (a, b), the probability of event
for precipitation (prcp_poe) regression (c, d), and the generation of 100 ensemble members (e, f). LWR1 represents the default GMET
method using locally weighted linear and logistic regression. LWR2 represents scikit-learn’s ridge regression and logistic regression, and RF
represents the random forest regressor and classifier. Speedup is the ratio between compute time with 1 CPU versus with multiple CPUs.

perform a comparison with other published datasets in this
study.

4.2 High-resolution meteorological forcing ensemble
generation

4.2.1 Experimental design

Previous GMET-based datasets were all created at mesoscale
resolutions, such as 0.0625◦ (∼ 6 km) and 0.1◦ (∼ 10 km). In
this experiment, we demonstrate the production of higher-
resolution ensemble meteorological analyses of daily pre-
cipitation, Tmean, and Trange, using a resolution of 1 km
in the US upper Colorado region, as shown in Fig. 4. The
baseline GMET dataset for this domain was developed as
part of a number of water resources research projects sup-
porting the US Bureau of Reclamation (e.g., Wood et al.,
2021), one of which focuses on the Colorado–Big Thomp-
son Project and hydrologic modelling in the East River and
Taylor River basins. The elevation ranges between 1427 and
4241 m. The experiment was performed using meteorologi-

cal data from 864 precipitation and/or temperature stations
for the 2013 calendar year. The station observations were
quality-controlled (using checks for range and repeating val-
ues) and filled using a four-pass iterative quantile mapping
from best-correlated nearby stations (Mendoza et al., 2017;
Liu et al., 2022). Locally weighted linear/logistic regres-
sion is used in spatial interpolation. The static predictors
are latitude, longitude, elevation, and south–north and west–
east slopes. The slopes are based on smoothed topography
(Fig. 4c and d) to better characterize orographic precipita-
tion on the windward and leeward sides (Newman et al.,
2015). In more recent work, the smoothing parameter (a two-
dimensional isotropic Gaussian filter with an effective radius
of approximately 100 km) was heuristically selected to maxi-
mize the correlation between the slopes and precipitation gra-
dients. In addition, we use the 2 m air temperature, 2 m dew-
point temperature, and precipitation from the ERA5-Land
reanalysis product (Muñoz-Sabater et al., 2021) as dynamic
(time-varying) predictors because of their linkage with tem-
perature, humidity, and precipitation. The static and dynamic
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Figure 3. The scatter density plots (first row) between GPEP and GMET estimates of precipitation (prcp) after Box–Cox transformation
with a minimum value of −4, precipitation probability of the event (prcp_poe), mean air temperature (tmean) and daily temperature range
(trange). Each point represents the estimate for a specific grid on a given day. The second and third rows show the histograms and spatial
distributions of the difference between Python and FORTRAN outputs. The first and second rows are based on samples from all time steps
and grid cells in the domain.

predictor selection was for demonstration purposes and does
not presume to offer optimal performance. In practice, users
may choose to test different combinations to achieve the best
accuracy, which can be determined through examining cross-
validation results.

The high-resolution experiment, having about 73 % of the
grid count of the North American Land Data Assimilation
System (NLDAS), can also provide a benchmark for large-
domain applications. Using 36 CPUs on the Casper high per-
formance computer (HPC) at the National Center for Atmo-
spheric Research, this experiment took 54.4 min to produce
regression estimates and 37.3 min to generate 36 ensemble
members for the year 2013. Note that this duration does not
account for the one-time generation of prior files, such as
indices for neighbouring stations and the spatial correlation
structure.

4.2.2 Leave-one-out validation

As introduced in Sect. 3, GPEP uses the leave-one-out strat-
egy to estimate the uncertainty of local regression. GPEP also
provides 16 evaluation metrics in the output file, facilitating
the assessment of the quality of interpolation estimates. For
example, Fig. 5 displays three metrics, namely, the correla-

tion coefficients (CC: 0–1), mean absolute error (MAE: 0–
∞), and the modified Kling–Gupta efficiency (KGE′′: −∞–
1). KGE′′ (Tang et al., 2021) uses the standard deviation in-
stead of the mean value to normalize the bias term, making
it suitable for temperature variables because it avoids the im-
pact of units (e.g., kelvin vs. degrees Celsius) and the am-
plified bias around zero temperature (when degrees Celsius
is used). Precipitation estimates show higher accuracy in the
relatively flat eastern areas, exhibiting high CC and KGE′′

and low MAE, while the vast western areas have lower accu-
racy due to the complex terrain and lower station density.
Tmean and Trange exhibit different spatial patterns, with
Tmean having much better MAE and KGE′′ than Trange.
This indicates the difficulty in capturing diurnal fluctuations
between the minimum and maximum temperature.
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Figure 4. (a) The location of the test case area in the upper Colorado region, USA (red region). Blue lines outline the Hydrologic Unit Code
(HUC) level-2 regions. (b) The digital elevation from the Shuttle Radar Topography Mission (SRTM) with an original resolution of 3 arcsec.
(c) and (d) are the south–north and west–east slopes, respectively, calculated based on smoothed elevation using a 2D Gaussian low-pass
filter.

We compared the performance of RF to locally weighted
regression as shown in Fig. 6. Here we only use the de-
fault settings of the scikit-learn package. The efficiency of
RF is influenced by factors like hyperparameters and fea-
ture combinations, but a deep dive into these is beyond the
scope of this paper. We used 10-fold cross-validation for RF
and leave-one-out for locally weighted regression, making
the station density about 10 % lower for RF. Compared to lo-
cally weighted regression, RF has better CC for precipitation
and Tmean but a higher MAE for all variables. For KGE′′,
the difference between the two methods varies across sta-
tions but has a comparable overall performance. This exper-
iment highlights the capability of GPEP to incorporate ma-
chine learning in spatial estimation, and refining precision in
specific user applications will benefit from the user’s exper-
tise.

4.2.3 Ensemble estimation

Figure 7 shows the spatial distributions of precipitation,
Tmean, and Trange from three ensemble members during the
period 9 to 17 September 2013, when heavy precipitation oc-
curred with the accumulated amounts exceeding 500 mm at
the precipitation centre. The magnitude is generally compa-

rable to other post-flood analyses (e.g., Gochis et al., 2015).
The large differences between members at event centres orig-
inate from the interpolation uncertainties which are mainly
caused by the degraded capability of the station network
and interpolation method to capture extreme events. Tmean
shows the lowest ensemble spread among the three variables,
and Trange shows the intermediate ensemble spread. The
ensemble spread, calculated using weighted spatial averag-
ing, shows a smooth spatial distribution. The distribution of
Tmean and Trange demonstrates a distinct patchy pattern,
suggesting that the primary source of uncertainty originates
from a few stations located in the southern region of the study
area.

Figure 8 shows the time series of ensemble outputs in
September 2013 for Boulder County, Colorado, parts of
which experienced significant extreme precipitation, causing
devastating floods from 11 to 15 September 2013. The return
periods of the floods were estimated to be 25 to 100 years.
The GPEP ensemble precipitation indicates a major precip-
itation event (Fig. 8a), with mean or median precipitation
going beyond 60 mmd−1 and some members going beyond
100 mmd−1 around 11 September. For precipitation estima-
tion, it is possible that the use of a wind speed and direc-
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Figure 5. The spatial distributions of CC (a, b, c), MAE (d, e, f), and KGE′′ (g, h, i) for precipitation (a, d, g), Tmean (b, e, h), and Trange
(c, f, i) based on leave-one-out validation.

tion dynamic predictor would also contribute to an upslope
precipitation enhancement, leading to higher intensities at
elevation in the Front Range basins that experienced flood-
ing. The flooding period also suffers from the largest uncer-
tainty in September with the 5 %–95 % bounds ranging be-
tween < 10 and > 150 mmd−1. This illustration highlights
the challenge of accurately capturing extreme events with de-
terministic precipitation estimation and the potential useful-
ness of ensemble estimation in representing uncertainty and
triggering useful alerts for extreme events with their upper
bounds. Additionally, Tmean displays a decreasing trend ac-
companied by continuous precipitation, while Trange shows
an inverse trend to Tmean after 8 September.

We conducted an additional experiment for an independent
evaluation of ensemble estimates. In this experiment, we uti-
lized 70 % of the randomly selected stations to generate the

gridded estimates and used the remaining 30 % as a reference
for evaluation. The number of ensemble members is 100.
As depicted in the rank histogram (Fig. 9), the probabilis-
tic estimates for precipitation, Tmean, and Trange generally
capture the range of station observations. Yet, precipitation
probabilistic estimates appear to have a slight bias toward
overestimation, as shown by the elevated sample number at
the lowest rank compared to others, whereas Tmean prob-
abilistic estimates lean toward underestimation. The results
depart from uniform reliability across all predicted ranks,
though not badly. These biases might stem from inaccuracies
in spatial regression estimates and may be improved through
a consideration of different predictors or methods available
in GPEP. We reiterate that these results serve as a demon-
stration of the probabilistic evaluation methodology. Users
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Figure 6. As in Fig. 5 but depicting the difference (random forest minus locally weighted regression) between the two estimation methods.
Note that the random forest output is just for demonstration purposes without substantial effort on parameter tuning and feature engineering.

should conduct evaluations tailored to their specific test cases
to gauge actual performance.

4.3 Snow water equivalent (SWE) estimation

GPEP can be applied to a wide range of geophysical vari-
ables beyond precipitation and temperature, which has been
the common application of GMET. In this test case, snow wa-
ter equivalent (SWE) is chosen as an example, as it was one
of the first applications of the locally weighted terrain regres-
sion and ensemble generation methodology that was later de-
veloped into GMET (Slater and Clark, 2006). We use the
same domain as in the previous test case and a configuration
sharing some details: the predictors are latitude, longitude,
elevation, and south–north and west–east slopes; the trans-
formation method was Box–Cox; and the locally weighted
linear/logistic regression is adopted. In practice, other pre-

dictors such as other topographic variables; vegetation types;
and dynamic predictors such as radiation, temperature, and
SWE from models can be explored for improved perfor-
mance. We estimate SWE ensembles for the water year from
October 2012 to September 2013. The station observations
come from the SNOwpack TELemetry Network (SNOTEL).
Only serially complete stations (71) in the study period are
used, as we did not attempt to quality control and fill the sta-
tion data for this demonstration.

Figure 10 shows the LOO cross-validation results of SWE.
According to station observations, the SWE peak occurs on
25 April 2013, during the 2012–2013 water year. Overall,
the spatial distributions of observed and estimated SWE are
similar (Fig. 10a and b). However, the estimated SWE is
smoother in space, leading to large biases at a few points. For
example, SWE is overestimated at two stations (∼ 39.3◦ N,
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Figure 7. The spatial distribution of total precipitation and mean Tmean/Trange (columns) from three ensemble members (the first three
rows) and the ensemble spread (the fourth row) from 9 to 17 September 2013.

106.6◦W and ∼ 40.2◦ N, 105.6◦W) that show notably lower
SWE than surrounding stations. For the mean annual SWE
(Fig. 10c), estimates agree well with observations (the rel-
ative mean error for the points shown is 2.94 %), except
for one outlier corresponding to the station at 40.35◦ N,
106.38◦W. The station has an elevation of 3340 m, where the
estimated SWE is 375 mm but the observed SWE is 180 mm.
It is possible that the predictors used in this demonstration
do not represent the factors affecting SWE distribution well,

leading to sub-optimal regression results. Figure 10d shows
that the seasonal performance of cross-validated GPEP SWE
(averaged across the 71 points) in the upper Colorado region
is well captured, except for the underestimation of SWE at
the end of the melt period (June 2013). Optimizing this SWE
analysis is beyond the purposes of this capability demonstra-
tion, and it is likely that different predictor or methodological
choices would improve the results shown here.
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Figure 8. The time series of spatially averaged GPEP ensemble outputs in Boulder County, Colorado (39.91 to 40.26◦ latitude and −105.7
to −105.05◦ longitude).

SWE and other hydrologic or land surface variables can
be strongly auto-correlated, distinguishing their probabilistic
estimation from most meteorological fields, e.g., precipita-
tion or temperature. The lag-1 auto-correlation of SWE ex-
ceeds 0.99 within the study area, implying that the random
field in all time steps will be quite similar to that in the first
time step (Eq. 4), and the ensemble spread may be underesti-
mated. This example highlights the importance of generating
a realistic initial spatial random field, which significantly de-
pends on the spatial correlation length, for the perturbation of
SWE, as well as predictors that represent factors leading to
high-frequency space/time variability in SWE. For demon-
stration purposes, we have used a spatial correlation length
of 10 km, but we would encourage future studies to investi-
gate optimal settings for this length. Figure 11 illustrates the
25-member SWE estimates. The uncertainty is lower during
the accumulation stage and greater when SWE reaches its
peak and melting begins (Fig. 11a). Figure 11b and c display
the ensemble mean and spread of SWE on 25 April 2013, re-

spectively. Substantial SWE is observed in high-altitude ar-
eas, where the spread is also large. Probabilistic SWE esti-
mates can support the uncertainty quantification of a variety
of applications related to water resources management such
as forecasting streamflow, including seasonal runoff volumes
for managing reservoirs and assessing flood risks.

5 Discussion

The experiments showcased in this study highlight the flex-
ible use of GPEP for both deterministic and probabilistic
geospatial estimation across various variables. We emphasize
that GPEP is a tool with a myriad of configuration choices
for estimation applications that may differ greatly from the
case studies shown. The statistical accuracy of these experi-
ments can be further improved with a deeper dive into predic-
tors, parameters, and methodological alternatives. Users can
also investigate the influence of various factors such as sta-
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Figure 9. The rank histogram of 100 ensemble members using 70 %
of the stations to generate the gridded estimates and the remaining
30 % as the evaluation reference.

tion density, topography, and climate on estimation accuracy
within their specific applications.

GPEP requires station records as inputs to implement
geospatial estimation across temporal scales. For local re-
gression configurations, it is advisable to either fill gaps in
station records or utilize serially complete station datasets
(e.g., Eischeid et al., 2000; Tang et al., 2020, 2021), while
for global regression gaps in station records are permissible.
Users also have the flexibility to restructure gridded datasets
by considering each grid cell as a distinct station to achieve
particular objectives such as downscaling. However, this ap-
proach might significantly impact computational efficiency
due to the sheer number of points since GPEP is not initially
designed to serve such applications.

The initial implementation of GPEP has much room for
improvement concerning both methodology and software en-
gineering. A few key aspects are discussed below with the
aim to attract a community of collaborators who will help to
achieve some of these future developments:

– The probabilistic estimation formulation used by
GMET and GPEP is implemented to handle the inter-
correlation relationship between two variables, while
higher-dimensional multivariate formulations would
likely be needed in certain applications of Earth system
models. For example, precipitation, humidity, radiation,
and temperature variables are correlated to each other
in time and space. GPEP only allows the dependencies
of one variable on the other one through Eq. (4), al-
though multiple pairs of dependencies can be defined in
the configuration file. This formulation can be expanded
through code revision to include multivariate correlation
and covariance structures, and alternative probabilistic
estimation methods can be investigated, such as using
Copula functions and reviewing correlation structures
obtained from multi-site weather generators.

– The flexibility of the methodological framework can be
further enhanced by including more options. For ex-
ample, myriad options exist for variable transformation
(the current Box–Cox transformation may not be ideal)
and can be added in the future to address the require-
ment of specific variables (Papalexiou, 2018). Similarly,
the generation of spatiotemporally correlated multivari-
able analyses can benefit from the addition of a va-
riety of methods, including the Papalexiou and Seri-
naldi (2020) technique to construct flexible spatiotem-
poral correlation structures by combining copulas and
survival functions, and geostatistical tools such as the
Python-based GSTools (Müller et al., 2022) that can be
used to generate spatial random fields.

– The current scikit-learn method libraries are just a start-
ing point for expanding the options available for con-
ditional estimation of geophysical fields, and we expect
that future development may link to ML and deep learn-
ing packages such as PyTorch, TensorFlow, or Keras, as
the field evolves. By incorporating these and other po-
tential options, GPEP can become even more versatile
in hydrometeorology and Earth science studies.

– A major drawback of the move from the FORTRAN-
based GMET to GPEP is the significantly slower out-
comes for current meteorological GMET applications
(even considering the internal parallel capability of
GPEP). Work to understand and optimize this aspect
has only begun (e.g., Fig. 2), so the computational de-
mands may pose challenges for GPEP’s local regres-
sion configurations if applied for large-domain and/or
near-real-time operational applications on small com-
putational resources. We expect that this issue can be
resolved through further algorithm optimization, hybrid
programming for the time-consuming parts of GPEP,
additional parallel processing options, and even a shift
toward GPU computing.
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Figure 10. (a) SWE of station observations on 25 April 2013, when the mean SWE reaches the peak, (b) SWE of leave-one-out interpolation
estimates on 25 April 2013, (c) scatter plots between observed and estimated mean annual SWE with the colour representing KGE′′, and
(d) the performance of daily domain-average SWE estimation for 1 water year (2013).

6 Summary and discussion

GPEP is a flexible Python-based software for ensemble,
probabilistic estimation of any geophysical variable. It ex-
pands on the capabilities offered by the FORTRAN-based
GMET software on which GPEP is based. GMET has been
used for almost a decade in numerous hydrology and water
resources applications, demonstrating its quality and value
through the performance of GMET datasets relative to other
widely used options. The central motivations for adapting
GMET into a Python framework were to broaden the de-
velopment community for the probabilistic estimation tool
and to facilitate more rapid development with linkages to ML
methods through the growing Python-based activities and re-
sources in this area.

GPEP supports various local and global regression meth-
ods including ML techniques for spatial interpolation and

fusion of multi-sensor datasets, and can generate any num-
ber of ensemble members using the predictive uncertainty
results obtained from cross-validation. Although GPEP op-
erates more slowly than the original GMET, the tool’s inter-
nal parallelization capability scales well to improve its com-
putation efficiency, making it suitable for both research and
operational applications.

The experiments showcased in this study illustrate exam-
ples of GPEP’s capabilities without being tailored for opti-
mal application-quality performance. The template config-
urations available on the associated GitHub repository can
emulate GMET configurations and generally deliver com-
mendable results, and users are encouraged to view GPEP
as a versatile geospatial estimation tool and extend their
configurations beyond those provided in the templates. User
expertise and domain knowledge are required for scientific
explorations of various configurations (e.g., weight func-
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Figure 11. (a) Domain average daily SWE in the study area from 25 members. The dark blue line is the ensemble mean. Panels (b) and (c)
are the ensemble mean and ensemble spread of SWE on 25 April 2013, respectively.

tions, neighbouring stations, static/dynamic predictor com-
binations, variable transformation, and regression method in-
tercomparison) and diverse scenarios (e.g., station densities,
topographic and climatic impacts, and variable choices).

Code and data availability. GPEP is available on GitHub (https:
//github.com/NCAR/GPEP, last access: 7 February 2024). The
package is also published on Zenodo with a Digital Ob-
ject Identifier (DOI) (https://doi.org/10.5281/zenodo.8223174,
Tang and Wood, 2023a). The California precipitation/temper-
ature and upper Colorado SWE test cases are available at
https://doi.org/10.5281/zenodo.8222852 (Tang and Wood, 2023b).
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