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Abstract. The constellation of Earth-observing satellites has
now produced atmospheric greenhouse gas concentration es-
timates covering a period of several years. Their global cov-
erage is providing additional information on the global car-
bon cycle. These products can be combined with complex
inversion systems to infer the magnitude of carbon sources
and sinks around the globe. Multiple factors, including the at-
mospheric transport model and satellite product aggregation
method, can impact such flux estimates. Analysis of variance
(ANOVA) is a well-established statistical framework for esti-
mating common signals while partitioning variability across
factors in the analysis of experiments. Functional ANOVA
extends this approach with a statistical model that incorpo-
rates spatiotemporal correlation for each ANOVA compo-
nent. The approach is illustrated on inversion experiments
with different satellite retrieval aggregation methods and
identifies consistent significant patterns in flux increments
that span large spatial scales. Functional ANOVA identifies
these patterns while accounting for the uncertainty at small
spatial scales that is attributed to differences in the aggre-
gation method. Functional ANOVA is also applied to a re-
cent flux model intercomparison project (MIP), and the rel-
ative magnitudes of inversion system effects and data source
(satellite versus in situ) are similar but exhibit slightly differ-
ent importance for fluxes over different continents. In all ex-
amples, the unexplained residual variability is locally sizable
in magnitude but with limited spatial and temporal correla-
tion. These common behaviors across flux inversion exper-
iments demonstrate the diagnostic capability for functional
ANOVA to simultaneously distinguish the spatiotemporal
coherence of carbon cycle processes and algorithmic factors.

1 Introduction

Many of the key processes in the global carbon cycle have
undergone substantial change in recent decades, yet their im-
pacts remain challenging to estimate. This is due in large
part to the sparsity of direct observations of carbon fluxes. In
particular, a lack of global coverage requires alternative ap-
proaches for understanding the global carbon cycle. Fluxes
can be inferred indirectly with atmospheric transport mod-
els in combination with information on atmospheric carbon
dioxide concentration. Regular global CO2 estimates from
satellites, including the Greenhouse Gases Observing Satel-
lite (GOSAT; Kuze et al., 2009) and the Orbiting Carbon
Observatory-2 (OCO-2; Eldering et al., 2017), have pre-
sented new challenges and opportunities for carbon cycle sci-
ence investigations through flux inversions. The data volume
(tens of millions of observations per year) and relatively fine
spatial footprints (1.3 km ×2.25 km) for OCO-2 have moti-
vated the use of spatially aggregated products in global inver-
sions (Baker et al., 2022). Since the satellite estimates arise
from a retrieval (O’Dell et al., 2018), the end-to-end infer-
ence from satellite radiance spectra to flux estimates involves
two complex inverse problems subject to multiple sources of
uncertainty (Cressie, 2018), including observational errors,
spatiotemporal representation uncertainty, and model trans-
port error (Engelen et al., 2002). Some flux solutions at-
tempt to account for these sources in their representation of
the posterior uncertainty, but these are not always available,
and a coherent probabilistic assessment becomes challeng-
ing in the presence of multiple flux estimates with varying
assumptions. Further, the spatiotemporal structure of flux es-
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timates is of particular interest, and characterizing spatiotem-
poral correlation is necessary in quantifying uncertainty. The
statistical methodology in this work provides a framework
for this common situation.

Some of these sources of uncertainty, such as the data
source or inversion system, can be represented as discrete in-
stances of multiple categorical factors, and partitioning their
relative contributions to the range of solutions can guide pri-
orities for future research in carbon cycle science. In this
work we are particularly interested in flux estimates derived
from different inversion systems, such as those investigated
in model intercomparison projects (MIPs; Thompson et al.,
2016; Gaubert et al., 2019; Crowell et al., 2019). A sec-
ond factor of interest is the makeup of the CO2 concentra-
tion data used in the inversions. Satellite missions produce
retrievals, or estimates, at the native satellite footprint res-
olution. Global flux inversion systems typically do not as-
similate these Level 2 satellite products at this resolution.
Instead, Level 3 aggregated estimates are used. Our effort
contrasts inversions that assimilate a traditional simple ag-
gregated product with inversions that use Level 3 products
produced through data fusion (Nguyen et al., 2017), which
accounts for spatial correlation in the aggregation step. In
the context of remote sensing data products, we define data
fusion as a procedure that accounts for the spatiotemporal
correlation in one or more satellite datasets to produce an es-
timate of a common quantity of interest at regular spatiotem-
poral resolution.

Given a set of flux maps obtained under different scenar-
ios, or combinations of these factors of interest, our goal is
to find common features among the scenarios and to identify
systematic ways or regions in which fluxes from different
scenarios differ. Analysis of variance (ANOVA) is a statisti-
cal modeling framework that facilitates the estimation of the
common and factor-specific effects. It further characterizes
the magnitude of the differences within factors relative to the
inherent variability within a scenario. Statistical model as-
sumptions dictate the estimation of this within-scenario vari-
ability and will be an additional focus of our investigation.
The ANOVA methodology has been extended to functional
data, such as time series and spatial fields, where it can pro-
vide a coherent depiction of space–time patterns and anoma-
lies due to various factors (Kaufman and Sain, 2010). In this
functional ANOVA setting, some or all components of the
classical ANOVA model are functions of space and/or time.
Representing correlation of the ANOVA components across
space and time is a critical extension in the functional case.
While the approach and statistical model are suitable for pos-
sibly irregularly spaced spatiotemporal data, previous imple-
mentations (Kaufman and Sain, 2010; Sain et al., 2011) have
used regularly gridded output from Earth system models, and
flux inversion results are structured similarly.

The ANOVA approach can be particularly useful for an-
alyzing output from a collection of Earth system models or
assimilation systems with a common quantity of interest and

similar experimental setup. This setup is often formalized as
a MIP, an enterprise becoming commonplace among multi-
component process models in Earth system modeling (see
Eyring et al., 2016, and the associated special issue). Several
MIPs have been conducted for carbon flux inversion systems,
both for in situ observations (Gaubert et al., 2019) and for the
growing satellite record (Crowell et al., 2019; Peiro et al.,
2022). These recent flux MIPs report on experiments involv-
ing multiple inversions from several modeling groups us-
ing different combinations of in situ and spatially aggregated
OCO-2 products in multiple observing modes. In addition to
diagnosing differences among combinations of data sources
and inversion systems, these efforts seek consensus flux esti-
mates that suitably combine the results. Cressie et al. (2022)
discuss an ANOVA-based approach with an associated statis-
tical model to develop weights for individual results in esti-
mating a consensus flux, and the method is demonstrated for
regionally aggregated fluxes. The current study extends this
partitioning of flux variability to gridded fluxes at finer spa-
tial resolution. This extension uses functional ANOVA and
can identify the extent of spatial coherence for the factors as-
sessed. The approach has the potential to add specificity to
previous investigations into the capability of satellite data to
constrain fluxes at various spatial scales (Byrne et al., 2019;
Miller and Michalak, 2020). This capability likely depends
on geophysical and observing conditions, and the current
study examines multiple regions of interest.

Functional ANOVA extends the classical approach to set-
tings with quantities of interest that are functions of known
inputs such as space and/or time. The statistical model is
typically extended with a specification for the relationships
among the ANOVA components across space and time. For
applications involving spatial fields, individual ANOVA ef-
fects are typically assumed to be spatially correlated, and this
structure can be estimated from the data available. This strat-
egy has been applied to output from regional climate models
(RCMs; Kaufman and Sain, 2010; Sain et al., 2011; Kang
and Cressie, 2013). Kaufman and Sain (2010) capture spa-
tial dependence in ANOVA effects with Gaussian process
(GP) models. Estimation and inference for GP models can be
computationally demanding due to operations such as matrix
inversion and Cholesky factorization. Sain et al. (2011) de-
velop a Markov random field (MRF) model with a sparse
precision matrix. However, in two spatial dimensions, the
cost for the necessary Cholesky decomposition is O(N3/2),
where N is the number of locations. Another option, used
in the current work, is to model the Cholesky factor of the
precision matrix as sparse with the Vecchia approximation
(Vecchia, 1988; Katzfuss and Guinness, 2021; Schäfer et al.,
2021).

In this paper, we implement the functional ANOVA
methodology for multiple flux inversion solutions in order
to identify meaningful, spatially coherent, carbon cycle sig-
nals and partition variability among various solutions in the
multi-model ensemble. We illustrate the approach for a re-
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cent MIP effort (Peiro et al., 2022) and for flux estimates pro-
duced with multiple spatial aggregation approaches (Nguyen
et al., 2020). In Sect. 2, we describe the flux datasets used in
demonstrating the functional ANOVA. Then, in Sect. 3, we
formulate the statistical model for functional ANOVA. Re-
sults are presented in Sect. 4, and concluding remarks are
provided in Sect. 5.

2 Datasets

In subsequent sections, we employ the functional ANOVA
methodology for multiple collections of flux inversions us-
ing in situ data and products from OCO-2. For the satel-
lite data, the inversion systems use retrievals of XCO2, the
column-average dry-air mole fraction of CO2, which is re-
ported in units of parts per million (ppm). These retrievals,
termed Level 2 data products, use the Atmospheric Carbon
Observations from Space (ACOS) retrieval algorithm to infer
atmospheric CO2 from the Level 1 satellite spectra. The ex-
amples in this paper are based on the ACOS OCO-2 Version
9 products (Kiel et al., 2019; O’Dell et al., 2018). Additional
diagnostic data from the retrievals, including XCO2 averag-
ing kernels, are used in the inversions to map model states
to the retrieval space when the data products are assimilated.
For OCO-2 in particular, the large data volume and small
spatial footprint are impractical for global flux inversions, so
the retrievals are often aggregated spatially to a spatial reso-
lution on the order of 100 km. These aggregated retrievals are
examples of Level 3 products that aim to provide additional
utility to a broader user community by providing manage-
able data volume and a regular spatiotemporal structure. In
addition, aggregation can provide a more precise estimate of
a quantity of interest (CO2 concentration) at a coarser resolu-
tion that is still meaningful for applications. As an illustration
of functional ANOVA, we investigate the impact of spatial
aggregation on flux estimates in the presence of additional
sources of variability.

2.1 Fused CO2 experiment

An ongoing NASA effort under the Making Earth System
Data Records for Use in Research Environments (MEa-
SUREs) program aims to provide inversion-ready data prod-
ucts that use OCO-2 and GOSAT retrievals. The effort pro-
duces spatially aggregated and gap-filled estimates of XCO2
at daily intervals that span the period of overlap for these
satellite records, from 2014 to present. The gridded OCO-
2 product and multi-instrument fused product are available
from the Goddard Earth Sciences Data and Information Ser-
vices Center (GES DISC; Nguyen et al., 2022). The spatially
aggregated XCO2, along with additional quantities used in
flux inversion, is estimated using a local kriging approach
(Nguyen et al., 2020). The methodology accounts for and ex-
ploits the short-range spatial correlation present in the Level

2 retrievals (Torres et al., 2019; Worden et al., 2017). The
spatial dependence and uncertainty associated with the ag-
gregated XCO2 are estimated from the available Level 2
retrievals and vary in space and time. The spatial aggrega-
tion also reduces the data volume, making the OCO-2 record
manageable for ingestion into global flux inversion systems.

Other spatial aggregation approaches have been devised
for OCO-2 inversions. The resulting data products are all
structured like Level 3 products and have similar spatial res-
olution but differ in the underlying methodology, particularly
in handling spatial correlation in the Level 2 XCO2. The
protocol for the OCO-2 flux MIP uses averages of Level 2
products over short time spans (Peiro et al., 2022), and the
methodology was recently extended by Baker et al. (2022). In
addition, the NASA Carbon Monitoring System Flux (CMS-
Flux) four-dimensional variational (4D-Var) inversion frame-
work has used an aggregation approach termed “super-obs”
(Liu et al., 2017; Byrne et al., 2020). The model is driven by
the Goddard Earth Observing System version 5 of the NASA
Global Modeling Assimilation Office (GEOS-FP) meteorol-
ogy and the inversion estimates fluxes at a 4◦×5◦ resolution.
The CMS-Flux team has performed an experiment with two
separate inversions: a run that ingested the traditional OCO-2
super-obs and another that ingested the MEaSUREs gridded
product.

The ANOVA methodology is particularly convenient for
analyzing the quantitative outcomes of experiments or tri-
als under various discrete combinations of one or more fac-
tors of interest. The approach formulates a statistical model
that is outlined in the next section. The parameters of the
model include an overall mean response and additive ef-
fects for each combination of factors. Replication within fac-
tor combinations allows the decomposition of variability be-
tween (mean differences) and within combinations (noise,
unexplained variability). Our demonstration of the functional
ANOVA for the fused CO2 experiment incorporates the data
aggregation method as one experimental factor, with the two
levels being the super-obs approach (Control) and the MEa-
SUREs product (Fused). The second factor in this investi-
gation will be an interannual effect, contrasting June–July–
August (JJA) of 2016 with the same time period in 2015.

The changing carbon cycle of the middle and high lati-
tudes plays a critical role in the global climate system. These
land areas are major carbon sinks during JJA. The multiple
inversions from OCO-2 reported in Peiro et al. (2022) sug-
gest some uncertainty in the magnitude of the biospheric
uptake for JJA, particularly over Eurasia, and the spatial
patterns in the summer uptake over this region have seen
additional recent attention (Byrne et al., 2020). Functional
ANOVA provides a framework for quantifying these spatial
patterns and their interannual variability in the presence of
uncertainty. The variables of interest are the CMS-Flux esti-
mates available at monthly resolution, so individual months
within a season represent replicates in this example. For spa-
tiotemporal data applications, time is often used as a pseudo-
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replicate (Cressie et al., 2022; Sain et al., 2011). Figure 1
shows the collection of CMS-Flux estimates that are used in
the functional ANOVA demonstration. As these maps indi-
cate, our analysis is focused on the gridded fluxes over the
land areas of Europe and Asia, specifically locations falling
within the Europe, Boreal Asia, and Temperate Asia regions
as defined by the Atmospheric Tracer Transport Model In-
tercomparison (TransCom) Project (Baker et al., 2006). The
TransCom regions are used for analysis and comparisons of
aggregated fluxes (Crowell et al., 2019; Cressie et al., 2022).
The sign of the flux is relative to the atmosphere, so nega-
tive values indicate carbon sinks or uptake by the land/ocean.
Positive flux values represent net sources from the surface.

2.2 OCO-2 flux MIP

Our second demonstration of the functional ANOVA ap-
proach comes from a multi-institution flux MIP using data
products from OCO-2, which provides global estimates of
XCO2 suitable for assimilation into inversion systems that
estimate carbon fluxes at regional to global scales. The matu-
rity and diversity of inversion systems continue to grow with
scientific interest in the carbon cycle, and a sizable collec-
tion of research groups have the capability to provide global
flux estimates based on satellite data products. Like many in-
ferences for the Earth system, flux estimation is an ill-posed
inverse problem. An inversion system combines available at-
mospheric CO2 concentration data with a transport model,
prior assumptions on fluxes, and a statistical/computational
inverse method. Various combinations of these system com-
ponents are employed in satellite CO2 inversion frameworks.

Multiple flux inversion teams applied a common inversion
protocol to their individual inversion systems as part of the
OCO-2 Version 9 Model Intercomparison Project (V9 MIP;
Peiro et al., 2022). The MIP was designed in part to quantify
the impacts of the above inversion system elements on flux
estimates. In addition, each team conducted multiple inver-
sion experiments using the same collections of atmospheric
CO2 data. The data collections represent combinations of
in situ (IS) surface-based CO2 observations and aggregated
OCO-2 retrievals from the ACOS Version 9 products (Kiel
et al., 2019). The OCO-2 collections use combinations of
its primary observing modes and surface types: land nadir
(LN), land glint (LG), and ocean glint (OG). As noted pre-
viously, the individual retrievals are both uncertain, and the
associated errors are moderately correlated in space and time
(Worden et al., 2017). The V9 MIP used spatially aggregated
(approximately 75 km along-track) OCO-2 retrievals follow-
ing the methodology outlined in Baker et al. (2022) that par-
tially accounts for the short-range correlation identified for
the OCO-2 retrievals (Torres et al., 2019). The aggregated
retrievals include uncertainty estimates that incorporate as-
sumed spatial correlation in retrieval errors and transport un-
certainty.

The V9 MIP flux experiment suite includes estimates from
10 inversion systems (Peiro et al., 2022, Tables 1–2) and four
combinations of data collections. Our investigation focuses
on flux estimates using IS and LNLG data collections, which
were also the focus in the MIP. Further, we illustrate the func-
tional ANOVA for a subset of four inversion systems as out-
lined in Table 1. This subset was selected to provide a con-
trast among different atmospheric transport models that have
similar spatial resolution for the flux solution. The functional
ANOVA is implemented for the spatially referenced monthly
flux estimates for JJA 2016 over North America and sepa-
rately for the same time period over Africa. Figures 2 and 3
provide maps of these collections of flux estimates. In the
subsequent implementation of functional ANOVA, the first
factor is the flux model, and the second factor is the data
source (IS and LNLG). The inversion systems represented in
the MIP have different approaches for estimating posterior
uncertainty, if at all, and these uncertainties are not provided
in the available output.

As Peiro et al. (2022) note, the global carbon cycle saw
a substantial perturbation due to the El Niño event of 2015–
2016, and results from a previous version of the OCO-2 MIP
are also available for this period (Crowell et al., 2019). In
addition to different anticipated carbon cycle responses over
the two continents, North America and Africa differ substan-
tially in coverage of in situ CO2 observations. The spatial
coverage of good quality OCO-2 retrievals is also limited
over tropical Africa for this time period. The North Amer-
ica functional ANOVA implementation combines the grid-
ded fluxes from the Boreal and Temperate North America
TransCom regions. The implementation for Africa combines
the Northern Africa and Southern Africa TransCom regions;
the OCO-2 MIP separated Africa into a total of four sub-
regions. The gridded fluxes provided by the MIP contributors
are available at 1◦× 1◦ resolution.

3 Functional ANOVA

ANOVA is a statistical method with a long history connected
to designed experiments. In such experiments, one or more
factors can be controlled at levels selected by the experi-
menters, and ANOVA provides a framework for estimating
the factors’ impact on response variables of interest. The
method relies on replication within combinations of factors,
or treatments, in order to estimate a mean response for each
combination of factors, along with a partitioning of variabil-
ity between and within treatments. The treatment means are
typically re-parameterized into an overall mean and individ-
ual effects for each level of the factors, as well as interaction
effects.

The classic implementation of ANOVA considers a uni-
variate response, such as an integrated or average carbon flux
over a region of interest. This is frequently extended to a mul-
tivariate response with MANOVA (multivariate ANOVA),
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Figure 1. Monthly flux estimates from CMS-Flux for combinations of year and aggregation method. The top two rows depict fluxes for JJA
2015 from the two aggregation methods, and the bottom two rows depict fluxes for JJA 2016. The Control case uses the super-obs aggregation
approach, and the Fused case uses the local kriging aggregation approach (Nguyen et al., 2020). Fluxes are in units of gC m−2 yr−1.

Table 1. Flux inversion systems in this study; see Tables 1–2 of Peiro et al. (2022) for further details.

Model name Institution Transport model Inverse method Reference

Ames NASA Ames Research Center GEOS-Chem 4D-Var Philip et al. (2019)
Baker Colorado State University PCTM 4D-Var Baker et al. (2010)
CMS-Flux NASA Jet Propulsion Laboratory GEOS-Chem 4D-Var Liu et al. (2014)
OU University of Oklahoma TM5 4D-Var Crowell et al. (2018)

and the decomposition of variance is accompanied by esti-
mation of the correlation structure among the multivariate
responses (Johnson and Wichern, 2002). As the dimension
of the multivariate response grows, the number of parame-
ters to be estimated from the available data grows as well.
The ANOVA approach can be extended to spatial fields us-
ing tools from functional data analysis and spatial statistical
modeling. In this setting, the dimension can be large, but the
parameter space can be managed through a hierarchical ap-
proach and by exploiting the spatial dependence present in
the data. This functional ANOVA approach has been imple-
mented for spatial fields of output from climate model exper-
iments (Kaufman and Sain, 2010; Kang and Cressie, 2013).
Our implementation and notation for the carbon flux inver-
sion results generally follow those from Kaufman and Sain
(2010).

3.1 Statistical model

In the current work, we invoke a two-way functional ANOVA
in the context of carbon flux fields over land. In the two-way

model, there are two experimental factors examined, generi-
cally termed factor A and factor B. In the fused CO2 exam-
ple, year is factor A, and aggregation method is factor B. In
the OCO-2 flux MIP example, the modeling group is factor
A, and data source is factor B. Then yijk(s) represents the
flux field at location s for level (setting) i of factor A, level
j of factor B, and replicate k. In addition, flux inversions in-
corporate a space–time-varying prior flux field, which we de-
note y(0)ijk(s). The prior fluxes incorporate biospheric contri-
butions, fossil fuel emissions, and fires. The CMS-Flux prior
methodology is summarized in Liu et al. (2017) and Byrne
et al. (2020), and the OCO-2 MIP prior specifications are
summarized in Table 1 of Peiro et al. (2022). The functional
ANOVA statistical model can be written in two equivalent
forms,

yijk(s)− y(0)ijk(s)= µij (s)+ εijk(s) (1)

= µ(s)+αi(s)+βj (s)+ (αβ)ij (s)+ εijk(s). (2)

The cell means formulation in Eq. (1) clearly defines a
unique mean field for each treatment, µij , at level i of factor
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Figure 2. Monthly flux estimates from four inversion systems for June–July–August (JJA) 2016 over North America, with columns for the
different inversions. Panel (a) shows flux estimates using in situ (IS) data, and panel (b) shows flux estimates from OCO-2 land nadir and
glint (LNLG) retrievals. Fluxes are in units of gC m−2 yr−1.

A and level j of factor B. With nα levels of factor A and nβ
levels of factor B, there are nα×nβ cell mean fields. The ef-
fects model in Eq. (2) separates the mean field into the addi-
tive effects of the experimental factors. In the effects model,
µ is the mean field representing spatial features in the com-
mon response, αi quantifies the variation around µ due to
level i of factor A, βj quantifies the variation around µ due
to level j of factor B, and (αβ)ij is an interaction effect. In
both forms, εijk quantifies the internal variability within each
scenario. In all examples, the replication within each treat-
ment, indexed by k, is across months within a season. Table 2

defines the factors for the carbon flux functional ANOVA ex-
amples.

The response for the functional ANOVA models in
Eqs. (1) and (2) is the deviation, or flux increment, yijk(s)−
y
(0)
ijk(s). This approach is employed for a combination of

methodological and practical reasons. Statistical modeling
for environmental applications often incorporates known in-
formation as fixed effects, leaving remaining variation to be
modeled with spatiotemporal covariance structures (Cressie
and Wikle, 2011). In addition, exploratory analysis of the
OCO-2 V9 MIP flux estimates revealed fine-scale features
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Figure 3. Monthly flux estimates from four inversion systems for JJA 2016 over Africa. Panel (a) shows flux estimates using in situ (IS)
data, and panel (b) shows flux estimates from OCO-2 land nadir and glint (LNLG) retrievals. Fluxes are in units of gC m−2 yr−1.

in some, but not all, fluxes that were largely absent in the
analyzed flux increments. The various modeling groups con-
tributing to the MIP used different flux priors and differ-
ent approaches for reporting results on the common out-
put grid. The use of the flux increments balances a tradeoff

between these complications, and this statistical modeling
choice impacts the interpretation of the results of the func-
tional ANOVA.

The effects model (2) is commonly used in ANOVA be-
cause it provides a convenient setup for partitioning variabil-
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Table 2. Summary of flux inversion results used in functional ANOVA examples. Region numbers indicate TransCom regions used in each
example (e.g. Crowell et al., 2019).

Experiment Domain Time period Factor A Factor B

Records of fused CO2 Eurasia JJA 2015, 2016 Year Aggregation method
Regions 7, 8, 11 nα = 2 nβ = 2

OCO-2 V9 MIP North America JJA 2016 Inversion system Data source
Regions 1, 2 nα = 4 nβ = 2

OCO-2 V9 MIP Africa JJA 2016 Inversion system Data source
Regions 5, 6 nα = 4 nβ = 2

ity among the factors and their interaction. Further, inference
for the overall mean effect µ and linear contrasts among
the factors is straightforward. However, the model is over-
parameterized, so constraints among the effects must be en-
forced to ensure identifiability. Following Kaufman and Sain
(2010), the flux inversion examples invoke sum-to-zero con-
straints, meaning that the factor main and interaction effects
add to zero, i.e.,
nα∑
i=1

αi(s)= 0,
nβ∑
j=1

βj (s)= 0,

for all locations s. For interaction effects, the constraints ap-
ply across all levels of each factor,
nα∑
i=1
(αβ)ij (s)= 0; j = 1, . . .,nβ ,

nβ∑
j=1
(αβ)ij (s)= 0; i = 1, . . .,nα.

In classic univariate ANOVA, the effects model parame-
ters are estimated by assembling a series of contrast effects
of reduced dimension to ensure identifiability. For factor A,
there are i′ = 1, . . .,nα − 1 of these contrast effects, denoted
α∗
i′

. In the case where nα = 2, there is a single contrast effect,
which can be interpreted as the difference in mean response
for the two levels of factor A; in the fused CO2 example,
this contrast effect is the difference between the 2 years stud-
ied, 2016 and 2015. Similarly, factor B has j ′ = 1, . . .,nβ−1
contrast effects β∗

j ′
, and there are (nα−1)×(nβ−1) contrast

effects for interaction, (αβ)∗
i′j ′

. The contrast effects are re-
lated to the original effects model (Eq. 2) parameters through
linear transformations. This is discussed further in the Sup-
plement (Sect. S.1.2) and in Kaufman and Sain (2010).

Since the quantities of interest are spatial fields, the
ANOVA effects are functions of location. The estimation can
account for this structure and exploit potential spatial correla-
tion if a suitable spatial statistical model is incorporated in a
hierarchical fashion. To that end, a Gaussian process (GP) is
assumed for each spatial field. In this study, the flux inversion
results are reported on a spatial grid. For each ANOVA com-
ponent, the collection of N locations has a joint multivariate

Gaussian distribution. The vector µ= {µ(s`) : `= 1, . . .N}
includes the ANOVA overall mean for the observed loca-
tions. Then,

µ∼N (0,6µ).

The covariance matrix 6µ captures the spatial dependence
for the ANOVA overall mean components across locations.
For the carbon flux inversion examples, we use the Matérn
covariance model with parameters θµ ≡ {σµ,λµ,νµ}, where
σµ is a standard deviation, λµ is a range parameter describ-
ing the rate of decay of spatial correlation with distance, and
νµ is a smoothness parameter (Stein, 1999). For an exponen-
tial model with smoothness ν = 0.5, the range parameter is
the distance at which the correlation reaches 1/e. When the
smoothness parameter is larger, the correlation decays more
slowly at short distances. The GP mean here is taken to be
zero because the flux prior has been subtracted in Eqs.(1)–
(2).

Analogous GP assumptions are made for the remaining
ANOVA model components. When nα > 2 or nβ > 2, some
components have multiple realizations, which are assumed to
be independent and identically distributed (iid) GP realiza-
tions. The GP assumptions are applied to the contrast effect
specification of the main effects and interactions,

α∗i′ ∼N (0,6α); i′ = 1, . . .,nα − 1

β∗j ′ ∼N (0,6β); j ′ = 1, . . .,nβ − 1

(αβ)∗i′j ′ ∼N (0,6αβ); i′ = 1, . . .,nα − 1;

j ′ = 1, . . .,nβ − 1.

Functional ANOVA for geophysical model output has of-
ten used different time points to yield multiple pseudo-
replicates k = 1, . . .,nε across the combinations of ANOVA
factors (Kaufman and Sain, 2010; Sain et al., 2011). In these
investigations, these replicates represent different years in a
multi-decade climate model run, and the functional ANOVA
models assumed dependence across space but independence
over time for εijk . In the current investigation, the replicates
are consecutive months within a season, and independence
across time may not be a reasonable assumption. Instead, po-
tential correlation across replicates within a season is repre-
sented with a first-order autoregressive (AR1) structure. This
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specification is analogous to a repeated measures model in
classical ANOVA (Johnson and Wichern, 2002). We define a
stacked error vector for all replicates within a factor combi-
nation,

εij ≡

 εij1
· · ·

εijnε

 .
The spatiotemporal covariance for the error process is

εij ∼N (0,6ε); i = 1, . . .,nα; j = 1, . . .,nβ .

The spatiotemporal covariance6ε follows a Kronecker prod-
uct form,

6ε = Rθε ⊗Cθε ,

where Cθε is the N ×N spatial covariance matrix, and Rθε
is the temporal correlation matrix parameterized by the AR
correlation ρε . For the case of nε = 3 consecutive months in
the flux inversion examples, the resulting temporal correla-
tion matrix has the form

Rθε =

 1 ρε ρ2
ε

ρε 1 ρε
ρ2
ε ρε 1

 .
The full collection of covariance parameters for the error pro-
cess is θ ε ≡ {σε,λε,νε,ρε}.

3.2 Estimation

Bayesian inference is commonly used for hierarchical spa-
tiotemporal statistical models and has been implemented in
previous work on functional ANOVA incorporating spatial
dependence (Kaufman and Sain, 2010; Kang and Cressie,
2013). The computational overhead for Bayesian inference
can be substantial, particularly when working with GP mod-
els for spatial processes, since operations must be performed
on large, dense covariance matrices numerous times. There-
fore, we formulate the GP models in the functional ANOVA
using the Vecchia approximation of Katzfuss and Guinness
(2021) and Schäfer et al. (2021). The representation yields
sparse matrices that allow for more efficient computations in
Bayesian inference. The GP approximations are still func-
tions of the same parameters as the original Matérn models,
and each ANOVA component has a unique set of parameters.
Bayesian inference interrogates the joint posterior distribu-
tion of the ANOVA components and parameters, p(), given
the available flux fields. This is written as

p
(
µ,α∗,β∗, (αβ)∗,θ |y− y(0)

)
∝

f
(
y− y(0)|µ,α∗,β∗, (αβ)∗,θ

)
f
(
µ,α∗,β∗, (αβ)∗|θ

)
π (θ) , (3)

where f (y− y(0)|·) is a joint Gaussian likelihood arising
from the GP models for the ANOVA components, including
the noise, and π (θ) is a prior distribution for the collection
of GP parameters, θ ≡ {θµ,θα,θβ ,θ (αβ),θ ε}. Prior distribu-
tions are independent for all elements of θ . The distributional
forms and parameters are selected to maintain proper, yet
high-variance, prior distributions guided by previous work
on Bayesian analysis of hierarchical models (Gelman, 2006;
Kaufman and Sain, 2010). Further details on the prior distri-
bution assumptions are provided in the Supplement (Fig. S1).

The posterior distribution (Eq. 3) is complex and
high-dimensional, but it can be sampled using Markov
chain Monte Carlo (MCMC) methods. In particular,
a Metropolis-within-Gibbs MCMC algorithm is used
(Gelman et al., 2013). This approach uses the gen-
eral Gibbs sampler to sample sequentially at each it-
eration from individual-component conditional posterior
distributions, p(µ|θµ,θ ε,y− y(0)), p(α∗|θα,θ ε,y− y(0)),
p(β∗|θβ ,θ ε,y− y

(0)), and p((αβ)∗|θαβ ,θ ε,y− y
(0)). As

outlined in Sect. S.1.3 of the Supplement, the individual com-
ponent distributions are multivariate Gaussian and depend
on summary statistics of the data y− y(0), the GP parame-
ters for the component being updated, and the noise but not
on other ANOVA components. In addition to these distribu-
tions, the Gibbs sampler cycles through draws from the GP
parameters’ conditional distributions: p(θµ|µ), p(θα|α∗),
p(θβ |β

∗), p(θαβ |(αβ)∗), and p(θ ε |(y−y(0)). Each distribu-
tion is sampled with a Metropolis–Hastings (MH) proposal.
Further details on the MCMC procedure can be found in the
Supplement (Sect. S.1.3).

The functional ANOVA model and MCMC algorithm for
the carbon flux examples are broadly similar to previous
demonstrations with climate model output (Kaufman and
Sain, 2010; Sain et al., 2011; Kang and Cressie, 2013), but
there are a few notable extensions in the current work. The
OCO-2 MIP examples use more than two levels per factor,
which is addressed through the contrast effects. All examples
include Bayesian inference for all Matérn parameters; in pre-
vious work the smoothness parameter ν was often fixed. The
current implementation includes temporal correlation for the
ANOVA error term to handle pseudo-replicates at adjacent
times. Finally, the current work invokes the Vecchia approxi-
mation (Katzfuss and Guinness, 2021) for the Gaussian pro-
cesses, which makes the MCMC algorithm more computa-
tionally efficient.

4 Results

The MCMC algorithm outlined in the previous section yields
a large collection of random draws from the posterior dis-
tribution of the spatiotemporal covariance parameters and
ANOVA components. The posterior samples can be summa-
rized for individual parameters, as well as for arbitrary func-
tions of them. For example, while the MCMC samples the
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contrast effects α∗, the draws can be transformed to summa-
rize the main effects α. The functional ANOVA results for
the experiments outlined in Table 2 are summarized in var-
ious ways in this section. As outlined in Eq. (2), inference
for the ANOVA components is carried on flux increments, so
they are interpreted in a relative sense.

It is also worth emphasizing that the inference can be
broadly partitioned into two categories of quantities. The first
category includes the covariance parameters θ . These results
inform the overall collective behavior of the ANOVA factors
across levels. In addition to partitioning variability with vari-
ance components through the GP standard deviation σ as in
classical ANOVA (Johnson and Wichern, 2002), the func-
tional ANOVA inference also characterizes the spatiotempo-
ral coherence, particularly through the range λ and autocorre-
lation ρ, for each factor. The magnitudes of these covariance
parameters across factors are meaningful in diagnosing the
relative impact of their respective sources of uncertainty in
the flux inversions. The second broad category of inference
includes the ANOVA components, (µ,α∗,β∗, (αβ)∗). These
inferences provide specific information about the spatial pat-
terns of the ANOVA components.

4.1 Fused CO2 experiment

The CMS-Flux inversion results over Eurasia for JJA 2015
and 2016 using the super-obs and data fusion aggregation
methods were incorporated into the first functional ANOVA
implementation. Table 3 summarizes the posterior distribu-
tions for the GP parameters for each of the ANOVA compo-
nents. The estimated GP standard deviation is largest for the
error fields ε, indicating that the month-to-month variability
within each treatment combination is relatively large. How-
ever, the estimated range parameter λε is relatively small.
The estimated range for the overall mean µ and year effect α
exceed 1000 km and are an order of magnitude larger. These
contrasts in the estimated correlation range are meaningful
in multiple respects. The large range values for the multi-
year mean flux increment and the year effect indicate these
factors have coherent regional- to continental-scale patterns
at the seasonal timescale. These components, µ and α, are
connected to intrinsic behavior of the carbon cycle as rep-
resented from this collection of inversions. In contrast, the
aggregation method effect, β, shows differences that have
limited spatial coherence. Notably, the posterior inference
shows no evidence of the error process AR correlation ρε be-
ing different from zero. The error term, which captures both
intraseasonal plus other unexplained variation, also has lim-
ited spatial coherence. Relatively large unexplained variabil-
ity at these small scales may be due, in part, to the inherent
ill-posed nature of the flux inversion.

The contrast in spatial coherence among the ANOVA
components is also evident in the location-specific posterior
means of the ANOVA components, which are summarized in
Fig. 4. The upper-left panel provides the estimates of µ(s),

the overall mean deviation from the prior flux for JJA across
the 2 years, 2015–2016. There are broad swaths of the do-
main with sizable negative mean effects, particularly over
central and eastern Asia. The estimated difference between
2016 and 2015, α∗(s), shown in the upper-right panel also
exhibits large-scale coherence but of a modest magnitude.
The contrast effects for the aggregation method, β∗(s), and
for interaction, (αβ)∗(s), are shown in the bottom-left and
bottom-right panels, respectively. In both cases, the magni-
tudes are small with limited spatial coherence.

For this example, there is particular interest in the im-
pact of the aggregation method on the estimated fluxes
from an inversion system. Figure 5 illustrates a quantity
from the posterior distribution for detecting meaningful sig-
nals in the flux increments while accounting for uncertainty
due to different aggregation methods. The left panel shows
Pr(|µ(s)|> |β∗(s)|), the location-specific posterior proba-
bility that the overall mean flux increment has a magnitude
greater than the magnitude of the effect due to aggregation
method. The MCMC posterior samples include realizations
for the ANOVA components at all locations, so these proba-
bilities can be estimated from these samples. The probabil-
ities are nearly 1 for the entire domain, with some slight
regional differences. This suggests that the overall mean
flux increments are meaningfully distinguishable from dif-
ferences due to the use of the fused product versus the super-
obs approach. From a practical standpoint, the impact of the
aggregation approach is insignificant relative to the over-
all mean signal. Similarly, the right panel of Fig. 5 shows
Pr(|α∗(s)|> |β∗(s)|), the posterior probability that the year-
to-year difference has a magnitude greater than the aggrega-
tion effect. These probabilities are fairly uniform spatially at
around 0.6. Taken together, these conclusions highlight that
persistent flux increments are identified in the presence of
data aggregation uncertainty, while more subtle interannual
fluctuations are not as clearly identified.

4.2 OCO-2 flux MIP

The functional ANOVA inference was carried out separately
for flux fields from the OCO-2 V9 flux MIP over North
America and Africa for JJA 2016. In both cases the two
ANOVA factors are the flux inversion system with four lev-
els (modeling groups) and the data source with two levels
(IS and LNLG). These two regions represent distinct scenar-
ios for the methodology for a number of reasons. The carbon
cycles of the temperate and boreal land regions, and transi-
tions therein, of North America differ from the tropical and
subtropical areas of Africa. In addition, data availability for
the two regions is markedly different. As shown in Fig. 1 of
Peiro et al. (2022), the density of in situ CO2 observations
is substantially higher over North America than over Africa.
OCO-2 has dense coverage over both continents with some
regional disparities (O’Dell et al., 2018). For example, OCO-
2 has substantially more successful retrievals over northern
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Table 3. Functional ANOVA spatiotemporal covariance parameter estimates for the CMS-Flux inversions in the fused CO2 experiment.
The posterior median is the value listed first in each cell, and the values in parentheses are the lower and upper endpoints of 95 % credible
intervals. Data and standard deviations have units of gC m−2 yr−1. Range parameters have units of kilometers, and smoothness parameters
are unitless.

CMS-Flux fusion experiment, Eurasia, JJA 2015–2016

Parameter Mean µ Year α Aggregation β Interaction (αβ) Error ε
2016–2015 fused–super-obs

Standard deviation σ 137 (109, 185) 5.1 (0.5, 22.7) 3.3 (0.1, 12.4) 2.7 (0.2, 10.0) 298 (289, 307)
Range λ [km] 740 (460, 1420) 600 (80, 4800) 160 (50, 410) 150 (60, 410) 295 (259, 337)
Smoothness ν 1.07 (0.73, 1.57) 1.00 (0.52, 1.71) 0.94 (0.51, 1.57) 0.91 (0.49, 1.54) 1.05 (0.91, 1.21)
AR correlation ρ −0.006 (−0.025, 0.013)

Figure 4. Posterior means for functional ANOVA model components for the records of fused CO2 example. Note the different color scales
for the panels.

and southern Africa than over the tropics. Despite some of
these differences in data coverage, both continents should ex-
hibit some spatial heterogeneity in the overall flux signal.

Table 4 summarizes the posterior distributions for the GP
parameters for the OCO-2 MIP functional ANOVA. Once
again, the estimated GP standard deviation σε is largest for
the error fields ε for both regions, indicating sizable month-
to-month variability after accounting for the overall mean
increment along with the model, data source, and interac-
tion effects. In addition, the spatial range λε is relatively
short for the error component. The estimated spatial range is
largest among all components for the flux model effect (λα)
for both regions. This result is consistent with large-scale re-
gional flux differences among inversion systems with differ-
ent driving atmospheric transport (Peiro et al., 2022; Basu
et al., 2018). Further, since the statistical model is applied to
the flux increments, prior flux differences contribute to the
model effects.

The two regions differ slightly in the relative variability of
the model, data source, and interaction effects (σα,σβ ,σ(αβ)).
Over North America, the model and data source effects have

similar variability, and the interaction effect is an order of
magnitude smaller. On the other hand, the variability in the
model and interaction effects are similar over Africa, but the
data source effect standard deviation, σβ , is larger than these.
The difference in coverage between in situ and OCO-2 likely
contributes to this relatively large data source effect. For both
MIP examples, the temporal autocorrelation for the error pro-
cess is positive but relatively small in magnitude at less than
0.15.

Noting again that the analysis is carried out on the inver-
sions’ deviations from their respective priors, Fig. 6 shows
the estimated spatial pattern for the overall mean flux in-
crement, µ(s), for the OCO-2 MIP North America func-
tional ANOVA. The patterns indicate generally negative in-
crements (increased uptake) over the eastern United States
and positive increments over the southwestern United States.
While some spatial coherence is present, the estimated range
is around 200 km and less than that for the model effect
in particular. This difference is evident in Fig. 7, which
provides maps of the estimated (posterior mean) individ-
ual model effects, α(s), as well as the data source effects,
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Figure 5. Posterior probabilities for the records of fused CO2 example. Panel (a) shows the probability that the magnitude of the overall
mean exceeds the aggregation method effect, Pr(|µ(s)|> |β∗(s)|). Panel (b) shows the probability that the magnitude of the year effect
exceeds the aggregation method effect, Pr(|α∗(s)|> |β∗(s)|).

Table 4. Functional ANOVA spatiotemporal covariance parameter estimates for North America and Africa for JJA 2016. The posterior
median is the value listed first in each cell, and the values in parentheses are the lower and upper endpoints of 95 % credible intervals. Data
and standard deviations have units of gC m−2 yr−1. Range parameters have units of kilometers, and smoothness parameters are unitless.

OCO-2 MIP, North America JJA 2016

Parameter Mean µ Flux model α Data source β Interaction (αβ) Error ε

Standard deviation σ 150 (134, 171) 22 (15, 42) 4.2 (0.2, 32.5) 1.3 (0.5, 4.9) 398 (393, 403)
Range λ [km] 202 (162, 257) 2400 (900, 8700) 220 (80, 710) 160 (60, 410) 107 (104, 111)
Smoothness ν 1.11 (1.00, 1.23) 1.07 (0.80, 1.43) 1.23 (0.67, 1.90) 0.97 (0.47, 1.46) 1.26 (1.23, 1.28)
AR correlation ρ 0.130 (0.126, 0.135)

OCO-2 MIP, Africa JJA 2016

Parameter Mean µ Flux model α Data source β Interaction (αβ) Error ε

Standard deviation σ 66 (58, 76) 5.3 (0.4, 11.2) 26 (18, 39) 7.6 (0.2, 14.5) 193 (191, 196)
Range λ [km] 223 (173, 294) 820 (390, 2820) 520 (350, 810) 540 (160, 890) 72.6 (69.5, 75.7)
Smoothness ν 1.42 (1.22, 1.66) 1.21 (0.41, 1.71) 1.70 (1.28, 2.18) 1.64 (0.81, 2.20) 2.87 (2.74, 3.02)
AR correlation ρ 0.147 (0.142, 0.152)

β(s). While generally smaller in magnitude than some of
the localized mean increments, the estimated model effects
in the top panels of Fig. 7 are quite coherent across the
continent for each model. Since this component reflects
model-to-model differences in flux increments, the patterns
can be a combination of difference in prior fluxes, as well
as other aspects of the inversions, particularly atmospheric
transport. The data source effect exhibits spatial depen-
dence that decays at shorter distances. The data source ef-
fect maps also include the locations of in situ observations
from the obspack_co2_1_GLOBALVIEWplus_v8.0_2022-
08-27 dataset (Cooperative Global Atmospheric Data Inte-
gration Project, 2022).

The MCMC procedure provides samples from the full
joint posterior distribution, and the samples can be summa-
rized in various ways to describe the uncertainty for quanti-
ties of interest. Figure 8 summarizes the posterior distribu-
tion for the overall mean increment µ(s) through spatially
referenced credible intervals. Some of the inferred local in-
crements are evident here, including negative values over the
US Midwest and Atlantic coast, and modest positive changes
over the Southwest. Over much of the domain, the intervals

Figure 6. Posterior mean for the functional ANOVA overall mean
flux increment µ for JJA 2016 over North America.

do cover zero, meaning that the direction of the mean flux
increment estimated by the posterior is ambiguous.

Figure 9 shows the estimated spatial pattern for the overall
mean flux increment, µ(s), for the OCO-2 MIP Africa func-
tional ANOVA. This posterior mean map suggests a broad
negative increment over western tropical Africa. The prior
fluxes over the continent (see Fig. S3) contrast uptake north
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Figure 7. Posterior mean for the functional ANOVA main effect for flux model (α, a–d) and for data source (β, e, f) for JJA 2016 over North
America. In situ observation locations are indicated by gold diamonds.

Figure 8. Posterior credible intervals for the functional ANOVA overall mean µ for JJA 2016 over North America. Panel (a) depicts the 2.5th
percentile of the posterior distribution for each location and panel (b) the 97.5th percentile.
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Figure 9. Posterior mean for the functional ANOVA overall mean
flux increment µ for JJA 2016 over Africa.

of the Equator and a net source to the south. This con-
trast manifests in some of the remaining ANOVA effects, as
shown in Fig. 10, where the estimated model effects (top pan-
els) change sign across the Equator. It should also be noted
that the magnitude of these model effects is generally smaller
over Africa than over North America. A north–south contrast
is also evident in the data source effect estimates in the lower
panel of Fig. 10, which could relate to inter-hemispheric
transport differences among the inversion systems. The con-
trast between the two data sources (IS–LNLG) is captured
in the contrast effect β∗(s). Posterior credible intervals for
this contrast are mapped in Fig. 11. For most of the continent
the intervals cover zero, but the in situ inversions appear to
have consistently higher fluxes over southern tropical Africa.
This area is notably devoid of in situ observation sites. At the
same time, the density of quality OCO-2 retrievals is dimin-
ished near the Equator over Africa as well, and data density
is more substantial over the northern portion of the continent
(see Fig. A1 of Peiro et al., 2022). These discrepancies for
a data-limited region underscore the role of representing at-
mospheric transport accurately and will be a challenge for a
region that is susceptible to substantial carbon-climate per-
turbations (Liu et al., 2017).

5 Conclusions

Flux inversions produce estimates of the land–ocean–
atmosphere exchange of carbon as spatiotemporal fields, pro-
viding critical information on the global climate system.
These estimates can be variable due to the combinations of
factors, such as the atmospheric transport model and the in-

put data source(s), used in the inversions. Recent application
of classical analysis of variance (ANOVA) to spatially ag-
gregated fluxes provided a statistical model for partitioning
variability among these factors while estimating the common
signals from the various flux inversions (Cressie et al., 2022).
The ANOVA estimates provided an empirical approach for
weighting different inversion systems in a MIP, as well as
an efficient consensus flux estimate. The functional ANOVA
presented and illustrated here extends the approach to a large
collection of gridded fluxes at finer spatial resolution. The
statistical model represents the flux increment as a function
of space and time, with additive spatial fields for an over-
all mean, main effects for each factor, and their interactions.
Remaining variability is captured in a spatiotemporal error
component. In doing so, the approach accounts for spatial
dependence in the flux fields. The extent of spatial depen-
dence is estimated separately for each of the factors consid-
ered, along with their interactions. Each of the ANOVA com-
ponents is represented as a spatial GP using the Vecchia ap-
proximation for computational efficiency. In demonstrating
the functional ANOVA, our objectives differ slightly from
Cressie et al. (2022). This paper has illustrated the functional
ANOVA method for flux estimates at continental scale un-
der multiple configurations (Table 2) and has emphasized the
method’s capability to partition variability and discriminate
spatial coherence across the different factors considered.

The CMS-Flux inversion system was used in a set of in-
version experiments to investigate the impact of satellite re-
trieval aggregation on flux inferences, contrasting a super-
obs method with data fusion for aggregating fine-scale OCO-
2 retrievals. Overall the aggregation method effect estimated
via functional ANOVA was small in magnitude and in its ex-
tent of spatial dependence, particularly relative to the overall
mean flux increment. Estimated flux differences across years
exhibit substantial spatial coherence relative to the aggrega-
tion method and interaction effects. At the same time, the in-
terannual variability is of a similar order of magnitude as the
aggregation method effect, so detecting year-to-year differ-
ences is more challenging with a limited number of pseudo-
replicates.

The functional ANOVA was also implemented for a sub-
set of inversions from the OCO-2 flux MIP over both North
America and Africa for JJA 2016. The functional ANOVA
identified local consensus in flux increments for both con-
tinents in the presence of variability across inversion sys-
tems and atmospheric CO2 data sources. Over Africa, the
data source effect (in situ versus satellite-only) was larger
than the flux model effect. This assessment could be a use-
ful diagnostic for understanding the relative roles of trans-
port model uncertainty and input data challenges such as bias
and incomplete sampling. Over both continents, the range of
spatial correlation was largest for the model effect, suggest-
ing that model-to-model implementations contribute to dif-
ferences at large scales, including aggregated regional fluxes
(Peiro et al., 2022; Crowell et al., 2019).
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Figure 10. Posterior mean for the functional ANOVA main effect for flux model (α, a–d) and for data source (β, e, f) for JJA 2016 over
Africa. In situ observation locations are indicated by gold diamonds.

The four inversion systems represented in the MIP func-
tional ANOVA use the same inverse method and have simi-
lar spatial resolution in their flux solutions. This subset was
selected to illustrate the ANOVA, including the Vecchia ap-
proximation for GPs, for a factor with more than two levels,
where a more complex set of contrasts is employed to pre-

serve the sum-to-zero constraints. This demonstration indi-
cates that the extension to more than two levels per factor
is attainable methodologically and computationally. The es-
timation could be extended to the full collection of inversion
systems in the OCO-2 MIP. This extension would modestly
increase the computational burden of the MCMC, but the in-
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Figure 11. Posterior credible intervals for the functional ANOVA data source effect β∗, which is the difference between in situ (IS) and
OCO-2 land (LNLG) inversions for JJA 2016 over Africa. Panel (a) depicts the 2.5th percentile of the posterior distribution for each location
and panel (b) the 97.5th percentile. In situ observation locations are indicated by gold diamonds.

tensive operations on the GP precision matrices would still
be executed just once per ANOVA component per MCMC
iteration, as noted in the Supplement (Sect. S.1.3.1). MCMC
convergence could be somewhat more challenging with more
levels per factor.

ANOVA methods and the resulting estimates can be used
to devise potentially unequal weights for combining flux es-
timates into a consensus flux estimate (Cressie et al., 2022).
This weighting is employed with univariate ANOVA when
there are different variances, e.g., σ 2

α,i , for all levels of a par-
ticular factor. Provided these additional parameters can be
estimated reliably from the available data, the weights are
taken to be inversely proportional to the level-specific vari-
ances. In the functional ANOVA setting in this paper, related
extensions for the ANOVA GPs are possible. The GP models
used in this paper result in a variance that differs by ANOVA
component but is constant across space. Alternative param-
eterizations with heterogeneous standard deviations across
space could be developed. Extending the model in this fash-
ion might be feasible for the ANOVA error term in particular,
but the challenge would be to formulate a flexible yet parsi-
monious model for the standard deviations. This could be
achieved by linking the variability to a land cover mask (Vil-
lalobos et al., 2020) or scaling the standard deviation to be
proportional to the prior flux uncertainty. Kang and Cressie
(2013) used a spatial random effects (SRE) model for func-
tional ANOVA components that could result in additional
nonstationarity across space. Future research could explore
these modifications while aiming to maintain the computa-
tional efficiency of the functional ANOVA inference.

The current implementation of functional ANOVA for car-
bon flux estimates has extended related applications to cli-

mate models (e.g. Kaufman and Sain, 2010; Sain et al., 2011;
Kang and Cressie, 2013) in a number of ways, including the
estimation of ANOVA effects for factors with more than two
levels, the use of a repeated-measures temporal correlation
structure in the error process, and the incorporation of the
Vecchia approximation for GPs. The data structure for the
examples in this paper differs in some key ways from the
previous climate applications as well. These previous studies
used multiple years in a climate simulation as replicates to in-
fer a spatially varying climate signal and model effects in the
presence of interannual variability. In these studies, the num-
ber of replicates was sizable, with nε ≈ 30. The carbon flux
examples presented here all used nε = 3, and the ANOVA
error term’s GP standard deviation, σε , is relatively large.
This low-replication, high-variance scenario often translates
to higher uncertainty in the other ANOVA effects and a ten-
dency for them to shrink to the assumed population mean,
zero in this case (Gelman, 2005). Even so, significant differ-
ences can be inferred in this case.

Since the functional ANOVA model is applied to flux
increments, or the difference between posterior and prior
fluxes, some of the functional ANOVA results can be chal-
lenging to interpret, particularly for the MIP experiments.
For the OCO-2 MIP, each modeling group selected its own
prior flux and strategy for gridding results to the common
output resolution. These choices, along with transport model
impacts, all likely contribute to the spatial patterns in model
effects inferred through the functional ANOVA. These char-
acteristics could be more explicitly controlled in the design
of future multi-model flux inversion studies. For example,
multi-model experiments that use a common prior flux across
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inversion systems would help diagnose the impact of other
sources of variability, such as transport model effects.

As the satellite CO2 record, particularly from OCO-2, ex-
tends to multiple years, the methodology can be extended to
also include replicates across years. In addition to extend-
ing the spatial version to other continents and ocean basins,
the functional ANOVA approach can additionally be mod-
ified to analyze groups of time series (Kaufman and Sain,
2010; Cuevas et al., 2004), and this is a common method of
assessment for regional fluxes (Peiro et al., 2022). Finally,
this work has developed a statistical model and appropriate
handling of pseudo-replication for adjacent points in time.
This additional complexity for the error terms in the statis-
tical model incorporates both spatial and temporal correla-
tion. The estimated temporal correlation for the error process
is fairly small for the flux inversion examples presented in
this work, but this spatiotemporal model provides a flexible
extension to the functional ANOVA methodology. Overall,
the functional ANOVA methodology offers suitable flexibil-
ity for anomaly detection among discrete collections of Earth
system models.

Code and data availability. The OCO-2 V9 MIP surface grid-
ded fluxes used in the examples are available from https:
//www.esrl.noaa.gov/gmd/ccgg/OCO2_v9mip (NOAA, 2019). R
code for processing the flux fields, implementing the functional
ANOVA via MCMC, and producing the examples in this pa-
per is available at https://doi.org/10.5281/zenodo.8248871 (Hobbs
and Katzfuss, 2023). The supporting datasets for the exam-
ples, including the MCMC posterior samples, are available at
https://doi.org/10.5281/zenodo.8152509 (Hobbs et al., 2023).
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