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Abstract. Many scientific and societal questions that draw on
ice sheet modeling necessitate sampling a wide range of po-
tential climatic changes and realizations of internal climate
variability. For example, coastal planning literature demon-
strates a demand for probabilistic sea level projections with
quantified uncertainty. Further, robust attribution of past and
future ice sheet change to specific processes or forcings re-
quires a full understanding of the space of possible ice sheet
behaviors. The wide sampling required to address such ques-
tions is computationally infeasible with sophisticated numer-
ical climate models at the resolution required to accurately
force ice sheet models. Stochastic generation of climate forc-
ing of ice sheets offers a complementary alternative. Here,
we describe a method to construct a stochastic generator for
ice sheet surface mass balance varying in time and space.
We demonstrate the method with an application to Green-
land Ice Sheet surface mass balance for 1980–2012. We ac-
count for spatial correlations among glacier catchments us-
ing sparse covariance techniques, and we apply an elevation-
dependent downscaling to recover gridded surface mass bal-
ance fields suitable for forcing an ice sheet model while
including feedback from changing ice sheet surface eleva-
tion. The efficiency gained in the stochastic method sup-
ports large-ensemble simulations of ice sheet change in a new
stochastic ice sheet model. We provide open source Python
workflows to support use of our stochastic approach for a
broad range of applications.

1 Introduction

Many decision-making contexts demand probabilistic pro-
jections of sea level rise. For example, urban planners man-
aging coastal risks would like to be able to quantify the
probability of certain levels of sea level rise (Walsh et al.,
2004) so that they can apply their own risk tolerance to
assess proposed interventions (Kopp et al., 2014; Hinkel
et al., 2019). Probabilistic projections can also help illustrate
the benefits of climate mitigation actions for policy-makers,
quantify coastal adaptation needs, and identify priority areas
for further research (Jevrejeva et al., 2019, and references
therein). Efforts to generate probabilistic projections of fu-
ture sea level change have been ongoing for decades (Titus
and Narayanan, 1996), but the ice sheet component remains
a source of poorly quantified uncertainty (Le Cozannet et al.,
2017; Sriver et al., 2018; Jevrejeva et al., 2019).

Generating probabilistic projections of ice sheet contribu-
tion to sea level requires running many climate and/or ice
sheet model simulations that can explore multiple realiza-
tions of an uncertain future. The spectrum of methods avail-
able to generate future projections of ice sheet change makes
that task difficult. The most computationally efficient meth-
ods find an empirical relationship between some climate vari-
able, often global mean surface temperature, and a variable
of interest, such as global mean sea level (Rahmstorf, 2007)
or ice sheet melt (Luo and Lin, 2022). Such methods allow
wide sampling of future climate scenarios, which is neces-
sary to account for scenario uncertainty. However, they as-
sume that the form of the relationship between the variables
will remain the same in the future, which is not assured in
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a rapidly changing climate with feedbacks among multiple
variables. The structural uncertainty in those methods – that
is, the uncertainty attributable to poor knowledge of the form
of the model itself – is therefore high, and their results are
difficult to convert into a probability distribution.

More sophisticated numerical models represent physical
processes such as ice sheet flow, snowfall, and surface melt-
ing directly (Goelzer et al., 2020b; Seroussi et al., 2020), ex-
plicitly modeling changes over time in the relationship be-
tween climate forcing and output variables of interest. Such
models include many more parameters and internal variabil-
ity of processes on a wide range of spatial and temporal
scales. A direct representation of physical processes helps
to constrain structural uncertainty related to processes and
internal variability, but the computational expense of sophis-
ticated models limits the number of future scenarios that can
be sampled. Model outputs thus represent discrete points in a
wide range of possibilities, providing too little information to
estimate the probability distribution of output variables such
as future sea level.

The limited sampling available from physical process
model outputs has motivated the creation of statistical emula-
tors to explore the probability distribution of ice sheet model
output variables (Edwards et al., 2021). To support local sea
level adaptation planning and to guide ice sheet research,
it is useful to partition the uncertainty in such probability
distributions among various sources – for example, identi-
fying what fraction of the spread comes from uncertainty
in the model physics versus what fraction comes from un-
certainty in the applicable climate scenario (Jevrejeva et al.,
2019; Marzeion et al., 2020). Identifying the fraction of un-
certainty attributable to internal climate variability would re-
quire large-ensemble simulations of ice sheet evolution that
sample a representative set of climate forcing fields.

A particular obstacle to large-ensemble simulations of fu-
ture ice sheet evolution is the computational expense of gen-
erating surface mass balance forcing. “Surface mass balance”
(SMB) refers to the set of processes through which ice sheets
gain and lose mass at the ice sheet interface with the atmo-
sphere. Mass gain processes include precipitation, vapor de-
position, and refreezing of meltwater; mass loss processes
include melting (with subsequent runoff) and sublimation.

Due to the complex set of ice–atmosphere interactions
that comprise mass balance, ice sheet models are not typi-
cally forced directly by global climate model output. Rather,
global climate model output must be downscaled to construct
an SMB field of high enough spatial resolution and quality,
often through use of a specialized mass and energy balance
model that accounts for processes at the snow–ice surface
and in the snowpack (see, e.g., Fettweis et al., 2020, and
references therein). Increasing sophistication in the process-
based models used to construct ice sheet SMB means a corre-
sponding increase in computational demand for each individ-
ual simulation with these models. That added computational

expense further limits comprehensive sampling of possible
SMB scenarios.

Stochastic methods provide a low-cost alternative to en-
sembles with multiple realizations of sophisticated process
models (Sacks et al., 1989). A stochastic generator can pro-
duce a large-ensemble sample of SMB comprised of many
realizations that are statistically consistent with a small set
of process model outputs. Previous studies have applied
stochastic methods to analyze ice sheet mass balance ob-
servations with the primary aim of testing whether a trend
emerges from the range of natural variability. For exam-
ple, Wouters et al. (2013) represented SMB simulated by
RACMO2 as an order-p autoregressive process to estimate
the uncertainty in mass balance trends for the Greenland
and Antarctic ice sheets. More recent studies tested multi-
ple types of stochastic models to characterize the variability
in Antarctic SMB (Williams et al., 2014; King and Watson,
2020) and thereby test the presence of significant, detectable
trends in SMB observations. Here, we have a different aim:
to construct a statistical generator of SMB to force an ice
sheet model. The SMB product we wish to generate should
include interannual variability at the catchment scale, tem-
poral trends, seasonality, and spatial variation down to the
scale of an ice sheet model mesh. We approximate the out-
put of one process-based SMB model as a realization of a
stochastic process. The statistical generator that produces a
realization best fit to a given process-based model output can
then be used to generate hundreds of other realizations, sam-
pling the range of internal variability for future SMB consis-
tent with the same model, at much reduced computational ex-
pense. Those generated samples support large-ensemble sim-
ulations of ice sheet change, including simplified feedback of
ice sheet geometry on SMB (see an example application in
Verjans et al., 2022). To best support the broader glaciologi-
cal community, we base our method entirely on open-source
software packages and provide our own open-source code
where necessary.

Below, we present the data sources that informed our
construction of a stochastic surface mass balance generator
(Sect. 2). We then describe our choice of temporal model
type and how we selected the best-fit model for each catch-
ment of the Greenland Ice Sheet (Sect. 3.1–3.2). Section 3.3
describes how we accounted for large-scale covariance in
SMB across the ice sheet. We demonstrate the generation
of forward-projected SMB time series (Sect. 3.4) and how
to downscale those time series to ice sheet model grid scale
(Sect. 3.6). Finally, we contextualize our work with previous
studies and highlight its potential applications (Sect. 4).

2 Data

We construct the stochastic SMB model based on SMB fields
output from high-resolution regional climate models with do-
mains encompassing the Greenland Ice Sheet. Here, we focus
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on output from seven models that participated in the Green-
land SMB Model Intercomparison Project (GrSMBMIP; Fet-
tweis et al., 2020) to determine whether stochastic genera-
tor type and/or order is dependent on the choice of process
model. The subset of GrSMBMIP models we analyze com-
prises those whose developer team gave us permission to use
their archived data for this purpose: ANICE (Berends et al.,
2018), CESM (van Kampenhout et al., 2020), dEBM (Krebs-
Kanzow et al., 2021), HIRHAM (Langen et al., 2017), NHM-
SMAP (Niwano et al., 2018), RACMO (Noël et al., 2018),
and SNOWMODEL (Liston and Elder, 2006). This selec-
tion includes exemplars of simpler energy balance models as
well as more sophisticated regional climate models (Fettweis
et al., 2020), and these models have been extensively vali-
dated against observations over recent decades. The GrSMB-
MIP regional models are all forced at their boundaries by
ERA-Interim reanalysis data and have been processed onto a
common 1km2 grid, with a common ice extent mask applied.

We aggregate each SMB model output field for each out-
let glacier catchment at an annual timescale. To achieve that,
we overlay each field with the catchment outlines (Fig. 1)
provided by Mouginot and Rignot (2019) and sum the grid
cells that fall within each catchment area, dividing by the to-
tal area of the catchment to arrive at catchment mean SMB
for each month, catchment, and model from 1980 to 2012.
We then sum to annual timescales so that the subsequent
analysis produces statistical models of interannual variabil-
ity. SMB variability at the inter-monthly timescale is domi-
nated by the seasonal cycle, which is added back to generated
SMB time series through downscaling (Sect. 3.6).

3 Model description

3.1 Temporal model for catchment-averaged annual
SMB

We fit a generative statistical model for catchment-averaged
SMB using an approach adapted from the work of Hu and
Castruccio (2021) on other climate fields. We define the n-
dimensional vectorM(t) to be the catchment-averaged SMB
in each of n catchments at time t , and we assume that it can
be described by an additive model with a temporal variability
vector µ(t) and a noise term vector ε(t) of the form

M(t)= µ(t)+ ε(t), (1a)

µ(t)= β0+β1f (t)+

p∑
i=1

8i ·M(t − i), (1b)

ε(t)∼N (0,6). (1c)

In the example case we present here, the vectorsM,µ, and
ε have one entry for each of the n= 260 catchments at time
t , and we evaluate each at a total of m= 30 time steps.

The temporal trend µ(t) includes historical mean SMB for
each catchment β0 and the forcing variable f (t)with a linear

Figure 1. Catchments from Mouginot and Rignot (2019) used to ag-
gregate ice-sheet-wide mass balance. Grey outlines indicate catch-
ments that are not simply connected: for example, several small
glaciers that do not intersect but were grouped together for the
Mouginot analysis. Color contour shading illustrates annual mass
balance for an example year (2010), taken from the dEBM contribu-
tion to SMBMIP (Fettweis et al., 2020; Krebs-Kanzow et al., 2021).
The “K” marker indicates the Kangerlussuaq Glacier catchment, for
which example time series and fitting procedures are shown in the
following figures.

coefficient β1. The forcing variable, f (t), can be an external
process which causes slow changes in SMB, such as atmo-
spheric temperature (f (t)= TA(t)) or simply a prescribed
dependence on time (e.g., f (t)= t). Finally, Eq. (1b) in-
cludes autoregressive terms up to order p contained in the di-
agonal matrices 8i, i = 1, . . .,p. The temporal trend as writ-
ten would thus approximate an autoregressive process of or-
der p, AR(p). Section 3.2 discusses how we identified AR(p)
as the best type of temporal model for this application. At this
stage, fitting temporal models to annually aggregated time
series, we exclude seasonal terms from the temporal trend
µ(t); seasonality is incorporated deterministically during the
downscaling process described in Sect. 3.6. All stochasticity
in this generation technique enters through interannual vari-
ability.

The noise term ε(t) is assumed to be independent, identi-
cally distributed in time, and from an n-dimensional normal
distribution with mean of zero and covariance matrix 6. As
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we describe in Sect. 3.3, spatial correlations between catch-
ments are captured in ε(t).

3.2 Selecting candidate model type and order

We tested several model types in search of the most appropri-
ate way to represent interannual SMB variability in Eq. (1b).
Three criteria inform our selection of candidate stochastic
model types for temporal SMB variability. First, we would
like our candidate temporal models to capture the timescales
of variability apparent in the data based on standard statistical
methods that are likely to be familiar to glaciologists. Sec-
ond, we would like our methods to build on existing open-
source software such that other researchers can test and apply
our work. For that reason, we prioritize models with existing
fitting routines in Python or R. Finally, we would like to be
able to compare our findings to those of King and Watson
(2020) for the Antarctic Ice Sheet, so we prioritize temporal
model families that those authors also tested.

These criteria guide our investigation of three common
types of temporal models. All temporal models we test be-
long to the autoregressive fractionally integrated moving-
average (ARFIMA) family of models. The first type, order-
p autoregressive AR(p) models, is the simplest of the
ARFIMA family. They assume that the value of SMB at
time t depends linearly on values of SMB at times (t −
1, t − 2, . . ., t −p). An AR(0) model is equivalent to a white
noise model scaled to the data. The second type, ARIMA
models of order (p,d,q), includes order-p autoregressive
terms applied to a series that has been differenced d times
to reach stationarity, as well as dependence on a weighted
moving average of the past q residual noise terms. Finally,
general ARFIMA models are similar to ARIMA models but
allow non-integer values for d, accounting for “long mem-
ory” in the time series. To avoid confusion, we henceforth use
ARFIMA to refer only to ARFIMA models that do include
non-integer differencing d, and we refer to the special cases
ARIMA and AR(p) by their own names. King and Watson
(2020) tested AR(p) and ARIMA models; they also tested
generalized Gauss–Markov models, for which we were un-
able to find an open-source fitting routine, but which are very
similar to ARFIMA models of order (p,d,0).

For each catchment, we estimate β0 as the 1980–2012
mean and remove it from the series. We then use con-
ditional maximum likelihood (ordinary least squares) to
optimize values of β1 and the remaining parameters of
Eq. (1b) associated with each candidate model type (AR,
ARIMA, ARFIMA) over a range of orders (p,d,q). We
perform the model fitting with built-in functions from the
Python package statsmodels v0.12.2 (Seabold and Perk-
told, 2010): statsmodels.tsa.ar_model.AutoReg
and statsmodels.tsa.arima.model.ARIMA. In each
case, we assume a linear dependence on time, β1f (t)= β1t

in Eq. (1b). Statsmodels does not include a built-in func-
tion to fit ARFIMA models, so we apply fractional dif-

ferencing following Kuttruf (2019) and subsequently test
ARIMA(p,0,q) with the built-in function.

We analyze the Bayesian information criterion (BIC) as
returned by the statsmodels built-in function for the temporal
models fit to each catchment series. The BIC is given by

BIC=−2`+ ln(T )(1+ df), (2)

where ` is the log-likelihood function of the given temporal
model on the data, T is the number of observations, and df is
the number of degrees of freedom in the generator. Minimiz-
ing the BIC balances a maximization of log-likelihood ` – the
probability that a stochastic generator of this type could have
produced the data series from the process model being fit –
with a penalty for excess parameters (overfitting). We select
the temporal model with the lowest BIC for each catchment
for each SMB process model. We analyze the preferred tem-
poral model types across all catchment–model pairs to iden-
tify the most suitable class of temporal models. We chose
to select the minimum BIC to encourage computationally
cheap models with fewer parameters (as in King and Watson,
2020); we note that statsmodels also returns other common
metrics of model fit such as the Akaike information criterion,
which could be selected by users with other priorities.

To decide the range of orders (p,d,q) to test in our model
fitting, we use the autocorrelation and partial autocorrelation
functions (ACF and PACF, respectively) to target the relevant
timescales of variability. In a purely autoregressive process,
the number of values significantly different from 0 before
the first nonsignificant value in the PACF would indicate the
AR order p. In a purely moving-average process, the num-
ber of values significantly different from 0 before the first
nonsignificant value in the ACF would indicate the MA or-
der q. These metrics cannot be used to determine the order
(p,d,q) of a more general ARFIMA process, but we use
them as qualitative indicators of an appropriate range for test-
ing. The ACF and PACF values differ per process model and
per catchment; an example for the Kangerlussuaq Glacier
annual SMB is shown in Fig. 2. In that example, signifi-
cant autocorrelation is apparent at a lag time of 4 years for
several process models, though with several previous values
not significantly different from zero; the partial autocorre-
lation is not significant for any lag shown. Ice-core-derived
ACF and PACF show significant values at timescales of up to
5 years, tapering to values not significantly different from 0
at longer timescales (Fig. B1). The combination of evidence
from ice cores and from process model ACF and PACF in
multiple catchments suggests several lags≤ 5 years with sig-
nificant ACF or PACF. We therefore choose to test values of
p and q from 0 to 5. We determine the order of differencing
required to reach stationarity, d, using augmented Dickey–
Fuller and KPSS tests of stationarity on each catchment time
series. Both tests agreed that the de-meaned catchment aver-
age time series were stationary, so d = 0 should be appropri-
ate, but for completeness we also tested d = 0.5 and d = 1.
Among the range of values (p,d,q) tested, we select the
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Figure 2. Autocorrelation (a) and partial autocorrelation (b) functions for the annual SMB computed by seven GrSMBMIP process mod-
els for Kangerlussuaq Glacier for 1980–2012. Lollipop markers indicate ACF or PACF values; the blue shaded region indicates the 95 %
confidence interval around zero. Values significantly different from zero therefore appear as blue points outside the shaded region.

best-fit model as the one with the lowest BIC. We note that
comparing the BIC of model fits among temporal models of
different orders requires a consistent base dataset and fitting
method (for example, the same software package and opti-
mization scheme for all models). We computed the BIC us-
ing statsmodels built-in functions, setting the optional argu-
ment hold_back=max(p,d,q) to ensure that lower-order
models were fit to training data series of the same length as
higher-order models.

Figure 3b shows example best fits for four model types
and their BIC (see legend). The best fit to the NHM-SMAP
example data in Fig. 3 is white noise with a trend (AR(0)).
Both AR(p) models shown have lower BIC than the more
complicated ARIMA and ARFIMA models. In this exam-
ple, the best-fit AR(0) and ARFIMA series capture a trend
with little other temporal information, while the AR(5) and
ARIMA(1,0,1) series capture larger temporal variability with
the expense of added parameters. We note that the models
capturing only a trend in Fig. 3b will still generate stochas-
tic series with temporal variability; the distinction is that al-
most all of the temporal variability in the final generator will
come from the spatial noise generation process described in
the next section.

In every catchment and SMB model tested (1820
catchment–model pair time series tested), AR models were
the most suitable. There were no basin–model pairs where
ARIMA or ARFIMA fits were preferred to AR(p) fits. Fur-
ther, white noise with a trend (AR(0)) was preferred to any
higher-order statistical fit for catchment-aggregated SMB in

most basins. Each process model had some basins where
higher-order AR(p) models were preferred (Fig. A1).

The example we present below allows the order of the au-
toregressive model fit to vary by basin. Users may decide to
keep that flexibility, which adds some complication in stor-
ing the model parameters, or they may opt for the simplest
AR(0) fit for every basin and allow residual variability to be
captured in the spatial noise generation (Sect. 3.3) and down-
scaling (Sect. 3.6).

3.3 Estimating SMB covariance between catchments

Thus far, we have described a method for fitting and gen-
erating time-varying SMB for individual catchments with
no correlation beyond the catchment scale. However, SMB
over the Greenland Ice Sheet may vary coherently at spatial
scales beyond those of single outlet glacier catchments due
to large-scale processes in atmospheric circulation (Lenaerts
et al., 2019). Motivated by this physical intuition, we intro-
duce spatially informed noise generation.

Following Hu and Castruccio (2021), we construct a ma-
trix of variance 6 for catchment-level noise terms (Eq. 1c
above) as

6 = DCD, (3)

where D is the diagonal matrix of per-catchment standard
deviations and C is the spatial correlation matrix among all
catchments. Note that this formulation assumes a catchment-
specific variance D, so the SMB is assumed to vary differ-
ently within each catchment, implicitly accounting for dif-
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Figure 3. Catchment mean SMB from seven Greenland-wide models. (a) Time series at monthly scale, as originally presented in the model
output data. (b) Time series summed to annual scale, with series from example best-fit stochastic generators overlaid. The Bayesian infor-
mation criterion for each model’s fit to an example process model (NHM-SMAP) is shown in the figure legend. Lower BIC values indicate
more preferred models.

ferent catchment sizes. The spatial model C is defined on the
inter-catchment correlation, which we assume not to depend
on the catchment size.

The spatial correlation pattern may differ for different
SMB process models, so we construct the matrix of vari-
ance for each SMB process model separately. We calculate
the empirical correlation matrix Ĉ, which is an approxima-
tion of C, from the residuals of per-catchment best-fit tem-
poral models described in Sect. 3.2. We save each residual
(length n= 28, with 5 years held back from the 33-year train-
ing set to accommodate consistent fitting of AR orders up to
p = 5) as a row in a 260×28 matrix R, with one row for each
catchment. The empirical correlation matrix Ĉ is then the
260× 260 matrix of correlation coefficients of the residuals,
which we compute using numpy.corrcoef(R). The em-
pirical correlation matrix computed from ANICE-ITM out-
put is shown in Fig. 4a.

Because the number of catchments we seek to simulate
(m= 260 for Greenland) is considerably larger than the num-
ber of data points used to train individual statistical mod-
els (33 years of catchment-aggregated SMB for each catch-
ment), Ĉ is singular. Therefore, we must enforce a sparsity
condition to reduce the influence of spurious information.
We estimate a sparse correlation matrix 0 using the graph-
ical lasso algorithm described in Friedman et al. (2007).

We apply the GraphicalLassoCV function from the
Python package scikit-learn v0.24.2 (Pedregosa et al., 2011),
which estimates a sparse correlation matrix 0 with the fol-

lowing formulation:

0 = argminK
(

tr ĈK− log det K+α‖K‖1
)
, (4)

where K is the inverse correlation matrix and α is a pos-
itive regularization parameter. Higher values of α lead to
sparser resulting matrices 0. In our implementation, we al-
low GraphicalLassoCV to select the best value of α
through cross-validation. Figure 4b shows the sparse correla-
tion matrix resulting from applying this method to ANICE-
ITM output.

Each row in the sparse correlation matrix 0 represents the
correlation of a given catchment with each other catchment.
Figure 4c translates the information in the first row of 0 to
a map of Greenland. The first row represents catchment 0 in
the Mouginot and Rignot (2019) dataset: Umiammakku Is-
bræ. Umiammakku has the strongest correlation with itself
(dark red shading), moderate positive correlation (lighter red
shading) with surrounding catchments and a few more dis-
tant catchments, and zero or slight negative correlation (light
blue shading) with other catchments in Greenland. We note
that these correlations are inferred from the process model
data – ANICE-ITM output, in Fig. 4 – rather than imposed
by physical intuition. As such, the precise structure of the
spatial correlation matrix will depend on how the data are
aggregated. We would expect slightly different spatial cor-
relations if they were computed with monthly data or using
different catchment outlines. Users must also remember that
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Figure 4. Illustration of inter-catchment covariance in ANICE-ITM output data. (a) The empirical correlation matrix Ĉ, computed as de-
scribed in Sect. 3.3. (b) The sparse covariance matrix that results from applying GraphicalLassoCV to Ĉ. (c) The first row of the sparse
covariance matrix (line 0 in panel b) translated to map view. Catchment 0 is Umiammakku Isbræ, indicated on the map with UMI and an
arrow to its terminus. All panels share the color bar shown below panel (c).

the spatial correlations shown in Fig. 4 are computed on the
residuals of temporal model fits, not on the SMB series them-
selves.

3.4 Forward modeling

Finally, we generate a set of realizations of the forward
stochastic generator. Each realization is the sum of an au-
toregressive component and a draw ε(t) from the normal dis-
tribution with spatial covariance, as described in Eq. (1a) and
Sect. 3.3. We find the Cholesky decomposition 0 = LLT of
the sparse correlation matrix and use the lower triangular
component to generate spatially informed noise. The draw
εk(t) for the kth catchment is found by matrix multiplication:

εk(t)= DL Nj k̂, (5)

where Nj is a random normal matrix of shape (m,Y ) for m
the number of catchments, Y is the number of years in the
desired time series, and k̂ selects the kth row of the matrix.

We generate realizations of catchment mean SMB for an
example catchment: Kangerlussuaq Glacier. Each realiza-
tion is a single time series of catchment mean SMB with

variability described by the stochastic generator. Figure 5
shows 10 realizations of Kangerlussuaq SMB from 1980–
2050, with process model training data overlaid in black for
1980–2012. By inspection, the stochastic realizations (blue
lines on Fig. 5) have variability of similar amplitude and
timescale to the process model series. The 10 realizations,
generated in a few seconds on a laptop, fill the expected range
of uncertainty in annual SMB. We interpret these stochastic
realizations to be an efficiently generated forcing for ensem-
ble simulations of ice sheet change given SMB subject to
internal variability.

3.5 Nonstationarity

The GrSMBMIP process model historical output we use as
our example application did not exhibit nonstationarity, ac-
cording to the KPSS and augmented Dickey–Fuller tests
applied to each output series (Sect. 3.2). We therefore fit
stochastic generators that were stationary by construction,
assuming the underlying distribution of the data did not
change over the period of simulation. We generated stochas-
tic forward simulations as shown in Fig. 5 to illustrate the
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Figure 5. Forward simulation of Kangerlussuaq catchment SMB to 2050, with 1980–2010 mean removed, generated using an AR(4) model
with spatially informed noise. The black line shows the results of the process model ANICE-ITM during the period simulated for GrSMBMIP.
Blue lines are single realizations of the stochastic generator.

possibility of generating time series with consistent variabil-
ity outside the training period. Those simulations fit a linear
trend to the training data and assumed that the trend and am-
plitude of variability remained constant into the future. For
scientific applications that study periods of varying climate –
for example, glacial–interglacial periods or century-scale cli-
mate projections with anthropogenic forcing – it is expected
that SMB time series would not be well fit by stationary mod-
els (Weirauch et al., 2008; Bintanja et al., 2020).

To fit a stochastic generator to time series with statistics
(mean, trend, variance) varying over time, the user could sub-
divide the training data series into periods with stationary
trends and variance. Piecewise linear trends could be com-
puted on the sub-series and each series normalized by its
variance to create a “z-score” time series. The stochastic tem-
poral model could then be fit to the z-score time series as de-
scribed above. The output of the stochastic generator would
then be re-scaled by the variance in each period to produce
ensembles of nonstationary SMB series. The best choice of
break points to subset the training data will depend on the
user’s priorities and the time period being investigated; we
do not pursue z-score re-scaling any further in this example.
For more formal discussion of bias correction in the case of
climate data whose distribution changes in time, we refer the
interested reader to applied statistics literature, e.g., Zhang
et al. (2021) and Poppick et al. (2016).

A user generating realizations of SMB at a particular lo-
cation, or aggregated over some area, could use the method
described up to this point. For example, this method could
generate realizations of aggregated SMB to support detec-
tion of departures from background variability, as in Wouters
et al. (2013). The next section describes how to downscale

SMB from the catchment annual average to spatially exten-
sive SMB fields at sub-annual timescales.

3.6 Elevation downscaling

To force an ice sheet model, we require a two-dimensional
SMB field on the mesh of the model, rather than catchment-
aggregated time series. We now apply a spatial and tempo-
ral downscaling approach to produce gridded SMB from the
stochastically generated series at sub-annual time steps. The
downscaling assumes that within each glacier catchment and
for a given time of the seasonal cycle, the SMB variation
within a catchment can be described by a piecewise linear
function with respect to elevation. This downscaling recog-
nizes that, particularly in our Greenland example, there is a
strong seasonal cycle in SMB and that the spatial variations
of SMB within a glacier catchment are mostly a function of
elevation. As shown in Fig. 6, these assumptions are gener-
ally quite good for Greenland SMB, and they are reflected in
other statistical downscaling approaches that have been pre-
viously applied in deterministic frameworks (Hanna et al.,
2011; Wilton et al., 2017; Sellevold et al., 2019; Goelzer
et al., 2020a). Further, the method generates fields with re-
alistic spatiotemporal variability and elevation dependence,
which can be embedded within an ice sheet model (e.g., Ver-
jans et al., 2022) to capture the known feedback between ice
sheet surface elevation change and SMB change (Edwards
et al., 2014; Lenaerts et al., 2019).

For each point p in a given catchment, we need the sur-
face elevation z(p) used to force the physical SMB model
underlying our stochastic generator and the local SMB spa-

Geosci. Model Dev., 17, 1041–1057, 2024 https://doi.org/10.5194/gmd-17-1041-2024



L. Ultee et al.: Stochastic generation of Greenland surface mass balance 1049

tial anomaly,

3(p, t)= A(p, t)−A(t), (6)

where A(p, t) is the process model SMB at point p and time
t and A(t) is the catchment mean SMB computed from the
same process model at time t . We group all local elevation–
anomaly pairs by month – for example, all January values
together and all June values together – and fit a piecewise
linear mass balance gradient for each month τ :

3τ (z(p))=


c0+ c1 z(p) 0< z(p)≤ z1
c0+ c1z1+ c2 z(p) z1 < z(p)≤ z2
c0+ c1z1+ c2z2+ c3 z(p) z2 < z(p)≤ z3,

(7)

where c0 is the minimum SMB and the segment slopes
(c1,c2,c3) and break points (z1,z2) are free parameters op-
timized by BIC and AIC. In each catchment we thus have 12
functions3τ , one for each month. The monthly mass balance
gradients3τ reintroduce seasonal variation. When taken as a
function of ice sheet surface elevation z∗ that could be evolv-
ing in time, they also allow feedback between surface mass
balance and dynamically evolving ice sheet geometry.

Example fits for the Kangerlussuaq Glacier catchment,
computed from ANICE-ITM output covering 1980–1985,
are shown in Fig. 6 (and the same example is shown com-
puted from RACMO data in Fig. A3). The left panels show
the spatial anomaly in map view, with the terminus of the
glacier to the southeast; the right panels show local SMB de-
parture from the catchment mean as a function of ice sur-
face elevation. The spatial pattern in the example data shows
strong departures from the catchment mean throughout the
lowest portion of the glacier. January SMB in the lower
reaches tends to exceed the catchment mean (blue shading);
July SMB in the same area tends to be much below the mean
(dark red points). Higher elevations show less pronounced
departures from the catchment mean (lighter shading).

Finally, we produce time series of monthly local mass bal-
ance a for each grid point p of the kth catchment:

a(p, t)=M(t) · k̂+3τ (z
∗(p, t)), (8)

where t is the time in months since the start of the series,
M(t) is the annual catchment mean SMB generated by the
stochastic generator, 3τ is the local SMB spatial anomaly
for month τ as defined above, and z∗(p, t) is the local sur-
face elevation at time t . The same principle could be adapted
for training data provided at even finer temporal resolution,
though a large training dataset may be needed to capture the
relevant variability in sub-monthly SMB.

To illustrate the method, we applied the elevation-based
downscaling to estimate local SMB series at two different
points, distributed across elevation, in the Kangerlussuaq
Glacier catchment. Figure 7b shows those time series. Blue
lines are the stochastically generated SMB, downscaled to a
single point in space; black lines are the process model out-
put at the grid cell nearest to the selected point. The point

Figure 6. SMB downscaling in time and space, shown for two ex-
ample months (rows): January and July. Left panels: SMB spatial
anomaly (difference from catchment mean) for each point within
the Kangerlussuaq Glacier catchment, based on the ANICE-ITM
model contribution to GrSMBMIP. Right panels: SMB lapse rate
with elevation for each month, deduced from the anomaly fields
shown. Colored data points represent individual pixel values for
1980–1985. The color map is consistent across panels.

represented in the bottom panel is near the terminus and
shows large-amplitude seasonal and interannual variations in
both the process model and the downscaled stochastic real-
izations. The stochastic realizations closely track the process
model series, while also including interannual variability in
winter and summer SMB that differs between realizations.
The point in the top panel is in the accumulation area. For that
point, the range among the stochastic realizations is wider
than the apparent variability in the process model series. The
seasonal cycle has approximately correct amplitude. We in-
terpret the variability in the catchment-averaged SMB to be
dominated by large-amplitude variation near the terminus
(Figs. 6 and A3), which is then reflected in the stochastic
generator fit to the process model series. We further discuss
this overestimate of accumulation zone interannual variabil-
ity in the next section.

4 Discussion

Simulating ice sheet evolution in a numerical model gener-
ally requires a two-dimensional SMB field that may vary in
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Figure 7. (a) Location of example points (blue stars and numbers) in the Kangerlussuaq Glacier catchment. Circle markers show SMBMIP
grid points, colored by the seasonal range in mass balance at that location, computed as local mass balance in December minus local mass
balance in July. (b) SMB time series scaled from catchment mean down to local (single grid point) values. The series in the upper panel are
scaled to point 1, in the accumulation area; the series in the lower panel are scaled to point 2, near the terminus. As in previous plots, the
black lines in each series are process model output (ANICE-ITM for the example case) and the blue lines are stochastic realizations. Series
share x and y axes.

time. Here, we have laid the foundation for efficiently gen-
erating many realizations of a time-varying SMB field with
stochastic methods. Figure 7 demonstrates that our method
can produce realistic SMB time series across an outlet glacier
catchment. To produce a two-dimensional field, a user would
apply the downscaling method described in Sect. 3.6 to ev-
ery grid point in the catchment. The piecewise linear mass
balance gradients shown in Fig. 6 (insets) are provided to the
user as mathematical functions, so the downscaling can be
applied on whatever mesh the user provides. This simplic-
ity also allows this method to be incorporated directly into
an ice sheet model so that feedback of changing ice sheet
geometry on SMB is included, in addition to the SMB vari-
ability in space and time generated by the method described
above. This stochastic SMB generation method has been in-
corporated directly into the Ice-Sheet and Sea-Level System
Model (Verjans et al., 2022).

In evaluating candidate stochastic generators for catch-
ment annual mean SMB, we found the best fit to process
model variability with the lowest-order statistical models.
For all 260 catchments we tested, simple autoregressive mod-
els had by far the lowest Bayesian information criterion (bet-
ter fit to process model SMB) among model types (e.g.,
Fig. 3b). Moreover, among low-order autoregressive mod-
els, white noise AR(0) models with a trend are preferred
over higher-order models in most basins for all seven pro-
cess models tested (Fig. A1). Low-order AR models could
have a low BIC despite relatively greater error than higher-
order models, as seen in Fig. 3, because the BIC penalizes
excess parameters (Eq. 2). For each process model, there are
some basins where higher-order AR(p) models are strongly

preferred over white noise. The example application we have
shown allows the best-fit model order to be selected per
basin. Our workflow therefore provides a self-consistent way
to infer stochastic generator fits for basins with different pat-
terns of variability.

Our findings contrast with the results of a study by King
and Watson (2020), which found that simple white noise and
low-order AR models were not effective in capturing ob-
served Antarctic SMB variability. For annual SMB time se-
ries reconstructed for 1800–2010 for four Antarctic catch-
ments – the West Antarctic Ice Sheet, East Antarctic Ice
Sheet, Antarctic Peninsula Ice Sheet, and Antarctica as a
whole – King and Watson (2020) used the software Hector
(Bos et al., 2013a) to simultaneously fit a linear trend and
noise model. They found that white noise and AR(1) mod-
els tend to underestimate low-frequency variability and that
a better fit to observations came from power-law or gener-
alized Gauss–Markov models (Bos et al., 2013b). The use
of only three sub-catchments for Antarctica results in much
broader spatial aggregation in contrast to our use of 260
sub-catchments for the smaller Greenland Ice Sheet. That
broad spatial aggregation might be expected to smooth short-
term variability and amplify the relative importance of low-
frequency variability that correlates with large-scale climate
forcing. For that reason, it is not surprising that we find a bet-
ter fit with simple temporal models given that we aggregate
over smaller ice sheet catchments and study a shorter time
period. Further, the spectra of variability could well be dif-
ferent between Antarctica and Greenland; the former is a po-
lar continent with climate heavily influenced by the Antarc-
tic Circumpolar Current, while the latter is a large subpolar
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island exposed to warm oceanic currents and westerly atmo-
spheric flow. Antarctic SMB variability is thus dominated by
snowfall (Previdi and Polvani, 2016), while Greenland expe-
riences more surface melt and runoff, so the best-fit tempo-
ral model types may not be directly comparable. Finally, we
have tested stochastic model fit to more data sources – seven
SMB process models – than earlier studies of one or two data
sources (including King and Watson, 2020); we found that
simple autoregressive models were the best fit for all seven
of the training models, lending credence to our results de-
spite their contrast with earlier findings. We do expect the
characteristics of the best-fit stochastic generators to depend
on basin delineation and training dataset, which we discuss
further below.

We chose to limit the range of lags we tested in our autore-
gressive model fitting for two reasons. First, the autocorrela-
tion functions of annual SMB reconstructed from ice cores
(Fig. B1) show that most cores have significant autocorrela-
tion at short lags (< 10 years) and no consistently significant
autocorrelation at longer lags. Second, higher-order autore-
gressive models risk both overfitting the data and needlessly
adding computational expense, since high-order autoregres-
sive models require holding the SMB from many previous
time steps in local memory. The Bayesian information crite-
rion of candidate high-order AR(p) model fits to SMB data
is high in most basins, supporting our choice in this case.
Further, the decadal timescale of our example application
is the most feasible timescale on which to generate prob-
abilistic projections of sea level change. For timescales of
50 years and longer, uncertainty about anthropogenic emis-
sions scenarios dominates the range of possible sea level
change (Hinkel et al., 2019). However, it should be noted
that a low-order autoregressive model such as ours is poorly
suited to capture low-frequency variability, which may be-
come important for multi-century simulations.

Ice core data (Fig. B1) do not suggest that we have missed
major modes of variability in our model fitting, but it is still
plausible that our stochastic generator fitted to 32 years of
training data will fall short in reproducing multi-decadal and
longer variations. To ensure that stochastic SMB generators
do not miss low-frequency variability that could substan-
tially change Greenland outlet glacier catchments in the com-
ing century and to support stochastic generation for longer-
term historical simulations, further analysis should incorpo-
rate longer-term process model output or spatially resolved
reconstructions of SMB from ice cores or other observations.
If the Greenland Ice Sheet were to become unstable, as re-
cent analyses have suggested (Boers and Rypdal, 2021), the
variance and autocorrelation timescale of its future mass bal-
ance could be quite different from the recent past. Stochas-
tic generator fitting intended for multi-century future projec-
tion should thus be trained on output data from SMB mod-
els run at similarly long timescales, where possible including
the relevant feedbacks and instabilities, rather than project-
ing forward from 30-year historical simulations as we have

done here. We emphasize that our study describes a flexible
methodological framework for training a stochastic genera-
tor of SMB variability, with an example application to multi-
decadal simulation. Our framework can be applied to existing
data for other use cases (such as paleo-reconstruction) and to
new SMB process model outputs as they become available.

Our downscaling method makes it possible to generate
SMB fields on whatever mesh is needed by a numerical ice
sheet model. In ice sheet models designed to accept stochas-
tic forcing, the parameters of the stochastic generator can be
provided directly for online generation of the forcing fields
within the model itself, with negligible addition of computa-
tional expense (demonstrated in Verjans et al., 2022). With
regular updates to the surface elevation of each point on the
model mesh, Eq. (8) can also account for the known feed-
back between ice sheet surface elevation and surface melt
rate (Hanna et al., 2013; Edwards et al., 2014; Lenaerts et al.,
2019). Such a streamlined workflow will further facilitate
large-ensemble simulations.

The workflow we present here, including the downscaling
method, is agnostic to the choice of regions over which to ag-
gregate the SMB. The example application to outlet glacier
catchments in Greenland uses a standard, published basin
delineation (Mouginot and Rignot, 2019). The downscaled
time series shown in Fig. 3, which we generated with data
aggregated from a standard set of catchments, show vari-
ability dominated by large-amplitude seasonal variation at
the terminus. This asymmetry in variability amplitude be-
tween the accumulation and ablation zones ultimately leads
to some overestimation of interannual variability at accu-
mulation zone points. When aggregated over a large accu-
mulation area, overestimated local variability could translate
to an artificially large magnitude of uncertainty in expected
sea level contribution. We suggest that this effect could be
tempered by splitting catchment data into accumulation-area
and ablation-area bins before fitting the spatial downscaling
function. Depending on the user’s scientific goal, such dis-
aggregation may not be necessary for forcing an ice sheet
model, as sub-decadal outlet glacier flow variability is driven
by near-terminus SMB variability (Christian et al., 2020). We
expect that there would be qualitative differences in the SMB
series generated with and downscaled to different choices
of basin delineation (Goelzer et al., 2020a); we have not at-
tempted to optimize basin selection for the illustrative exam-
ple here. Users may apply all steps of the workflow described
in Sect. 3.1–3.6 to SMB data aggregated over different re-
gions.

The within-catchment downscaling we present in Sect. 3.6
is a simple example that may be adapted or replaced for other
applications. The example data plotted in Figs. 6 and A3
show only 1980–1985 in the mass balance gradient. We
tested example 3τ fits to data from the full period (1980–
2012) but found that they tended to underestimate variabil-
ity; conversely, fits to shorter periods tended to overestimate
spatial variability. The example presented here illustrates the
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possibility of inferring a downscaling function from process
model output. It would be possible to infer similar down-
scaling functions at different temporal or spatial resolutions
using reanalysis or reconstructed data or computed over a dif-
ferent reference period. Ultimately, the choice of a reference
period and the best spatial dataset to infer such a function
depends on the user’s intended application, and this selection
may be nontrivial. Further, our simple downscaling does not
capture changes in elevation dependence of SMB over time,
for example due to changes in precipitation phase or local at-
mospheric lapse rate. Users seeking improved fine-scale per-
formance may wish to implement more granular statistical
downscaling methods (e.g., Noël et al., 2016).

The inter-catchment spatial covariance method we apply
here will lose some relevant spatial details from the origi-
nal process models. As described in Sect. 3.3, the empiri-
cal inter-basin correlation matrices Ĉ were singular for our
example case, and in order to generate new realizations of
variability, we enforced sparsity in the correlation matrix 0
(Fig. 4a–b). By construction, this method loses some spa-
tial detail present in the original dataset. Further, our method
does not quantify uncertainty in the model fit – for example,
within-catchment differences in the best-fit statistical model
parameters – other than the range of variability present in the
original process model simulations. Our stochastic genera-
tion of SMB fields based only on SMB models also disre-
gards any covariance between oceanic and atmospheric forc-
ings. More sophisticated methods currently under develop-
ment, such as fitting a Gaussian process emulator (Moham-
madi et al., 2019; Edwards et al., 2021) to the field varying
in space, may be able to resolve these problems in the future.
However, fitting such an emulator that varies in space and
time would require storage of, and computation on, multiple
realizations of SMB process models at kilometer resolution.
Such a task is considerably more computationally demand-
ing than what we have pursued in the example shown here.

Given the simplifications described above, and the abstrac-
tion of stochastic parameters in contrast to physical quanti-
ties, we do not intend stochastic SMB generation to com-
pletely replace process model simulation of ice sheet SMB.
Rather, we envision stochastic SMB generation to provide
a complementary tool set which reproduces many features
of SMB process models at nearly negligible computational
expense. The open-source software that we have developed
and the existing packages on which it is built can be eas-
ily applied to fit a stochastic representation to new outputs
from process-based SMB models as they become available.
Selecting an appropriate class of stochastic generator is the
most time-consuming step of the process; with that complete,
the best-fit model parameters can be updated at any time to
account for new process model results and generate hundreds
of new realizations sampling the range of internal variability
of SMB. Stochastic generation therefore serves to more im-
mediately connect dynamic ice sheet projections with inter-

nal variability from cutting-edge SMB simulations without
the need for costly coupled ensemble simulations.

5 Conclusions

We have described the development and demonstrated the
use of a stochastic method to generate many realizations of
ice sheet SMB fields varying in space and time. For all 260
catchments of the Greenland Ice Sheet that we tested, the
simplest temporal models (AR(p) with order p < 5) pro-
vided the best fit to process-model-derived SMB time se-
ries. Our method streamlines the creation of large samples of
climate-dependent forcing to simulate ice sheet mass change
subject to internal climate variability. The improved compu-
tational efficiency offered by this stochastic SMB generation
method will facilitate large-ensemble simulations of ice sheet
change, which can support a range of applications including
(1) probabilistic sea level projections with improved uncer-
tainty quantification, (2) separating ice sheet variability from
atmospheric and oceanic variability in simulated changes to
the coupled climate system, and (3) attribution of observed
changes to specific forcings.

Appendix A: Best-fit stochastic generators are similar
for different SMB process models

The method we presented can be adapted for a variety of sci-
entific applications. In the example use case we demonstrated
above, we fit stochastic generators to the output from several
SMB process models that had participated in the Greenland
SMB Model Intercomparison Project (Fettweis et al., 2020,
models described therein). The SMB process models vary
in complexity, from relatively simple energy balance mod-
els such as ANICE-ITM (shown in the main text) to more
sophisticated regional climate models such as RACMO.

The results of fitting a stochastic generator to the model
output were comparable regardless of process model. Fig-
ure A1 shows how many basins were best fit by AR(n)
stochastic generators for n from 0 to 5, with 0 being a
white noise model. Figure A2 shows SMB series produced
by stochastic generators fit to each of three example process
models. The series are qualitatively similar; the amplitude of
the variability in the stochastic realizations compared to the
process model series differs per process model. This effect
is due to differences in the spatial covariance inferred from
each process model and used to generate the noise term ε(t)

in each realization.
Within-catchment spatial variation does differ slightly per

process model. For example, the SMB spatial anomaly for
points in the Kangerlussuaq Glacier catchment is different
for ANICE-ITM (main text Fig. 6) and RACMO (Fig. A3),
especially at low elevations. RACMO shows less spread in
January values and much more spread in July values, to the
point of fitting an inflection point in the SMB–elevation rela-
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Figure A1. Histogram showing order n of the best-fit AR(p) pro-
cess, separated by process model. The number of basins for which
the best-fit n is nonzero, as well as the average difference in BIC
between the best fit and an AR(0) fit for those basins, is shown for
each process model.

tionship within the ablation area. Users of our method must
determine what downscaling approach is most suitable for
their scientific aims. Possible choices include (1) using a
spatial downscaling consistent with the process model the
user intends to sample, as we have shown in the main text
for ANICE-ITM; (2) fitting a monthly downscaling function
comparable to Eq. (7) but based on data from another source
they find more accurate for this application, such as an ob-
servational dataset or a higher-resolution process model; or
(3) implementing another elevation-dependent downscaling
technique such as those described in Noël et al. (2016) or
Goelzer et al. (2020a).

Appendix B: Modes of variability in ice core
reconstructions

The GrSMBMIP process model output we used to fit stochas-
tic generators in our example application covered a common
period of 33 years from 1980–2012. To add longer-term con-
text to our choice of candidate model classes (Sect. 3.2), we
also examined ice core reconstructions of SMB in Greenland
over the last 2000 years (Andersen et al., 2006). The point na-
ture of these measurements makes them unsuitable for gen-
erating stochastic, ice-sheet-wide SMB fields, but they are a
useful benchmark to assess the characteristic timescales of
SMB variability, including timescales longer than are simu-
lated in regional SMB models.

We computed the autocorrelation and partial autocorre-
lation functions of SMB reconstructed from each of five
cores. If multiple cores showed significant autocorrelation at
time lags longer than 5 years, it would be an indication that
our model fitting procedure should include candidate models
with higher autoregressive orders p and moving averages q.

Figure A2. Example realizations from stochastic generators fit
to three different process models: ANICE (a), dEBM (b), and
RACMO (c). The series shown is Kangerlussuaq Glacier SMB –
as in main text Fig. 5 – generated from 1980–2050.

The autocorrelation function for the ice core SMB is shown
for lags up to 100 years in Fig. B1. There are no lag values
greater than 5 years for which the five cores agree on signifi-
cant autocorrelation.

The ice core record in Andersen et al. (2006) comes from
cores in the accumulation area of the Greenland Ice Sheet.
The cores are not necessarily representative of decadal-scale
SMB like the GrSMBMIP data we fit in our example ap-
plication because they will not reflect variation in melt rate
or coastal precipitation. As a complementary dataset, the ice
cores support our choice to limit the lags (p,q) tested in our
model fitting procedure; however, they do not guarantee that
our example SMB generators are applicable at timescales
far beyond the historical period to which they were fit. For

https://doi.org/10.5194/gmd-17-1041-2024 Geosci. Model Dev., 17, 1041–1057, 2024



1054 L. Ultee et al.: Stochastic generation of Greenland surface mass balance

Figure A3. SMB downscaling in time and space, shown for January
and July, as in main text Fig. 6 but here showing fits to RACMO
output rather than ANICE-ITM. Left panels: SMB spatial anomaly
(difference from catchment mean) for each point within the Kanger-
lussuaq Glacier catchment, based on the RACMO model contribu-
tion to GrSMBMIP. Right panels: SMB lapse rate with elevation for
each month, deduced from the anomaly fields shown. Colored data
points represent individual pixel values for 1980–1985. The color
map is consistent across panels.

scientific applications that aim to generate SMB varying on
timescales of centuries and longer, we encourage users to fit
a generator to a training dataset on a comparable timescale.

Code and data availability. Code supporting our analysis is
available on GitHub (https://github.com/ehultee/stoch-SMB,
last access: 6 February 2024) and archived on Zenodo
(https://doi.org/10.5281/zenodo.8047501, Ultee and Verjans,
2023). Catchment-aggregated SMB time series derived from the
participating models are included in a subfolder of our GitHub
repository at https://github.com/ehultee/stoch-SMB/tree/main/data
(last access: 6 February 2024).
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A., Radić, V., Reese, R., Rounce, D. R., Rückamp, M., Sakai, A.,
Shafer, C., Schlegel, N.-J., Shannon, S., Smith, R. S., Straneo,
F., Sun, S., Tarasov, L., Trusel, L. D., Van Breedam, J., van de
Wal, R., van den Broeke, M., Winkelmann, R., Zekollari, H.,
Zhao, C., Zhang, T., and Zwinger, T.: Projected land ice contri-
butions to twenty-first-century sea level rise, Nature, 593, 74–82,
https://doi.org/10.1038/s41586-021-03302-y, 2021.

Fettweis, X., Hofer, S., Krebs-Kanzow, U., Amory, C., Aoki, T.,
Berends, C. J., Born, A., Box, J. E., Delhasse, A., Fujita, K.,
Gierz, P., Goelzer, H., Hanna, E., Hashimoto, A., Huybrechts,
P., Kapsch, M.-L., King, M. D., Kittel, C., Lang, C., Langen,
P. L., Lenaerts, J. T. M., Liston, G. E., Lohmann, G., Mernild,
S. H., Mikolajewicz, U., Modali, K., Mottram, R. H., Niwano,
M., Noël, B., Ryan, J. C., Smith, A., Streffing, J., Tedesco, M.,
van de Berg, W. J., van den Broeke, M., van de Wal, R. S. W.,
van Kampenhout, L., Wilton, D., Wouters, B., Ziemen, F., and
Zolles, T.: GrSMBMIP: intercomparison of the modelled 1980–
2012 surface mass balance over the Greenland Ice Sheet, The
Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-
2020, 2020.

Friedman, J., Hastie, T., and Tibshirani, R.: Sparse inverse covari-
ance estimation with the graphical lasso, Biostatistics, 9, 432–
441, https://doi.org/10.1093/biostatistics/kxm045, 2007.

Goelzer, H., Noël, B. P. Y., Edwards, T. L., Fettweis, X., Gregory, J.
M., Lipscomb, W. H., van de Wal, R. S. W., and van den Broeke,
M. R.: Remapping of Greenland ice sheet surface mass balance
anomalies for large ensemble sea-level change projections, The
Cryosphere, 14, 1747–1762, https://doi.org/10.5194/tc-14-1747-
2020, 2020a.

Goelzer, H., Nowicki, S., Payne, A., Larour, E., Seroussi, H., Lip-
scomb, W. H., Gregory, J., Abe-Ouchi, A., Shepherd, A., Si-
mon, E., Agosta, C., Alexander, P., Aschwanden, A., Barthel, A.,
Calov, R., Chambers, C., Choi, Y., Cuzzone, J., Dumas, C., Ed-
wards, T., Felikson, D., Fettweis, X., Golledge, N. R., Greve, R.,
Humbert, A., Huybrechts, P., Le clec’h, S., Lee, V., Leguy, G.,
Little, C., Lowry, D. P., Morlighem, M., Nias, I., Quiquet, A.,
Rückamp, M., Schlegel, N.-J., Slater, D. A., Smith, R. S., Stra-
neo, F., Tarasov, L., van de Wal, R., and van den Broeke, M.: The
future sea-level contribution of the Greenland ice sheet: a multi-
model ensemble study of ISMIP6, The Cryosphere, 14, 3071–
3096, https://doi.org/10.5194/tc-14-3071-2020, 2020b.

Hanna, E., Huybrechts, P., Cappelen, J., Steffen, K., Bales,
R. C., Burgess, E., McConnell, J. R., Peder Steffensen, J.,
Van den Broeke, M., Wake, L., Bigg, G., Griffiths, M., and
Savas, D.: Greenland Ice Sheet surface mass balance 1870 to
2010 based on Twentieth Century Reanalysis, and links with
global climate forcing, J. Geophys. Res.-Atmos., 116, D24121,
https://doi.org/10.1029/2011JD016387, 2011.

Hanna, E., Navarro, F. J., Pattyn, F., Domingues, C. M., Fet-
tweis, X., Ivins, E. R., Nicholls, R. J., Ritz, C., Smith,
B., Tulaczyk, S., Whitehouse, P. L., and Zwally, H. J.: Ice-
sheet mass balance and climate change, Nature, 498, 51–59,
https://doi.org/10.1038/nature12238, 2013.

Hinkel, J., Church, J. A., Gregory, J. M., Lambert, E., Le Cozannet,
G., Lowe, J., McInnes, K. L., Nicholls, R. J., van der Pol, T. D.,
and van de Wal, R.: Meeting User Needs for Sea Level Rise In-

https://doi.org/10.5194/gmd-17-1041-2024 Geosci. Model Dev., 17, 1041–1057, 2024

https://doi.org/10.1029/2005JD006765
https://doi.org/10.5194/gmd-11-4657-2018
https://doi.org/10.1126/sciadv.aax6869
https://doi.org/10.1073/pnas.2024192118
https://doi.org/10.1007/s00190-012-0605-0
https://doi.org/10.1093/gji/ggt481
https://doi.org/10.5194/tc-14-2515-2020
https://doi.org/10.5194/tc-8-195-2014
https://doi.org/10.5194/tc-8-195-2014
https://doi.org/10.1038/s41586-021-03302-y
https://doi.org/10.5194/tc-14-3935-2020
https://doi.org/10.5194/tc-14-3935-2020
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.5194/tc-14-1747-2020
https://doi.org/10.5194/tc-14-1747-2020
https://doi.org/10.5194/tc-14-3071-2020
https://doi.org/10.1029/2011JD016387
https://doi.org/10.1038/nature12238


1056 L. Ultee et al.: Stochastic generation of Greenland surface mass balance

formation: A Decision Analysis Perspective, Earth’s Future, 7,
320–337, https://doi.org/10.1029/2018EF001071, 2019.

Hu, W. and Castruccio, S.: Approximating the Internal Vari-
ability of Bias-Corrected Global Temperature Projections with
Spatial Stochastic Generators, J. Climate, 34, 8409–8418,
https://doi.org/10.1175/JCLI-D-21-0083.1, 2021.

Jevrejeva, S., Frederikse, T., Kopp, R. E., Le Cozannet, G., Jack-
son, L. P., and van de Wal, R. S. W.: Probabilistic Sea Level Pro-
jections at the Coast by 2100, Surv. Geophys., 40, 1673–1696,
https://doi.org/10.1007/s10712-019-09550-y, 2019.

King, M. A. and Watson, C. S.: Antarctic Surface Mass
Balance: Natural Variability, Noise, and Detecting New
Trends, Geophys. Res. Lett., 47, e2020GL087493,
https://doi.org/10.1029/2020GL087493, 2020.

Kopp, R. E., Horton, R. M., Little, C. M., Mitrovica, J. X., Op-
penheimer, M., Rasmussen, D. J., Strauss, B. H., and Tebaldi,
C.: Probabilistic 21st and 22nd century sea-level projections at
a global network of tide-gauge sites, Earth’s Future, 2, 383–406,
https://doi.org/10.1002/2014EF000239, 2014.

Krebs-Kanzow, U., Gierz, P., Rodehacke, C. B., Xu, S., Yang,
H., and Lohmann, G.: The diurnal Energy Balance Model
(dEBM): a convenient surface mass balance solution for ice
sheets in Earth system modeling, The Cryosphere, 15, 2295–
2313, https://doi.org/10.5194/tc-15-2295-2021, 2021.

Kuttruf, S.: Python code for fractional differencing of pan-
das time series, GitHub [code], https://gist.github.com/skuttruf/
fb82807ab0400fba51c344313eb43466 (last access: 5 April
2021), 2019.

Langen, P. L., Fausto, R. S., Vandecrux, B., Mottram, R. H.,
and Box, J. E.: Liquid water flow and retention on
the Greenland Ice Sheet in the regional climate model
HIRHAM5: Local and large-scale impacts, Front. Earth Sci., 4,
https://doi.org/10.3389/feart.2016.00110, 2017.

Le Cozannet, G., Nicholls, R. J., Hinkel, J., Sweet, W. V., McInnes,
K. L., Van de Wal, R. S. W., Slangen, A. B. A., Lowe,
J. A., and White, K. D.: Sea Level Change and Coastal Cli-
mate Services: The Way Forward, J. Mar. Sci. Eng., 5, 49,
https://doi.org/10.3390/jmse5040049, 2017.

Lenaerts, J. T. M., Medley, B., van den Broeke, M. R.,
and Wouters, B.: Observing and Modeling Ice Sheet
Surface Mass Balance, Rev. Geophys., 57, 376–420,
https://doi.org/10.1029/2018RG000622, 2019.

Liston, G. E. and Elder, K.: A distributed snow-evolution mod-
eling system (SnowModel), J. Hydrometeorol., 7, 1259–1276,
https://doi.org/10.1175/JHM548.1, 2006.

Ultee, L. and Verjans, V.: ehultee/stoch-SMB: Dis-
cussion release (v1.0.0-alpha), Zenodo [code],
https://doi.org/10.5281/zenodo.8047501, 2023.

Luo, X. and Lin, T.: A Semi-Empirical Framework for
ice sheet response analysis under Oceanic forcing in
Antarctica and Greenland, Clim. Dynam., 60, 213–226,
https://doi.org/10.1007/s00382-022-06317-x, 2022.

Marzeion, B., Hock, R., Anderson, B., Bliss, A., Champol-
lion, N., Fujita, K., Huss, M., Immerzeel, W. W., Kraai-
jenbrink, P., Malles, J.-H., Maussion, F., Radić, V., Rounce,
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