Supplement of Geosci. Model Dev., 16, 927–960, 2023 https://doi.org/10.5194/gmd-16-927-2023-supplement © Author(s) 2023. CC BY 4.0 License.





## Supplement of

## Implementation of HONO into the chemistry–climate model CHASER (V4.0): roles in tropospheric chemistry

Phuc Thi Minh Ha et al.

Correspondence to: Phuc Thi Minh Ha (hathiminh.phuc@gmail.com)

The copyright of individual parts of the supplement might differ from the article licence.

## **Supplements**

Table S 1: Lists of EANET stations grouped by their countries with ID numbers in parenthesis.

| Country           | Station (ID number)                                                                  |
|-------------------|--------------------------------------------------------------------------------------|
| Cambodia          | PhnomPenh (31)                                                                       |
| China             | Jinyunshan (48), Hongwen (14)                                                        |
| Indonesia         | Jakarta (18), Serpong (36), Bandung (1)                                              |
| Japan             | Rishiri (33), Ochiishi (26), Tappi (38), Sado-seki (34), Happo (10), Ijira (15), Oki |
|                   | (28), Banryu (3), Yusuhara (45), Hedo (11), Ogasawara (27), Tokyo (40)               |
| Lao               | Vientiane (42)                                                                       |
| Malaysia          | Petaling Jaya (30), Tanah Rata (37), Danum Valley (7)                                |
| Mongolia          | Ulaanbaatar (41), Terelj (39)                                                        |
| Myanmar           | Yangon (43), Mandalay (50)                                                           |
| Philippines       | Metro Manila (22), Mt. Sto. Tomas (24)                                               |
| Republic of Korea | Kanghwa (19), Cheju (Kosan) (5), Imsil (16)                                          |
| Russia            | Mondy (23), Listvyanka (21), Irkutsk (17), Primorskaya (32)                          |
| Thailand          | Bangkok (2), Samutprakarn (47), Pathumthani (29), Khanchanaburi (20), Chiang         |
|                   | Mai (6), Sakaerat (35), Nai Mueang (25), Chang Phueak (46), Si Phum (49)             |
| Vietnam           | Hanoi (8), Hanoi (Relocated) (9), Hoa Binh (13), Can Tho (4), Ho Chi Minh (12),      |
|                   | Yen Bai (44)                                                                         |

Table S 2: Model comparison with ATom1 flights, calculated for all flights and North Pacific (NP) region: no outlier detection is applied. N is the available data for each calculation, and R is the correlation coefficient. R and bias of the STD run are shown as bold if better than that of the OLD run. Unit of bias is ppt for NO<sub>2</sub>, OH, ppb for O<sub>3</sub>, CO.

|            | NO <sub>2</sub> | NO <sub>2</sub> | O <sub>3</sub> | O <sub>3</sub> | ОН     | OH     | CO     | CO      |
|------------|-----------------|-----------------|----------------|----------------|--------|--------|--------|---------|
|            |                 | (NP)            |                | (NP)           |        | (NP)   |        | (NP)    |
| N          | 29,509          | 2,283           | 29,204         | 2,246          | 7,601  | 608    | 27,467 | 2,172   |
| R (STD)    | 0.730           | 0.621           | 0.751          | 0.609          | 0.579  | 0.407  | 0.659  | 0.596   |
| R (OLD)    | 0.697           | 0.306           | 0.752          | 0.598          | 0.584  | 0.374  | 0.643  | 0.596   |
| bias (STD) | -11.277         | 0.588           | 11.637         | 8.471          | -0.038 | -0.003 | 1.698  | -1.713  |
| bias (OLD) | -6.940          | 4.450           | 15.025         | 13.050         | -0.015 | 0.015  | -7.521 | -12.393 |

## 10 Table S 3: Additional sensitivity runs for the EMeRGe comparison.

15

The AIRC case aims to evaluate the source of HONO from aircraft emissions of HONO using a HONO/NO<sub>x</sub> emission factor of 0.4. In the EMx8 case, the HONO/NO<sub>x</sub> emission factor is amplified up to 0.8 (=0.1 in STD case) to emphasize the sensitivity of HONO's direct source from the ground layer, especially from soils (Oswald et al., 2013). In the GRx8 case, the rate constant of (R2) is eightfold to increase homogeneous HONO production, given that daytime missing HONO could relate to other gas-phase formations (Romer et al., 2018; Li et al., 2014). In the EMx8 and GRx8 cases, factor 8 is selected after testing with 2 and 4, aiming for simulations to agree with the measurements.

| No. | Simulation ID | Description                                                     | Note               |
|-----|---------------|-----------------------------------------------------------------|--------------------|
| 1   | AIRC          | aircraft HONO emission = 0.4% aircraft NO <sub>x</sub> emission | Not applied in STD |
| 2   | GRx8          | Rate (R2) × 8                                                   |                    |
| 3   | EMx8          | $EM(HONO) = 0.8 \text{ NO}_x \text{ emission}$                  | = 0.1 in STD       |

Table S 4: Tables of correlation coefficient (R) and model biases against EMeRGe measurements for HONO.

"Alt." columns show altitude ranges ( $\pm 500$  m). The "N" column shows the numbers of hourly-averaged values calculated for each altitude range. Left table: darker colours represent higher absolute R values (closer to  $\pm 1$ ). Right table: lighter colours show smaller model biases (closer to 0). The darkness of blues (negative values) and reds (positive values) are scaled to  $\pm 1$  for R and  $\pm$ maximum values of each row for biases. Unit of biases is ppt for HONO and NO<sub>2</sub>, ppb for O<sub>3</sub> and CO.

|      |      |       |       |        |       |       | R(HOI | NO)           |         |         |                   |                   |        |       |        |        | Bia   | as(HON | <b>O</b> )    |         |         |                   | 20                |
|------|------|-------|-------|--------|-------|-------|-------|---------------|---------|---------|-------------------|-------------------|--------|-------|--------|--------|-------|--------|---------------|---------|---------|-------------------|-------------------|
| Alt. | N    | атг   | GRx8  | EMx8   | AIRC  | maxST | ratR4 | ratR4<br>+CLD | JAN03-B | JAN03-C | maxST+<br>JANO3-B | maxST+<br>JANO3-C | NEW    | GRx8  | EMx8   | AIRC   | maxST | ratR4  | ratR4<br>+CLD | JANO3-B | JANO3-C | maxST+<br>JANO3-B | maxST+<br>JANO3-C |
| 0    | 970  | -0.23 | -0.39 | -0.29- | -0.27 | -0.17 | -0.22 | -0.21         | 0.63    | 0.62    | 0.64              | 0.63              | -112.5 | -94.1 | -102.7 | -112.2 | -70.3 | -106.1 | -102.9        | -21.7   | -17.6   | 155.0             | 154.9             |
| 1000 | 1714 | 0.49  | 0.36  | 0.51   | 0.44  | 0.56  | 0.24  | 0.24          | 0.36    | 0.37    | 0.48              | 0.48              | -105.3 | -95.5 | -94.2  | -105.6 | -71.7 | -99.8  | -96.1         | -47.8   | -40.8   | 65.9              | 72.3              |
| 2000 | 1538 | 0.31  | 0.47  | 0.38   | 0.36  | 0.47  | 0.12  | 0.07          | 0.47    | 0.40    | 0.41              | 0.39              | -64.1  | -62.9 | -64.1  | -64.4  | -61.8 | -63.3  | -62.8         | -53.1   | -45.6   | -32.5             | -23.6             |
| 3000 | 2296 | 0.16  | 0.05  | 0.11   | 0.11  | -0.03 | 0.13  | 0.05          | 0.34    | 0.28    | 0.18              | 0.26              | -44.2  | -42.8 | -44.1  | -44.2  | -43.2 | -43.9  | -43.7         | -38.7   | -30.2   | -27.7             | -16.2             |
| 4000 | 192  | -0.17 | -0.24 | -0.08  | -0.11 | 0.28  | -0.11 | -0.04         | 0.08    | -0.14   | 0.36              | 0.30              | -26.0  | -24.3 | -25.8  | -26.0  | -25.6 | -25.7  | -25.4         | -23.8   | -17.9   | -21.2             | -14.4             |
| 5000 | 836  | 0.04  | 0.03  | 0.14   | 0.21  | 0.53  | 0.19  | 0.75          | 0.17    | -0.22   | 0.49              | 0.06              | -18.9  | -17.3 | -18.8  | -19.0  | -18.5 | -18.8  | -18.3         | -17.7   | -12.8   | -15.6             | -9.6              |
| 6000 | 506  | -0.01 | 0.02  | -0.03  | 0.03  | 0.11  | -0.03 | 0.05          | 0.10    | -0.26   | 0.16              | -0.12             | -5.0   | -2.9  | -4.6   | -5.1   | -4.9  | -4.8   | -4.8          | -4.1    | 2.5     | -3.9              | 2.2               |
| 7000 | 76   | -0.31 | -0.33 | -0.31- | -0.33 | -0.30 | -0.30 | -0.30         | -0.29   | -0.29   | -0.27             | -0.22             | -4.1   | 0.7   | -3.5   | -4.3   | -4.1  | -3.8   | -3.7          | -2.3    | 1.5     | -2.0              | 1.7               |
| 8000 | 44   | -0.67 | -0.64 | -0.64  | -0.64 | -0.64 | -0.68 | -0.67         | -0.62   | -0.65   | -0.63             | -0.59             | -2.8   | 2.9   | -1.9   | -2.7   | -2.7  | -2.5   | -2.5          | -1.5    | 2.9     | -1.2              | 3.5               |

Table S 5: CH<sub>4</sub> lifetime and tropospheric abundances for NO<sub>x</sub>, O<sub>3</sub>, CO, and HONO and their changes by HONO chemistry in sensitivity cases.

| Simulation ID    | CH <sub>4</sub> lifetime | Abun            | dances of tropos | spheric |         |
|------------------|--------------------------|-----------------|------------------|---------|---------|
|                  | (yr)                     | NO <sub>x</sub> | O <sub>3</sub>   | СО      | HONO    |
|                  |                          | (TgN)           | $(TgO_3)$        | (TgCO)  | (TgN)   |
| OLD              | 9.09                     | 0.119           | 408.79           | 327.20  |         |
| STD              | 10.28                    | 0.094           | 388.21           | 354.57  | 1.40    |
| maxST            | 14.54                    | 0.048           | 323.80           | 425.31  | 7.79    |
| ratR4+CLD        | 9.60                     | 0.108           | 390.34           | 337.68  | 3.18    |
| JANO3-A          | 10.05                    | 0.096           | 391.11           | 349.91  | 1.45    |
| JANO3-B          | 7.60                     | 0.116           | 426.89           | 292.29  | 2.02    |
| JANO3-C          | 5.39                     | 0.153           | 477.48           | 237.59  | 2.93    |
| maxST+JANO3-B    | 10.20                    | 0.057           | 351.27           | 357.27  | 12.64   |
| maxST+JANO3-C    | 6.44                     | 0.084           | 408.69           | 268.74  | 17.13   |
| Effects          |                          | Chang           | es (%)           |         |         |
|                  |                          | vs C            | DLD              |         | vs STD  |
| By STD           | +13.05                   | -20.40          | -5.03            | +8.36   |         |
| by maxST         | +50.65                   | -55.44          | -17.84           | +37.02  | +634.51 |
| by ratR4+CLD     | +5.60                    | -8.57           | -4.51            | +3.20   | +129.94 |
| By JANO3-A       | +10.57                   | -18.97          | -4.32            | +6.94   | +3.42   |
| By JANO3-B       | -16.39                   | -2.49           | +4.43            | -11.06  | +44.2   |
| By JANO3-C       | <del>-</del> 40.74       | +28.89          | +16.08           | -32.41  | +108.7  |
| By maxST+JANO3-B | +12.21                   | -52.10          | -14.07           | +9.19   | +802.86 |
| By maxST+JANO3-C | -29.15                   | -29.41          | -0.02            | -17.87  | +1123.5 |

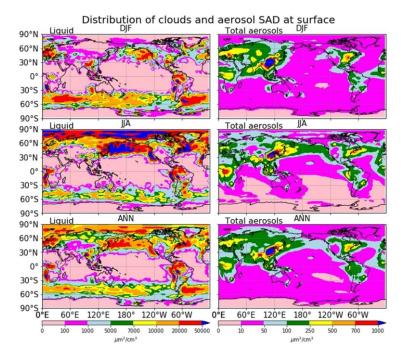



Figure S 1: Seasonal and annual mean distributions of SAD for clouds (left) and total aerosols (right)

35

40

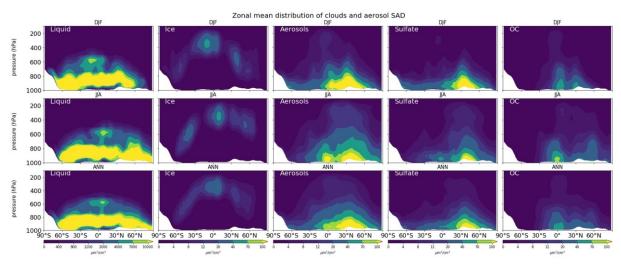



Figure S 2: Zonal, seasonal mean (upper and middle panels), and annual mean (lower panels) distribution of surface area density (SAD) for liquid clouds, ice cloud, total aerosol, sulfate aerosol, and organic carbon (from left to right).

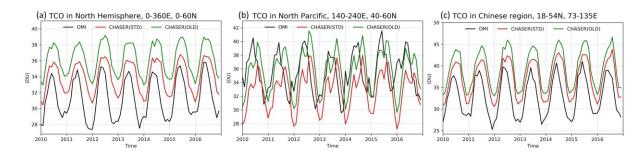



Figure S 3: Verifications with OMI satellite data for tropospheric column ozone (TCO). TCO (DU) by OMI (black) and CHASER (red: STD case; green: OLD case) in the Northern Hemisphere (a), NP (b), and Chinese (c) regions are plotted.

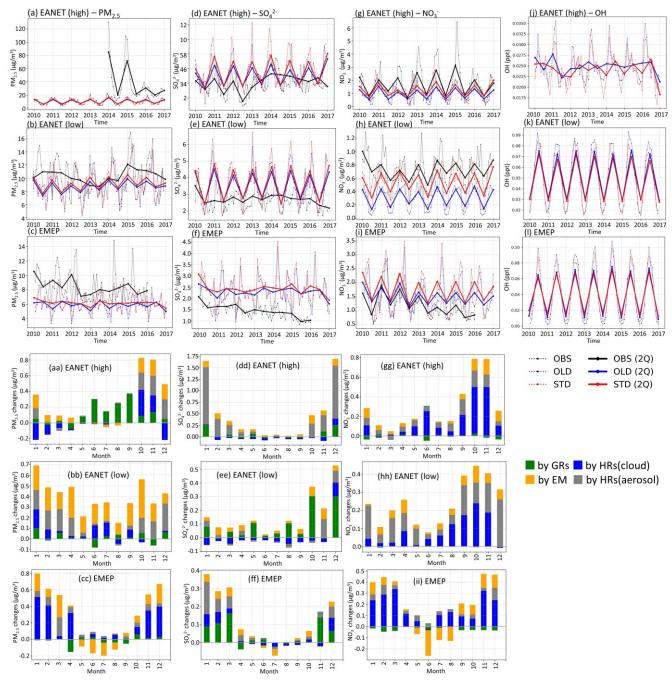



Figure S 4: Grouped by observed and simulated mass concentrations (a-l) and monthly-mean changes (aa-ii) for PM<sub>2.5</sub>, SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub>-, and OH for EANET and EMEP stations, grouped as high-NO<sub>x</sub> EANET, low-NO<sub>x</sub> EANET, and all EMEP stations. In (a-m), black lines: observation; red: STD case; blue: OLD case. Dotted lines are all stations' median from monthly-mean for each station in that group. Thick solid lines represent two quarters averaged from dotted lines. There are no observational data for OH's plots (j-l), and only values from STD and OLD simulations are presented. In (aa-ii), green bars: monthly changes by GRs; blue: by HRs on clouds; grey: by HRs on aerosols; orange: by EM.

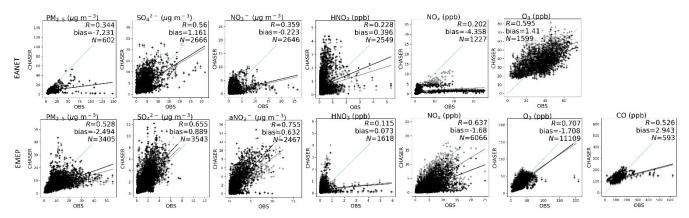



Figure S 5: Correlations of STD and OLD runs with EANET (upper) and EMEP (lower) stations for PM<sub>2.5</sub>, SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub>, HNO<sub>3</sub>, NO<sub>5</sub>, O<sub>3</sub>, and CO (CO for EMEP only). Fitting lines for STD (black) and OLD (grey) with observations are also plotted. N (no unit) is the number of available data after outlier filtering.

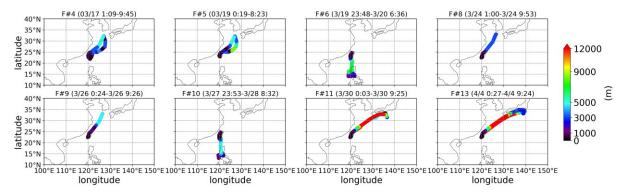



Figure S 6: Crushing altitudes in EMeRGe-Asia 2018 campaign.

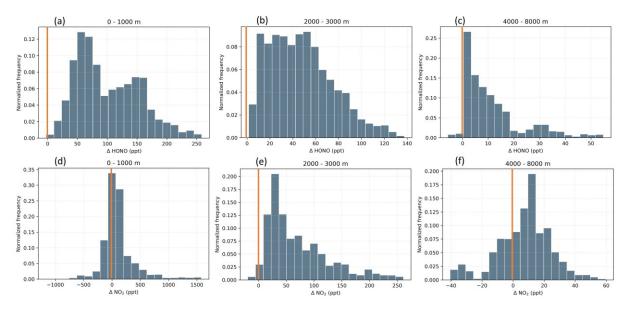



Figure S 7: Normalized distributions of the differences between measured and simulated data (OBS – STD) for HONO (upper panel) and NO<sub>2</sub> (lower panel). Data are separated into three categories (±500 m): 0 – 1000 m (a-d), 2000 – 3000 m (b-e), 4000 – 8000 m (c-f). Three-sigma-rule outlier detection is applied for each altitude range before grouping.

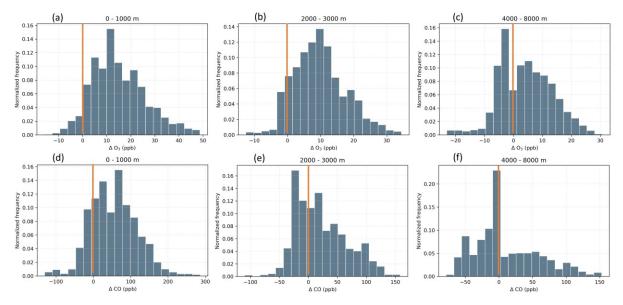



Figure S 8: Normalized distributions of the differences between measured and simulated data (OBS – STD) for O<sub>3</sub> (upper panels) and CO (lower panels). Data are separated into three categories (±500 m): 0 – 1000 m (a-d), 2000 – 3000 m (b-e), 4000 – 8000 m (c-f). Outliers of each altitude group are filtered by a 3-order rule.

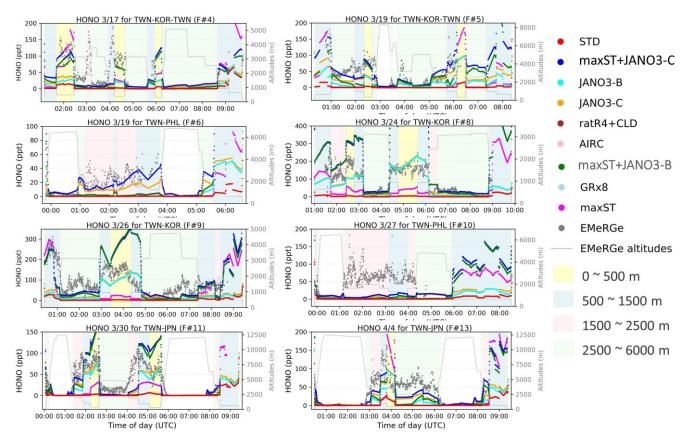



Figure S 9: HONO concentrations measured in EMeRGe flights. The observational values (grey dots), the STD case (red), the maxST case (magenta), maxST+JANO3-B case (green lines), and maxST+JANO3-C cases (blue lines) are plotted. Flight altitudes (metres) are plotted in light dash lines scaled to the right axis. Vertical background columns indicate altitude ranges.

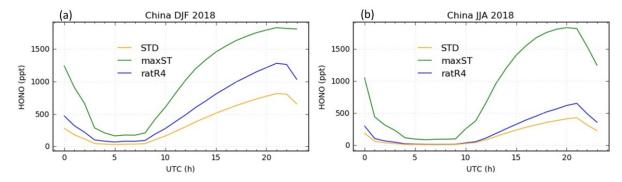



Figure S 10: Diurnal variance of HONO at the surface of the Chinese region in December, January, February (a), and June, July, August (b). Orange lines show STD run; green lines show maxST run; blue lines show ratR4 run. In (b), the averaged summer mean of HONO in surface air reached the maximum at 0.8 ppb in the STD simulation (orange), which substantially increased up to 1.8 ppb in maxST (green), which is closer to 2.0 ppb, as reported by Li et al. (2012).

75

80

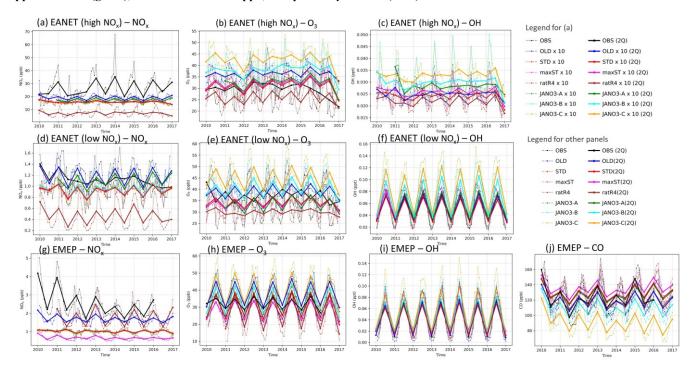



Figure S 11: Concentrations of  $NO_x$ ,  $O_3$ , OH, and CO for EANET and EMEP stations by observation and various simulations. The upper legend block indicating simulated  $NO_x$  concentrations is tenfold for high- $NO_x$  EANET stations (a panel). The lower legend block is for the other panels of the figure.

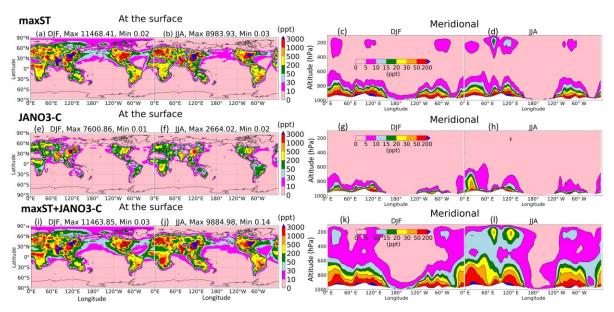



Figure S 12: HONO production in maxST (a-d), JANO3-C (e-h), and maxST+JANO3-C cases (i-l) at the surface layer (left panels) and meridional (right panels).

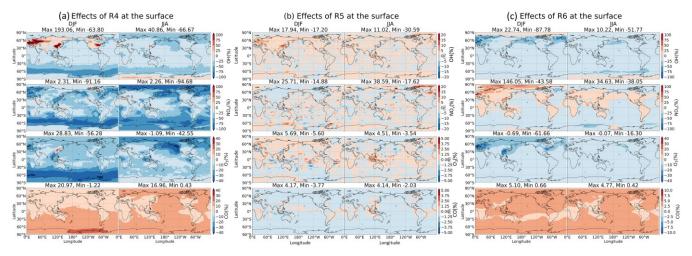



Figure S 13: Changes in the surface OH, NO<sub>x</sub>, O<sub>3</sub>, and CO concentrations by (R4), (R5), and (R6). The colorbar scale for each panel are different; (a) OH, NO<sub>x</sub> (-100,100), O<sub>3</sub>, CO (-40,40), (b) OH, NO<sub>x</sub> (-20,20), O<sub>3</sub>, CO (-5,5), (c) OH, NO<sub>x</sub> (-100,100), O<sub>3</sub> (-40,40), CO (-10,10). Unit is %.

85

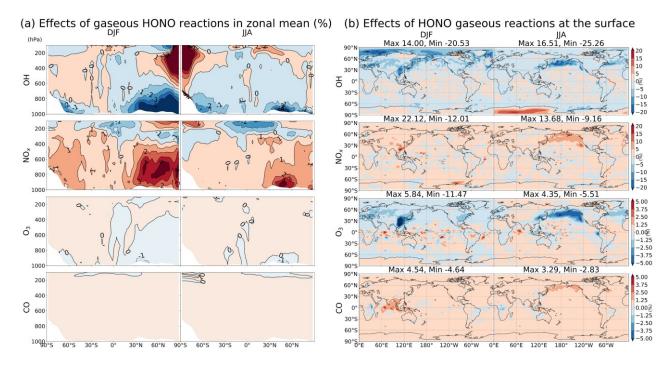



Figure S 14: Changes (%) in zonal mean (a) and at the surface (b) for OH, NO<sub>x</sub>, O<sub>3</sub>, and CO concentrations by gaseous HONO chemistry (R1, R2, R3). The colour scales for each panel are different.

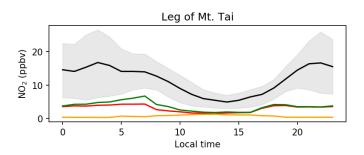



Figure S 15: NO<sub>2</sub> concentration at foot of Mt. Tai. At the foot, NO<sub>2</sub> levels in JANO3-A/B/C cases are overlaid by STD case. At the summit, simulated NO<sub>2</sub> levels are nearly zero in all cases (even in the OLD case) while Xue's averaged values were 1.5-3 ppb (minimum and maximum ranged from 0.2 – 5 ppb), thus not be illustrated.