
Geosci. Model Dev., 16, 833–849, 2023
https://doi.org/10.5194/gmd-16-833-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

Parallelized domain decomposition for multi-dimensional
Lagrangian random walk mass-transfer particle tracking schemes
Lucas Schauer1, Michael J. Schmidt2, Nicholas B. Engdahl3, Stephen D. Pankavich1, David A. Benson4, and
Diogo Bolster5

1Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO 80401, USA
2Center for Computing Research, Sandia National Laboratories, Albuquerque, NM 87185, USA
3Department of Civil and Environmental Engineering, Washington State University, Pullman, WA 99164, USA
4Hydrologic Science and Engineering Program, Department of Geology and Geological Engineering,
Colorado School of Mines, Golden, CO 80401, USA
5Department of Civil and Environmental Engineering and Earth Sciences,
University of Notre Dame, Notre Dame IN, 46556, USA

Correspondence: Lucas Schauer (lschauer@mines.edu)

Received: 11 August 2022 – Discussion started: 22 August 2022
Revised: 13 January 2023 – Accepted: 13 January 2023 – Published: 3 February 2023

Abstract. Lagrangian particle tracking schemes allow a wide
range of flow and transport processes to be simulated accu-
rately, but a major challenge is numerically implementing the
inter-particle interactions in an efficient manner. This article
develops a multi-dimensional, parallelized domain decom-
position (DDC) strategy for mass-transfer particle tracking
(MTPT) methods in which particles exchange mass dynam-
ically. We show that this can be efficiently parallelized by
employing large numbers of CPU cores to accelerate run
times. In order to validate the approach and our theoretical
predictions we focus our efforts on a well-known benchmark
problem with pure diffusion, where analytical solutions in
any number of dimensions are well established. In this work,
we investigate different procedures for “tiling” the domain
in two and three dimensions (2-D and 3-D), as this type of
formal DDC construction is currently limited to 1-D. An op-
timal tiling is prescribed based on physical problem param-
eters and the number of available CPU cores, as each tiling
provides distinct results in both accuracy and run time. We
further extend the most efficient technique to 3-D for com-
parison, leading to an analytical discussion of the effect of di-
mensionality on strategies for implementing DDC schemes.
Increasing computational resources (cores) within the DDC
method produces a trade-off between inter-node communi-
cation and on-node work. For an optimally subdivided diffu-
sion problem, the 2-D parallelized algorithm achieves nearly

perfect linear speedup in comparison with the serial run-up
to around 2700 cores, reducing a 5 h simulation to 8 s, while
the 3-D algorithm maintains appreciable speedup up to 1700
cores.

1 Introduction

Numerical models are used to represent physical problems
that may be difficult to observe directly (such as ground-
water flow) or that may be tedious, expensive, or even im-
possible to currently study via other methods. In the context
of groundwater flow, for example, these models allow us to
portray transport in heterogeneous media and bio-chemical
species interaction, which are imperative to understanding a
hydrologic system’s development (e.g., Dentz et al., 2011;
Perzan et al., 2021; Steefel et al., 2015; Scheibe et al., 2015;
Tompson et al., 1998; Schmidt et al., 2020b; Li et al., 2017;
Valocchi et al., 2019). Since geological problems frequently
require attention to many separate, yet simultaneous pro-
cesses and corresponding physical properties, such as local
mean velocity (advection), velocity variability (dispersion),
mixing (e.g., dilution), and chemical reaction, we must ap-
ply rigorous methods to ensure proper simulation of these
processes. Recent studies (e.g., Benson et al., 2017; Bolster
et al., 2016; Sole-Mari et al., 2020) have compared classi-

Published by Copernicus Publications on behalf of the European Geosciences Union.

834 L. Schauer et al.: PDD for multi-dimensional Lagrangian random walk MTPT schemes

cal Eulerian (e.g., finite-difference or finite-element) solvers
to newer Lagrangian methods and have shown the relative
advantages of the latter. Therefore, in this paper we explore
several approaches to parallelize a Lagrangian method that
facilitate the simulation of the complex nature of these prob-
lems. Given that all of the complex processes noted above
must ultimately be incorporated and that this is the first rig-
orous study of this kind, we focus on well-established and
relatively simple benchmark problems with analytical solu-
tions to derive a rigorous approach to this parallelization.

Lagrangian methods for simulating reactive transport con-
tinue to evolve, providing both increased accuracy and ac-
celerated efficiency over their Eulerian counterparts by elim-
inating numerical dispersion (see Salamon et al., 2006) and
allowing direct simulation of all subgrid processes (Benson
et al., 2017; Ding et al., 2017). Simulation of advection and
dispersion (without reaction) in hydrogeological problems
began with the Lagrangian random walk particle tracking
(RWPT) algorithm that subjects an ensemble of particles to
a combination of velocity and diffusion processes (LaBolle
et al., 1996; Salamon et al., 2006). Initially, chemical reac-
tions were added in any numerical time step by mapping par-
ticle masses to concentrations via averaging over Eulerian
volumes, then applying reaction rate equations, and finally
mapping concentrations back to particle masses for RWPT
(Tompson and Dougherty, 1988). This method clearly as-
sumes perfect mixing within each Eulerian volume because
subgrid mass and concentration perturbations are smoothed
(averaged) prior to reaction. The subsequent over-mixing
was recognized to induce a scale-dependent apparent reac-
tion rate that depended on the Eulerian discretization (Molz
and Widdowson, 1988; Dentz et al., 2011), thus eliminating
some of the primary benefits of the Lagrangian approach. In
response, a method that would allow reactions directly be-
tween particles was devised and implemented (Benson and
Meerschaert, 2008).

Early efforts to directly simulate bimolecular reactions
with RWPT algorithms (Benson and Meerschaert, 2008;
Paster et al., 2014) were originally founded on a birth–death
process that calculated two probabilities: one for particle-
particle collocation and a second for reaction and potential
transformation or removal given collocation (i.e., particles
that do not collocate cannot react, thus preserving incom-
plete mixing). The next generation of these methods featured
a newer particle-number-conserving reaction scheme. This
concept, introduced by Bolster et al. (2016) and later gener-
alized (Benson and Bolster, 2016; Schmidt et al., 2019; Sole-
Mari et al., 2019), employs kernel-weighted transfers for
moving mass between particles, where the weights are equiv-
alent to the abovementioned collision probabilities under cer-
tain modeling choices. These algorithms preserve the total
particle count, and we refer to them as mass-transfer par-
ticle tracking (MTPT) schemes. These particle-conserving
schemes address low-concentration resolution issues that
arise spatially when using particle-killing techniques (Paster

et al., 2013; Benson et al., 2017). Furthermore, MTPT algo-
rithms provide a realistic representation of solute transport
with their ability to separate mixing and spreading processes
(Benson et al., 2019). Specifically, spreading processes due
to small-scale differential advection may be simulated with
standard random walk techniques (LaBolle et al., 1996), and
true mixing-type diffusive processes may be simulated by
mass transfers between particles. MTPT techniques are also
ideally suited to, and provide increased accuracy for, com-
plex systems with multiple reactions (Sole-Mari et al., 2017;
Engdahl et al., 2017; Benson and Bolster, 2016; Schmidt
et al., 2020b), but they are computationally expensive be-
cause nearby particles must communicate. This notion of
nearness is discussed in detail in Sect. 3.

The objective of this study is to develop efficient, multi-
dimensional parallelization schemes for MTPT-based reac-
tive transport schemes. We conduct formal analyses to pro-
vide cost benchmarks and to predict computational speedup
for the MTPT algorithm, both of which to date were only
loosely explored in the 1-D case (Engdahl et al., 2019).
Herein, we focus on an implementation that uses a multi-
CPU environment that sends information between CPUs via
Message Passing Interface (MPI) directives within Fortran
code. In particular, we focus on the relative computational
costs of the inter-particle mass transfer versus message pass-
ing algorithms because the relative costs of either depend
upon the manner in which the computational domain is split
among cores. These mass-transfer methods may be directly
compared to smoothed-particle hydrodynamics (SPH) meth-
ods and are equivalent when a Gaussian kernel is chosen to
govern the mass transfers (Sole-Mari et al., 2019). Specif-
ically, this work shares similarities with previous investi-
gations of parallelized SPH methods (Crespo et al., 2011;
Gomez-Gesteira et al., 2012; Xia and Liang, 2016; Morvillo
et al., 2021) but is novel as it tackles nuances that arise
specifically for MTPT approaches. A substantial difference
within this work is that the kernels are based on the local
physics of diffusion rather than a user-defined function cho-
sen for attractive numerical qualities like compact support
or controllable smoothness. This adherence to local physics
allows for increased modeling fidelity, including the simula-
tion of diffusion across material discontinuities or between
immobile (solid) and mobile (fluid) species (Schmidt et al.,
2020a, 2019). In general, the parallelization of particle meth-
ods depends on assigning groups of particles to different pro-
cessing units. Multi-dimensional domains present many op-
tions on how best to decompose the entire computational do-
main in an attempt to efficiently use available computing re-
sources. Along these lines, we compare two different domain
decomposition (DDC) approaches. In the one-dimensional
case (Engdahl et al., 2019), the specified domain is parti-
tioned into smaller subdomains so that each core is only re-
sponsible for updating the particles’ information inside of
a fixed region, though information from particles in nearby
subdomains must be used. Hence, the first two-dimensional

Geosci. Model Dev., 16, 833–849, 2023 https://doi.org/10.5194/gmd-16-833-2023

L. Schauer et al.: PDD for multi-dimensional Lagrangian random walk MTPT schemes 835

method we consider is a naive extension from the existing
one-dimensional technique (Engdahl et al., 2019) that de-
composes the domain into vertical slices along the x axis
of the xy plane. This method is attractive for its compu-
tational simplicity but limits speedup for large numbers of
cores (see Sect. 7). Our second method decomposes the do-
main into a “checkerboard” consisting of subdomains that
are as close to squares (or cubes) as is possible given the
number of cores available. RWPT simulations without mix-
ing often require virtually no communication across sub-
domain boundaries because all particles act independently
in the model. However, MTPT techniques require constant
communication along local subdomain boundaries at each
time step, which leads to challenges in how best to accel-
erate these simulations without compromising the quality of
solutions. This novel, multi-dimensional extension of paral-
lelized DDC techniques for the MTPT algorithm will now
allow for the simulation of realistic, computationally expen-
sive systems in seconds to minutes rather than hours to days.
Further, based on given simulation parameters, we provide
formal run time prediction analysis that was only hypothe-
sized in previous work and will allow future users to opti-
mize parallelization prior to executing simulations. This pa-
per rigorously explores the benefits of our parallelized DDC
method while providing guidelines and cautions for efficient
use of the algorithm.

2 Model description

An equation for a chemically conservative, single compo-
nent system experiencing local mean velocity and Fickian
diffusion-like dispersion is

∂C

∂t
+∇ · (vC)=∇ · (D∇C), x ∈�⊆ Rd , t > 0, (1)

where C(x, t) [mol L−d] is the concentration of a quantity of
interest, v(x, t) [LT −1] is a velocity field, and D(v) [L2T −1]
is a given diffusion tensor. Advection–diffusion equations of
this form arise within a variety of applied disciplines relat-
ing to fluid dynamics (Bear, 1972; Tennekes and Lumley,
1972; Gelhar et al., 1979; Bear, 1961; Aris, 1956; Taylor,
1953). Depending on the physical application under study,
various forms of the diffusion tensor may result. Often, it can
be separated into two differing components, with one repre-
senting mixing between nearby regions of differing concen-
trations and the other representing spreading from the under-
lying flow (Tennekes and Lumley, 1972; Gelhar et al., 1979;
Benson et al., 2019). This decomposition provides a general
splitting of the tensor into

D= Dmix(v)+Dspread(v). (2)

Lagrangian numerical methods, such as those developed
herein, can then be used to separate the simulation of these

processes into mass-transfer algorithms that capture the mix-
ing inherent to the system and random walk methods that rep-
resent the spreading component (see, e.g., Ding et al., 2017;
Benson et al., 2019). As our focus here is mainly driven by
the novel implementation of diffusive processes in MTPT al-
gorithms, we will for now assume a purely diffusive system
so that v(x)= 0. This assumption results in an isotropic dif-
fusion tensor that reduces to

D=DId , (3)

where Id is the d × d identity matrix. The remaining scalar
diffusion coefficient can also be separated into mixing and
spreading components, according to

D =Dmix+Dspread. (4)

Despite the assumption of zero advection, we simulate
spreading via random walks as an eventual necessity for
moving particles within our DDC scheme. Stationary parti-
cles do not provide computational complexity for the mass-
transfer algorithm as distances between particles remain con-
stant.

2.1 Initial conditions and analytic solution

We define a general and well-established benchmark test
problem to facilitate the analysis of speedup and compu-
tational efficiency. Based on the chosen tiling method, the
global domain is subdivided into equi-sized subdomains, and
each core knows its own local, non-overlapping domain lim-
its. The particles are then load balanced between the cores
and randomly scattered within the local domain limits. To
represent the initial mass distribution, we use a Heaviside
function in an Ld -sized domain, which assigns all particles
with position x ≥ L/2 with massM = 1 and assigns no mass
to particles with position x < L/2 (i.e., a heaviside step func-
tion initial condition). This initial condition will allow us
to assess the accuracy of simulations as, for an infinite do-
main (simulated processes occur away from boundaries for
all time), it admits an exact analytical solution

C(x, t)=
1
2

erfc
[
−(x− x′)/4Dt

]
, (5)

where x′ = L/2 and t is the elapsed time of the simulation.
The existence of an analytical solution is beneficial to our
ability to rigorously test our proposed schemes. We com-
pare simulated results to this solution using the root-mean-
squared error (RMSE). Note that all dimensioned quantities
are unitless for the analysis we conduct and all references to
run times are measured in CPU wall clock time.

2.2 Simulation parameters

Unless otherwise stated, all 2-D simulations will be con-
ducted with the following computational parameters: the

https://doi.org/10.5194/gmd-16-833-2023 Geosci. Model Dev., 16, 833–849, 2023

836 L. Schauer et al.: PDD for multi-dimensional Lagrangian random walk MTPT schemes

L×L domain is fixed with L= 1000; the time step is fixed
to 1t = 0.1; the number of particles is N = 107; and the dif-
fusion constant is chosen to be D = 1. The total time to be
simulated is fixed as T = 10, which results in 100 time steps
during each simulation.

We choose parameters in an attempt to construct computa-
tionally intense problems that do not exceed available mem-
ory. A roofline analysis plot (NERSC, 2018; Williams et al.,
2009; Ofenbeck et al., 2014; Sun et al., 2020) is provided
in Appendix A to demonstrate that an optimized baseline
was used for the speedup results we present. Further, we in-
tend to retain similar computational cost across dimension-
ality. Hence, all 3-D simulations will be conducted with the
same diffusion constant and time step size, but they will be
in an L3 domain with L= 100 and with a number of parti-
cles N = 5× 106. In general, we will always use a 1t that
satisfies the optimality condition

min{1t} ≥

(
L
d√
N

)2

1
β

2D
, (6)

formulated in Schmidt et al. (2022), in which β is a kernel
bandwidth parameter described in Sect. 3.

2.3 Hardware configuration

The simulations in this paper were performed on a hetero-
geneous high-performance computing (HPC) cluster called
Mio, which is housed at the Colorado School of Mines. Each
node in the cluster contains 8–24 cores, with clock speeds
ranging from 2.50 to 3.06 GHz and memory capacity ranging
from 24 to 64 GB. Mio uses a network of Infiniband switches
to prevent performance degradation in multi-node simula-
tions. We use the compiler gfortran with optimization level
3, and the results we present are averaged over an ensemble
of five simulations to reduce noise that is largely attributable
to the heterogeneous computing architecture.

3 Mass-transfer particle tracking algorithm

The MTPT method simulates diffusion by weighted transfers
of mass between nearby particles. These weights are defined
by the relative proximity of particles that is determined by
constructing and searching a k-D tree (Bentley, 1975). Based
on these weights, a sparse transfer matrix is created that gov-
erns the mass updates for each particle at a given time step.
As previously noted (Schmidt et al., 2018), particle track-
ing methods allow the dispersive process to be simulated in
two distinct ways by allocating a specific proportion to mass
transfer and the remaining portion to random walks. Given
the diffusion coefficient D, we introduce κ ∈ [0,1] such that

DRW =Dspread = κD (7)

and

DMT =Dmix = (1− κ)D. (8)

We choose κ = 0.5 to give equal weight to the mixing and
spreading in simulations. Within each time step, the parti-
cles first take a random walk in a radial direction, the size
of which is based on the value of DRW. Thus, we update the
particle positions via the first-order expansion

Xi(t +1t)=Xi(t)+ ξi
√

2DRW1t, (9)

where ξi [T L−1] is a standard normal Gaussian random
variable. We enforce zero-flux boundary conditions, imple-
mented as a perfect elastic collision/reflection when particles
random-walk outside of the domain. We define a search ra-
dius, ψ , that is used in the k-D tree algorithm given by

ψ = λ

√
1
β

2DMT1t, (10)

where
√
β−12DMT1t is the standard deviation of the mass-

transfer kernel, 1t is the size of the time step, DMT is the
mass-transfer portion of the diffusion coefficient, and λ is
a user-defined parameter that determines the radius of the
search. We choose a commonly employed value of λ= 6,
as this will capture more than 99.9 % of the relevant par-
ticle interactions; however, using smaller values of λ can
marginally decrease run time at the expense of accuracy. Us-
ing the neighbor list provided by the k-D tree, a sparse weight
matrix is constructed that will transfer mass amongst parti-
cles based on their proximity. Since particles are moving via
random walks, the neighbor list and corresponding separa-
tion distances will change at each time step, requiring a new
k-D tree structure and sparse weight matrix within each sub-
domain. The mass-transfer kernel we use is given by

K(xi,xj)=
1√

(4πβ−11t)ddet(DMT)

· exp

(
−
(xi − xj)

TD−1
MT(xi − xj)

4β−11t

)
. (11)

Here, β > 0 is a tuning parameter that encodes the mass-

transfer kernel bandwidth h=
√

1
β

2det(DMT)1t , and we
choose β = 1 hereafter. Recalling DMT =DMTI and substi-
tuting for the kernel bandwidth h=

√
2DMT1t , we can sim-

plify the formula in Eq. (11) to arrive at

K(xi,xj)=
1

(2πh2)
d
2

exp

(
−
‖xi − xj‖

2

2h2

)
. (12)

Next, we denote

Kij =K(xi,xj)

Geosci. Model Dev., 16, 833–849, 2023 https://doi.org/10.5194/gmd-16-833-2023

L. Schauer et al.: PDD for multi-dimensional Lagrangian random walk MTPT schemes 837

Figure 1. Panel (a) displays the computed particle masses at final simulation time T = 10, and panel (b) provides a computed vs. analytical
solution comparison at the corresponding time. The parameters for this run are N = 107, 1t = 0.1, and D = 1.

for each i,j = 1, . . .,N and normalize the mass-transfer
(MT) kernel to ensure conservation of mass (Sole-Mari et al.,
2019; Herrera et al., 2009; Schmidt et al., 2017). This pro-
duces the weight matrix W with entries

Wij =
Kij

1
2

(∑N
i=1Kij +

∑N
j=1Kij

) , (13)

which is used in the mass-transfer step (15). The algorithm
updates particle masses, Mi(t), via the first-order approxi-
mation

Mi(t +1t)=Mi(t)+ δi, (14)

where

δi =

N∑
j=1

β(Mj (t)−Mi(t))Wij (15)

is the change in mass for a particular particle during a time
step. This can also be represented as a matrix-vector formu-
lation by computing

δ =WM, (16)

where M is the vector of particle masses, and then updating
the particle masses at the next time step via the vector addi-
tion

M(t +1t)=M(t)+ δ. (17)

In practice, imposing the cut-off distance ψ from Eq. (10)
further implies that W is sparse and allows us to use a sparse
forward matrix solver to efficiently compute the change in

mass. Finally, the algorithm can convert masses into concen-
trations for comparison with the analytic solution using

C(t)=
NM(t)

Ld
(18)

in d dimensions with an Ld -sized simulation domain.

4 Domain decomposition

With the foundation of the algorithm established, we focus
on comparing alternative tiling strategies within the domain
decomposition method and their subsequent performance.

4.1 Slices method

The first approach extends the 1-D technique by slicing the 2-
D domain along a single dimension, depending on how many
cores are available for use. For example, depending on the
number of computational cores allocated for a simulation,
we define the width of each region as

1x =
L

N�
, (19)

where N� is the number of subdomains. In addition, we im-
pose the condition that N� is equal to the number of allo-
cated computational cores. So, the region of responsibility
corresponding to the first core will consist of all particles
with x values in the range [xmin,1x), and the next core will
be responsible for all particles with x values in the interval
[1x,21x). This pattern continues through the domain with
the final core covering the last region of [(N�−1)1x,xmax].
Each of these slices covers the entirety of the domain in the
y direction, so that each core’s domain becomes thinner as

https://doi.org/10.5194/gmd-16-833-2023 Geosci. Model Dev., 16, 833–849, 2023

838 L. Schauer et al.: PDD for multi-dimensional Lagrangian random walk MTPT schemes

the number of cores increases. A graphical example of the
slices method decomposition is shown in Fig. 2a.

4.2 Checkerboard method

In addition to the slices method, we consider decomposing
the domain in a tiled or checkerboard manner. Given aW×H
domain (without loss of generality, we assume W ≥H), we
define A=W/H to be the aspect ratio. Then, choosing N�
subdomains (cores) we determine a pair of integer factors,
f1,f2 ∈ N with f1 ≤ f2, whose ratio most closely resembles
that of the full domain, i.e., f1f2 =N� such that

|f2/f1−A| ≤ |g2/g1−A| (20)

for any other pair g1,g2 ∈ N. Then, we decompose the do-
main by creating rectangular boxes in the horizontal and ver-
tical directions to most closely resemble squares in 2-D or
cubes in 3-D. If the full domain is taller than it is wide, then
f2 is selected as the number of boxes in the vertical direction.
Alternatively, if the domain is wider than it is tall, we choose
f1 for the vertical decomposition. If we assume that W ≥H
as above, then the grid box dimensions are selected to be

1x =
xmax− xmin

f2
, (21)

and

1y =
ymax− ymin

f1
. (22)

With this, we have defined a grid of subregions that cover
the domain, spanning f2 boxes wide and f1 boxes tall to use
all of the allocated computational resources. AssumingN� is
not a prime number, this method results in a tiling decompo-
sition as in Fig. 2b. Note that using a prime number of cores
reverts the checkerboard method to the slices method.

5 Ghost particles

In MTPT algorithms, nearby particles must interact with
each other. Specifically, a particle will exchange mass with
all nearby particles within the search radius in Eq. (10). Our
method of applying domain decomposition results in subdo-
mains that do not share memory with neighboring regions. If
a particle is near a local subdomain boundary, it will require
information from particles that are near that same boundary
in neighboring subdomains. Thus, each core requires infor-
mation from particles in a buffer region just outside the core’s
boundaries, and because of random walks, the particles that
lie within this buffer region must be determined at each time
step. The size of this buffer zone is defined by the search dis-
tance in Eq. (10). The particles inside these buffers are called
“ghost” particles and their information is sent to neighboring
subdomains’ memory using MPI. Because each local subdo-
main receives all particle masses within a ψ-sized surround-
ing buffer of the boundary at each time step, the method is

equivalent to the N� = 1 case after constructing the k-D tree
on each subdomain, resulting in indistinguishable nearest-
neighbor lists. Although ghost particles contribute to mass-
transfer computations, the masses of the original particles,
to which the ghost particles correspond, are not altered via
computations on domains in which they do not reside. Thus,
we ensure an accurate, explicit solve for only the particles
residing within each local subdomain during each time step.

The process we describe here differs depending on the de-
composition method. For example, the slices method gives
nearby neighbors only to the left and to the right (Fig. 4a).
On the other hand, the checkerboard method gives nearby
neighbors in eight directions.

The communication portion of the algorithm becomes
more complicated as spatial dimensions increase. In 3-D, we
decompose the domain using a similar method to prescribe
a tiling as in 2-D, but the extra sends and receives to nearby
cores significantly increase. For example, the 2-D algorithm
must pass information to eight nearby cores, whereas the 3-D
algorithm must pass information to 26 nearby cores – eight
neighboring cores on the current plane and nine neighboring
cores on the planes above and below.

6 Cost analysis

6.1 Mass-transfer cost

In this section, we characterize and predict the amount of
work being performed within each of portion of the algo-
rithm. The general discussion of work and cost here refer to
the run times required within distinct steps of the algorithm.
We profile the code that implements the MTPT algorithm
using the built-in, Unix-based profiling tool gprof (Graham
et al., 2004) that returns core-averaged run times for all par-
ent and child routines. The two main steps upon which we
focus are the communication step and the MT step. For each
subdomain, the communication step determines which parti-
cles need to be sent (and where they should be sent) and then
broadcasts them to their correct nearby neighbors. The MT
step carries out the interaction process described in Sect. 3
using all of the particles in a subdomain and the associated
ghost particles, the latter of which are not updated within
this process. As these two processes are the most expensive
components of the algorithm, they will allow us to project
work expectations onto problems with different dimensions
and parameters.

We begin with an analysis of the MT work. First, in the in-
terest of tractability, we will consider only regular domains,
namely a square domain with sides of length L so that �x =
�y = L in 2-D and a cubic domain with�x =�y =�z = L
in 3-D. Hence, the area and volume of these domains are
A= L2 and V = L3, respectively. Also, we define the total
number of utilized cores to be P and take P =N� so that
each subdomain is represented by a single core. Assuming

Geosci. Model Dev., 16, 833–849, 2023 https://doi.org/10.5194/gmd-16-833-2023

L. Schauer et al.: PDD for multi-dimensional Lagrangian random walk MTPT schemes 839

Figure 2. General schematics of (a) slices and (b) checkerboard domain decompositions. (a) Decomposing the domain with 25 cores using
the slices method. Figure 4a displays an enlarged slices domain with a description of ghost particle movement as well. (b) Decomposing
the domain with 25 cores using the checkerboard method. Figure 4b displays an enlarged checkerboard domain with a description of ghost
particle movement as well.

Figure 3. The algorithm does not incur noteworthy changes in er-
ror, as a function of N� for the 2-D checkerboard DDC method
considered here, nor in any of the simulations that were performed.

that P is a perfect dth power and the domain size has the
form Ld for dimension d , this implies that there are P 1/d

subdivisions (or “tiles” from earlier) in each dimension. Fur-
ther, we define the density of particles to be ρd =N/Ld in d-
dimensions, whereN is the total number of particles. Finally,
recall that the pad distance, which defines the length used
to determine ghost particles, is defined by ψ = 6

√
2DMT1t .

With this, we let NS represent the number of particles that
will be involved in the mass-transfer process on each core,
and this can be expressed as

NS = ρd

(
L

P 1/d + 2ψ
)d

=N

(
1

P 1/d +
2ψ
L

)d
, d = 1,2,3, (23)

which is an approximation of the number of particles in an
augmented area or volume of each local subdomain, account-

ing for the particles sent by other cores. Figure 5 illustrates
NS as the number of particles inside the union of the yellow
region (the local subdomain’s particles) and the red region
(particles sent from other cores). As previously mentioned,
we construct and search a k-D tree to find a particles’ nearby
neighbors. Constructing the tree structure within each subdo-
main is computationally inexpensive, and searching the tree
is significantly faster than a dense subtraction to find a parti-
cle’s nearby neighbors: for N particles in memory, the dense
subtraction is O(N) expensive for a single particle, while the
k-D tree search is only O(log10(N)). Based on the results
from gprof, searching the k-D tree is consistently the most
dominant cost in the MT routine. As a result, the time spent
in the mass-transfer routine will be roughly proportional to
the speed of searching the k-D tree. This approximation re-
sults in the MT costs scaling according to (Kennel, 2004):

TS = αdNS log(NS), (24)

where αd is a scaling coefficient reflecting the relative aver-
age speed of the calculations per particle for d = 2,3. Note
that α3 > α2, as dimension directly impacts the cost of the
k-D tree construction. We are able to corroborate this scaling
for both 2-D and 3-D problems by curve fitting to compare
NS log(NS) for each method of DDC to the amount of time
spent in the MT subroutine. In particular, we analyzed the
empirical run time for the k-D tree construction and search
in an ensemble of 2-D simulations with the theoretical cost
given by Eq. (24). Figure 6 displays the run times plotted
against our predictive curves for the MT portion of the algo-
rithm, exhibiting a coefficient of determination (r2) close to
1.

Note that changing the total number of particles within
a simulation should not change the scaling relationship as
Eq. (24) only depends on the value of NS . This relationship

https://doi.org/10.5194/gmd-16-833-2023 Geosci. Model Dev., 16, 833–849, 2023

840 L. Schauer et al.: PDD for multi-dimensional Lagrangian random walk MTPT schemes

Figure 4. All particles within a buffer width of ψ from the boundary of a subdomain (blue) are sent to the left and to the right for reaction
in the slices method (a), whereas they are sent to eight neighboring regions in the checkerboard method (b). Note that the red lines depict
subdomain boundaries, and the black arrows indicate the outward send of ghost particles to neighbors. Also, note that the tails of the black
arrows begin within the blue buffer region. Ghost pad size is exaggerated for demonstration.

Figure 5. The red band represents all particles that will be received
by the local subdomain (yellow) from neighboring regions for mass
transfer. The number NS quantifies the number of particles that are
involved in the MT step of the algorithm, which is the combination
of all particles whose positions are in either the red or yellow region.

implies that a simulation with a greater number of particles
and using a greater number of cores can achieve the same
value of NS as a simulation with fewer total particles and
cores. When the values of NS coincide across these combi-
nations of particles and cores, we expect the time spent in
the MT subroutine to be the same (Figs. 7 and 8). We see
that our predictions for the MT subroutine, based on propor-
tionality to the k-D tree search, provide a reliable run time
estimate in both the 2-D and 3-D cases. We also observe an
overlay in the curves asN increases, which directly increases
the amount of work for the MT portion of the algorithm. For
instance, if we consider a range of particle numbers in both
dimensions (Figs. 7 and 8), we see the respective curves ex-
hibit similar run time behavior as NS decreases.

Figure 6. Plots of run time in the MT portion of benchmark runs.
Note the similar behavior in both 2-D (a) and 3-D (b) for predicting
MT subroutine run time, based on our theoretical run time scaling
in Eq. (24). Using this prediction function achieves values of r2

=

0.9780 in 2-D and r2
= 0.9491 in 3-D. Axis bounds are chosen for

ease of comparison to results in Figs. 7, 8, and 10a.

The plots of MT run time display an approximately lin-
ear decrease as NS decreases, which would seem to indi-
cate continued performance gains with the addition of more
cores. However, one must remember that adding cores is an
action of diminishing returns because the local core areas or

Geosci. Model Dev., 16, 833–849, 2023 https://doi.org/10.5194/gmd-16-833-2023

L. Schauer et al.: PDD for multi-dimensional Lagrangian random walk MTPT schemes 841

Figure 7. Varying the total particle number N directly influences
the value of NS , as the rightmost side of Eq. (23) reflects. Simu-
lations across these different values of N in 2-D exhibit common
behavior with respect to MT run time as NS decreases, as shown
in (a). Panel (b) shows the strong scaling behavior for the 10 M par-
ticle simulation for comparison to a common scaling metric. Axis
limits are chosen for comparison with Fig. 10a.

volumes tend to zero as more are added, and NS tends to a
constant given by the size of the surrounding ghost particle
area (see Fig. 5). For example, Fig. 6a shows that MT run
time only decreases by around half of a second from adding
nearly 1500 cores. Figures 7 and 8 display (a) weak-like scal-
ing plots and (b) strong scaling plots for the MT portion of
the algorithm. Predictions concerning this trade-off are made
in Sect. 7.

6.2 Ghost particle communication cost analysis

The halo exchange depicted in Sect. 5 is implemented via a
distributed-memory, MPI-based subroutine. Each core in the
simulation carries out the communication protocol regard-
less of on-node or inter-node relationship to its neighboring
cores, as shown in Fig. 4b. These explicit, MPI exchange in-
structions ensure that this communication occurs in a similar
fashion between all cores, regardless of node relationship.
This claim is substantiated by the single-node scaling seen in
Fig. 9, reinforcing that our speedup results are not skewed by
redundant or “accelerated” shared-memory communication.

The communication portion of the algorithm includes
three processes on each core: evaluating logical statements to
determine which particles to send to each neighboring core,

Figure 8. Varying the total particle numberN directly influences the
value of NS , as the rightmost side of Eq. (23) reflects. Simulations
across these different values of N in 3-D exhibit common behav-
ior with respect to MT run time as NS decreases, as shown in (a).
Panel (b) shows the strong scaling behavior for the 10 M particle
simulation for comparison to a common scaling metric. Axis lim-
its are chosen for comparison with Fig. 10a. The scaling is strongly
similar to the 2-D example.

Figure 9. We observe expected wall time scaling for the on-node
communication shown here, demonstrating that the MPI function
calls do, in fact, incur communication costs between cores within a
shared-memory space.

sending the particles to the neighboring cores, and receiv-
ing particles from all neighboring cores. The total wall time
for these three processes makes up the “MPI time (s)” in
Figs. 9 and 10. By nature of these tiled, halo exchanges, we
encounter the issue of load balancing, namely the process of
distributing traffic so that cores with less work to do will not

https://doi.org/10.5194/gmd-16-833-2023 Geosci. Model Dev., 16, 833–849, 2023

842 L. Schauer et al.: PDD for multi-dimensional Lagrangian random walk MTPT schemes

Figure 10. As NS decreases, we observe similar trends in the MPI
subroutine run time in both 2-D and 3-D. Given that necessary
communication takes places between 26 neighboring regions in 3-
D rather than only eight neighboring regions in 2-D, the 3-D MPI
times are, in general, 5 to 10 times slower than similar runs in 2-D.

need to wait on those cores with more work. Hence, we only
need to focus our predictions on the cores that will perform
the greatest amount of work. These cores (in both dimen-
sions) are the “interior” subdomains or the subdomains with
neighbors on all sides. In 2-D these subdomains will receive
particles from eight neighboring domains, with four neigh-
bors sharing edges and four on adjacent corners. In 3-D, par-
ticles are shared among 26 neighboring subdomains. Similar
to the MT analysis, we observe that both the 2-D and 3-D
data in Fig. 10a exhibit similar curves across varying parti-
cle numbers as the number of cores becomes large (i.e., as
NS becomes small). This eventual constant cost is to be ex-
pected in view of the asymptotic behavior of NS as P grows
large. Note also that the 3-D MPI simulation times are con-
sistently around 5 to 10 times greater than 2-D because of the
increased number of neighboring cores involved in the ghost
particle information transfer.

7 Speedup results

In this section, we discuss the advantages and limitations of
each method by evaluating the manner in which the decom-
position strategies accelerate run times. We employ the quan-
tity “speedup” in order to compare the results of our numer-
ical experiments. The speedup of a parallelized process is
commonly formulated as

SP =
T1

TP
, (25)

where TP is the run time using P cores and T1 is the serial
run time. We also use the notion of efficiency that relates the
speedup to the number of cores and is typically formulated
as

EP =
SP

P
. (26)

If the parallelization is perfectly efficient, then P cores will
yield a P times speedup from the serial run, producing a
value of EP = 1. Hence, we compare speedup performance
to establish a method that best suits multi-dimensional simu-
lations.

We may also construct a theoretical prediction of the ex-
pected speedup due to the run time analysis of the preceding
section. First, assume that the subdomains are ideally config-
ured as squares in 2-D or cubes on 3-D. In this case, the MT
run times always exceed the MPI times. For smaller values
of NS , the MT run times are approximately 10 to 100 times
larger than those of the MPI step. Furthermore, the larger MT
times are approximately linear withNS over a large range, re-
gardless of total particle numbers and dimension. Therefore,
we may assume that the run times are approximately linear
with NS and compare run times for different values of P .
Specifically, for a single core, all of the particles contribute
to the MT run time, so the speedup can be calculated using
Eq. (23) in the denominator:

SP =
N

NS
=

N

N
(

1
P 1/d +

2ψ
L

)d = 1(
1

P 1/d +
2ψ
L

)d . (27)

Now, letting E ∈ (0,1) represent a desired efficiency thresh-
old, we can identify the maximum number of cores that will
deliver an efficiency of E based on the size L of the domain,
the physics of the problem, and the optimal time step1t that
defines the size of the ghost region (given in terms of the pad
distanceψ). In particular, using the above efficiency formula,
we want

E ≤ EP =
SP

P
=

1

P
(

1
P 1/d +

2ψ
L

)d . (28)

A rearrangement then gives the inequality

P ≤
1
E

(
(1− E1/d)L

2ψ

)d
, (29)

Geosci. Model Dev., 16, 833–849, 2023 https://doi.org/10.5194/gmd-16-833-2023

L. Schauer et al.: PDD for multi-dimensional Lagrangian random walk MTPT schemes 843

Figure 11. The prediction curves give the user a concrete guide-
line to determine how many cores to allocate for a simulation be-
fore performance degrades. The curves in (a) are generated for the
defined search distance ψ in a domain with a constant respective
hypervolume V , which implies that each dimension’s length scale
is L= V1/d . The curves in (b) are generated for the same search
distance ψ but with Ld -sized domains for fixed length L.

which provides an upper bound on the suggested number of
cores to use once ψ is fixed and a desired minimum effi-
ciency is chosen.

This gives the user a couple of options before running a
simulation. The first option is to choose a desired minimum
efficiency and obtain a suggested number of cores to use
based on the inequality in Eq. (29). This option is ideal for
users who request or pay for the allocation of computational
resources and must know the quantity of resources to employ
in the simulation. The second option is to choose a value for
the number of cores and apply the inequality (28) to obtain
an estimated efficiency level for that number of cores. This
second case may correspond to users who have free or unre-
stricted access to large amounts of computing resources and
may be less concerned about loss of efficiency.

Using Eq. (27), we can predict speedup performance for
any simulation once the parameters are chosen. The speedup
prediction inequalities from above depend only on the do-
main size and the search distance ψ . From these inequali-
ties, the effects of dimensionality while implementing DDC
can be conceptualized in two ways. First, if the hypervolume
is held constant as dimension changes, particle density also
remains constant, which should generally not induce mem-

Figure 12. Observed (diamonds) and theoretical speedup for 2-D
simulations. Each chosen number of cores is a perfect square so
that the checkerboard method gives square subdomains. With the
chosen parameters L= 1000, D = 1, and 1t = 0.1 and a desired
efficiency of 0.75, the upper bound given by the inequality (29) is
not violated for the checkerboard method until around 1700 cores.

ory issues moving to higher dimensions. This requires choos-
ing a desired hypervolume V and then determining a length
scale along a single dimension with L= V1/d . Figure 11a
displays speedup predictions for 1-D, 2-D, and 3-D simula-
tions in domains with equal hypervolumes and fixed D = 1
and1t = 0.1. Keeping hypervolume constant shows the cost
of complexity with increasing dimensions, which reduces ef-
ficiency at larger amounts of cores. Conversely, a physical
problem may have a fixed size on the order of L3, and a
user may wish to perform upscaled simulations in 1-D and
2-D before running full 3-D simulations. Figure 11b shows
the opposite effect: for a fixed length scale L, the lower-
dimension simulations suffer degraded efficiency for lower
number of cores.

The 2-D and 3-D benchmark simulations used in previous
sections allow us to calculate both the empirical (observed)
and theoretical speedups, and the overlays in Figs. 12 and 13
show reasonably accurate predictions over a large range of
core numbers. The observed run times were averaged over
an ensemble of five simulations in order to decrease noise.
If the checkerboard method is used to decompose the do-
main, significantly more cores can be used before the in-
equality (29) is violated for a chosen efficiency. In particular,
if we choose a sequence of perfect square core numbers for
the a 1000×1000 domain, nearly linear speedup is observed
for over 1000 cores and a maximum of 1906 times speedup
at 2700 cores, the largest number of CPU cores to which we
had access. For reference, the 1906 times speedup performs
a 5 h serial run in 8 s, representing around 0.04 % of the orig-
inal computational time.

Finally, we briefly consider the slices method, as it has
drastic limitations in 2-D and 3-D. Increasing the number of
cores used in a simulation while ψ remains fixed causes the
ghost regions (as pictured in Fig. 4a) to comprise a larger
ratio of each local subdomain’s area. Indeed, if each sub-
domain sends the majority of its particles, we begin to ob-

https://doi.org/10.5194/gmd-16-833-2023 Geosci. Model Dev., 16, 833–849, 2023

844 L. Schauer et al.: PDD for multi-dimensional Lagrangian random walk MTPT schemes

Figure 13. Observed (diamonds) and theoretical speedup for 3-D
simulations. Each chosen number of cores is a perfect cube so that
the checkerboard method gives cubic subdomains. With the chosen
parameters L= 100, D = 1, and 1t = 0.1 and a desired efficiency
of 0.5, the upper bound given by the inequality (29) is not violated
for the checkerboard method until around 320 cores.

Figure 14. Speedup for the slices method plateaus quickly, as the
ghost regions increase in proportion to the local subdomain’s area.

serve decreased benefits of the parallelization. An inspection
of Fig. 4a suggests that the slices method in 2-D will scale
approximately like a 1-D system because the expression for
NS (Eq. 23) is proportional to the 1-D expression. Indeed,
the slices method speedup is reasonably well predicted by the
theoretical model for a 1-D model (Fig. 14). Furthermore, be-
cause the slices method only decomposes the domain along a
single dimension, it violates the condition given in Eq. (29) at
lesser numbers of cores than for the checkerboard method. In
fact, using too many cores with the slices method can cease
necessary communication altogether once a single buffer be-
comes larger than the subdomain width. For the given pa-
rameter values, this phenomenon occurs at 500 cores with
the slices method, so we do not include simulations beyond
that number of cores. The speedup for the slices method up
to 500 cores is shown in Fig. 14. Although the algorithm is
accurate up to 500 cores, we see that performance deterio-
rates quite rapidly after around 100 cores, which motivated
the investigation of the checkerboard decomposition.

Figure 15. Poorly chosen core numbers may result in severely non-
square tilings that can degrade speedup performance, despite em-
ploying more computational resources.

7.1 Non-square tilings and checkerboard cautions

Given some fixed number of cores (hence subdomains), it is
clear that using a subdomain tiling that is as close as possi-
ble to a perfect square (or cube) maximizes efficiency. This
occurs when the factors for subdivisions in each dimension
are chosen to most closely resemble the aspect ratio of the
entire domain (shown in 2-D in Eq. 20). Square or cubic
subdomains are the most efficient shape to use and result in
improved speedup that extends to larger numbers of cores.
The converse of this principle means that a poor choice of
cores (say, a prime number) will force a poor tiling, and so
certain choices for increased core numbers can significantly
degrade efficiency. Figure 15 depicts results in 2-D for core
numbers of P = 698 (with nearest integer factors of 2 and
349) and P = 1322 (with nearest integer factors of 2 and
661) along with well-chosen numbers of cores, namely the
perfect squares P = 400 and P = 1600. It is clear from the
speedup plot that simulations with poorly chosen numbers of
cores do not yield efficient runs relative to other choices that
are much closer to the ideal linear speedup. In particular, we
note that the speedup in the case of nearly prime numbers of
cores is much closer to the anticipated 1-D speedup. This oc-
curs due to the subdomain aspect ratio being heavily skewed
and therefore better resembling a 1-D subdomain rather than
a regular (i.e., square) 2-D region.

7.2 Non-serial speedup reference point

We can loosely describe the standard definition of speedup
as the quantitative advantage a simulation performed with P
cores displays over a simulation running with just a single
core. However, a serial run does not require particles to be
sent to neighboring regions. Hence, a simulation on a sin-
gle core does not even enter the MPI subroutine necessary
for sending ghost particles, omitting a significant cost. This
implies that multi-core simulations have extra cost associ-
ated with communication that the serial baseline does not,
which is, of course, the reason that linear speedup is difficult

Geosci. Model Dev., 16, 833–849, 2023 https://doi.org/10.5194/gmd-16-833-2023

L. Schauer et al.: PDD for multi-dimensional Lagrangian random walk MTPT schemes 845

Figure 16. A speedup reference point of T100 results in super-linear
speedup across multiple particle numbers.

Figure 17. Speedup reference points of T125 (and T216 for the 15 M
run) result in super-linear speedup for only the N = 5 M case, fur-
ther exemplifying the disparity between 2-D and 3-D.

to achieve. Unlike the traditional, serial speedup comparison
shown in Fig. 12, it is possible to compare speedup results to
a 100-core baseline to observe how computational time de-
creases by adding cores to an already-parallelized simulation.
This may be a non-standard metric, but it provides a differ-
ent vantage point to measure how well an HPC algorithm
performs. Further, a metric like this is useful in memory-
bound conditions that cannot be conducted on less than 100
cores. Examples of such speedup plots that compare all sim-
ulation times to their respective 100-core run times are given
in Figs. 16 and 17. More specifically, these figures display
the speedup ratio given by

SP100 =
T100

TP
, (30)

where TP is the run time on P cores and T100 is the run time
on 100 cores. For example, with 2500 cores, perfect speedup
would be 25 times faster than the 100 core run.

The performance in Fig. 16 displays super-linear speedup
for up to 2700 cores, which shows that memory-restricted
simulations using very large particle numbers (i.e., the 15 and
20 M particle data) can be effectively parallelized to much
greater numbers of cores. However, Fig. 17 further shows the
effect of dimensionality on this comparison, as only those

simulations with smaller particle numbers in 3-D achieve
super-linear speedup.

8 Conclusions and final remarks

The checkerboard decomposition for the parallelized DDC
algorithm provides significant speedup to Lagrangian MTPT
simulations in multiple dimensions. For a range of simula-
tions, we find that the mass-transfer step is the dominant
cost in terms of run time. The approximate linearity of run
time with NS (defined as total number of native particles
and external ghost particles on a single core/subdomain for
mass transfer) allows us to calculate a theoretical speedup
that matches empirical results from well-designed DDC do-
mains. The theoretical predictions also allow one to choose
an efficiency and calculate the optimal number of cores to
use, based on the physics of the problem (specifically, in the
context of the benchmarks, we explore domain size L, dif-
fusion coefficient D, and time step 1t). As noted in Sect. 7,
these predictions provide users with the necessary forecast-
ing ability that is required before running a large-scale HPC
simulation.

Given that we assume a purely diffusive, non-reactive sys-
tem in this paper, a necessary extension of this will be an
investigation of the performance of these DDC techniques
upon adding advection, reactions, or both to the system. The
benchmarks we establish in this work provide accurate ex-
pectations for properly load-balanced problems as we begin
to add these complexities into the simulations. In particu-
lar, in future efforts we expect to handle variable velocity
fields with an adaptable, moving DDC strategy similar to
the technique that we implement in this paper. This initial
study is an essential prerequisite before other such advances
can even begin. Further, using local averaging and interpola-
tion of the corresponding velocity-dependent dispersion ten-
sors, we retain accurate representation of small-scale spread-
ing and mixing despite the subdivided simulation domain.
We expect that adequately load balanced, advective-reactive
simulations in the future will exhibit as good as or even bet-
ter scaling than we have observed in these current bench-
marks. Moving particles via advection is a naturally parallel
computation and will only incur minor computational cost
as particles move across subdomain boundaries. Moreover,
since the general form of our algorithm simulates complex
chemical reactions on particles after mass transfer takes place
for all species, we change the most computationally expen-
sive process (the reactions) into a naturally parallel process.
Simulating these extra physical phenomena strictly increases
computational complexity, but it will be in addition to the
computations we carry out here. Given that we are building
on these computations, we fully intend to preserve the pre-
dictive ability in more complex simulations moving forward.
Finally, another natural extension could address various com-
putational questions by exploring how parallelized MTPT

https://doi.org/10.5194/gmd-16-833-2023 Geosci. Model Dev., 16, 833–849, 2023

846 L. Schauer et al.: PDD for multi-dimensional Lagrangian random walk MTPT schemes

techniques might be employed using shared-memory par-
allelism, such as OpenMP, CUDA, or architecture-portable
parallel programming models like Kokkos, RAJA, or YAKL
(Edwards et al., 2014; Trott et al., 2022; Beckingsale et al.,
2019; RAJA Performance Portability Layer, 2022; Norman,
2022). As we have noted, sending and receiving particles dur-
ing each time step is a large cost in these simulations, second
only to the creation and search of k-D trees and the forward
matrix multiplication for mass transfer. Thus, if we could im-
plement a similar DDC technique without physically trans-
mitting ghost particle information between cores and their
memory locations, would we expect to see improved speedup
for much larger thread counts? A comparison of simulations
on a CPU shared memory system to those on a GPU con-
figuration would represent a natural next step to address this
question. In this case, we predict that the GPU would also
yield impressive speedup, but it is unclear as to which sys-
tem would provide lesser overall run times given the signifi-
cant differences in computational and memory architectures
between GPU and CPU systems.

In summary, the checkerboard method in 2-D (and 3-D)
not only allows simulations to be conducted using large num-
bers of cores before violating the maximum recommended
core condition given in Eq. (29) but also boasts impressive ef-
ficiency scaling at a large number of cores. Under the guide-
lines we prescribe, this method achieves almost perfect lin-
ear speedup for more than 1000 cores and maintains signif-
icant speedup benefits up to nearly 3000 cores. Our work
also showcases how domain decomposition and paralleliza-
tion can relieve memory-constrained simulations. For exam-
ple, some of the simulations that we conduct with large num-
bers of particles cannot be performed with fewer cores due to
insufficient memory on each core. However, with a carefully
chosen DDC strategy, we can perform simulations with par-
ticle numbers that are orders of magnitude greater than can
be accomplished in serial, thereby improving resolution and
providing higher-fidelity results.

Appendix A: Roofline model

Roofline model analysis provides an understanding of the
baseline computational performance of an algorithm by ob-
serving the speed and intensity of its implementation on a
specific problem and comparing it to the hardware limita-
tions. Thus, this analysis depicts the speed of an algorithm
relative to the difficulty of the associated problem. We in-
clude this analysis to demonstrate that our single-core base-
line result (orange circle in Fig. A1) is as fast and efficient as
the hardware bandwidth allows. This ensures that speedup re-
sults are not inflated by a suboptimal baseline. These results
were produced using LIKWID (Treibig et al., 2010; Roehl
et al., 2014), a tool created by the National Energy Research
Scientific Computing Center to measure hardware limitations
and algorithmic performance. By varying the particle den-

Figure A1. This figure displays the full roofline plot with an en-
larged inset to accentuate the data trends. The data points corre-
spond to various particle densities while domain size is held con-
stant. As arithmetic intensity fluctuates, we observe that the algo-
rithm’s performance is limited by the hardware’s bandwidth. We
use the chosen parameter set (orange circle) for our speedup results
since it (1) is the most efficient, (2) displays high accuracy from its
particle count, and (3) is not memory-bound and does not require
exceedingly long simulation times.

sity within our simulations, we show that the parameters we
use for our baseline result perform closer to the bandwidth
limit at the respective arithmetic intensity when compared to
surrounding particle numbers. For the memory limits of the
hardware we employ, we have chosen the parameter combi-
nation that yields the most efficient baseline simulation prior
to parallelization.

Code and data availability. Fortran/MPI codes for generating all
results in this paper are held in the public repository at
https://doi.org/10.5281/zenodo.6975289 (Schauer, 2022).

Author contributions. LS was responsible for writing the original
draft and creating the software. LS, SDP, DAB, and DB were re-
sponsible for conceptualization. LS, NBE, and MJS were respon-
sible for methodology. DAB and SDP were responsible for formal
analysis. All authors were responsible for reviewing and editing the
paper.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. This paper describes objective technical results and
analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

Publisher’s note: Copernicus Publications remains neutral with
regard to jurisdictional claims in published maps and institutional
affiliations.

Geosci. Model Dev., 16, 833–849, 2023 https://doi.org/10.5194/gmd-16-833-2023

https://doi.org/10.5281/zenodo.6975289

L. Schauer et al.: PDD for multi-dimensional Lagrangian random walk MTPT schemes 847

Acknowledgements. Sandia National Laboratories is a multi-
mission laboratory managed and operated by the National Technol-
ogy and Engineering Solutions of Sandia, L.L.C., a wholly owned
subsidiary of Honeywell International, Inc., for the DOE’s National
Nuclear Security Administration under contract DE-NA0003525.
This research used resources of the National Energy Research Sci-
entific Computing Center, which is supported by the Office of Sci-
ence of the U.S. Department of Energy under contract no. DE-
AC02-05CH11231.

Financial support. The authors and this work were supported
by the US Army Research Office (grant no. W911NF-18-1-
0338) and by the National Science Foundation (grant nos. CBET-
2129531, EAR-2049687, EAR-2049688, DMS-1911145, and
DMS-2107938).

Review statement. This paper was edited by David Ham and re-
viewed by two anonymous referees.

References

Aris, R.: On the dispersion of a solute in a fluid flowing through a
tube, P. Roy. Soc. Lond. A, 235, 67–77, 1956.

Bear, J.: On the tensor form of dispersion in
porous media, J. Geophys. Res., 66, 1185–1197,
https://doi.org/10.1029/JZ066i004p01185, 1961.

Bear, J.: Dynamics of Fluids in Porous Media, Dover Publications,
ISSN 2212-778X, 1972.

Beckingsale, D. A., Burmark, J., Hornung, R., Jones, H.,
Killian, W., Kunen, A. J., Pearce, O., Robinson, P., Ryu-
jin, B. S., and Scogland, T. R.: RAJA: Portable Perfor-
mance for Large-Scale Scientific Applications, in: 2019
IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC), 71–81,
https://doi.org/10.1109/P3HPC49587.2019.00012, 2019.

Benson, D. A. and Bolster, D.: Arbitrarily Complex Chemical
Reactions on Particles, Water Resour. Res., 52, 9190–9200,
https://doi.org/10.1002/2016WR019368, 2016.

Benson, D. A. and Meerschaert, M. M.: Simulation of chemical
reaction via particle tracking: Diffusion-limited versus thermo-
dynamic rate-limited regimes, Water Resour. Res., 44, W12201,
https://doi.org/10.1029/2008WR007111, 2008.

Benson, D. A., Aquino, T., Bolster, D., Engdahl, N.,
Henri, C. V., and Fernàndez-Garcia, D.: A compari-
son of Eulerian and Lagrangian transport and non-linear
reaction algorithms, Adv. Water Resour., 99, 15–37,
https://doi.org/10.1016/j.advwatres.2016.11.003, 2017.

Benson, D. A., Pankavich, S., and Bolster, D.: On the sep-
arate treatment of mixing and spreading by the reactive-
particle-tracking algorithm: An example of accurate upscaling
of reactive Poiseuille flow, Adv. Water Resour., 123, 40–53,
https://doi.org/10.1016/j.advwatres.2018.11.001, 2019.

Bentley, J. L.: Multidimensional Binary Search Trees Used
for Associative Searching, Commun. ACM, 18, 509–517,
https://doi.org/10.1145/361002.361007, 1975.

Bolster, D., Paster, A., and Benson, D. A.: A particle num-
ber conserving Lagrangian method for mixing-driven
reactive transport, Water Resour. Res., 52, 1518–1527,
https://doi.org/10.1002/2015WR018310, 2016.

Crespo, A., Dominguez, J., Barreiro, A., Gómez-Gesteira,
M., and Rogers, B.: GPUs, a New Tool of Acceler-
ation in CFD: Efficiency and Reliability on Smoothed
Particle Hydrodynamics Methods, PLoS ONE, 6, e20685,
https://doi.org/10.1371/journal.pone.0020685, 2011.

Dentz, M., Le Borgne, T., Englert, A., and Bijeljic, B.:
Mixing, spreading and reaction in heterogeneous me-
dia: A brief review, J. Contam. Hydrol., 120–121, 1–17,
https://doi.org/10.1016/j.jconhyd.2010.05.002, 2011.

Ding, D., Benson, D. A., Fernández-Garcia, D., Henri, C. V.,
Hyndman, D. W., Phanikumar, M. S., and Bolster, D.: Elim-
ination of the Reaction Rate “Scale Effect”: Application of
the Lagrangian Reactive Particle-Tracking Method to Simu-
late Mixing-Limited, Field-Scale Biodegradation at the School-
craft (MI, USA) Site, Water Resour. Res., 53, 10411–10432,
https://doi.org/10.1002/2017WR021103, 2017.

Edwards, H. C., Trott, C. R., and Sunderland, D.: Kokkos: Enabling
manycore performance portability through polymorphic mem-
ory access patterns, J. Parall. Distrib. Comput., 74, 3202–3216,
https://doi.org/10.1016/j.jpdc.2014.07.003, 2014.

Engdahl, N., Schmidt, M., and Benson, D.: Accelerating
and Parallelizing Lagrangian Simulations of Mixing-Lim-
ited Reactive Transport, Water Resour. Res., 55, 3556–3566,
https://doi.org/10.1029/2018WR024361, 2019.

Engdahl, N. B., Benson, D. A., and Bolster, D.: Lagrangian
simulation of mixing and reactions in complex geo-
chemical systems, Water Resour. Res., 53, 3513–3522,
https://doi.org/10.1002/2017WR020362, 2017.

Gelhar, L. W., Gutjahr, A. L., and Naff, R. L.: Stochastic analysis
of macrodispersion in a stratified aquifer, Water Resour. Res., 15,
1387–1397, https://doi.org/10.1029/WR015i006p01387, 1979.

Gomez-Gesteira, M., Crespo, A., Rogers, B., Dalrymple,
R., Dominguez, J., and Barreiro, A.: SPHysics – de-
velopment of a free-surface fluid solver – Part 2: Ef-
ficiency and test cases, Comput. Geosci., 48, 300–307,
https://doi.org/10.1016/j.cageo.2012.02.028, 2012.

Graham, S. L., Kessler, P. B., and McKusick, M. K.: Gprof:
A Call Graph Execution Profiler, SIGPLAN Not., 39, 49–57,
https://doi.org/10.1145/989393.989401, 2004.

Herrera, P. A., Massabó, M., and Beckie, R. D.: A mesh-
less method to simulate solute transport in heteroge-
neous porous media, Adv. Water Resour., 32, 413–429,
https://doi.org/10.1016/j.advwatres.2008.12.005, 2009.

Kennel, M. B.: KDTREE 2: Fortran 95 and C++ Software to Ef-
ficiently Search for Near Neighbors in a Multi-Dimensional
Euclidean Space, arXiv Physics, https://arxiv.org/abs/physics/
0408067v2 (last access: 11 August 2022), 2004.

LaBolle, E. M., Fogg, G. E., and Tompson, A. F. B.:
Random-Walk Simulation of Transport in Heterogeneous
Porous Media: Local Mass-Conservation Problem and Im-
plementation Methods, Water Resour. Res., 32, 583–593,
https://doi.org/10.1029/95WR03528, 1996.

Li, L., Maher, K., Navarre-Sitchler, A., Druhan, J., Meile, C.,
Lawrence, C., Moore, J., Perdrial, J., Sullivan, P., Thompson, A.,
Jin, L., Bolton, E. W., Brantley, S. L., Dietrich, W. E., Mayer,

https://doi.org/10.5194/gmd-16-833-2023 Geosci. Model Dev., 16, 833–849, 2023

https://doi.org/10.1029/JZ066i004p01185
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1002/2016WR019368
https://doi.org/10.1029/2008WR007111
https://doi.org/10.1016/j.advwatres.2016.11.003
https://doi.org/10.1016/j.advwatres.2018.11.001
https://doi.org/10.1145/361002.361007
https://doi.org/10.1002/2015WR018310
https://doi.org/10.1371/journal.pone.0020685
https://doi.org/10.1016/j.jconhyd.2010.05.002
https://doi.org/10.1002/2017WR021103
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1029/2018WR024361
https://doi.org/10.1002/2017WR020362
https://doi.org/10.1029/WR015i006p01387
https://doi.org/10.1016/j.cageo.2012.02.028
https://doi.org/10.1145/989393.989401
https://doi.org/10.1016/j.advwatres.2008.12.005
https://arxiv.org/abs/physics/0408067v2
https://arxiv.org/abs/physics/0408067v2
https://doi.org/10.1029/95WR03528

848 L. Schauer et al.: PDD for multi-dimensional Lagrangian random walk MTPT schemes

K. U., Steefel, C. I., Valocchi, A., Zachara, J., Kocar, B., Mcin-
tosh, J., Tutolo, B. M., Kumar, M., Sonnenthal, E., Bao, C., and
Beisman, J.: Expanding the role of reactive transport models in
critical zone processes, Earth-Sci. Rev., 165, 280–301, 2017.

Molz, F. and Widdowson, M.: Internal Inconsistencies in
Dispersion–Dominated Models That Incorporate Chemical and
Microbial Kinetics, Water Resour. Res., 24, 615–619, 1988.

Morvillo, M., Rizzo, C. B., and de Barros, F. P.: A scalable parallel
algorithm for reactive particle tracking, J. Comput. Phys., 446,
110664, https://doi.org/10.1016/j.jcp.2021.110664, 2021.

NERSC: Roofline performance model, https://docs.nersc.gov/tools/
performance/roofline/ (last access: 1 January 2023), 2018.

Norman, M.: YAKL: Yet Another Kernel Library, https://github.
com/mrnorman/YAKL (last access: 11 August 2022), 2022.

Ofenbeck, G., Steinmann, R., Caparros, V., Spampinato,
D. G., and Püschel, M.: Applying the roofline model,
in: 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 76–85,
https://doi.org/10.1109/ISPASS.2014.6844463, 2014.

Paster, A., Bolster, D., and Benson, D. A.: Particle tracking and
the diffusion-reaction equation, Water Resour. Res., 49, 1–6,
https://doi.org/10.1029/2012WR012444, 2013.

Paster, A., Bolster, D., and Benson, D. A.: Connecting the
dots: Semi-analytical and random walk numerical so-
lutions of the diffusion–reaction equation with stochas-
tic initial conditions, J. Comput. Phys., 263, 91–112,
https://doi.org/10.1016/j.jcp.2014.01.020, 2014.

Perzan, Z., Babey, T., Caers, J., Bargar, J. R., and Maher, K.: Local
and Global Sensitivity Analysis of a Reactive Transport Model
Simulating Floodplain Redox Cycling, Water Resour. Res.,
57, e2021WR029723, https://doi.org/10.1029/2021WR029723,
2021.

RAJA Performance Portability Layer: https://github.com/LLNL/
RAJA, last access: 11 August 2022.

Roehl, T., Treibig, J., Hager, G., and Wellein, G.: Overhead Analy-
sis of Performance Counter Measurements, in: 43rd International
Conference on Parallel Processing Workshops (ICCPW), 176–
185, https://doi.org/10.1109/ICPPW.2014.34, 2014.

Salamon, P., Fernàndez-Garcia, D., and Gómez-Hernández, J. J.:
A review and numerical assessment of the random walk
particle tracking method, J. Contam. Hydrol., 87, 277–305,
https://doi.org/10.1016/j.jconhyd.2006.05.005, 2006.

Schauer, L.: lschauer95/Parallelized-Mass-Transfer-Domain-
Decomposition: Parallelized Domain Decomposition for
Mass Transfer Particle Tracking Simulations, Zenodo [code],
https://doi.org/10.5281/zenodo.6975289, 2022.

Scheibe, T. D., Schuchardt, K., Agarwal, K., Chase, J.,
Yang, X., Palmer, B. J., Tartakovsky, A. M., Elsethagen,
T., and Redden, G.: Hybrid multiscale simulation of a
mixing-controlled reaction, Adv. Water Resour., 83, 228–239,
https://doi.org/10.1016/j.advwatres.2015.06.006, 2015.

Schmidt, M. J., Pankavich, S., and Benson, D. A.: A
Kernel-based Lagrangian method for imperfectly-mixed
chemical reactions, J. Comput. Phys., 336, 288–307,
https://doi.org/10.1016/j.jcp.2017.02.012, 2017.

Schmidt, M. J., Pankavich, S. D., and Benson, D. A.: On the
accuracy of simulating mixing by random-walk particle-based
mass-transfer algorithms, Adv. Water Resour., 117, 115–119,
https://doi.org/10.1016/j.advwatres.2018.05.003, 2018.

Schmidt, M. J., Pankavich, S. D., Navarre-Sitchler, A., and Ben-
son, D. A.: A Lagrangian Method for Reactive Transport with
Solid/Aqueous Chemical Phase Interaction, J. Comput. Phys., 2,
100021, https://doi.org/10.1016/j.jcpx.2019.100021, 2019.

Schmidt, M. J., Engdahl, N. B., Pankavich, S. D., and Bolster, D.: A
mass-transfer particle-tracking method for simulating transport
with discontinuous diffusion coefficients, Adv. Water Resour.,
140, 103577, https://doi.org/10.1016/j.advwatres.2020.103577,
2020a.

Schmidt, M. J., Pankavich, S. D., Navarre-Sitchler, A., Eng-
dahl, N. B., Bolster, D., and Benson, D. A.: Reactive particle-
tracking solutions to a benchmark problem on heavy metal
cycling in lake sediments, J. Contam. Hydrol., 234, 103642,
https://doi.org/10.1016/j.jconhyd.2020.103642, 2020b.

Schmidt, M. J., Engdahl, N. B., Benson, D. A., and Bolster, D.:
Optimal Time Step Length for Lagrangian Interacting-Particle
Simulations of Diffusive Mixing, Transport Porous Med., 146,
413–433, https://doi.org/10.1007/s11242-021-01734-8, 2022.

Sole-Mari, G., Fernàndez-Garcia, D., Rodríguez-Escales, P., and
Sanchez-Vila, X.: A KDE-Based Random Walk Method
for Modeling Reactive Transport With Complex Kinet-
ics in Porous Media, Water Resour. Res., 53, 9019–9039,
https://doi.org/10.1002/2017WR021064, 2017.

Sole-Mari, G., Schmidt, M. J., Pankavich, S. D., and Ben-
son, D. A.: Numerical Equivalence Between SPH and Prob-
abilistic Mass Transfer Methods for Lagrangian Simula-
tion of Dispersion, Adv. Water Resour., 126, 108–115,
https://doi.org/10.1016/j.advwatres.2019.02.009, 2019.

Sole-Mari, G., Fernandez-Garcia, D., Sanchez-Vila, X., and
Bolster, D.: Lagrangian modeling of mixing-limited reactive
transport in porous media; multirate interaction by exchange
with the mean, Water Resour. Res., 56, e2019WR026993,
https://doi.org/10.1029/2019WR026993, 2020.

Steefel, C. I., Appelo, C. A., Arora, B., Jacques, D., Kalbacher,
T., Kolditz, O., Lagneau, V., Lichtner, P. C., Mayer, K. U.,
Meeussen, J. C., Molins, S., Moulton, D., Shao, H., Šimůnek,
J., Spycher, N., Yabusaki, S. B., and Yeh, G. T.: Reactive trans-
port codes for subsurface environmental simulation, Comput.
Geosci., 19, 445–478, https://doi.org/10.1007/s10596-014-9443-
x, 2015.

Sun, T., Mitchell, L., Kulkarni, K., Klöckner, A., Ham, D. A., and
Kelly, P. H.: A study of vectorization for matrix-free finite el-
ement methods, The Int. J. High Perform. Comput. Appl., 34,
629–644, https://doi.org/10.1177/1094342020945005, 2020.

Taylor, G. I.: Dispersion of soluble matter in solvent flowing slowly
through a tube, P. Roy. Soc. Lond. A, 219, 186–203, 1953.

Tennekes, H. and Lumley, J. L.: A First Course in Turbulence, MIT
Press, 1972.

Tompson, A. and Dougherty, D.: On the Use of Particle Tracking
Methods for Solute Transport in Porous Media, in: Vol. 2 Nu-
merical Methods for Transport and Hydrologic Processes, edited
by: Celia, M., Ferrand, L., Brebbia, C., Gray, W., and Pinder, G.,
vol. 36 of Developments in Water Science, Elsevier, 227–232,
https://doi.org/10.1016/S0167-5648(08)70094-7, 1988.

Tompson, A. F. B., Falgout, R. D., Smith, S. G., Bosl, W. J.,
and Ashby, S. F.: Analysis of subsurface contaminant migra-
tion and remediation using high performance computing, Adv.
Water Resour., 22, 203–221, https://doi.org/10.1016/S0309-
1708(98)00013-X, 1998.

Geosci. Model Dev., 16, 833–849, 2023 https://doi.org/10.5194/gmd-16-833-2023

https://doi.org/10.1016/j.jcp.2021.110664
https://docs.nersc.gov/tools/performance/roofline/
https://docs.nersc.gov/tools/performance/roofline/
https://github.com/mrnorman/YAKL
https://github.com/mrnorman/YAKL
https://doi.org/10.1109/ISPASS.2014.6844463
https://doi.org/10.1029/2012WR012444
https://doi.org/10.1016/j.jcp.2014.01.020
https://doi.org/10.1029/2021WR029723
https://github.com/LLNL/RAJA
https://github.com/LLNL/RAJA
https://doi.org/10.1109/ICPPW.2014.34
https://doi.org/10.1016/j.jconhyd.2006.05.005
https://doi.org/10.5281/zenodo.6975289
https://doi.org/10.1016/j.advwatres.2015.06.006
https://doi.org/10.1016/j.jcp.2017.02.012
https://doi.org/10.1016/j.advwatres.2018.05.003
https://doi.org/10.1016/j.jcpx.2019.100021
https://doi.org/10.1016/j.advwatres.2020.103577
https://doi.org/10.1016/j.jconhyd.2020.103642
https://doi.org/10.1007/s11242-021-01734-8
https://doi.org/10.1002/2017WR021064
https://doi.org/10.1016/j.advwatres.2019.02.009
https://doi.org/10.1029/2019WR026993
https://doi.org/10.1007/s10596-014-9443-x
https://doi.org/10.1007/s10596-014-9443-x
https://doi.org/10.1177/1094342020945005
https://doi.org/10.1016/S0167-5648(08)70094-7
https://doi.org/10.1016/S0309-1708(98)00013-X
https://doi.org/10.1016/S0309-1708(98)00013-X

L. Schauer et al.: PDD for multi-dimensional Lagrangian random walk MTPT schemes 849

Treibig, J., Hager, G., and Wellein, G.: LIKWID: A lightweight
performance-oriented tool suite for x86 multicore environments,
in: Proceedings of PSTI2010, the First International Workshop
on Parallel Software Tools and Tool Infrastructures, San Diego
CA, 2010.

Trott, C. R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang,
V., Ellingwood, N., Gayatri, R., Harvey, E., Hollman, D. S.,
Ibanez, D., Liber, N., Madsen, J., Miles, J., Poliakoff, D., Pow-
ell, A., Rajamanickam, S., Simberg, M., Sunderland, D., Tur-
cksin, B., and Wilke, J.: Kokkos 3: Programming Model Exten-
sions for the Exascale Era, IEEE T. Parall. Distr., 33, 805–817,
https://doi.org/10.1109/TPDS.2021.3097283, 2022.

Valocchi, A. J., Bolster, D., and Werth, C. J.: Mixing-limited re-
actions in porous media, Transport Porous Med., 130, 157–182,
2019.

Williams, S., Waterman, A., and Patterson, D.: Roofline:
An Insightful Visual Performance Model for Mul-
ticore Architectures, Commun. ACM, 52, 65–76,
https://doi.org/10.1145/1498765.1498785, 2009.

Xia, X. and Liang, Q.: A GPU-accelerated smoothed
particle hydrodynamics (SPH) model for the shallow
water equations, Environ. Model. Softw., 75, 28–43,
https://doi.org/10.1016/j.envsoft.2015.10.002, 2016.

https://doi.org/10.5194/gmd-16-833-2023 Geosci. Model Dev., 16, 833–849, 2023

https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1016/j.envsoft.2015.10.002

	Abstract
	Introduction
	Model description
	Initial conditions and analytic solution
	Simulation parameters
	Hardware configuration

	Mass-transfer particle tracking algorithm
	Domain decomposition
	Slices method
	Checkerboard method

	Ghost particles
	Cost analysis
	Mass-transfer cost
	Ghost particle communication cost analysis

	Speedup results
	Non-square tilings and checkerboard cautions
	Non-serial speedup reference point

	Conclusions and final remarks
	Appendix A: Roofline model
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

