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Abstract. This study presents a novel method to estimate
the performance of advection schemes in numerical exper-
iments along with a semi-realistic, non-linear, stiff chemi-
cal system. This method is based on the examination of the
“signature function”, an invariant of the advection equation.
Apart from exposing this concept in a particular numerical
test case, we show that a new numerical scheme based on a
combination of the piecewise parabolic method (PPM) with
the flux adjustments of Walcek outperforms both the PPM
and the Walcek schemes for inert tracer advection as well
as for advection of chemically active species. From a funda-
mental point of view, we think that our evaluation method,
based on the invariance of the signature function under the
effect of advection, offers a new way to evaluate objectively
the performance of advection schemes in the presence of
active chemistry. More immediately, we show that the new
PPM+W (“piecewise parabolic method+Walcek”) advec-
tion scheme offers chemistry-transport modellers an alterna-
tive, high-performance scheme designed for Cartesian-grid
Eulerian chemistry-transport models, with improved perfor-
mance over the classical PPM scheme. The computational
cost of PPM+W is not higher than that of PPM. With im-
proved accuracy and controlled computational cost, this new
scheme may find applications in other fields such as ocean
models or atmospheric circulation models.

1 Introduction

Chemistry-transport models are models that aim at represent-
ing the concentration of trace gases and particles in the at-
mosphere. Many such tools exist and are used for several
purposes, including research and operational forecast. The
core of such models consists of a chemical solver adapted
to stiff ordinary differential equation (ODE) systems along
with a framework for solving the advection equation for all
the chemical species.

Among the possible strategies to solve the advection equa-
tion in chemistry-transport models are the flux-based ad-
vection schemes, based on the ideas of Godunov (1959),
including the Van Leer (1977) and Colella and Woodward
(1984) schemes. The Walcek (2000) scheme, an improve-
ment of Van Leer (1977), has also been of common use
in chemistry-transport models. For example, GEOS-Chem
provides an advection framework based on the FV3 mod-
ule implementing the Putman and Lin (2007) method (Mar-
tin et al., 2022), based on the Colella and Woodward (1984)
scheme for 1D advection. The Colella and Woodward (1984)
PPM scheme is also implemented in the CMAQ model
(Byun and Schere, 2006; Zhao et al., 2020). The CHIMERE
model (Menut et al., 2021) also provides the Van Leer
(1977) and Colella and Woodward (1984) schemes for hor-
izontal advection, while vertical advection can be treated
with either the Van Leer (1977) scheme or the Després and
Lagoutière (1999) antidiffusive advection scheme (Lacha-
tre et al., 2020). The Walcek (2000) advection scheme, an
improved version of Van Leer (1977) with reduced numeri-
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cal diffusion, is also used in chemistry-transport models in-
cluding CCATT-BRAMS (Freitas et al., 2012) and LOTOS-
EUROS (Timmermans et al., 2022). Therefore, while not the
only ones used in chemistry-transport models, the schemes
we study here are the base of the numerical resolution of
advection in some of the most common chemistry-transport
models. Other popular schemes include versions of the Bott
(1989) scheme, which is less diffusive than PPM but has
the inconvenience of being non-monotonic and therefore
tends to generate extreme values or oscillation in the pres-
ence of large concentration gradients (Byun and Schere,
2006), while, by construction, PPM, Van Leer and Wal-
cek schemes enforce mass conservation and monotonicity
(Van Leer, 1977; Colella and Woodward, 1984; Walcek,
2000). Despite the availability of higher-order and less dif-
fusive schemes such as the Prather scheme (Prather, 1986)
or MPDATA (e.g. Waruszewski et al., 2018), PPM is still
considered “highly accurate and efficient enough to be use-
ful” (Harris et al., 2021). A new implementation of the PPM
scheme in the CAMx chemistry-transport model has been
designed recently to take advantage of GPU computational
facilities (Cao et al., 2023). Since the PPM scheme and,
to a lesser extent, the Van Leer (1977) and Walcek (2000)
schemes are widely used at least in chemistry-transport mod-
elling, it is important to look for ways to improve these
schemes while maintaining their desirable properties of ro-
bustness and numerical efficiency. In this direction, the goal
of the present study is to compare and assess the performance
of these schemes in a bidimensional, academic framework
including active chemistry; to build an improved version of
the PPM scheme, the PPM+W scheme; and to compare the
performance of this new scheme to the above-cited classical
schemes.

In the past, many studies have focused on developing, im-
proving and evaluating advection schemes (e.g. LeVeque,
1996; Nair and Lauritzen, 2010; Lauritzen et al., 2012, 2014),
but very few studies have tackled the evaluation of numerical
systems combining advection and chemistry in an academic
framework. The most significant step in this direction is the
study of Lauritzen et al. (2015), who introduced a toy chem-
istry scheme mimicking the photolysis and recombination
of a virtual stratospheric species. With this simplified non-
linear chemical system, they have tested chemistry-advection
combinations, and the errors they generate as diagnostics of
mass-conservation issues. They have noted that combining
such a chemical system with the advection solver may re-
veal problems that are not generated by inert tracer advec-
tion. More recently, Lachatre et al. (2022) have shown that
changes in the advection formulation may have significant
effects on the behaviour of non-linear chemical processes in
the troposphere (in their case, the oxidation pathways of SO2
in a mid-tropospheric volcanic plume). Therefore, like Lau-
ritzen et al. (2015), we feel that it is important to test advec-
tion schemes not only with inert tracers but also with active
chemistry.

Our goal is to provide such a test case for conditions more
representative of tropospheric chemistry at the scale of an
urban area and to deploy new tools to evaluate advection
schemes in the presence of active chemistry. To meet this
objective, apart from classical methods and metrics, we in-
troduce a novel idea, the “signature function”, that permits
giving a lower bound of model error compared to the exact
solution for problems with inert tracer advection and isolat-
ing the error due to advection itself in problems including ac-
tive chemistry. Even though this method is related to the area
coordinate introduced by Nakamura (1996), we introduce a
new formulation of this idea along with a way to use it to con-
struct a new error estimate which can be used in problems of
pure advection as well as in advection with active chemistry.
Apart from this novel way of evaluating advection error in
cases with active chemistry, we also propose a new “hybrid”
advection scheme, the piecewise parabolic method+Walcek
(PPM+W) scheme, made of the PPM scheme with the Wal-
cek (2000) flux adjustments in the vicinity of the extrema.

The PPM+W advection scheme and the concept of the
signature function are tested within the toyCTM academic
chemistry-transport model, already used in Mailler et al.
(2021) to test the use of the antidiffusive scheme of De-
sprés and Lagoutière (1999) for vertical advection in the at-
mosphere. The model version used for this study, toyCTM
v1.0 (Mailler and Pennel, 2023), includes horizontal advec-
tion with the following schemes (according to user’s choice):
Godunov (1959), Van Leer (1977), Walcek (2000), Colella
and Woodward (1984), and PPM+W (present study); the
Després and Lagoutière (1999) scheme is also available for
the vertical direction. Chemical processes are solved using an
Euler backward iterative (EBI) method (Hertel et al., 1993).
As reviewed in Cariolle et al. (2017), this EBI scheme or
closely related schemes are used in the MOZART model
(Emmons et al., 2010), the ECHAM5-HAMMOZ model
(Pozzoli et al., 2008), the TM5 model (Huijnen et al., 2010)
and the UKCA climate-composition model (O’Connor et al.,
2014; Esentürk et al., 2018).

In Sect. 2, we describe the flux and chemistry of the nu-
merical experiment we have implemented. In Sect. 3, we
present the set of simulations we have performed and anal-
ysed as well as a description of the advection schemes
(Sect. 3.1), the chemical solver (Sect. 3.2) and the time-
stepping strategy (Sect. 3.3) implemented in toyCTM v1.0.
In Sect. 4, we present the concept of signature function that
we introduce in this study for the analysis of simulation re-
sults. Section 5 compares and discusses the results obtained
with the various numerical schemes, and our conclusions are
presented in Sect. 6.
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2 Numerical-experiment description

2.1 Chemical mechanism

The chemical mechanism used here (Reactions R1–R12) in-
cludes a subset of the main reactions of tropospheric gas-
phase chemistry. Reactions (R1)–(R3) are the three reactions
that constitute the Leighton system, and Reactions (R4) to
(R7) account for the formation of the hydroxyl radical OH
through the photolysis of ozone in the presence of water
vapour. Reactions (R8) and (R9) account for the production
of the hydroperoxyl radical through oxidation of CO and the
oxidation of NO into NO2 by HO2. Reactions (R10)–(R11)
are “termination reactions” that consume the radical species,
and Reaction (R12) describes the final consumption of the
NOx species by formation of nitric acid.

NO2+hν → NO+O (R1)
O+O2+M → O3+M (R2)
NO+O3 → NO2+O2 (R3)

O3+hν → O(1D)+O2 (R4)

O(1D)+H2O → OH+OH (R5)

O(1D)+N2 → O+N2 (R6)

O(1D)+O2 → O+O2 (R7)
CO+OH → CO2+HO2 (R8)
NO+HO2 → NO2+OH (R9)
HO2+HO2 → H2O2+O2 (R10)
OH+HO2 → H2O+O2 (R11)
NO2+OH → HNO3 (R12)

The reaction constants of Reactions (R1)–(R12) have been
taken mostly from Seinfeld and Pandis (1997), with a tem-
perature of 298 K and pressure of 101325 Pa. The photoly-
sis rates have been set to typical midday values (e.g. Mailler
et al., 2016):

– jR1 = 8× 10−3 s−1

– jR4 = 2.5× 10−5 s−1.

Apart from the chemically active species defined in Re-
actions (R1)–(R12), we introduce an inert tracer denoted
TRC, which undergoes no chemical reaction and is passively
advected by the flow. In chemistry-transport models, Reac-
tions (R4)–(R7) are typically lumped in one single reaction,
O3+hν→ OH+OH, with a pseudo-reaction rate constant
that depends on the concentration of air molecules and of
water vapour molecules and on applying the quasi-steady-
state approximation to O(1D). For this study, we have cho-
sen to treat O(1D) as a prognostic species to preserve the
full chemical stiffness of the problem, with lifetimes ranging
from ' 4× 10−9 s for O(1D) to several days for CO.

Of course key processes like oxidation of methane and of
other volatile organic compounds are not taken into account

in the above mechanism, but it retains some key features of
tropospheric chemistry, which we think important:

– extreme stiffness;

– OH production, which depends on the presence of
ozone, water vapour and sunlight;

– non-linear behaviour of ozone production (in this sim-
plified system, ozone production depends on the simul-
taneous presence of nitrogen oxides, OH and available
CO for oxidation).

2.2 Definition of test case

2.2.1 Simulation domain

The simulations are performed on a domain D = [0,L]×
[0,L]× [0,H ], where L= 105 m and H = 1000 m. Since
we will use only barotropic winds, the problem is in fact
bidimensional in x–y, with no z dependance. However, the
choice has been made to formally treat the problem as tridi-
mensional in order to be able to use quantities such as air
density and reaction rate constants with their usual magni-
tudes and units. Due to the barotropic nature of the prob-
lem, discretization in the vertical direction is in one sin-
gle cell, while the x and y dimensions are split evenly into
n= 25 subintervals each. This corresponds to a resolution
δx = 4× 103 m, rather typical of regional-scale chemistry-
transport modelling. Domain D is therefore discretized into
n2 cells, each cell with thickness H and horizontal section
δx2
=

L2

n2 .

2.2.2 Wind field

The flow we use in this study is the swirling deformational
flow introduced by LeVeque (1996) (their Eqs. 9.5–9.6):

u=
L

T
sin2

(πx
L

)
sin(2πy)g (t) ,

v =−
L

T
sin2

(πy
L

)
sin(2πx)g (t) , (1)

with

g(t)= cos
(
πt

T

)
. (2)

T is the half period of the experiment, and the design of the
flow is such that all fluid particles are back at their origi-
nal location after time T , but in between they have under-
gone a deformation, which is maximal at time T

2 . Here, while
the LeVeque (1996) study formulates the problem with non-
dimensional scales for time and space, we set a dimensional
scale length L= 105 m and half period T = 86400 s. The
velocity field corresponding to these values is depicted in
Fig. 1. Equation (1) ensures that the wind is zero at domain
boundaries (x ∈ {0,L} or y ∈ {0,L}) so that no mass enters
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Figure 1. Streamlines (black contours), wind vectors and wind
module in m s−1 (colour shades) at t = 0 for the swirling defor-
mational wind field defined in Eq. (1) with L= 105 m and T =
86 400 s.

or leaves domain D. Therefore, no boundary conditions for
concentrations are needed.

The time-dependent streamfunction for this flow is

ψ (x,y, t)=−
L2

πT
sin2

(πx
L

)
sin2

(πy
L

)
g (t) . (3)

2.3 Initial conditions

The numerical experiments will be conducted in the domain
D defined above, with the chemical scheme described above.
To define the initial conditions, we introduce a concentration
profile (between 0 and 1) as follows:

ϕ (x,y)= sin2 2πx
L

sin2 2πy
L

if x <
L

2
and x <

L

2
, (4)

ϕ (x,y)= 0 otherwise. (5)

The initial conditions are defined as follows (in terms of the
mixing ratio):

– αTRC = 100ppb×ϕ (x,y) (see Fig. 2)

– αO3 = 30 ppb

– αCO = 500 ppb

– αNO = 100ppb×ϕ (x,y)

– αNO2 = 10ppb×ϕ (x,y)

– αH2O = 8.044× 10−3.

Figure 2. Initial mixing ratio of TRC, proportional to ϕ (x,y) (de-
fined in Eqs. 4–5), discretized on domain D with n= 25 subin-
tervals (δx = δy = 4000 m). Note that, at t = 0, αNO = αTRC and
αNO2 =

αTRC
10 have the same spatial distribution.

For water vapour, the mixing ratio αH2O = 8.044×10−3 cor-
responds to a specific humidity of 5 g kg−1. The initial con-
centrations of the other active species (O, O

(1D
)
, OH, HO2,

CO2, H2O2, HNO3) are initialized to zero. They will be pro-
duced by Reactions (R1), (R4), (R5), (R8) and (R12).

Finally, another species of inert tracer, TRCb, is intro-
duced so that

αTRCb+αNO+αNO2 = 110ppb. (6)

This species is designed so that, at the initial time and later
along the run, in the exact solution (but not necessarily in nu-
merical solutions), all along the run, the sum αTRCb+αNO+

αNO2 +αHNO3 is uniform, constant and equal to 110 ppb.

3 Numerical methods

3.1 Advection schemes

3.1.1 Existing advection schemes

The following existing advection schemes have been tested
in the study:

1. Godunov (1959)

2. Van Leer (1977)

3. Walcek (2000)

4. PPM (Colella and Woodward, 1984).

These schemes are flux-based, upwind-biased, semi-
Lagrangian schemes based on polynomial reconstructions
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of the average concentrations. These polynomial reconstruc-
tions are piecewise-constant for Godunov (1959), piecewise-
linear for Van Leer (1977) and Walcek (2000) (Fig. 3a, b),
and piecewise parabolic except in the vicinity of the extrema
for PPM (Fig. 3c). The Van Leer (1977) scheme exhibits a
discontinuity in the vicinity of the maximum, with the con-
centrations having a positive jump towards the maximum
(Fig. 3a). As a consequence of this discontinuity, due to the
upwind-biased strategy, the fluxes going out of the maximum
(from the high side of the discontinuity) will be systemat-
ically overestimated compared to the fluxes going into the
maximum (from the low side of the discontinuity), thereby
tending to advect too much mass out of the maximum and
not enough mass into the maximum. Walcek (2000) presents
his scheme as a way to counteract this bias, by adjusting the
flux estimates in the cells next to the maximum, in order to
intentionally overestimate the fluxes going into the maximum
to counteract the excessive estimation of the fluxes out of the
maxima (Fig. 3b).

3.1.2 The PPM + W scheme

The PPM scheme presents the same caveat as Van Leer in the
vicinity of extrema, with a strong discontinuity on each side
of the extremum (Fig. 4a), with the effect of underestimating
the mass flux into the maximum and overestimating the mass
flux out of the maximum. Therefore, since Walcek (2000)
has proven that his flux adjustments in the vicinity of the
extrema are successful in improving the Van Leer scheme,
it makes sense to try applying the same flux adjustments to
PPM, which seems to have a behaviour similar to Van Leer
(1977) in the vicinity of mixing-ratio extrema (Fig. 3a, c).
To test this idea, we design a new scheme based on PPM but
applying the Walcek flux adjustments in the vicinity of the
extrema (Figs. 3d and 4b). We call this scheme PPM+W,
standing for the “piecewise parabolic method+Walcek flux
adjustments”. The PPM+W has the same behaviour as Wal-
cek in the extrema and the neighbouring cells and the same
behaviour as PPM in all other cells.

We detail here the procedure applied for this scheme. Let
(αi) be the values of the mixing ratio in the model cells num-
bered by the 1D index i, with a Courant number ν. For the
sake of simplicity we assume that δx = 1. The objective of
this procedure is to calculate the average mixing ratio be-
tween x

i+ 1
2

and x
i+ 1

2
− ν, α̃

i+ 1
2

(the rest of the implementa-
tion of advection from this estimate is detailed in Lachatre
et al., 2020).

The procedure is as follows.

– If (αi+1−αi)(αi+2−αi+1) > 0 and
(αi−1−αi−2)(αi −αi−1) > 0,
the current cell is not a neighbour of a maximum.
We estimate α̃

i+ 1
2

following the piecewise parabolic
method procedure described in Colella and Woodward
(1984).

Table 1. Mean calculation time per cell and per time step for the five
advection schemes retained for the present study. The calculation
has been performed in Fortran, a programming language frequently
used for operational chemistry-transport models, on a laptop with
an Intel Core i7-1165G7 CPU.

Scheme Execution time

Godunov 5.8 ns
Van Leer 12.2 ns
Walcek 14.9 ns
PPM+W 30.3 ns
PPM 32.4 ns

– Otherwise we estimate the Walcek-adjusted flux as fol-
lows:
s = sign(αi+1−αi)

min
(

1
2 |αi+1−αi−1| ,2 |αi+1−αi | ,2 |αi −αi−1|

)
, the

Van Leer slope;
if (αi+1−αi)(αi+2−αi+1)≤ 0, β = 1.75− 0.45ν,
else β =max(1.5,1.2+ 0.6ν),
α̃
i+ 1

2
= αi +

1
2 (1− ν)×β × s.

The β coefficient (β > 1 by construction) is introduced by
Walcek (2000) to steepen the Van Leer slopes in the vicinity
of the maxima to obtain the desired overestimation of tracer
fluxes into the maxima. These steepened slopes are visible in
Fig. 3b for the Walcek (2000) scheme and in Figs. 3d and 4b
for the PPM+W scheme.

3.1.3 Computational cost of the advection schemes

To evaluate the computational cost of these advection
schemes, advection of a 1D vector composed of 2×105 cells
has been performed over 520 time steps, corresponding to
1.04× 108 calls to the reconstruction routine, plus the up-
date of the mixing-ratio values at each time step. The cal-
culation time for all these advection schemes is presented in
Table 1, showing that the schemes using linear reconstruc-
tion (Van Leer and Walcek) are less costly than the schemes
using parabolic reconstruction (PPM and PPM+W) due to
the simpler calculation. Interestingly, the computation cost of
PPM+W is slightly smaller than the cost of PPM, possibly
because in the cells neighbouring a concentration extremum
the reconstruction is linear in PPM+W instead of parabolic
in PPM (Fig. 4).

3.1.4 Convergence properties

A first comparison between the PPM+W advection scheme
and the other four tested schemes has been performed in
terms of numerical convergence. For this purpose, an inert
tracer with a squared cosine bell distribution (initially) has
been advected over a 1D periodic domain of unit length, with
a constant and uniform speed, with a unit duration. This con-
vergence test has been performed dividing the domain into
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Figure 3. Reconstruction of a Gaussian mixing-ratio profile by (a) the Van Leer (1977) scheme, (b) the Walcek (2000) scheme, (c) the
PPM scheme and (d) the PPM+W scheme. The x axis is a non-dimensional space coordinate. The reconstruction has been performed for a
Courant number ν = 0.4. The reconstructed fields are presented with alternating red and blue colours to enhance the discontinuities between
neighbouring cells.

Figure 4. (a) Same as Fig. 3c but zoomed in to within the vicinity of the mixing-ratio maximum and (b) same as Fig. 3d but zoomed in to
within the vicinity of the mixing-ratio maximum.

10, 20, 40, 80, 160 and 320 grid cells and with a Courant
number of 0.5. The results of this convergence test are shown
in Fig. 5. Several features can be observed in Fig. 5. The con-
vergence rates, defined as the opposite of the log–log slope
between the two last data points (nx = 160 and nx = 320),
are given in Table 2. From these results, several observations
can be made.

First, the PPM+W advection scheme performs better on
this simple convergence test than the other tested schemes.

In particular, throughout all the resolution range, the error
obtained in both ‖·‖1 (Fig. 5a) and ‖·‖2 (Fig. 5b) with the
PPM+W scheme is 30 % to 50 % lower than with the classi-
cal PPM scheme. This difference persists even for high reso-
lutions. On the contrary, the Walcek scheme strongly outper-
forms the Van Leer scheme for coarse resolutions, but this
difference tends to diminish for higher resolution. In other
terms, it looks like the Walcek flux corrections when applied
to the Van Leer scheme permit the improvement of accuracy

Geosci. Model Dev., 16, 7509–7526, 2023 https://doi.org/10.5194/gmd-16-7509-2023
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Table 2. Convergence rate of the five advection schemes used in the
present study for ‖·‖1 and ‖·‖2.

Scheme ‖·‖1 ‖·‖2

Godunov 0.80 0.76
Van Leer 1.97 1.76
Walcek 1.86 1.64
PPM 2.45 2.03
PPM+W 2.55 2.07

when model resolution is coarse but that the same flux cor-
rections when applied to the PPM scheme improve accuracy
even for fine resolutions. Finally, the convergence rate for
PPM+W is similar to that of PPM, in our case around 2.5
for the ‖·‖1 convergence rate and around 2 for ‖·‖2 (Fig. 2).

3.2 Chemistry solver: the Euler backward iterative
method

The stiff chemical system is integrated using an EBI method.
As described in Hertel et al. (1993) and Cariolle et al. (2017),
we obtain the concentration vector c (t + δtchem) as the solu-
tion of

c (t + δtchem)=
c (t)+ δtchemP (t + δtchem)

1+ δtchemL(t + δtchem)
. (7)

For the present study, the focus is to test the performance
of the advection scheme in articulation with active chem-
istry. Due to this focus, we limit errors in the resolution of
the chemical system using a short time step for chemistry
(δtchem = 20 s).

Equation (7) is a non-linear, fixed-point equation and can
be solved only numerically, usually with an iterative method.
Formally, Eq. (7) guarantees exact mass conservation. How-
ever, this is true only if a very good convergence of the so-
lution is reached (Cariolle et al., 2017). To limit violation
of mass conservation in our study, we have set a very strict
convergence criterion for the iterative resolution of Eq. (7),
stopping iteration when the estimate of c (t + δtchem) yields
a relative difference less than ε for each species between
c (t + δtchem) and c(t)+δtchemP (t+δtchem)

1+δtchemL(t+δtchem)
. The convergence pa-

rameter is set to ε = 10−4 in the UKCA chemistry-transport
model (Esentürk et al., 2018) and ε = 10−6 in the present
study. This very strict convergence criterion is in line with the
short chemical time step to obtain the best-possible numer-
ical solution of the chemical evolution of the system, even
at the cost of slow computations. Again, this choice is due
to the purpose of this study to test the performance of the
advection scheme, limiting as much as possible the errors in
the chemical solver.

3.3 Time stepping

The advection time step δtadv has been set to δtadv = 1800 s.
With maximal wind moduleU ' 1.8 m s−1 (Fig. 1) and δx =
4×103 m, this yields a maximal Courant number νmax ' 0.8.
The time-stepping strategy follows Strang-style time step-
ping (Strang, 1968), with the steps as follows:

1. Integrate chemistry over δtadv
2 (45 chemical time steps).

2. Integrate zonal advection over δtadv
2 .

3. Integrate meridional advection over δtadv.

4. Integrate zonal advection over δtadv
2 .

5. Integrate chemistry over δtadv
2 (45 chemical time steps).

Table 3 summarizes the six simulations that have been
performed. The above-described case with Reactions (R1)–
(R12) has initial conditions as described in Sect. 2.3, a do-
main shape and discretization as described in Sect. 2.2.1, ad-
vection schemes as described in Sect. 3.1, and a chemical
solver as described in Sect. 3.2. Along with the simulations
performed with each of the five advection schemes, a “base”
simulation has been performed with the same setup as the
other simulations but without advection. As discussed later
(Sect. 4), this base simulation will serve as a benchmark to
estimate advection errors in the other five simulations.

3.4 Conservation properties

It is worth noting that, by construction, flux-based advection
integration is mass-conservative since the mass flux out of
a cell through a facet is compensated exactly by the mass
flux into the neighbouring cell through the same facet. Equa-
tion (7) also guarantees mass conservation in the Euler back-
ward scheme as soon as the chemical reactions themselves
are balanced (Hertel et al., 1993) (which is the case of Reac-
tions R1–R12 except for the imbalance of dioxygen in Reac-
tion R8 due to integrating reaction H+O2→ HO2 into the
kinetically limiting time step CO+OH→ CO2+H).

However, due to the finite number of iterations in the itera-
tive resolution of Eq. (7), mass conservation is only enforced
with a finite precision of ε = 10−6 (see Sect. 3.2). Therefore,
the relative mass imbalance in the outputs for C, active N
(without taking into account N2) and H can be expected to be
of the order of ε, since the Euler backward iterative scheme
(Eq. 7) is in principle mass-conservative, but mass conserva-
tion is obtained “only if a good convergence of the solution
is reached” (Cariolle et al., 2017).

Mass calculations for C, active N, H and TRC have been
performed between the beginning and the end of the simu-
lations. The results of this calculation for the PPM+W and
base simulations are given in Table 4, showing that the rel-
ative mass imbalance at the end of simulation is ' 10−6 for
active N,' 10−12 for C and H, and' 10−15 for TRC (which
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Figure 5. (a) The ‖·‖1 error as a function of the number of nx for the five advection schemes used in the present study; (b) same as (a) for
the ‖·‖2 error.

Table 3. Summary of the main characteristics of the simulations that have been performed.

Label Chemistry Mass flux Advection scheme δtchem δtadv Duration

Base Reactions (R1)–(R12) – – 20 s – 86 400 s
Godunov Reactions (R1)–(R12) Eq. (3), L= 105 m, T = 86400 s Godunov (1959) 20 s 1800 s 86 400 s
Van Leer Reactions (R1)–(R12) Eq. (3), L= 105 m, T = 86400 s Van Leer (1977) 20 s 1800 s 86 400 s
Walcek Reactions (R1)–(R12) Eq. (3), L= 105 m, T = 86400 s Walcek (2000) 20 s 1800 s 86 400 s
PPM Reactions (R1)–(R12) Eq. (3), L= 105 m, T = 86400 s Colella and Woodward (1984) 20 s 1800 s 86 400 s
PPM+W Reactions (R1)–(R12) Eq. (3), L= 105 m, T = 86400 s PPM+W 20 s 1800 s 86 400 s

has no chemistry and is therefore affected only by advection
which, as discussed above, ensures mass conservation up to
numerical accuracy for the flux-based schemes we have im-
plemented).

The imbalance results are similar for all simulations, in-
cluding the base simulation that has no advection, which
shows that the small mass imbalance for chemically active
species (up to ' 10−6) is essentially due to the finite preci-
sion in the Euler backward iterative chemistry solver.

In summary, the integration strategy we introduce above
permits the conservation of mass (up to numerical accuracy
for inert species and up to an arbitrary numerical tolerance
defined by the user, in our case ε = 10−6, for chemically ac-
tive species) and conserves initially uniform mixing ratios up
to numerical accuracy for the species with no active chem-
istry. All the advection schemes presented above are also
built to respect monotonicity: they do not create new mixing-
ratio extrema.

4 The signature function

4.1 Accuracy of inert tracer concentrations

As the LeVeque (1996) flow is designed so that at t = T ev-
ery Lagrangian particle is back at its original location, it is
possible to estimate the accuracy of numerical simulation by

comparing the final simulated tracer concentration field to its
initial value, therefore giving access to the magnitude of nu-
merical error.

In the present study, we will estimate model error in ‖·‖1,
introducing E1 as the normalized ‖ · ‖1 error in the mixing
ratio:

E1 =

∑N
i=1ρiVi

∣∣αt
i −α

0
i

∣∣∑N
i=1ρiViα

0
i

, (8)

where index i spans the entire domain. In the present case
where density ρi and cell volume do not vary across cells,
Eq. (8) boils down to

E1 =

∑N
i=1

∣∣αt
i −α

0
i

∣∣∑N
i=1α

0
i

. (9)

4.2 The signature function for inert tracer advection

Here we introduce a new idea to evaluate advection schemes.
As far as we know, this idea has not been tested in the past
literature but resembles the area-coordinate formulation used
by Nakamura (1996).

Let us imagine a fluid with density ρ (x;y;z; t) in a three-
dimensional domain D, advecting a tracer having initially a
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Table 4. Mass-conservation diagnostic for C, active N, H and TRC in the PPM+W and base simulations.

Species Composition Relative imbalance Relative imbalance
(PPM+W) (base)

C CO+CO2 1.1× 10−12 7.4× 10−13

Active N NO+NO2+HNO3 4.0× 10−7 2.5× 10−7

H 2H2O+OH+HO2+ 2H2O2 + HNO3 7.4× 10−13 6.5× 10−13

TRC TRC 8.9× 10−16 0

mixing ratio α (x;y;z; t = 0) ∈ [0,1], following equations

∂ρ

∂t
+∇ (ρu)= 0, (10)

∂α

∂t
+u · ∇α = 0. (11)

For any given time t and any mixing ratio 0≤X ≤ 1, we
can define S t (X) as the mass of fluid in the volume Dt (X)

defined as the set of all (x;y;z)where the tracer mixing ratio
α (x;y;z; t) < X, divided by the entire mass of fluid in D:

S t (X)=

∫
DH (X−α (x;y;z; t))ρdV∫

DρdV
, (12)

where H is the Heaviside step function (H(u)= 1 if u > 0;
H(u)= 0 if u≤ 0). The S t function can be, in some sense,
interpreted as a mass-weighted cumulative probability den-
sity function of the tracer mixing ratio. If we reduce this
definition to 2D flows with uniform density, S t is related to
the reciprocal function of the area-coordinate formulation of
Nakamura (1996).

With this definition, we always have St (0)= 0 (for all
t values) and St (X)→ 1 when X→+∞ (more precisely,
St (X)= 1 as soon as X is larger than the maximum value of
α (x;y;z; t = 0) over domain D).

Equation (12) makes clear that function S t is invariant dur-
ing the motion: for any given value of X, S0 (X) is the (nor-
malized) mass of the fluid parcel D0 (X) that has a tracer
mixing ratio α < X at t = 0. We can observe that, since mix-
ing ratio in Lagrangian parcels is preserved by pure advection
(Eq. 11), Dt (X) and D0 (X) represent the same Lagrangian
fluid parcel at a different time. We also know that the mass
of fluid in Lagrangian parcels is constant in time due to mass
conservation for the carrier fluid (Eq. 10). Since the total
mass of fluid in D is also constant in time for the same rea-
son, this implies that, for all t andX values, S t(X)= S0(X).
In other words, the signature function S t is an invariant in
time of the advection equation. The invariance of this func-
tion holds for both divergent and non-divergent flows.

Therefore, since we know that, for the exact solution, S t
=

S0, the departure of the numerical evaluation of function S t

from S0 in numerical simulations can be used as an objective
measurement of discretization errors.

In practice, in an Eulerian model discretized into N cells,
each cell has an evaluation of the tracer mixing ratio αt

i . The

evaluation of S t is straightforward:

S t (X)'

∑N
i=1H (X−αi)ρiVi∑N

i=1ρiVi
. (13)

Generally, the numerical evaluation of S t in an Eulerian
model will differ from S0: the signature of the initial tracer
distribution will evolve under the effect of the errors of the
advection scheme, and the magnitude of the signature modi-
fication can serve as a measure of the extent of advection er-
ror. In the particular case in which the flow is non-divergent
and the carrier fluid mass ρiVi is the same in all model cells,
the norm-1 difference between S t and S0 can be calculated
as

∞∫
0

∣∣∣S t (X)−S0 (X)

∣∣∣dX = 1
N

N∑
i=1

∣∣∣α̃t
i − α̃0

i

∣∣∣ , (14)

where α̃t
i is the vector of all mixing ratios in model cells

sorted in increasing order. This simplified formula holds
only in the specific case in which the flow is invariant and
the mass of fluid is distributed evenly between all the model
cells. In this case, and only in this case, it is also convenient
to introduce the normalized norm-1 difference E1 between S t

and S0 as

E1 =

∑N
i=1

∣∣∣α̃t
i − α̃0

i

∣∣∣∑N
i=1α̃

0
i

. (15)

Figure 6 shows an example of how comparing the S t sig-
nature function with S0 permits comparison of the accuracy
of two simulations at a time when no analytic solution is eas-
ily accessible. Figure 6a–b show the mixing ratio for TRC
at T2 in the Godunov and Van Leer simulations, respectively.
Without access to the exact solution, it is hard to compare
quantitatively the quality of these simulations at that stage,
even though indicators such as the maximal tracer mixing ra-
tio can give partial information. Figure 6c–d show the S

T
2

function compared with S0 for the Godunov and Van Leer
simulations, respectively. This graphical representation per-
mits giving an intuitive meaning to the normalized signature
error E1 as the total area between the representative curves
of S t and S0 (shaded in Fig. 6c–d), divided by the total area
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left of the representative curve of S0 (hatched in Fig. 6c–d).
This measure gives an indication of model error based on not
only one particular point representative of a part of the tracer
distribution (e.g. the maximal value, a very partial indicator),
but also an integrated error indicator taking into account the
maximal and minimal values as well as the entire tracer dis-
tribution in between these values. In the case presented in
Fig. 6c–d, the area between S0 and S t is smaller in the Van
Leer simulation (Fig. 6d, with E1 = 0.218) than in the Go-
dunov simulation (Fig. 6c, with E1 = 0.571).

4.3 The signature function for advection of active
species

The concentrations of active species evolve not only under
the effect of advection but also due to chemical reactions.
Therefore, the time invariance of the signature function does
not hold for these species. However, the signature function
can still be used to compare and evaluate simulations if one
remarks that, in the case we study here with no variations
in air density and air temperature, and with no emissions,
the chemistry that takes place in each Lagrangian air parcel
is independent of its position. Therefore, for all species, the
signature function at time t , S t, should theoretically be the
same as in the base simulation with no advection. If we note
S t

, the signature function at time t in the simulation without
advection, for all t values we have S t

= S t
: at any time, the

signature of the distribution of every chemical species should
be the same in the case with advection as in the case with-
out. In other words, advection should only deform the map
of all chemical species and not change the chemistry within
each Lagrangian air parcel. With a non-linear chemical sys-
tem such as Reactions (R1)–(R12), there is no easy access to
the exact solution of the system even without advection: S t

is not known exactly for the chemically active species. How-
ever, the base simulation resolves the chemical reactions with
exactly the same chemical solver as the other simulations but
without motion. Therefore, comparing the distribution of a
chemical species at time t in a simulation with advection to
its distribution in the base simulation without advection will
permit having an estimate of how the numerical errors in ad-
vection affect the distribution of chemically active species.

As an illustration of this, Fig. 7 shows the ozone mix-
ing ratio at T2 , as simulated in three simulations with advec-
tion (Fig. 7a–c) and the base simulation without advection
(Fig. 7d). This figure alone does not make it easy to dis-
criminate between the three numerical simulations. Figure 8
shows the signature function for the same three simulations
(Van Leer, PPM and PPM+W): this time, both the visual-
ization of the agreement between S t and S t

and the objective
calculation of E1 clearly show that the PPM+W simulation
agrees better with the base simulation in terms of the signa-
ture function (E1 = 0.0622), followed by the PPM simulation
(E1 = 0.0679) and the Van Leer simulation (E1 = 0.0787).
Apart from this quantitative agreement, some qualitative and

local conclusions can be drawn from the graphical compar-
isons between S t and S t

, such as the fact that the represen-
tation of the ozone minimum in the PPM+W simulation is
more accurate than in the PPM simulation, which is visible
in the initial part of the signature function (αO3 < 30 ppb)
where the shaded area is smaller in PPM+W (Fig. 7c) than
in PPM and Van Leer.

5 Results and discussion

5.1 Results for classical performance indicators

Figure 9 shows the evolution of some performance indicators
along the course of the experiments. For the same reasons as
for the signature function, these metrics should be the same
in all simulations in the absence of numerical errors in the
representation of advection, so the differences between the
time series obtained in the simulations with advection and
the base simulation reveal the effects of numerical errors in
the representation of advection. It is interesting to note that
all the metrics represented in Fig. 9 can be derived directly
from the signature function.

Regarding ozone extrema throughout the simulation
(Fig. 9a), we observe smaller differences between the dif-
ferent simulations. The PPM+W, PPM and Walcek simu-
lations produce very comparable values of ozone maxima.
Surprisingly, the simple Godunov schemes represents the
ozone maximum slightly better than all other schemes ex-
cept Walcek towards the end of the simulation. However,
the representation of the ozone minimum by the Godunov
simulation is very bad, failing to represent a minimum lower
than the background value towards the end of the simulation.
The PPM+W and Walcek simulations represent the small-
est (and closest to the base simulation) minimum value for
O3, followed by PPM and Van Leer.

Regarding the preservation of tracer maxima (Fig. 9b), the
PPM+W simulation performs best, with a clear edge over
the Walcek and PPM simulations (Fig. 9b). For this metric,
the Walcek simulation gives better results than the PPM sim-
ulation, with a smaller half plume, closer to the base simu-
lation, Walcek and PPM. The PPM and Walcek simulations
perform similarly for this metric.

Figure 9c shows evolution of the non-dimensional half
volume of the tracer plume during the simulation (defined
as the smallest volume containing half of the mass of TRC
divided by the total volume of domain D). As discussed in
Lachatre et al. (2020), this is a measure of the diffusivity
of the advection schemes. With this metric, we see that the
PPM+W simulation performs best, followed by Walcek and
PPM.

5.2 Accuracy and signature error

Unlike the partial metrics presented in Fig. 9, the normalized
‖ · ‖1 signature error in the mixing ratios E1 is a performance
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Figure 6. (a) The TRC mixing ratio as simulated in the Godunov simulation at time T
2 ; (b) same as (a) for the Van Leer simulation. (c) The

signature function for the TRC mixing ratio in the Godunov simulation compared to the base simulation (S0, green line); (d) same as (c) for
the Van Leer simulation. The signature error E1 is equal to the ratio of the shaded area between the representative curves of S0 and S t to the
hatched area left of S0.

diagnostic for the simulations that takes into account the en-
tire distribution of mixing ratios and not just particular val-
ues such as the maximum or minimum. Figure 10 shows E1
for TRC, O3, NO and NO2 for all the simulations, with the
smallest E1 indicating the best-performing simulation.

The first information we get from Fig. 10 is that, for all
these compounds, the PPM+W simulation performs best in
this regard. For the case of ozone (Fig. 10b), the E1 time
series discriminates much more between the different sim-
ulations, with a clear superiority of the PPM+W simula-
tion over the Walcek and PPM simulations, while the differ-
ences between these three simulations in the ozone min–max
plot (Fig. 9b) appeared small. Analysing the evolution of E1
throughout the simulation shows that, for TRC, NO and NO2,
the best-performing simulations are PPM+W, Walcek and
PPM, in this order, but that for ozone, PPM performs bet-
ter than Walcek, a conclusion that could not be drawn from
the min–max plot (Fig. 9b), which indicated a better perfor-
mance of Walcek regarding both the ozone maximum and the
ozone minimum.

While we have shown so far that the analysis of E1 permits
the drawing of clearer conclusions regarding the performance
of the various simulations, in the present case we can confirm
these results by comparing E1 to a more classical metric, the
normalized ‖ · ‖1 error E1 (Eq. 9) of the simulations with
advection relative to the base simulation without advection.
Unlike E1, E1 can only be calculated at the final time step
(when all the Lagrangian particles are back at their initial
location), since the exact solution for t < T is not accessible.
Several observations can be made from the values of E1 and
E1 in Table 5.

First, in all cases we always have E1 <E1. Qualitatively,
this can be interpreted as E1 being a weakened form of the
‖·‖1 error, retaining the differences in the distribution of mix-
ing ratios but eliminating the differences in the location of the
tracer plume.

Interestingly, the performance ranking between the five
simulations obtained by analysing the signature error E1 is
the same for all variables as with E1: for TRC, NO and NO2,
PPM+W performs best, followed in this order by Walcek,
PPM, Van Leer and Godunov, but for O3, PPM performs bet-
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Figure 7. Ozone mixing ratio at T2 as simulated in (a) the Van Leer simulation, (b) the PPM simulation, (c) the PPM+W simulation and (d)
the base simulation.

Figure 8. The signature function for the O3 mixing ratio at T2 , S
T
2 , as simulated in (a) the Van Leer simulation; (b) the PPM simulation and

(c) the PPM+W simulation. As in Fig. 6, the signature error E1 is equal to the ratio of the shaded area between the representative curves of
S0 and S t to the hatched area left of S0.

ter than Walcek. In our study case, analysing E1 permits com-
parison of the performance of the various simulations with-
out access to the exact solution and gives the same results as
the analysis of E1 (which requires access to the exact solu-
tion). Even for simulations with comparable performance to
the Walcek and PPM simulations, the signature error E1 per-
mits diagnosing which of the two simulations performs better

for each variable. Even though the differences between these
two simulations are not drastic and depend on the species
of interest, the conclusions drawn from the analysis of the
signature error E1 are the same and correspond to E1. This
gives confidence in the usability of the signature error E1 as a
proxy for simulation accuracy when the exact solution is not
available.
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Figure 9. Time series for all the simulations for the (a) minimum and maximum of the O3 mixing ratio, (b) maximum TRC mixing ratio,
and (c) half volume of the TRC plume (relative to the volume of the entire domain).

Figure 10. Time series for E1 (‖ · ‖1 normalized signature error) for (a) TRC, (b) O3, (c) NO and (d) NO2.

Having verified this, it is useful to go back to Fig. 10 and
interpret the evolution of E1 in time as a hint of when er-
ror appears along the simulation. In this regard, we see two
very different behaviours between the analysed variables. For
TRC, NO and NO2, substantial errors appear almost instantly
after 1800 s of simulation (one single time step). This is due
to the action of the wind field on the initially very sharp peak
of these species (Fig. 2). On the contrary, for O3, having an
initially uniform distribution, errors due to advection appear
only when sufficient heterogeneity is introduced into the O3
map by chemical processes, since all the advection schemes
are built to advect exactly a uniform mixing ratio, maintain-

ing its uniformity. Therefore, the onset of advection errors in
O3 is much slower than in the three species that have initially
heterogeneous distributions.

5.3 Results at 1 km resolution

To test the impact of higher resolution on our results, we have
performed the same test case as above but refining the res-
olution from 4 to 1 km and accordingly reducing the time
step from 1800 to 450 s. The results for this higher-resolution
simulation are shown in Table 6. This table shows that, also
at this resolution, the PPM+W offers the best performance
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Table 5. Normalized ‖ · ‖1 error E1 (Eq. 9) and normalized ‖ · ‖1 signature error E1 (Eq. 15) at the end of the simulations for O3, NO, NO2
and TRC, compared to the base simulation with no advection. In each column, the lowest error value is in bold font the second-lowest is
underlined.

Normalized ‖ · ‖1 error E1

TRC O3 NO2 NO TRC O3 NO2 NO

Godunov 0.864 0.668 0.781 0.927 0.814 0.624 0.698 0.910
Van Leer 0.408 0.262 0.419 0.594 0.315 0.216 0.223 0.548
Walcek 0.243 0.200 0.312 0.425 0.186 0.167 0.157 0.395
PPM 0.291 0.193 0.337 0.472 0.200 0.153 0.177 0.437
PPM+W 0.207 0.164 0.283 0.372 0.120 0.131 0.138 0.350

of all the tested schemes, but, unlike in the 4 km resolution
case, this does not hold for all species: at 1 km resolution, the
PPM scheme performs comparably to PPM+W for the inert
tracer TRC and slightly better for NO2. However, PPM+W
clearly performs better for O3 and NO. These results suggest
that the improvement brought by PPM+W over PPM may
tend to become smaller for higher resolutions (contrary to
what we observe in Fig. 5).

5.4 Conservation of sum species

As shown by Godunov (1959), “among [linear] schemes of
second order accuracy [for the advection equation], there
is none which satisfies the monotonicity condition”. As a
consequence of this result, known as the Godunov theorem,
second-order, monotonic schemes for the advection equation
are all non-linear. In particular, among all the schemes we
study here, all are non-linear due to their specific treatment
of the maxima to preserve monotonicity. However, these non-
linear effects should be kept as small as possible. To test this
property, we have tested the conservation of two sum species,
which should stay uniform and constant along the run:

– The first is αTRCb+αNO+αNO2 +αHNO3 , where TRCb
is an inert tracer whose initial distribution is defined by
Eq. (6). The mixing ratio of this sum species should stay
constant, uniform and equal to 110 ppb.

– The second is αCO+αCO2 , which should stay constant,
uniform and equal to 500 ppb due to the conservation of
carbon.

Figure 11 shows that, as imposed by the Godunov the-
orem, only the Godunov (1959) scheme preserves exactly
the uniformity of sum species. Other schemes are higher-
order and monotonic, but therefore non-linear, and do not
preserve the uniformity of these sum species. The magnitude
of the departure of the mixing ratio for these species from
its theoretical value is a measure of the non-linearity of ad-
vection schemes, which is an undesirable property since the
advection equation itself is linear. Figure 11 shows that non-
linearities of up to 1 %–2 % appear for all schemes in the rep-
resentation of CO+CO2 and that they tend to be strongest in

the Walcek and the PPM+W schemes. Regarding TRCb+
NO+NO2+HNO3, the non-linearities reach up to 10 %
of the expected value and are strongest in the PPM+W
scheme. These results suggest that non-conservation of sum
species in the vicinity of mixing-ratio extrema, which is ob-
served in all second-order monotonic schemes, tends to be
stronger when the Walcek (2000) flux corrections are ap-
plied, which might represent a drawback of PPM+W com-
pared to PPM. In spite of (or due to) this increasingly non-
linear behaviour in the vicinity of the extrema, PPM+W
preserves the values of extrema better than PPM (Fig. 9b).

6 Conclusions

We have introduced the signature function S t as a sort of
mass-weighted cumulative probability distribution function
of the tracer mixing ratio (Eq. 12) and shown that S t is an
invariant of the advection equation. This invariant is not a
scalar like other classical invariants (tracer mass, minimum
and maximum mixing ratio, etc.) but a function and therefore
contains much more information than the above-cited, more
classical invariants. In fact, these invariants (tracer mass,
minimum and maximum mixing ratios, etc.) can be derived
directly from S t so that S t can be considered a “stronger” in-
variant. Like other invariants such as the minimum and max-
imum values of the mixing ratio, it is usually not preserved
perfectly by the advection schemes, and the degree of non-
conservation of S t gives a proxy for model error. Based on
this idea, we propose the normalized ‖ · ‖1 signature error E1
(Eq. 15) as a measure of model error. Graphically, E1 is the
normalized area between the simulated curve of S t and its
theoretical curve (e.g. Fig. 6c–d).

In this context, we have shown that the signature function
and its normalized ‖ · ‖1 error E1 can also be used as an error
estimate for chemically active species, even though S t is not
an invariant of the system in this case. This is achieved by
comparing a simulation including chemistry and advection
to a “companion” simulation with chemistry only but no ad-
vection (the base simulation in the present study). For each
chemical species and at any time t , these two simulations
should in theory have the same S t, but in practice they do not
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Table 6. Normalized ‖ ·‖1 error E1 and normalized ‖ ·‖1 signature error E1 in the 1 km simulations at the end of the simulations for O3, NO,
NO2 and TRC, compared to the base simulation at 1 km resolution with no advection. In each column, the lowest error value is in bold font
and the second-lowest is underlined.

Normalized ‖ · ‖1 error E1

TRC O3 NO2 NO TRC O3 NO2 NO

Godunov 0.434 0.275 0.357 0.584 0.386 0.244 0.237 0.564
Van Leer 0.0417 0.0486 0.0521 0.0905 0.0241 0.0418 0.0325 0.0773
Walcek 0.0202 0.0303 0.0423 0.0509 0.016 0.0244 0.0344 0.0472
PPM 0.0169 0.0336 0.0324 0.0574 0.00881 0.0221 0.0263 0.0382
PPM+W 0.0148 0.0247 0.0383 0.0483 0.00901 0.0112 0.031 0.0332

Figure 11. Minimum and maximum values in the 4 km simulations (presented in the paper) for αCO+αCO2 (panel a) and αNO+αNO2 +

αHNO3 +αTRCb (panel b).

due to errors in advection. Therefore, errors due to advec-
tion can be estimated even for chemically active species by
calculating the E1 error between the two functions (Fig. 8).

We have used this new invariant in order to evaluate a
new advection scheme that we have designed for this study,
based on the PPM scheme (Colella and Woodward, 1984)
with flux corrections in the vicinity of the extrema as in Wal-
cek (2000) (Figs. 3–4). This new advection scheme, which
we propose to name PPM+W (for piecewise parabolic
method+Walcek), has been tested for both an inert tracer
and chemically active species, with a velocity flux from LeV-
eque (1996) (Eq. 1). A simplified chemical scheme with 12
reactions has been designed, representing daytime photo-
chemistry of nitrogen oxides in the presence of CO, includ-
ing short-lived species such as O(1D) or O (Reactions R1–
R12). With an initial peak of NO and NO2 concentrated
over a small area (Fig. 2) and initially uniform concentra-
tions of CO and O3, this case generates a sharp ozone mini-
mum colocalized with the NOx peak, a large area with back-
ground O3 concentration and a belt of high ozone concen-
trations in between (Fig. 7). With this test case, we have
evaluated the PPM+W scheme along with the PPM scheme,
the Walcek (2000) scheme, the Van Leer (1977) scheme and

the Godunov (1959) scheme. In this case, we have shown
that, for all species and all the metrics we have tested, the
PPM+W scheme performs better than all the other tested
schemes (Table 5), with a normalized ‖·‖1 errorE1 of 16.4 %
in O3 (19.3 % for PPM), 20.7 % in TRC (24.3 % for Wal-
cek), 28.3 % in NO2 (31.2 % for Walcek) and 37.2 % in NO
(42.5 % for Walcek). Table 5 also shows the E1 signature er-
ror, which is always smaller than E1. Interestingly, examin-
ing the E1 errors for the same variables and the same sim-
ulations yields exactly the same conclusions as examining
the normalized ‖ · ‖1 error E1. This shows that, even with-
out access to an exact solution, the E1 signature error permits
comparison of the simulations against each other for inert
and reactive species, giving the same conclusions as an ac-
curacy analysis with E1. This being shown, Fig. 10 permits
visualization of the evolution of error along the course of the
simulation, while E1 can be calculated only at t = T because
the LeVeque (1996) flux field is designed to guarantee that at
that time all the Lagrangian particles should be back at their
initial locations.

Therefore, the conclusion of this study is twofold. First, re-
garding the signature function as an invariant of the advection
equation, we feel that this invariant contains much more in-
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formation than other invariants that have been typically used
to check advection schemes, such as the minimum or max-
imum values of mixing ratios, while not requiring access to
the exact solution. In the case of chemistry-transport mod-
els, generalizing this concept to more dimensions (by study-
ing the mass-weighted probability distribution function of all
species simultaneously rather than one signature function per
species) could be promising. For the same reasons as exposed
above, this multidimensional probability distribution func-
tion should be an invariant of the advection equation. This
concept could be explored to quantify model error in a syn-
thetic way across all variables, instead of separately for each
variable. The approach introduced here with the E1 signa-
ture error could possibly be generalized using statistical tools
such as the Wasserstein distance to compare these multidi-
mensional probability distribution functions with each other.
The main limit to the use of the signature function as a tool to
evaluate the advection framework in real-world geophysical
models is that it relies on mixing-ratio conservation, which
holds for pure advection but does not hold in the presence
of mixing or diffusion. However, some geophysical compart-
ments like the deep ocean or the stratosphere are substan-
tially affected by mixing only for very long timescales, so
the signature function could be a useful tool to verify the be-
haviour of advection frameworks in such compartments.

From a more applied point of view, the PPM+W advec-
tion scheme introduced here performs better than both the
Walcek (2000) scheme and the PPM scheme, with all the
metrics we have tested and for both inert and active species.
It not only preserves the tracer maxima better than the Wal-
cek (2000) scheme (Fig. 9), but also is more accurate than
the PPM scheme for the representation of ozone and other
active species (Table 5). Of course, these results are proven
in the present study only on one 2D test case with active
chemistry and on a 1D convergence test. While the results
of both the test case and the convergence test consistently
indicate a better performance of PPM+W compared to the
other advection schemes tested here, they do not include the
full range of Courant numbers and tracer patterns that occur
in realistic models. For example, an additional numerical ex-
periment presented here (Sect. 5.3 and Table 6) shows that,
when the resolution is refined four times compared to our
main test case, the advantage of PPM+W over PPM seems
to be reduced and, for one species (NO2), PPM+W is even
outperformed by PPM in terms of accuracy. However, even in
this high-resolution test case, the performance of PPM+W
is better than that of PPM for the three other tested species.
The convergence test performed in this study (Fig. 5) sug-
gests that there is no systematic reduction in the performance
of PPM+W at higher resolution. A possible drawback of the
PPM+W scheme when compared to the PPM scheme is its
stronger non-linearity in the vicinity of maxima (Fig. 11),
which permits better conservation of the maxima themselves
but induces more numerical artefacts in the representation of
sum species in the vicinity of extrema.

We have also observed (Table 1) that the computation
cost of PPM+W is slightly lower than the cost of the
PPM scheme, which is used in some of the most popular
chemistry-transport models. The improved performance in
terms of accuracy and of preservation of tracer extrema with-
out increasing the computational load makes this scheme
a very interesting option for chemistry-transport models, in
an effort to reduce numerical diffusion, which is important
in particular in the presence of non-linear chemistry as dis-
cussed in Lachatre et al. (2022).

Code and data availability. This study has been performed using
toyCTM v1.0.1 (https://doi.org/10.5281/zenodo.10018706, Mailler
and Pennel, 2023). All the Python scripts used to launch the model
and to perform the post-processing of model outputs to obtain the
figures in this paper and the numbers in Table 5 are available from
https://doi.org/10.5281/zenodo.10018761 (Mailler et al., 2023).

The Fortran code AdvBench v1.0.0 used to evalu-
ate advection performance (Table 1) is available from
https://doi.org/10.5281/zenodo.7937121 (Mailler, 2023).

The model toyctm v1.0.1, AdvBench v1.0.0 and all the scripts
used to launch the model and post-process its outputs for the present
study are distributed under the GNU General Public License v2.0.
No datasets were used for this study.
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