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Abstract. Farmers around the world time the planting of
their crops to optimize growing season conditions and choose
varieties that grow slowly enough to take advantage of the
entire growing season while minimizing the risk of late-
season kill. As climate changes, these strategies will be an
important component of agricultural adaptation. Thus, it is
critical that the global models used to project crop produc-
tivity under future conditions are able to realistically simu-
late growing season timing. This is especially important for
climate- and hydrosphere-coupled crop models, where the
intra-annual timing of crop growth and management affects
regional weather and water availability. We have improved
the crop module of the Community Land Model (CLM) to
allow the use of externally specified crop planting dates and
maturity requirements. In this way, CLM can use alternative
algorithms for future crop calendars that are potentially more
accurate and/or flexible than the built-in methods.

Using observation-derived planting and maturity inputs re-
duces bias in the mean simulated global yield of sugarcane
and cotton but increases bias for corn, spring wheat, and es-
pecially rice. These inputs also reduce simulated global irri-
gation demand by 15 %, much of which is associated with
particular regions of corn and rice cultivation. Finally, we
discuss how our results suggest areas for improvement in
CLM and, potentially, similar crop models.

1 Introduction

Over the coming decades, climate change will reduce the
productive capacity of existing agricultural land, especially
in warm regions of the Global South such as Africa and South
America (Kerr et al., 2022; Hasegawa et al., 2022). Even un-
der an optimistic climate change scenario, without adapta-
tion, global production in currently cultivated areas would
fall below the recent historical mean by 2051 for maize and
2025 for wheat (Jägermeyr et al., 2021b). Adaptation mea-
sures – for example, shifting cultivated areas, increasing the
use of fertilizer and irrigation, and improving crop cultivars –
could mitigate productivity losses, helping the future global
agricultural system meet the demands of an increasing and
increasingly affluent population (Kerr et al., 2022). However,
the particular forms, required magnitude, and potential ben-
efit of adaptation – as well as stakeholders’ capacity to adapt
– will vary greatly by region, crop, and severity of climate
change (Hoegh-Guldberg et al., 2022).

Some risk factors particular to crop production have to do
with climate change impacts on plant phenology and man-
agement calendars. Shifts in the seasonal timing and level
of temperature and rainfall, as well as the timing and like-
lihood of temperature and hydrological extremes, affect the
optimal timing of management activities such as crop sow-
ing. Likewise, warmer growing seasons mean that crops ma-
ture faster, which, all other things being equal, can reduce
yield because they have less time to photosynthesize and al-
locate photosynthate to grain. Such effects have already been

Published by Copernicus Publications on behalf of the European Geosciences Union.



7254 S. S. Rabin et al.: Observation-based sowing dates and cultivars

observed in recent decades and can be expected to continue
(Oort and Zwart, 2018; Zabel et al., 2021), but a wide vari-
ety of related management adaptations could help farmers re-
duce yield losses or even improve production. The potential
of these adaptations has indeed already been demonstrated.
Farmers in tropical and subtropical Asia have shifted sow-
ing dates and adopted faster-maturing cultivars to minimize
the risk of dangerous temperature and hydrological extremes
(Bahinipati et al., 2021; Shaffril et al., 2018; Shrestha et al.,
2018; Wang et al., 2022). In temperate and cooler biomes,
crop cultivars historically needed to mature quickly to deal
with short growing (i.e., warm) seasons. As the climate has
warmed and growing seasons have lengthened, planting ear-
lier and using slower-maturing varieties has allowed farmers
to avoid losses due to accelerated development and even to
increase yields (Kerr et al., 2022). In general, crop variety
and calendar changes will continue to be important adap-
tation measures worldwide (Minoli et al., 2022), although
the potential of existing varieties is limited, especially under
more extreme scenarios (Zabel et al., 2021).

Modeling provides a tool with which we can assess such
impacts and adaptive interventions on various parts of the
Earth system. Global crop models, such as those partic-
ipating in the Global Gridded Crop Model Intercompari-
son (GGCMI; Jägermeyr et al., 2021b) and its parent Agri-
cultural Model Improvement Project (AgMIP; Rosenzweig
et al., 2013), are particularly well-suited to exploring long-
term productivity trajectories and the adaptive capacity of
the agricultural system under different climate scenarios at
large spatial scales. Intercomparison efforts such as GGCMI
enable the quantification of the uncertainty associated with
not just climate scenario and model output, but also with
crop model structural differences. GGCMI ensemble outputs
have thus been used to explore a number of questions related
not just to future crop yields (Müller et al., 2015; Jägermeyr
et al., 2021b), but also irrigation water demand (Wada et al.,
2013), the sustainability challenges facing food production
across both land and sea (Blanchard et al., 2017), and food
security after a hypothetical regional nuclear conflict (Jäger-
meyr et al., 2020).

GGCMI simulation protocols require participating models
to be forced with a standardized, observation-based grow-
ing season dataset (Jägermeyr et al., 2021a, b). In part this
is to avoid having different sowing dates be a potential con-
founding factor when comparing simulation outputs: previ-
ous work has shown that correctly timing crop growing sea-
sons is important for model performance with regard to yield
(Dobor et al., 2016) and is sometimes even as important as
simulating water stress (Jägermeyr and Frieler, 2018). How-
ever, cropland plays other important roles in the Earth sys-
tem. The fluxes of matter and energy associated with crop
growth, fallow periods, use of irrigation and fertilizer, and
other management can all affect local and regional weather
at intra-annual timescales (Sacks et al., 2009). Likewise, irri-
gation needs and capacity can depend strongly on the timing

of planting in regions where temperatures and/or water avail-
ability vary throughout the year. The accurate simulation of
planting date and growing season length is thus especially
important for crop models that are embedded in larger mod-
els of the land and Earth system.

One such model is the Community Land Model (CLM),
a terrestrial system model that simulates a wide variety of
processes including soils, hydrology, ecosystems, and land
use. As part of the Community Earth System Model (CESM),
CLM is capable of exploring not just land processes but also
how they interact with the rest of the Earth system. The crop
module in the latest fifth version of CLM (CLM5; Lawrence
et al., 2019) performs well in terms of the spatial distribution
of and global total crop production for the recent past (Lom-
bardozzi et al., 2020). However, some important crop grow-
ing seasons, such as Indian wheat, are significantly mistimed,
which may contribute to underestimated yields when CLM
tries to grow crops in suboptimal conditions (Lombardozzi
et al., 2020). This could also cause incorrect timing of irri-
gation water demand, fertilizer application, and matter and
energy fluxes – especially important for an atmosphere- and
hydrosphere-coupled model such as CLM.

Here, we have given CLM the capability to use externally
prescribed growing season data such as those required by
GGCMI, enabling its participation in this important commu-
nity effort for the first time. The specific setup introduced
here is intended only for limited application: the prescribed
values we use are too rigid for prognostic runs, and even with
added flexibility, a comprehensive re-evaluation of param-
eters related to crop growth and development is warranted
(Sect. 4.3). However, it does allow us to explore the effects
of forcing CLM with the GGCMI growing season data on
simulations of historical yield and irrigation water demand
and from those results to highlight where and how CLM per-
formance could be improved.

2 Methods

2.1 Crops in CLM

The CLM crop module was adapted from the Agro-IBIS
model (Kucharik and Brye, 2003) and first officially released
as part of CLM4.5 (Levis et al., 2012; Lawrence et al., 2019).
A large number of crops are parameterized as part of this
module, but only six are included in default simulations (in-
cluding this work): corn, cotton, rice, soybean, sugarcane,
and spring wheat. Corn and soybean are split into temperate
and tropical varieties, and all wheat is represented by spring
wheat due to ongoing development related to winter wheat.
All crops can have both rainfed and irrigated area in each
grid cell.

Each crop functional type (CFT; e.g., rainfed spring
wheat) in CLM has a “sowing window” each year, which dif-
fers between the Northern and Southern Hemisphere. Plant-
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ing occurs in this period if and when three CFT-specific
thresholds are satisfied, all of which relate to temperature.
This method allows the sowing date to vary interannually
with weather and to shift in the long term with climate, but
because it is purely driven by temperature, it can fail to prop-
erly represent growing seasons where water availability is
more important in the sowing decision (Lombardozzi et al.,
2020).

Maturity is determined in CLM not by time per se, but
rather by “thermal time” – essentially, how warm the sea-
son has been for how long. Every day, the crop accumu-
lates “growing degree days” (GDDs; ◦C d) equivalent to
how far the day’s mean temperature exceeds a CFT-specific
“base temperature”. Maturity occurs once the crop reaches its
target GDD accumulation, GDDmat, causing warmer-than-
average growing seasons to be shorter than average (and vice
versa). This method reflects temperature-dependent physi-
ological processes associated with crop phenology and is
widely used in crop modeling (e.g., Olin et al., 2015; Jäger-
meyr and Frieler, 2018). In CLM, GDDmat is calculated dif-
ferently for various crop groups but is generally – within
some minimum and/or maximum values – proportional to the
20-year running mean of spring and summer warmth. Hence-
forth, we will refer to GDDmat as “maturity requirements”.

CLM usually harvests crops immediately upon reaching
maturity. However, a maximum season length specified for
each CFT sometimes causes premature harvest, which can
affect the viability of the product (see Sect. 2.4). This max-
imum season length prevents crops that failed to mature
before the cold season from “overwintering” and resuming
growth in the spring.

More details on the original formulation of crop calendars
in CLM can be found in Appendix A1.

2.2 Externally prescribed growing season criteria

Here, we have introduced code to allow gridded and option-
ally time-varying values of sowing date to be read from an
input file, overriding the sowing window and related planting
criteria. We have also enabled this functionality for GDDmat.

The observation-based crop calendar dataset we use is pro-
vided by GGCMI as part of the phase 3 simulation protocol
(Jägermeyr et al., 2021a, b). The six crops simulated here
are included along with 15 others. This dataset derives typ-
ical sowing and maturity dates in each half-degree grid cell
based on national governmental data where available, filling
in other planted areas using a mix of existing global growing
season products. For more details on the construction of the
GGCMI crop calendar dataset, including data sources and
gap-filling methods, see the Supplement of Jägermeyr et al.
(2021b).

We regrid the half-degree data from the GGCMI crop cal-
endar dataset to the approximately 2◦ resolution of our sim-
ulations (2.5◦ longitude ×∼ 1.9◦ latitude, or the f19_g17
CLM grid) using nearest-neighbor remapping with the Cli-

mate Data Operators tool (Schulzweida, 2022). Sowing and
maturity dates for two seasons of rice are provided for some
grid cells; because CLM can only simulate one season per
year, we choose the season associated with the greater area
according to the maps provided in the dataset.

The GGCMI dataset only includes mean sowing and ma-
turity dates, so some extra work is required to generate a
GDDmat file for CLM to use. Specifically, we perform a
“GDD-generating” run for a baseline period (specified in the
GGCMI protocol as the 1980–2009 growing seasons; Fig. 1),
calculating the mean growing degree days accumulated be-
tween the GGCMI sowing and maturity dates. (Where neces-
sary, as specified by the GGCMI protocol, the maturity dates
are moved forward so that CLM’s maximum growing sea-
son length for each crop is not exceeded.) Those means are
then mapped to generate a CLM input file for GDDmat, with
values specific to each CFT in each grid cell.

More details on this procedure can be found in Ap-
pendix A2.

2.3 Run setup

To test the code changes implemented in this work, we have
performed a set of CLM runs at approximately 2◦ resolution
(see above) using climate forcings from the reanalysis-based
GSWP3 dataset (Dirmeyer, 2011). While these runs do sim-
ulate crop yield, we do not necessarily expect improvements
in crop yield performance because so far we are only us-
ing static prescribed sowing date and GDDmat files. While
CLM’s native crop calendar algorithms are imperfect, that
they allow variation over time could result in a performance
advantage. However, these test runs may shed some light on
CLM performance and suggest areas for improvement.

The model was spun up to equilibrium over 1802 years,
forced with detrended 1901–1920 climate and no
land use, using main-branch CLM code from the tag
ctsm5.1.dev092. The next run segment continued
with the same code and detrended climate forcings but
1850–1900 land use from the CTSM5.2 dataset.

These spin-up and land use initialization runs produced
model states enabling historical-period runs to begin in 1901.
These are described below and illustrated in Fig. 1.

The “CLM default” run used our new code but with the
normal CLM algorithms for determining sowing date and
maturity requirements. The GDD-generating run branched
off from CLM default in 1977, producing maturity require-
ment maps as described in Sect. 2.2 and Appendix A2. These,
along with the GGCMI sowing dates, were then used in
a “prescribed calendars” run branched from the CLM de-
fault run at the beginning of 1958. To separately evalu-
ate the effects of prescribed sowing dates and maturity re-
quirements, we performed additional “prescribed sowing”
(GGCMI3 sowing dates but CLM native maturity require-
ments) and “prescribed maturity” (vice versa) runs.
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Figure 1. Runs performed for this work. Horizontal lines indicate model runs; a vertical line indicates the use of model state generated in the
upper run used to initialize the lower run. Horizontal axis (simulated growing seasons) not to scale. Line colors and dashing reflect styles used
for experiments in time series figures. Shading indicates the 1980–2009 growing seasons used to generate prescribed maturity requirements
(following the GGCMI protocol) and analyzed here.

The start dates of the GDD-generating and prescribed runs
were chosen because they are 3 years ahead of two important
years: 1961, the year in which the FAOSTAT yield data be-
gin, and 1980, the first year in the GGCMI calibration period.
Initial tests showed 3 years to be sufficient for dissipation
of any explainable but unwanted behaviors associated with
switching between model code versions and/or crop calen-
dar settings.

Because CLM currently supports only one sowing of each
CFT per calendar year in each grid cell, the practice of mul-
ticropping – producing two or more growing seasons of a
crop per year on the same plot of land – is not possible. The
GGCMI growing season dataset includes two seasons for rice
in some grid cells, of which we selected the season associated
with the greater area.

The version of CLM used in these experiments is capable
of supplying irrigation water from both surface and ground-
water reservoirs. It can also limit the amount of irrigation
withdrawal to 90 % of main river channel volume in each
grid cell, where in the hydrogeographic dataset upon which
CLM’s river routing scheme is based, “main river courses”
are defined as rivers fed by at least 1000 3 arcsec grid cells
(∼ 8 km2 at the Equator; Li et al., 2015; Lehner et al., 2022).
However, these features are still somewhat experimental, so
our simulations allowed an unlimited supply of water for ir-
rigation. We also used the default irrigation scheme in which
100 % of the water withdrawn for irrigation reaches the soil
surface, where it can then infiltrate, evaporate, or run off (Yao
et al., 2022). Thus, plant irrigation demand, withdrawals, and
application are all synonymous when discussing our results.

2.4 Model evaluation

Because the GGCMI3 crop calendar dataset is designed for
use in calibrating against the 1980–2009 growing seasons,
we restrict our analyses to that period. In figures, all maps
are masked according to where each crop had at least 1 year
with nonzero area during the 1980–2009 calendar years.

2.4.1 Yield

We compare simulated yields with two historical yield
datasets to understand the uncertainty in the observa-
tional data. The FAOSTAT database (FAO, 2022a) provides
country-level data on area harvested, production, and yield
for every year starting in 1961, which we aggregate to the
global level for time series analyses. For spatial analyses,
the EarthStat dataset provides high-resolution (5 min) maps
of area harvested and yield for 175 crops in 2000 (Mon-
freda et al., 2008). We use a time-varying version where
the EarthStat data for 2000 are scaled to other years based
on the relative difference for each country in the FAOSTAT
data between 2000 and the year in question (Lombardozzi
et al., 2020). These are then aggregated to the crops and spa-
tial resolution used in our simulations. CLM harvest outputs
are converted from tons of carbon to tons of biomass plus
moisture to match the observational data, as described in Ap-
pendix B.

In some analyses, we use maps of crop production (t) to
identify the regions that contribute most strongly to global re-
sults. Since EarthStat only provides yield and area, we must
construct an EarthStat production dataset. The most straight-
forward method would be to multiply the two EarthStat vari-
ables together, but this would complicate comparison with
the CLM outputs, since the EarthStat area maps differ from
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the maps used by CLM. Thus, we multiply EarthStat yields
by CLM’s crop areas to produce a comparable observation-
derived dataset.

To evaluate CLM’s ability to reproduce general levels and
trends in crop yield, we present a time series of global yield
for each of the six simulated crops, as well as total production
of all crops and grain crops. These plots indicate the calcu-
lated bias (mean across all years of simulated vs. observed
yield, weighted by FAOSTAT production for each year) of
the two experimental simulations compared to FAOSTAT. To
assess the spatial pattern of performance change, we also pro-
duce maps of change in absolute bias relative to EarthStat,
again weighted by (EarthStat) production in each year.

We also evaluate CLM’s ability to capture interannual
variability with Pearson’s correlation coefficient (r), compar-
ing each year’s simulated vs. observed yield. We again fol-
low the example set by GGCMI (Müller et al., 2017). The
data from each time series are first detrended by subtract-
ing from each point the mean of a 5-year window centered
on that point. This removes bias and the effect of long-term
trends due to, e.g., climate change or management improve-
ments, and allows a purer evaluation of the model’s ability
to represent interannual variability. Again, FAOSTAT is used
as the reference dataset. As in Müller et al. (2017), we test
whether the correlation coefficients are significantly differ-
ent from zero based on a two-sided t test with N −2 degrees
of freedom, where N = 30 (growing seasons in 1980–2009).
We also test whether the CLM default and “prescribed calen-
dars” correlation coefficients differ significantly from each
other using Fisher’s Z transformation test for correlations
(FAO, 2022b).

Comparing simulated and observed yields is not straight-
forward for several reasons, one of which regards how sim-
ulated crop “maturity” is determined. In CLM, crops can be
harvested before reaching full maturity if a growing season
is too cool and the maximum season length is reached. How-
ever, excluding all harvests at less than 100 % maturity (as
measured by accumulated growing degree days relative to the
maturity requirement) would be unrealistic. The FAOSTAT
standard is to track all crops that are either consumed by the
producers or sold at market (FAO, 2022b), and crops can be
viable for those purposes without reaching complete matu-
rity. We adopt the standard used for GGCMI phase 3 (Jäger-
meyr et al., 2021b), which specifies a threshold of 90 % ma-
turity for all crops except corn, which has an 80 % threshold
to reflect its use as feed.

Another challenge to yield comparison is the potential for
mismatches in how harvested crops are associated with cal-
endar years. CLM can save harvested yield either annually
(i.e., the total amount harvested in a calendar year) or by
growing season (i.e., the amount harvested from growing
seasons that began in a calendar year). Agricultural statis-
tics are subject to similar decisions: the FAOSTAT standard
is to “refer production data to that [calendar] year into which
the bulk of the production falls” if “it is not possible to al-

locate the relative production to” 2 consecutive years (FAO,
2022b), but there is a certain amount of ambiguity in that in-
struction and uncertainty in how well it is followed. Differing
standards between observations and model outputs for asso-
ciating harvests with a year can suggest misleadingly poor
model performance if not properly accounted for (Iizumi
et al., 2021). As such, the standard GGCMI time series anal-
ysis method is to use growing season yields (i.e., associated
with year of planting), shifting them forward or backward
a year if doing so improves the Pearson’s correlation coef-
ficient by 0.3 or more (Müller et al., 2017). We follow this
standard here for our time series analyses, using FAOSTAT
as the reference dataset. Superscripts L and R in figure panel
titles respectively indicate leftward (where, e.g., simulated
growing season 2000 is compared against observed growing
season 1999) and rightward shifts. In figures, “Total” plots
have shifts calculated and applied after summing the un-
shifted time series of their constituent crops. These shifts are
only applied when examining global time series, not time-
averaged maps.

Where crop model outputs (two variables, with time axes
of growing seasons and calendar years) must be cross-
referenced with land use areas (with time axis of calendar
years), as in the calculation of global average yields (t ha−1)
or per-grid-cell production (t), we use the calendar-year out-
puts. So, for example, production for one grid cell in 1986
could include harvest from crops planted in 1985 and/or
1986.

2.4.2 Irrigation

To evaluate the influence of prescribed crop calendars on
CLM’s ability to simulate global irrigation, we produce time
series figures of irrigation volume for the area associated
with the six explicitly simulated crops as well as for all land
(including other crops not explicitly simulated). The latter
is compared to global estimates of global irrigation with-
drawals, which unlike the data from CLM generally include
water that is lost between withdrawal and application. We
also produce maps of change in mean annual irrigation de-
mand for the six explicitly simulated crops in order to under-
stand which regions are most affected.

However, mean demand is only part of the story; it also
matters when in the year irrigation is needed and how much
is needed relative to supply (Hanasaki et al., 2008). Thus, we
produce maps of the shift in timing of peak monthly irriga-
tion demand as well as the change in maximum monthly irri-
gation use as a fraction of supply. As groundwater-sourced
irrigation is not enabled in these simulations, we define
“supply” as the volume of the main river channel in CLM
(Sect. 2.3).
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3 Results

3.1 Seasonality

Mean sowing dates over the 1980–2009 growing seasons
for most crops in the CLM default run differ notably from
the GGCMI3 prescribed sowing date, with at least some re-
gions differing by 165 d or more (where 182.5 d is the maxi-
mum possible difference in a 365 d year). Figure 2 illustrates
this for spring wheat (chosen because it is widely planted
in CLM, although high-latitude areas would be planted with
winter wheat were that available in the model). As expected,
the mean sowing dates in the “prescribed calendars” run
match the GGCMI3 dates exactly (not shown). For most non-
tropical crops, mean CLM default sowing dates are closest
to the observation-derived values in temperate regions, es-
pecially in North America and Europe (Figs. S1–S7 in the
Supplement). This is consistent with the focus on such re-
gions in the initial development and evaluation of Agro-IBIS
(Kucharik, 2003; Kucharik and Brye, 2003) and when it was
brought in to CLM (Levis et al., 2012). Temperate soybean
and (to a lesser extent) temperate corn are the exceptions due
to their not including tropical regions, but note that the tropi-
cal versions of those crops do show wide variation in sowing
date performance.

Average growing season length for spring wheat in the
CLM default run in many regions is more than 30 d shorter
than the GGCMI3 values, and in some places it is more
than 90 d shorter (Fig. 3). In contrast, the “prescribed cal-
endars” run mostly produces growing season lengths within
30 d of the GGCMI3 values, except for regions where the
GGCMI3 growing season exceeds the CLM maximum (for
spring wheat: 150 d), which we retained when generating
maturity requirements (Sect. 2.2 and Appendix A2). The re-
sults are similar for most other crops, although sugarcane
seasons in both CLM default and prescribed calendars are of-
ten more than 150 d shorter than GGCMI3 (which has 365 d
growing seasons in most of the world compared to the CLM
maximum of 300), and rice has large areas where the CLM
default average season is 30–90 d longer than GGCMI3. As
with sowing dates, growing season lengths for most crops are
closest to GGCMI3 in temperate regions, with soybean being
the exception (Figs. S8–S15).

The GGCMI3-derived maturity requirements are much
more geographically variable than the CLM default values,
as illustrated for rainfed spring wheat in Fig. 4. This crop is
representative of most others in that (a) CLM default val-
ues are closer to the GGCMI3-derived values in temper-
ate regions than in the tropics, (b) a large portion of the
planted area in the CLM original configuration uses the max-
imum possible GDD value from the CLM algorithm, and
(c) the GGCMI3-derived values exceed that in many places
(Figs. S16–S20). The latter two pieces of evidence together
suggest that the maximum maturity requirement values in
CLM are making it so that seasons are shorter than they

should be for most crops, at least in terms of thermal time
(Sect. 2.1). (In terms of days, a higher maturity requirement
with the same sowing date would mean a longer season but
with a sowing date later in the spring might mean a shorter
season.) Sugarcane and, to a lesser extent, temperate soybean
are the exceptions to this pattern, with more centrally bal-
anced distributions of CLM default maturity requirements.

3.2 Yield

3.2.1 Trend, bias, and spatial patterns

Using the GGCMI3-derived calendars affects yield perfor-
mance differently for different crops (Fig. 5).

Neither the bias nor the trend of corn differs much between
the CLM default and “prescribed calendars” runs. Soybean
mean bias is also similar between the runs, although the
magnitude of interannual variability in the second half of
the analyzed period seems to have improved in the “pre-
scribed calendars” run, while the reproduction of the ob-
served trend worsened. A 0.6 t ha−1 (21 %) overestimate for
wheat in CLM default is increased in prescribed calendars to
1 t ha−1 (50 %), although interpretation of this is complicated
by the use of spring wheat everywhere.

Cotton, rice, and especially sugarcane see large increases
in global yield in prescribed calendars relative to CLM de-
fault. Strong relative underestimates for cotton and sugarcane
are greatly improved, with the former’s 0.5 t ha−1 (33 %) un-
derestimate being almost completely resolved and the latter’s
bias being reduced by nearly 25 % (12.6 t ha−1 underestimate
to 9.6 t ha−1 overestimate). Rice, on the other hand, goes
from good performance (underestimate of only 0.3 t ha−1) to
a significant overestimate (by > 2 t ha−1).

Due to the large shifts in global mean cotton, rice, and sug-
arcane yields, we map their mean differences in production
and absolute bias between the CLM default and “prescribed
calendars” runs in Fig. 6. Figure S21 shows equivalent maps
for corn, soybean, and spring wheat, which are not discussed
here.

Cotton’s increase in production when moving from CLM
default to prescribed calendars is driven mainly by India and
China, with smaller contributions from Pakistan, the United
States, and Uzbekistan (Figs. 6a; S22). This represents a sub-
stantial yield performance improvement in China, Uzbek-
istan, and to a lesser extent the United States (Fig. S23).
However, many of the grid cells with strong production un-
derestimates (Fig. S24b) did not see much improvement.
Thus, while CLM default’s cotton yields were too low on av-
erage, the prescribed calendars caused yield to increase too
much in the wrong places (Fig. 6b).

The global increase in rice yield is driven mostly by in-
creased production in China, India, and Thailand (Figs. 6c,
S22). China’s increase results in performance improve-
ment there (Fig. S23), whereas India and Thailand become
strongly overestimated (Fig. 6d). The increase in sugar-
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Figure 2. Sowing date for spring wheat in GGCMI3 prescribed calendars (a–b); differences in mean 1980–2009 sowing date from the
prescribed value for the CLM default run (c–d). “Prescribed calendars” dates match GGCMI3 exactly and are thus not shown. Other crops
can be found in Figs. S1–S7.

cane yield is mostly associated with India, Brazil, and Cuba
(Figs. 6e, S22). Of these, performance in India is strongly
improved, Brazil is slightly improved, and Cuba is worsened
(Figs. 6f; S23).

3.2.2 Attributing yield differences

Examining Fig. 5 for the prescribed sowing and maturity runs
reveals that the yield increases for cotton, rice, and sugarcane
result do not occur for the same reasons. Rice sees little dif-
ference from CLM default, at least at the globally aggregated
level – when using only the GGCMI3-derived maturity re-
quirements, yield increases with only the GGCMI3 sowing
dates, with a positive synergistic effect of using both. Sugar-
cane, on the other hand, actually sees an even stronger over-
estimate of yield in the prescribed maturity run, with the ad-
dition of GGCMI3 sowing dates bringing the yield closer to
observations. Cotton sees nearly all of its yield increase due
to the prescribed maturity inputs, with the prescribed sowing
inputs contributing a small further increase.

Rice has wide areas, including much of China, where it
rarely or never reaches maturity in the CLM default simula-
tion (Fig. 7). This is alleviated in the “prescribed calendars”
run due to the combination of new sowing dates and season
lengths, causing the performance improvement seen across

China (Fig. 6d). The parts of India and Southeast Asia where
yield increases resulted in worsened bias (Fig. 6c, d) never
or rarely had trouble reaching maturity in the CLM default
run (Fig. 7). Under the CLM default setup, rice in temperate
regions is generally planted at the end of the sowing window
(Fig. S25), which in the Northern Hemisphere is 28 February.
Across much of the temperate zone it is too cool for a season
started then to succeed in most years, even with the reduced
maturity requirements derived from the GGCMI3 crop calen-
dar (Fig. S18). The prescribed sowing dates are also needed,
which across the temperate region shift planting to the spring
or early summer.

3.2.3 Global interannual variability

Using the GGCMI3-derived calendars seemingly has little
effect on CLM’s ability to reproduce observed interannual
variability, as no change in correlation coefficient (r) is sig-
nificant at the p < 0.1 level (Fig. 8). However, our 30 data
points leave Fisher’s Z transformation test somewhat under-
powered, so here we discuss the differences observed.

Wheat’s correlation increases slightly and corn’s decreases
slightly, but both remain significant at the p < 0.05 level – al-
though, again, interpretation for wheat is complicated by the
use of spring wheat everywhere. The correlation coefficients
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Figure 3. Growing season length for spring wheat in GGCMI3 prescribed calendars (a, b); differences in mean 1980–2009 sowing date
from the prescribed value for the CLM default run and “prescribed calendars” run (c–d and e–f, respectively). Other crops can be found in
Figs. S9–S15.

of the rest of the crops remain not significantly different from
zero, although seemingly large changes are seen in some. For
example, soybean’s r more than triples to 0.303, and sugar-
cane’s is reduced by 97 %. Rice’s is reduced by more than
half in the “prescribed calendars” run, although its amount
of interannual variability is closer to the observed than CLM
default’s. For the grain crops (corn, rice, soybean, and wheat)
as a whole, r increases by 36 % from 0.442 (p < 0.05) to
0.600 (p < 0.01). The correlation coefficient for all six crops
combined is only 0.240 in the “prescribed calendars” run, but
this is an improvement from the CLM default run’s −0.001.
Again, however, none of these changes are statistically sig-
nificant.

The “prescribed calendars” correlation coefficients for
corn, soybean, and spring wheat in Fig. 8 are on the low end
of performance for models evaluated under the “fully har-
monized” setup in GGCMI phase 1 by Müller et al. (2017)
(note the use of both spring and winter wheat in the latter);
for rice, it performs worse than any model there. Many of
the models in GGCMI phase 1 included effects of heat, cold,
drought, and/or soil saturation to represent crop damage or
death from extreme events; CLM’s lack of representation of
these processes likely affects its performance. Some of the
GGCMI models also contain more crop-specific parameter-
izations of development and phenology that may provide a
performance advantage. That said, our results are not directly
comparable with the analyses in that paper: GGCMI phase 1
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Figure 4. Maturity requirements for spring wheat (area-weighted average of rainfed and irrigated). Box plots compare, at different latitude
zones, distributions of maturity requirements for CLM default (cyan) and prescribed calendars (pink). Boxes’ central lines are medians, box
edges are 25th and 75th percentiles, and whiskers extend to the minimum and maximum of the data excluding any outliers (points outside
the median ±1.5 times the interquartile range; circles). Other crops can be found in Figs. S16–S20.

used different climate forcing and fertilizer input, and Müller
et al. (2017) used a different crop area dataset for aggregating
to global average yields. In addition, the coarser resolution of
the CLM runs performed here (2.5◦ longitude ×∼ 1.9◦ lat-
itude) may smooth out finer-scale variation in growing sea-
son conditions that were captured in the half-degree runs per-
formed for all but two of the models in Müller et al. (2017).

The poor performance seen for cotton and sugarcane is
unfortunate but perhaps not surprising, as their physiology
is very different from the herbaceous grain crops for which
the CLM crop module is mostly targeted. Indeed, for this
reason cotton and sugarcane are commonly not included in
crop modules of dynamic global vegetation models such as
CLM, and they are not evaluated in Müller et al. (2017). Cot-
ton, for example, is a shrub that is mostly now planted as
an annual but was bred from a perennial ancestor. Its in-
determinate growth pattern contrasts with the determinate
(and herbaceous) grain crops and means that accumulated
growing-season temperature alone is not a good predictor of
development (Jans et al., 2021). Cotton in the LPJmL model
represents cotton plants as small trees and determines phe-
nological status based on solar radiation, water availability,
and heat and cold stress (Jans et al., 2021). That implementa-

tion achieved a global correlation coefficient over 1980–2010
of 0.414, which is significant at the p < 0.05 level. CLM,
in contrast, effectively represents cotton as another herba-
ceous crop whose determinate growth is governed solely by
accumulated heat units. The use by Jans et al. (2021) of
country-specific planting densities and half-degree resolution
likely contribute to LPJmL’s better performance, but CLM
would likely benefit from more realistic cotton. Sugarcane
also takes an indeterminate growth form which one global
model, ORCHIDEE-STICS, approximates using a special
stress term (Valade et al., 2014). LPJmL and CLM do not
account for this characteristic and have both previously been
shown to perform poorly at the global scale (Yin et al., 2023).
In addition, CLM’s performance with regard to sugarcane is
likely hampered by its inability to simulate sugarcane grow-
ing seasons longer than 300 d, when real sugarcane is often
harvested more than a year after planting (Jägermeyr et al.,
2021b).

3.2.4 Yield sensitivity to viability threshold

The yield of some crops is highly dependent on the choice
of minimum maturity level (heat unit index) for harvested
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Figure 5. Observed (black and gray) vs. simulated (colors) global crop yield for 1980–2009. Numbers in parentheses are bias over that period
of model outputs (CLM default −→ prescribed calendars) in t ha−1 relative to FAOSTAT, with superscripts denoting leftward or rightward
shifts of simulations (see Sect. 2.4). “Total” is the production of all six crops combined divided by their area, with “grains” including all
crops except cotton and sugarcane.

biomass to be included in yields. This is illustrated in Fig. 9,
which compares the GGCMI3-based thresholds used here
(80 % maturity for corn, 90 % for other crops; Sect. 2.4) to
thresholds of 100 % and 0 %. The CLM default simulation
for rice, for example, would have seen a slightly worse under-
estimate in global mean yield with a 100 % maturity thresh-
old and a significant overestimate with a 0 % threshold. Sim-
ilarly, the “prescribed calendars” simulation’s improved cot-
ton yield would be completely negated if requiring 100 %
maturity.

3.3 Irrigation demand

The “prescribed calendars” run used ∼ 15% less wa-
ter (874 km3 yr−1) for irrigation than CLM default
(1023 km3 yr−1) over 1980–2009 when considering all
cropland (Fig. 10h). Because the current version of CLM
has been shown to underestimate global irrigation demand
(Yao et al., 2022) compared to estimates that are mostly
in the range of 2000–3000 km3 yr−1 (Hanasaki et al.,
2008; Wisser et al., 2008), to some extent this represents
a degradation in performance. However, the simplified

representative irrigation behavior simulated by CLM does
not fully encompass the variety of irrigation practices used
around the world. In particular, CLM does not include
paddy irrigation, likely a key reason that global irrigation
demand is underestimated. New CLM parameterizations for
sprinkler, flood, and paddy irrigation styles developed by
Yao et al. (2022) resulted in a more realistic simulation of
global irrigation demand that was nonetheless too high by
about 20 %–30 %. (Indeed, those authors note that using
observation-based crop calendars could be an important
next step in refining irrigation in CLM.) Using that new
irrigation system, then, the reduced demand simulated with
the prescribed calendars could represent an improvement.

For the six main crops on which we have focused our anal-
yses, mean irrigation use was∼ 20% (∼ 101 km3) lower un-
der prescribed calendars (Fig. 10g). Of those, rice contributes
the majority of the reduction (−100 km3 yr−1, −45%), with
corn (−15 km3 yr−1, −28%) and soybean (−7.6 km3 yr−1,
−28%) seeing notable fractional reductions that contribute
relatively less to the six-crop total irrigation demand. Cotton
uses 30 % more irrigation water (+18 km3 yr−1) under pre-
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Figure 6. Spatial distribution of (a, c, e) difference in production and (b, d, f) difference in absolute production bias relative to EarthStat
(see Sect. 2.4.1). Differences are calculated as the mean of prescribed calendars minus CLM default over the 1980–2009 calendar years. This
figure includes cotton (a–b), rice (c–d), and sugarcane (e–f); see Fig. S21 for the equivalent figure with corn, soybean, and spring wheat.
Cells with no planted area of each crop in CLM are masked (white) in (a), (c), and (e); those plus cells with no EarthStat area are masked
from (b), (d), and (f). Gray cells are those outside the top 95 % of cumulative absolute values in each map.

scribed calendars, while sugarcane and spring wheat use only
slightly more (<+2 km3 yr−1, <+7 %).

For crops that saw reduced irrigation demand, the new
sowing dates are mostly responsible, with the new maturity
requirements having relatively little effect (Fig. 10). For ex-
ample, the “prescribed calendars” run requires much less ir-
rigation water for rice in India and Bangladesh because it
can be planted near the summer monsoon rather than being
restricted to sowing in January and February as in CLM de-
fault (Fig. S25). Among the crops seeing increased demand,
cotton and sugarcane see the opposite pattern – their often-
extended growing seasons under the observation-derived cal-
endars (Figs. S11, S15) require longer periods of irrigation
and thus more water use overall. Spring wheat, in contrast,

experiences a notable increase in demand due to the pre-
scribed maturity requirements that are mostly counterbal-
anced by a decrease in demand associated with the prescribed
sowing dates.

Despite the magnitude of the global differences evident in
Fig. 10, one or two regions tend to be responsible for the ef-
fects of prescribed calendars on irrigation use for each crop.
South Asia stands out as a major driver for all observed dif-
ferences (Fig. 11), reinforcing the importance of getting the
growing seasons correct there (Lombardozzi et al., 2020).
Specifically, India and Bangladesh see most of the reduction
in irrigation requirement (Figs.11, S26a), mainly due to rice
and to a lesser extent soybean and wheat (Fig. S27). Pakistan
sees the strongest increases in irrigation (Figs. 11, S26b) and
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Figure 7. (a, b) Fraction of rice harvests in the 1980–2009 growing seasons that were harvested at maturity (according to the 90 % threshold;
see Sect. 2.4). (c, d) Change in fraction of rice crops harvested at maturity when moving to prescribed calendars.

is a major contributor to the global increases seen in cotton,
sugarcane, and wheat (Fig. S27). One other important region
is in China, where the agricultural areas to the south of Bei-
jing contribute strongly to the corn decrease and cotton in-
crease (Figs. S26, S27).

While the total amount of irrigation applied over a year is
important, the timing of irrigation withdrawals has implica-
tions for how much water is left to sustain aquatic ecosys-
tems and for other human uses, as well as for climate effects
at regional and subannual scales. India and Bangladesh again
stand out, with the shifted growing seasons over most of their
area causing withdrawals to peak 3 or more months earlier
under prescribed calendars than CLM default (Fig. 12a). The
combination of this seasonal shift with the previously shown
overall reduction in irrigation needs means that peak monthly
irrigation usage, when expressed as a fraction of overall river
volume, decreases 10 percentage points or more across much
of India (Fig. 12b).

4 Discussion

4.1 Multiple cropping

As mentioned in Sect. 2.3, CLM does not yet support the
planting of multiple seasons of a crop (or different crops)
in a single calendar year. Multicropping accounted for 12 %

of global crop area – including 10 % and 13 % of corn and
wheat area, respectively – around the year 2000 (Waha et al.,
2020). For regions where multiple cropping is common, the
seasonal shifts observed when moving from the CLM default
setup to the prescribed calendars may represent a shift not
from an unrealistic season to a realistic one but from one
actual season to another.

This effect is likely especially strong for rice, more than
one-third of the area of which is under multiple cropping
(Waha et al., 2020). In particular, the area of northeastern In-
dia responsible for much of the global reduction in simulated
irrigation demand for rice (Fig. S27c) mostly sees two rice
seasons per year (Frolking et al., 2006). It is thus plausible
that the CLM default setup represented the actual timing of
the primary irrigated rice season, in which case the reduction
in irrigation demand seen when moving to prescribed cal-
endars would simply be an artifact of CLM’s single-season
limitation. (Of course, if simulating both seasons under ei-
ther CLM default or prescribed calendars, the total demand
would be higher than when simulating just one season.) The
GGCMI3 crop calendars only include one rice season for
most of the area in question, so a different observational
dataset would be needed to explore this possibility.
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Figure 8. Scatter plots of observed (x axes) vs. simulated (y axes) global crop yield for 1980–2009 after detrending as described in Sect. 2.4.
Numbers in parentheses are Pearson’s correlation coefficient (r) of each simulation (CLM default −→ prescribed calendars), with super-
scripts denoting leftward or rightward shifts of simulations (see Sect. 2.4). Asterisks indicate correlation coefficients that differ from zero at
the p < 0.1 (*), p < 0.05 (**), or p < 0.001 (***) levels. Solid lines are best-fit lines, with dashed lines indicating the 1 : 1 line. See caption
of Fig. 6 for definitions of “Total” and “Total (grains)”.

4.2 Implications for CLM5 crop modeling

The results presented here suggest that the benefits of re-
working growing seasons to be closer to those in the “pre-
scribed calendars” run would depend on the crop and met-
ric of interest. Soybean is the most consistently improved,
with its mean global yield not changing much but perfor-
mance strongly improving in terms of global interannual
yield variability (Fig. 8d) and spatial pattern of production
(Fig. S21d). In the “prescribed calendars” run, wheat sees
a slight (though insignificant) improvement in its interan-
nual variability (Fig. 8f), but a worsening of its overestimate
of mean global yield (Fig. 5f) and production in most re-
gions (Fig. S21f). Cotton and sugarcane see substantial im-
provements in global mean yield (Fig. 6b, e) but mixed or
worsened performance in terms of spatial pattern (Fig. 6b,
f) and interannual variability (Fig. 8b, e). This may result
from a number of factors, including incorrect planting area
maps and management inputs, unrepresented management
processes and/or varieties, inaccurate parameter values, and
unrealistic physiology.

The model’s performance for global rice yield (Fig. 5), as
well as regional rice yields in the tropics (Fig. 6), is much
worse in the “prescribed calendars” run. However, the appar-
ent better performance of the CLM default calendars is only
possible because of high rates of yield failure in the subtrop-
ics and temperate zones (Fig. 7) due to incorrect model grow-
ing seasons. There is thus an argument for using observation-
based growing seasons in the model to avoid such unrealistic
failures, even if it degrades global yield performance.

However, simply prescribing the sowing dates and matu-
rity requirements used here would be too inflexible. A com-
bined approach, with observation-derived sowing and matu-
rity dates as guidelines, may further improve simulations. For
example, keeping CLM’s sowing window method but cen-
tering each grid cell’s window on its GGCMI3 sowing date
would allow interannual variation based on weather as well
as some long-term shifts with climate change. Similarly, the
algorithm in CLM5 that adjusts maturity requirements based
on long-term climate history could start with the grid-cell-
level requirements used here instead of global values. Care
would need to be taken to ensure that the resulting maturity
requirements are within observed ranges, perhaps allowing
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Figure 9. As Fig. 5, but with prescribed calendars and CLM default runs under the GGCMI3 maturity thresholds (as Fig. 5; solid colored
lines; Sect. 2.4) compared to the same runs with minimum heat unit index 0 (i.e., including all harvested biomass regardless of maturity level;
dashed lines) and 1 (i.e., including only fully mature yields; dotted lines). Unlike Fig. 5, no time series shifts are included here, ensuring
consistent year-to-year comparisons among the simulation data.

for an increased maximum value in the future with genetic
improvements. In addition, comparing the GGCMI3 growing
seasons with other datasets (e.g., Sacks et al., 2010) would
allow an assessment of the robustness of results seen here.

The sensitivity of yields to viability threshold (Sect. 3.2.4)
suggests two possible strategies for model development and
use. The “prescribed calendars” run sees substantially lower
yields for corn, cotton, and rice when requiring 100 % matu-
rity instead of the GGCMI thresholds. In reality, if a farmer
wanted to harvest at 100 % maturity, they might leave their
crops in the field for a few days longer; thus, CLM’s maxi-
mum growing season length parameter might be artificially
limiting yields. On the other hand, crops should not be al-
lowed to stay in the ground indefinitely. A more flexible
“premature harvest” algorithm in CLM might better repli-
cate real-world decision-making, perhaps only harvesting if
the maximum season length is exceeded and no growing de-
gree days are accumulated for some number of days. Fore-
casts of a cooler-than-average season (i.e., requiring longer
to reach maturity) might in real life induce earlier sowing, a
behavior not present in CLM but whose effect on growing
season length could be approximated using such a flexible

algorithm. The simplest approach, however, would be to use
a value of less than 100 % maturity as the viability threshold
in post-processing.

4.3 The need for reparameterization

When reworking crop growing seasons, it will be important
to reconsider the crop-specific physiological parameters used
in CLM5. Many such parameters have a wide range of val-
ues in the literature, and some are not directly observable. As
such, crops in CLM have been parameterized within realis-
tic bounds to produce realistic yields using what are in some
cases unrealistic growing seasons. Thus, notable changes to
the growing seasons such as those seen in the “prescribed
calendars” run – especially for rice, whose approximate dou-
bling of global mean yield is due in large part to the elimina-
tion of excess yield failures in China – must be paired with a
comprehensive re-evaluation of crop parameter values. Such
an effort is outside the scope of this work, and thus all runs
used the same parameter set. However, some discussion of a
potential reparameterization strategy is warranted.

There are a number of parameters to consider in such
an effort, in addition to the previously discussed (Sect. 4.2)
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Figure 10. Time series of annual global irrigation use on the six main crop types analyzed here (a–g) as well as all land including other
crops (h).

Figure 11. Global distribution of the difference in mean annual ir-
rigation demand, summed across the six crops analyzed here. Gray
cells are those outside the top 95 % of cumulative absolute values;
white cells had no irrigated crops. See Fig. S26 for positive and
negative components in each grid cell and Fig. S27 for maps of in-
dividual crops.

maximum growing season length (mxmat). The wide
range of “prescribed calendars” maturity requirement val-
ues (Figs. 4, S16–S20), including some unrealistically low
and high values, suggests that the crop-specific base temper-
ature (baset) and maximum daily accumulation of grow-
ing degree day (mxtmp; 1GDDmax in Eq. A1) param-
eters might need to be adjusted. While real-world culti-
vars of a given crop can vary widely in their base tem-
perature, CLM uses globally constant values for cotton,
rice, and soybean. Corn’s base temperature takes one of
only two values: 8 ◦C for the temperate plant functional
type (PFT) and 10 ◦C for the tropical one. Some more
variation is possible in CLM’s spring wheat and sugar-
cane, whose base temperatures vary linearly from the Equa-
tor to 30◦ absolute latitude (being held constant beyond
that). Spring wheat’s base temperature goes from 0 ◦C at
the Equator to 12 ◦C at and above 30◦ absolute latitude,
while sugarcane’s ranges 10–22 ◦C. These ranges are deter-
mined by two parameters, baset_latvary_slope and
baset_latvary_intercept, which could be adjusted.
Such latitudinal variation could also be introduced for other
crops, or geographic variation in base temperature could be
added some other way.
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Figure 12. Mean 1980–2010 difference between CLM default and prescribed calendars in (a) the mean month of peak irrigation withdrawals
and (b) maximum monthly irrigation use as a fraction of main river channel volume (Sect. 2.3). In (a), white grid cells had no irrigation in
either or both runs. White areas in (b) include those plus grid cells with no main river channel volume in the month of maximum irrigation
use.

However, base temperature and related parameters might
produce more realistic maturity requirements without much
effect on growing season or yield – a higher (lower) base
temperature would be offset to some extent by a lower
(higher) maturity requirement in the GDD-generating run
post-processing. Other parameters may have more lever-
age to improve yield performance under observation-derived
growing seasons. Two promising candidates are the GDD
accumulation values, expressed as a fraction of maturity
requirement, at which crops transition to the vegetative
(lfemerg) and reproductive (grnfill) stages. Various
non-crop-specific parameters related to plant physiology,
such as those controlling allocation of photosynthate to dif-
ferent parts of the plant, may merit re-evaluation for the dif-
ferent crop types.

Finally, work on wheat calibration should be paired with
the use of both spring and winter varieties.

5 Conclusions

The development work described here enabled CLM to use
externally specified sowing dates and maturity requirements.
CLM is thus now able to use sowing dates and maturity
requirements generated by potentially more realistic algo-
rithms, without needing to code those into CLM itself. This
also allows CLM’s participation in global model intercom-
parisons that require the use of standardized crop calendars.

While directly using observation-derived growing seasons
for periods would be overly simplistic for prognostic sim-
ulations, doing so here has provided insights on areas for
improvement in the built-in prognostic crop calendar func-
tions and crop parameterizations generally. Cotton, rice, sug-
arcane, and spring wheat see large increases in global yield
with these new inputs relative to the standard CLM setup.
This represents a performance improvement for cotton and

sugarcane but an overestimate for the others. Global yield
increases with the prescribed calendars are largely driven
by production differences in a few small regions, some of
which see yields further from observations than with stan-
dard CLM. That using more realistic growing seasons some-
times decreases yield performance suggests that some crops
may need to be reparameterized to function correctly when
grown in a more realistic part of the year.

The growing season changes associated with the use of
the prescribed calendars also result in a 15 % reduction in
global irrigation demand across all cropland, driven mostly
by rice and corn. This does not necessarily mean that real-
world growing seasons are optimized to minimize irrigation
needs, as cotton, sugarcane, and spring wheat see slight in-
creases in irrigation demand. As with yield, the irrigation dif-
ferences are driven by a few small regions for each crop, with
South Asia playing an especially large role. Because of the
influence of land–atmosphere water fluxes on regional cli-
mate, climate simulations there may thus be improved by the
use of more realistic growing seasons.

While this work was focused on the crop module in CLM,
other models that use similar setups to determine sowing date
and/or maturity requirement might see similar effect sizes –
and glean similar insights – from analyses such as demon-
strated here.

Appendix A: Crop calendars in CLM

A1 Original formulation

Winter wheat was added to the crop module in CLM4.5 (Lu
et al., 2017), but work to add an input mask or an algorithm
telling the model where to plant winter vs. spring wheat is
still ongoing. Thus, only spring wheat is planted in these sim-
ulations, and the description of growing seasons here and in
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Sect. 2.1 does not include the processes specific to winter
wheat.

Planting occurs in the hemisphere-specific sowing window
for a crop functional type (CFT) if and when three CFT-
specific thresholds are satisfied:

1. the 10 d running mean of temperature at 2 m (T2 m) is
above the threshold planttemp,

2. the 10 d running mean of daily minimum T2 m is above
the threshold minplanttemp, and

3. the running 20-year mean of GDD8 (a measure of total
growing season warmth; see below) is greater than or
equal to the threshold gddmin.

On the last day of the sowing window, the first two conditions
are ignored, and the crop is planted as long as its long-term
average climate is appropriate.

After sowing, at every time step T2 m is above a CFT-
specific base temperature Tbase, the crop accumulates

min(T2 m− Tbase,1GDDmax)×
dtime

D
(A1)

growing degree days (GDDs; ◦C day), where D is day
length in seconds and 1GDDmax is the maximum daily ac-
cumulation allowed (26 ◦C day for spring wheat and 30 ◦C
day for all other crops). This equation, with Tbase = 8 ◦C
and 1GDDmax = 30 ◦C day, is also used during each year’s
GDDTb period (April through September in the Northern
Hemisphere, October through March in the Southern Hemi-
sphere) to calculate GDD8, the measure of total growing sea-
son warmth used in the sowing date calculation.

GDDs are accumulated in the heat unit index variable
HUI, which is set to zero upon planting. The crop is har-
vested once HUI reaches the maturity threshold GDDmat or
if the growing season has reached its CFT-specific maxi-
mum length. GDDmat is calculated differently for various
crop groups but is generally – within some minimum and/or
maximum values – the 20-year running mean of GDDTb
(or some fraction thereof) for base a temperature of 0, 8,
or 10 ◦C. The base temperatures of spring wheat and sug-
arcane within 30◦ N and S vary based on latitude as T ′base,c =

Tbase+12−0.4×|latc|, where T ′base,c is the adjusted base tem-
perature for the CFT in cell c with latitude latc.

In addition to maturity, other phenological stages are also
defined relative to GDDmat. The leaf emergence period be-
gins once the weighted-average accumulated GDDs of the
top two soil layers (i.e., Eq. A1 but with Tsoil instead of T2 m)
have reached, depending on CFT, 1 % to 5 % of GDDmat.
Grain fill begins once HUI has reached 40 % to 65 % of
GDDmat, again depending on CFT. Grain fill can also begin
once the plant’s leaf area index (LAI) has reached its CFT-
specific maximum, in which case HUI is “boosted” to the
CFT’s threshold for the beginning of grain fill.

A2 Enabling externally prescribed growing season
criteria

We allow gridded and optionally time-varying values of sow-
ing date to be read from an input file, overriding the sowing
window and related planting criteria. We have also enabled
this functionality for GDDmat. The choice to enable read-in
GDDmat and not maturity date may at first seem peculiar, as
the latter is more readily observable. However, it is important
that CLM not harvest before physiological maturity, which
is reached earlier in warm seasons and later in cool seasons.
Specifying GDDmat allows this “floating” of harvest date.

When simulating crop cultivars whose GDDmat is known,
it can be provided directly. However, in cases where only
maturity date is known – as in this work, with the GGCMI3
dataset – an extra model run and some analysis must be
performed. To generate maps of GDDmat for each crop, we
must find the mean GDDs accumulated in each grid cell
(GDDaccum, which is just HUI minus any boosts as described
in Appendix A1) between the provided sowing and maturity
dates over some reference period. Since the GGCMI3 pro-
tocol uses the 1980–2009 growing seasons as the reference
period, we run CLM from 1980–2010 (to allow growing sea-
sons begun in 2009 to complete the next year, if needed) with
every crop remaining unharvested until the day before the
next sowing. This run uses a slightly modified version of the
CLM land use inputs to ensure that every crop a grid cell has
at any time step in the time series is included in every time
step.

All data from this GDD-generating run are discarded ex-
cept for instantaneous daily values of GDDaccum. A post-
processing script, generate_gdds.py, then determines
the mean value of GDDaccum in each grid cell on the pro-
vided mean maturity day and saves this as a new CLM input
file, with a separate variable for each simulated crop PFT.
This input file is then read by CLM as prescribed GDDmat
values. To avoid unexpected behavior when very small val-
ues of GDDmat are in a denominator, we set a minimum of
1 ◦C day when reading in GDDmat.

Having CLM harvest on the GGCMI maturity date and
save the GDDs accumulated between sowing and harvest
would have been conceptually simpler but practically more
complex, as it would have introduced more code that would
need to be kept up to date as model infrastructure evolved.
The chosen method also allows GDDs to be re-generated
without another model run if the target mean maturity date
changes in the future. Finally, it removes the possibility of a
model user prescribing a maturity date in a model run, which
as discussed above would remove the needed ability of har-
vest timing to float with growing season temperature.

Note that the GGCMI dataset provides two growing sea-
sons for rice in some grid cells. Here, we use the grow-
ing season associated with the largest area, according to the
fraction_of_harvested_area variable included in
the GGCMI growing season netCDF files.
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Table B1. Dry matter fraction assumed for each crop.

Crop Dry matter Source
fraction

Corn 0.88 Wirsenius (2000), Table A1.II
Cotton 0.912 Wirsenius (2000), Table A1.III
Rice 0.87 Wirsenius (2000), Table A1.II
Soybean 0.91 Wirsenius (2000), Table A1.II
Sugarcane 0.255 Legendre (1988), Table 1
Wheat 0.88 Wirsenius (2000), Table A1.II

So far, generate_gdds.py and the other work pre-
sented here have only been used to generate static inputs of
sowing date and GDDmat. Future work will enable the pro-
duction of time-varying inputs as well.

Appendix B: Calculating yield

CLM saves a variable called GRAINC_TO_FOOD that is
the basis of our yield calculations. However, some extra
work is required for this variable to be comparable to what
is reported in the observation datasets. We post-process
GRAINC_TO_FOOD as follows.

1. Assuming that 15 % of yield is lost between the field
and the wider food system, multiply by 0.85 (“harvest
efficiency”; Lombardozzi et al., 2020).

2. Assuming that carbon is 45 % of total harvested dry
biomass, divide by 0.45 to get total dry biomass (Lom-
bardozzi et al., 2020).

3. Divide by dry matter fraction (crop-specific, see Ta-
ble B1) to get total harvested wet matter.

Because the FAOSTAT-reported sugarcane yields include
not just soluble solids and the water in which they are dis-
solved, but also a substantial amount of fiber biomass, an
additional calculation is required. Specifically, we divide by
0.51, since soluble solids (85 % of which are sugars) repre-
sent only 51 % of the solid matter in harvested sugarcane,
with fiber the other 49 % (Legendre, 1988).

Note that Step 3 has not been performed in previous CLM
evaluations, except for sugarcane. For this reason, reported
CLM default yields when including all harvests (“CLM de-
fault (1)” in Fig. 9; see Sect. 2.4.1) are expected to be higher
than in Lombardozzi et al. (2020) despite using the same run
configuration and yield viability threshold.

Code and data availability. Three versions of the CLM5 code
were used for different parts of these experiments: model
spin-up (https://doi.org/10.5281/zenodo.7724294, CTSM Develop-
ment Team, 2023a); the 1850–1957 period and GDD-generating
run (https://doi.org/10.5281/zenodo.7724212, CTSM Development

Team, 2023b); and CLM default and “prescribed calendars”, sow-
ing, and maturity runs (https://doi.org/10.5281/zenodo.7724225,
CTSM Development Team, 2023c).

Python code used for post-processing GDD-generating runs to
produce prescribed sowing date and maturity requirement files, as
well as for general analysis and figure production, is archived at
https://doi.org/10.5281/zenodo.7758123 (Rabin, 2023).

Prescribed calendar inputs and experimental outputs are archived
at https://doi.org/10.5281/zenodo.7754247 (Rabin et al., 2023).

Supplement. The supplement related to this article is available on-
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