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Abstract. An ensemble of 3D ensemble-variational (En-
3DEnVar) data assimilations is demonstrated with the Joint
Effort for Data assimilation Integration (JEDI) with the
Model for Prediction Across Scales – Atmosphere (MPAS-
A) (i.e., JEDI-MPAS). Basic software building blocks are
reused from previously presented deterministic 3DEnVar
functionality and combined with a formal experimental
workflow manager in MPAS-Workflow. En-3DEnVar is used
to produce an 80-member ensemble of analyses, which are
cycled with ensemble forecasts in a 1-month experiment. The
ensemble forecasts approximate a purely flow-dependent
background error covariance (BEC) at each analysis time.
The En-3DEnVar BECs and prior ensemble-mean forecast
errors are compared to those produced by a similar ex-
periment that uses the Data Assimilation Research Testbed
(DART) ensemble adjustment Kalman filter (EAKF). The
experiment using En-3DEnVar produces a similar ensem-
ble spread to and slightly smaller errors than the EAKF.
The ensemble forecasts initialized from En-3DEnVar and

EAKF analyses are used as BECs in deterministic cycling
3DEnVar experiments, which are compared to a control ex-
periment that uses 20-member MPAS-A forecasts initial-
ized from Global Ensemble Forecast System (GEFS) ini-
tial conditions. The experimental ensembles achieve mostly
equivalent or better performance than the off-the-shelf en-
semble system in this deterministic cycling setting, although
there are many obvious differences in configuration between
GEFS and the two MPAS ensemble systems. An additional
experiment that uses hybrid 3DEnVar, which combines the
En-3DEnVar ensemble BEC with a climatological BEC, in-
creases tropospheric forecast quality compared to the corre-
sponding pure 3DEnVar experiment. The JEDI-MPAS En-
3DEnVar is technically working and useful for future re-
search studies. Tuning of observation errors and spread is
needed to improve performance, and several algorithmic ad-
vancements are needed to improve computational efficiency
for larger-scale applications.
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1 Introduction

Liu et al. (2022) introduced a new data assimilation (DA)
system for the Model for Prediction Across Scales – At-
mosphere (MPAS-A; Skamarock et al., 2012) that is built
on the Joint Effort for Data assimilation Integration (JEDI;
Trémolet and Auligné, 2020) software framework, called
JEDI-MPAS. Liu et al. (2022) demonstrated JEDI-MPAS for
global 3D ensemble-variational (3DEnVar) DA to produce a
deterministic (single-state) analysis of the atmosphere. When
approximating flow-dependent background error covariances
(BECs) in 3DEnVar, they used 20-member ensembles of
MPAS-A forecasts that were initialized from initial condi-
tions used by the National Centers for Environmental Pre-
diction (NCEP) Global Ensemble Forecast System (GEFS)
(Zhou et al., 2017).

It would be preferable for a myriad of research applica-
tions that the ensemble used in the DA be generated by JEDI-
MPAS itself so that it is consistent with the details – such as
the characteristics of the observing network – of a given ap-
plication. Here we evaluate using an ensemble of data assim-
ilations (EDA), implemented generically in JEDI and avail-
able for any forecast model with JEDI interfaces, to gen-
erate ensemble initial conditions for JEDI-MPAS. Our first
EDA implementation is for an ensemble of 3DEnVars (En-
3DEnVar) because it requires very few modifications to the
EnVar algorithm previously described by Liu et al. (2022).
A major attraction of EDA based on variational algorithms
is that most technical or algorithmic improvements targeted
for deterministic DA will directly translate to the ensemble
system.

The technique that we term EDA involves conducting an
ensemble of independent analysis and forecast steps in each
cycle. Each member ingests perturbed versions of the avail-
able observations during its assimilation step. This technique
was proposed and tested by Houtekamer and Derome (1995),
who called the approach “OSSE-MC”. Subsequent studies
employed EDA (under other names) to generate analysis
ensembles for ensemble forecasting systems (Houtekamer
et al., 1996; Hamill et al., 2000), for estimating forecast-error
statistics for DA covariance modeling (Fisher, 2003; Zagar
et al., 2005; Berre et al., 2006), and in “stochastic” ensem-
ble Kalman filters (EnKFs) (Houtekamer and Mitchell, 1998;
Burgers et al., 1998; and many subsequent papers).

Variationally based EDA was first implemented opera-
tionally as an ensemble of 4D variational (En-4DVar) min-
imizations at Météo-France (Berre et al., 2007; Desroziers
et al., 2008; Berre and Desroziers, 2010), and then at the Eu-
ropean Centre for Medium-Range Weather Forecasts (Isak-
sen et al., 2010). The UK Met Office later replaced its lo-
cal ensemble transform Kalman filter (LETKF) with an en-
semble of hybrid 4DEnVars (En-4DEnVar) in their ensemble
prediction system through extensive efforts (Bowler et al.,
2017a, b; Lorenc et al., 2017) and following multiple motiva-
tions: code maintenance is reduced via shared software with

their deterministic 4DVar, there is an improved capability to
use more advanced model-space localization techniques (i.e.,
Lorenc, 2017), the En-4DEnVar produced faster and more
realistic ensemble spread growth in forecasts than LETKF
(Bowler et al., 2017b), En-4DEnVar perturbations used as
flow-dependent BECs improved forecasts in their determin-
istic hybrid 4DVar system compared to LETKF perturbations
(Bowler et al., 2017a), and En-4DEnVar is cheaper than an
alternative En-4DVar. On the topic of model-space localiza-
tion, multiple authors have documented its use with an EnKF
since 2017 (Bishop et al., 2017; Lei et al., 2018).

There are numerous techniques besides variationally based
EDA for generating ensembles of initial conditions, includ-
ing 4D ensemble Kalman smoothers (Evensen, 2003). In par-
ticular, a relatively mature EnKF for MPAS exists (Ha et al.,
2017), which is based on the Data Assimilation Research
Testbed (DART; Anderson et al., 2009); we call this system
MPAS-DART. Although not a focus of this paper, the MPAS-
DART EnKF is a useful benchmark for initial evaluations
of the JEDI-MPAS En-3DEnVar, and we present companion
results from MPAS-DART for many aspects of JEDI-MPAS
performance.

While variationally based EDA poses a large potential
benefit of increased skill via reuse of 4D algorithms, it also
incurs more computational overhead per member than many
EnKF algorithms. There are numerous EDA algorithm ad-
vances in previous works to alleviate some of the added
cost compared to the EnKF, such as separating the update
of the ensemble mean and perturbations and using simpler,
cheaper configurations for the perturbation update (Buehner
et al., 2017; Lorenc et al., 2017), block minimization meth-
ods (Mercier et al., 2018), and advanced in-memory stor-
age and communication strategies for the numerous ensem-
ble perturbations (Arbogast et al., 2017). We do not consider
such enhancements in this paper, though they may certainly
be helpful in the future.

The outline of the paper is as follows. In Sect. 2 we briefly
describe the JEDI-MPAS En-3DEnVar implementation and
the MPAS-DART EnKF, both of which are used in our ex-
periments. In Sect. 4, we compare the 6 h ensemble forecast
statistics produced with the JEDI-MPAS En-3DEnVar and
the MPAS-DART EnKF across 1 month of cycling on the
MPAS-A quasi-uniform 60 km mesh. Although we do not
present a general comparison of an EnKF and EDA, there are
very few comparisons in the literature (e.g., Hamrud et al.,
2015; Bonavita et al., 2015), and this work gives another data
point. In Sect. 5, we use the 6 h forecasts initialized from
the MPAS-DART EnKF and JEDI-MPAS EDA analyses as
ensemble BECs in several dual-mesh “30 km–60 km” (i.e.,
30 km outer loop and 60 km inner loops) 3DEnVar determin-
istic cycling experiments to show the utility of the EDA in
producing flow-dependent BECs. Finally we finish with con-
clusions and a future outlook for JEDI-MPAS ensemble DA
in Sect. 6.
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2 Ensemble data assimilation

2.1 JEDI-MPAS EDA

Liu et al. (2022) described the 3DEnVar algorithm imple-
mented in JEDI, and thus JEDI-MPAS, following Lorenc
(2003) and Buehner (2005). We utilize the same algorithm
and software implementation in the En-3DEnVar and in sub-
sequent deterministic 3DEnVar experiments. In the EDA
there are Ne independent cost functions, where the ith EDA
cost function is evaluated at the ith background state xb,i ,

Ji(x)=
1
2
(x− xb,i)

TB−1
i
(x− xb,i)+

1
2
[h(x)− y− εi ]

T

R−1
[h(x)− y− εi]. (1)

The vectors εi are realizations of the random observation er-
ror ε ∼N(0,R), where R is the observation error covariance
matrix, and the ensemble mean of the realizations is removed
so that

∑
εi = 0. Removing the perturbation bias is standard

practice to avoid biasing the posterior, although doing so al-
ters the distribution of the perturbations. The observation op-
erator, h, simulates model-equivalent observations given the
state, x. In each outer iteration of a truncated Gauss–Newton
minimization (Lawless et al., 2005), an inner-loop minimiza-
tion uses a linear approximation of Eq. (1) to determine the
analysis increment. The increment is added to the current
guess of x, beginning at xb,i in the first outer iteration.

As described by Liu et al. (2022), the ith BEC, Bi in
Eq. (1), is a weighted sum of the climatological background
error covariance Bc and the member-specific sample ensem-
ble covariance Be,i , i.e.,

Bi = βcBc+βeL ◦Be,i, (2)

where βc and βe are scalar weights, with βc+βe = 1. βc,
βe, and Bc are identical for all EDA members. L ◦Be,i de-
notes the Schur product (element by element) of the local-
ization matrix L and Be,i . The member-specific Be,i allows
for self-exclusion, described in Sect. 2.1.1. Note that L is
a correlation matrix with diagonal elements being 1 and off-
diagonal elements smaller than 1 that reduce to 0 for a certain
distance between two model grid points. Therefore, the local-
ization matrix reduces spurious correlations in Be,i caused by
sampling errors associated with a limited ensemble size. The
only difference between the description above for EDA cy-
cling and deterministic cycling is that the latter only has one
background state, the observations are not perturbed, and the
BEC only has one realization based on all Ne members.

As described by Liu et al. (2022), the analysis variables
are temperature (T ), horizontal wind components (U , V ),
surface pressure (Ps), and specific humidity (Qv). One dif-
ference from Liu et al. (2022) is that the hydrostatic balance
constraint in the analysis increment stage is no longer applied
directly to the full analysis variables. Instead, an incremen-
tal form of the hypsometric equation is used to approximate

the dry-air density (ρd) and 3D pressure (P ) increments from
the increments in T , Ps, and Qv. The hypsometric equation
is linearized around a hydrostatic state constructed using the
previous outer iteration analysis, xi , of T , Ps, and Qv. Af-
ter the DA minimization is complete, the analysis state is
transformed to the MPAS-A prognostic variables during the
model initialization before the model’s time integration.

The ensemble BEC, Be, is represented by prior perturba-
tions (before assimilation) in those same analysis variables
with respect to the prior ensemble mean. As described in
Jung et al. (2023), Bc is constructed by applying linear trans-
formations that yield the analysis variables from stream func-
tion, velocity potential, and the “unbalanced” contributions
to temperature and surface pressure together with the as-
sumption that background errors in those underlying vari-
ables are mutually independent and have known isotropic co-
variances (Derber and Bouttier, 1999). Bc is implemented via
generic JEDI interfaces to the Background error on Unstruc-
tured Mesh Package (BUMP; Ménétrier, 2020).

2.1.1 Self-exclusion

As first shown by Houtekamer and Mitchell (1998), updat-
ing an ensemble of forecasts using an assimilation scheme
based on the sample covariances of that same ensemble, as in
En3DEnVar for example, leads to an analysis ensemble with
too little spread when compared to the errors in the analy-
sis mean. To counteract this systematic bias in the update,
they proposed splitting the ensemble into subsets and updat-
ing members in a given subset using the sample covariance
from members in the other subsets.

In the limit that the subsets contain a single member, each
member i in the EDA will use in the cost function (1) a
different, flow-dependent BEC Be,i , obtained by omitting
δxi = xi −xb, the ith ensemble perturbation, from the com-
putation of Be,i , where xb is the ensemble mean. Sacher and
Bartello (2008) and Mitchell and Houtekamer (2009) showed
with small toy problems that this approach causes the poste-
rior ensemble spread to overestimate the root-mean-square
error (RMSE) of the posterior ensemble mean.

Bowler et al. (2017b) called the removal of δxi from
Be,i “self-exclusion”, applying it to an En-4DEnVar, while
Buehner (2020) called it “cross-validation”, applying it to
an LETKF. Bowler et al. (2017b) and Buehner (2020) both
found that self-exclusion reduced the spread reduction that
occurred during the DA procedure going from background
ensemble to the analysis ensemble. Even so, Bowler et al.
(2017b) found that applying self-exclusion necessitated the
use of more relaxation than when not using self-exclusion
(see Sect. 2.1.2 for a definition of relaxation). Self-exclusion
is applied in the JEDI-MPAS EDA experiment described in
Sect. 4.
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2.1.2 Ensemble spread tuning

The EDA update described above will systematically under-
estimate the analysis uncertainty to some degree, despite em-
ploying multiple techniques to reduce the detrimental effects
of sampling error: covariance localization in the ensemble
BEC, hybridization with a static BEC, and self-exclusion.
More important, the ensemble forecasts in JEDI-MPAS do
not at present account for model error, so even if the anal-
ysis ensemble is perfectly representative of the statistics of
analysis error the ensemble forecast will be underdispersive.
Both effects will also accumulate over successive forecast–
analysis cycles. For these reasons, it is essential that JEDI-
MPAS include some method for tuning the overall ensemble
spread.

There are many approaches for tuning ensemble spread
to ensure stable cycling of the ensemble-dependent DA
and forecast system. In the relaxation to prior perturbations
(RTPP; Zhang et al., 2004) method, the analysis perturbation
for member i, δxa,i , is replaced by a weighted sum of δxa,i
and δxb,i with a scalar weight αRTPP, i.e.,

δxa,i← (1−αRTPP)δxa,i +αRTPPδxb,i . (3)

Thus, the relaxed ensemble perturbations take on some of the
observationally constrained analysis perturbations, δxa,i , and
the forecast-model-driven background perturbations, δxb,i .
In JEDI-MPAS, RTPP is carried out via a standalone exe-
cutable, one which inherits from a generic implementation in
the JEDI Object-Oriented Prediction System (OOPS) for the
RTPP application.

Whitaker and Hamill (2012) proposed an alternative to
RTPP called relaxation to prior spread (RTPS), which relaxes
the spread of the analysis ensemble toward the background
ensemble spread instead of relaxing the perturbations. The
underpinning of RTPS is the spread change ratio, s, whose
j th element, associated with a given grid cell and analysis
variable, is calculated as

sj =
σb,j − σa,j

σa,j
, (4)

where σb,j and σa,j are the prior and posterior ensemble
sample standard deviations (spreads). RTPS operates inde-
pendently for each j using a Schur product,

δxa,i← δxa,i ◦ (αRTPSs+ 1). (5)

It is common practice to combine RTPP with RTPS (e.g.,
Bowler et al., 2017b) or with multiplicative inflation or to
adapt α at each DA cycle (e.g., Kotsuki et al., 2017). Here
we only use RTPP with a fixed global α throughout all DA
cycles as a means of providing an initial JEDI-MPAS EDA
functionality to the community. There remain many opportu-
nities for improving ensemble spread in future work.

2.1.3 Implementation

In the EDA experiment presented here, each mem-
ber is treated with a fully independent execu-
tion of the JEDI-MPAS Variational application
(https://jointcenterforsatellitedataassimilation-jedi-docs.
readthedocs-hosted.com/en/latest/inside/jedi-components/
oops/applications/variational.html, last access: 28 Octo-
ber 2022). OOPS contains implementations for generic
model-independent applications in JEDI. The generic OOPS
Variational application can be used to conduct 3DVar,
3DEnVar, 4DEnVar, and 4DVar (for models with linearized
tangent and adjoint descriptions), as well as applicable
hybrid variants thereof. Only 3DVar, 3DEnVar, 4DEnVar,
and hybrid variants are enabled in the JEDI-MPAS model-
specific Variational executable at this time. Self-exclusion
is achieved in En-3DEnVar simply by removing each
member’s own background state from a list of ensemble
members in the Variational application configuration.

The ensemble forecasts and EDA are conducted via our
open-source MPAS-Workflow (https://github.com/NCAR/
MPAS-Workflow, last access: 8 March 2023), which uses
the Cylc general purpose workflow manager (Oliver et al.,
2019) v7.8.3 to orchestrate tasks written in a combination
of c-shell and Python scripts. MPAS-Workflow automati-
cally constructs Variational application configuration files in
YAML (yet another markup language) format for each cycle.
At the time of writing, MPAS-Workflow only operates on
the Cheyenne HPC (high-performance computer) managed
by the National Center for Atmospheric Research’s (NCAR)
Computational and Information Systems Laboratory (CISL).
MPAS-Workflow handles a small set of use cases specific to
the NCAR Microscale and Mesoscale Meteorology (MMM)
Laboratory. Although it is not yet designed for general pur-
pose use, this open-source repository might serve to instruct
others on how to run JEDI-MPAS and MPAS-A together.

The source code used for our experiments is provided in
the JEDI-MPAS 2.0.0-beta release version, as described in
the “Code and data availability” section.

2.2 EAKF in MPAS-DART

To assess the credibility of our newly developed JEDI-MPAS
EDA system, an ensemble adjustment Kalman filter (EAKF;
Anderson, 2001, 2003; Anderson and Collins, 2007) imple-
mented within the “Manhattan” version of DART (Ander-
son et al., 2009) is also used to produce analyses. DART is
a mature software platform for ensemble-based DA and has
been interfaced with MPAS-A (Ha et al., 2017). DART can
perform both stochastic and deterministic EnKF algorithms,
where only the former perturbs observations. When back-
ground and observation error distributions are near-Gaussian,
the use of perturbed observations is known to degrade the
quality of the ensemble-mean analysis relative to that pro-
duced by deterministic filters (Anderson, 2001; Whitaker and
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Hamill, 2002) and a theoretically similar deterministic varia-
tionally based EDA (Bowler et al., 2012). On the other hand,
as the forecast model and observation operators become in-
creasingly nonlinear, there is evidence that an EDA with per-
turbed observations avoids some pathological behaviors that
appear in deterministic EnKFs (Lawson and Hansen, 2004;
Anderson, 2010; Lei et al., 2010; Anderson, 2020).

As a deterministic square-root variant of the EnKF, the
EAKF has many differences from the EDA algorithm de-
scribed in Sect. 2.1. The primary difference is that EAKF
does not perturb observations; all members assimilate an
identical realization of a given observation (i.e., the mea-
sured observation). Another technical difference is that the
EAKF assimilates observations one at a time, whereas vari-
ational minimizations assimilate all observations simultane-
ously. Moreover, while 3DEnVar applies covariance local-
ization in model space, the EAKF applies localization to
observation–observation and observation–state covariances,
which may be suboptimal for assimilation of radiance obser-
vations (Campbell et al., 2010; Lei et al., 2018). Additionally,
the EAKF does not employ self-exclusion (Sect. 2.1.1) to
compute unique BECs for each ensemble member, and there
are also differences regarding posterior relaxation between
EDA and the EAKF (described in Sect. 4.1). Finally, MPAS’s
interface with DART does not use a hydrostatic pressure con-
straint on analysis increments, unlike JEDI-MPAS’s varia-
tional algorithm (Sect. 2.1).

There are clearly many differences between the En-
3DEnVar implemented in JEDI-MPAS and the EAKF in
MPAS-DART. Moreover, neither system has been thor-
oughly tuned, and DART has many capabilities that we do
not exercise, including sophisticated inflation and localiza-
tion options. We therefore do not attempt to attribute dif-
ferences between their performances to specific settings or
parameters. Instead, we view MPAS-DART as a convenient
baseline against which to compare the robustness and va-
lidity of our newly developed EDA implementation within
JEDI-MPAS.

3 Model and observation configurations

3.1 MPAS-A model

MPAS-A is a non-hydrostatic model discretized on an un-
structured centroidal Voronoi mesh in the horizontal with
C-grid staggering of the state variables and works for
both global and regional applications (Skamarock et al.,
2012, 2018). Herein we present results using two different
MPAS-A quasi-uniform meshes, 60 km (163 842 horizontal
columns) and 30 km (655 362 columns). All time integra-
tions for the 60 km mesh use a 360 s time step, while those
for the 30 km mesh use a 180 s time step. Additional sensitiv-
ity experiments are described that utilized the quasi-uniform
120 km mesh (40 962 columns) with a 720 s time step. All

meshes utilize 55 vertical levels with a 30 km model top and
the “mesoscale reference” physics suite, as described by Liu
et al. (2022).

In almost all respects, the same modified version of
MPAS-A version 7.1 that was used by Liu et al. (2022) is
used here. Some minor code modifications are included in
the JEDI-MPAS 2.0.0-beta release version, as described in
the “Code and data availability” section.

3.2 Observations

All experiments assimilate the same set of observations.
We convert netCDF-formatted observation diagnostic files
from the Gridpoint Statistical Interpolation (GSI; Shao et al.,
2016) system (i.e., “GSI-ncdiag”) to a format that can be
read by the JEDI Interface for Observation Data Access
(IODA; Honeyager et al., 2020). For in situ observations, we
assimilate sondes (temperature, virtual temperature, zonal
and meridional wind components, specific humidity), aircraft
(temperature, zonal and meridional wind components, spe-
cific humidity), and surface pressure. For non-radiance re-
mote observations, we assimilate satellite atmospheric mo-
tion vectors (AMVs, zonal and meridional wind compo-
nents) and global navigation satellite system and global po-
sitioning system radio occultation (collectively referred to as
GNSSRO herein) refractivity.

We assimilate clear-sky microwave radiances as bright-
ness temperature from six Advanced Microwave Sounding
Unit-A (AMSU-A) sensors aboard NOAA-15, NOAA-18,
NOAA-19, AQUA, MetOp-A, and MetOp-B. We only as-
similate channels 5 to 9 because higher-peaking channels are
sensitive to stratospheric regions that are above the 30 km
model top and thus cannot be simulated correctly. Addition-
ally, some AMSU-A channels are removed following sensi-
tivity experiments that showed larger RMSEs or lower qual-
ity in 6 h forecasts: NOAA-19 channel 8; AQUA channels 5,
6, and 7; MetOp-A channels 7 and 8; and MetOp-B channels
5, 6, and 7.

The GSI-ncdiag files include brightness temperature bias
correction, which is calculated using variational bias correc-
tion (VarBC) in GSI to correct for fluctuations in instrument
bias. We add those pre-computed bias corrections directly
to the observed brightness temperature before reading the
IODA-formatted observations into JEDI-MPAS. Similarly,
observation error standard deviations (square root of diag-
onal of R) come directly from the GSI-ncdiag files for most
observation types. The only exceptions are for GNSSRO and
satellite AMVs. The GNSSRO refractivity errors are calcu-
lated online within the JEDI unified forward operator (UFO;
Honeyager et al., 2020) using a height-dependent parameter-
ization ported from GSI.

In early sensitivity experiments, we determined that the
observation errors for AMVs provided in GSI-ncdiag files
were much larger than the RMSE of JEDI-MPAS back-
ground innovations, dj = hj (xb)− yj , and that the obser-
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Table 1. Observation error standard deviation versus pressure for satellite AMVs.

P (hPa) 1000 950 800 650 600 550 500 450 400 350 300 250 200 150 100

σo (m s−1) 1.4 1.5 1.6 1.8 1.9 2.0 2.1 2.3 2.6 2.8 3.0 3.2 2.7 2.4 2.1

vations were much denser than either of the 30 or 60 km
meshes. We opt to reduce the correlations between dense ob-
servations by thinning them horizontally. Both AMVs and ra-
diances are thinned on a 145 km global Gaussian mesh. Also,
we opt to decrease the prescribed AMV observation errors
according to the pressure-dependent values shown in Table 1,
with linear interpolation between the pressures shown and
following the same parameterization as an early Joint Center
for Satellite Data Assimilation (JCSDA) near-real-time pro-
totype (Greg Thompson, personal communications, 2022).
As is discussed in the context of the results, there are many
opportunities still to optimize the observation errors for the
JEDI-MPAS cycling system, but that is not the major focus
of this work.

We use a quality control (QC) check for all observations
that allows for maximum “PreQC” quality flags (as provided
in the GSI-ncdiag files) of 0 and 3 for radiance and non-
radiance instruments, respectively. PreQC includes various
checks for raw data quality, as well as background innova-
tion checks from GSI based on its own background state.
We additionally filter observation locations and variables that
exceed a 3σo background check (i.e., the observation error
normalized absolute innovation must satisfy |d|

σo
≤ 3 to be

assimilated). Surface pressure locations are removed when
the model elevation and observing station elevation differ by
more than 200 m. Also, the surface pressure forward oper-
ator includes a height correction following the appendix of
Ingleby (2013).

4 Ensemble cycling

4.1 Setup

We conduct two ensemble cycling experiments with nearly
identical settings. One experiment uses the JEDI-MPAS
EDA (EDA), and the other experiment uses the MPAS-
DART EAKF (DART). Both experiments use 80 initial en-
semble backgrounds generated by integrating 4 sets of 20
MPAS-A forecasts. The 4 forecast sets are initialized from
20-member GEFS initial conditions (i.e., 0 h forecasts) valid
at 00:00, 06:00, 12:00, and 18:00 UTC on 14 April 2018.
Thus the first cycle background ensemble at 00:00 UTC on
15 April 2018 is comprised of 24, 18, 12, and 6 h forecasts
on the 60 km mesh.

Both ensemble experiments alternate between data assim-
ilation and an ensemble of 6 h forecasts at each cycle un-
til 18:00 UTC on 14 May 2018, ending with a final forecast
valid at 00:00 UTC on 15 May 2018. This 1-month exper-

imental period is too short to draw broad conclusions but
is sufficient to demonstrate the new En-3DEnVar capability.
The results that follow in Sect. 4.2 reflect statistics calcu-
lated from 00:00 UTC on 17 April 2018 to 18:00 UTC on
14 May 2018 (inclusive) to allow 2 d for spin-up of char-
acteristic errors. The unique aspects of the EDA and DART
experiments follow.

Each EDA variational minimization uses a single outer-
loop iteration and 60 inner-loop iterations. The ensemble
BEC localization uses fixed-length scales of 1200 and 6 km
in the horizontal and vertical dimensions, respectively. Prior
to conducting the 60 km experiments presented here, we car-
ried out 1-month EDA sensitivity experiments on the 120 km
mesh to determine the impacts of self-exclusion and RTPP.
We found that using self-exclusion increased background en-
semble spread for a fixed αRTPP and improved forecast veri-
fication scores compared to not using self-exclusion. There-
fore, we use self-exclusion without further sensitivity study
in the 60 km EDA experiment.

Among selected αRTPP, varying from 0.5 to 0.95 in 0.05
steps, we found that αRTPP = 0.80 yielded the best 1 to 10 d
forecasts in 120 km sensitivity tests with 20 ensemble mem-
bers. Those forecasts were initialized by the mean of the 20-
member analysis ensembles at 00:00 and 12:00 UTC from
15 April to 4 May 2018. We also generally found improve-
ment when increasing ensemble size from 20 members to 80
members while using αRTPP = 0.80, with some saturation of
forecast quality seen with only 40 members. As Bowler et al.
(2017b) described, αRTPP can be decreased when increasing
ensemble size because sampling error is reduced. Similarly,
inflationary measures can be reduced when decreasing mesh
spacing because sub-grid-scale model error is reduced, and
resolved physics are more active, mitigating underdispersive-
ness in ensemble forecasts. Therefore we executed two dif-
ferent 20-member 10 d EDA experiments on the 60 km mesh
with αRTPP = 0.4 and αRTPP = 0.7. Their mean background
RMSE was much less sensitive to the relaxation coefficient
than were the 20-member experiments on the 120 km mesh.
Therefore, we chose αRTPP = 0.7 for the 80-member 60 km
EDA experiment, even if it may not be an optimal setting.

The DART experiment is identical to the EDA experi-
ment in terms of initialization, cycling period (6 h), and cy-
cling duration. In addition, the EAKF uses the same 1200 km
horizontal and 6 km vertical localization length scales as
EDA, although localization in DART is in observation space
rather than model space (see Sect. 2.2). Although Greybush
et al. (2011) found that optimal observation-space localiza-
tion lengths ought to be shorter than those in model space,
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careful tuning of the DART experiment was not our focus.
DART uses RTPS with αRTPS = 1.0 to maintain ensemble
spread throughout cycling.

For observations, DART uses the JEDI-MPAS model-
specific implementation of the OOPS HofX3D application
(https://jointcenterforsatellitedataassimilation-jedi-docs.
readthedocs-hosted.com/en/latest/inside/jedi-components/
oops/applications/hofx.html, last access: 28 October 2022)
to apply forward operators for each ensemble member,
assign observation errors, and perform quality control
and observation thinning. The output of HofX3D is then
ingested into MPAS-DART, bypassing DART’s own forward
operators and observation processing capabilities.

Given the coupling of HofX3D to MPAS-DART, both
EDA and DART utilize identical observations possessing
identical observation errors (Sect. 3.2). However, there is
one subtle difference regarding observation QC filtering. The
background check for all members in DART is based on
the prior ensemble mean, whereas the background check in
EDA is applied independently to each ensemble member be-
fore the observations are perturbed. That difference, coupled
with differences in algorithm, localization, and inflationary
measures between EDA and DART (Sect. 2), means that
throughout the month of cycling the two experiments assimi-
late slightly different observations because different observa-
tions could fail the background check between experiments.
Nonetheless, any differences in assimilated observations re-
flect differences in the assimilation algorithms and their par-
ticular settings rather than the observation rejection.

Throughout this section and Sect. 5, comparisons are made
to initial conditions (referred to herein as “analyses”) used
in the NCEP Global Forecasting System (GFS). The GFS
analyses are transformed to the same mesh used to produce
forecasts (e.g., 60 or 30 km) via MPAS-A’s initialization pro-
cedures. GFS is a well-tuned operational forecast system ini-
tialized from a deterministic analysis produced by NCEP’s
Global Data Assimilation System (GDAS) hybrid 4DEnVar
(Kleist and Ide, 2015). Thus, we expect GFS analyses to be
more accurate than the analyses produced in our own exper-
iments.

4.2 Results

If GFS analyses are considered to be truth, and the MPAS en-
semble background states are unbiased relative to that truth,
then the optimal background ensemble spread (σxb ) is equal
to the RMSE of differences between the prior ensemble-
mean and GFS analyses (i.e., rms(δxGFSa)), averaged over a
sufficient number of valid times. The MPAS ensemble back-
ground is not unbiased with respect to GFS analyses, espe-
cially near the model top for temperature (T ), zonal wind
(U ), and pressure (P ) (not shown). Although the operational
GFS analyses are undoubtedly more accurate than the JEDI-
MPAS ensemble-mean backgrounds, they are still not equal
to the truth. RMSEs of longer-duration ensemble forecast

mean states with respect to independent analyses are use-
ful for diagnosing spread growth characteristics (e.g., Bowler
et al., 2017b), but such measures at a 6 h forecast length
should be considered qualitative.

With those caveats in mind, Fig. 1 shows rms
(
σxb

)
and

rms(δxGFSa) for DART and EDA, aggregated over all hor-
izontal columns and varying with model level. There is a
strong indication that the background ensemble spreads are
too small, or the RMSE is too large, especially near the top of
the model and near the surface for T . Since we have not em-
ployed any measures to account for model uncertainty (see
Sect. 2.1.2), we expect that the ensemble forecasts will be
underdispersive. Overall, DART and EDA produce similar
ensemble spreads and ensemble-mean RMSEs at most model
levels.

Figure 2 dissects the same quantities for model-simulated
Ps, varying with latitude. There are obvious zonal differences
between the two ensemble cycling experiments. DART pro-
duces slightly larger Ps spread than EDA in the tropics and
smaller spread elsewhere. Those spread variations do not cor-
relate directly with RMSE, since EDA produces a smaller
RMSE at all latitudes. In separate diagnostics that further
narrow down the Ps spread and RMSE on a world map (not
shown), we found that DART’s larger local spread correlates
with lower RMSE in the western tropical Pacific Ocean, and
EDA’s smaller local spread correlates with lower RMSE in
the tropical Atlantic Ocean and southeastern Pacific Ocean.
Those correlations could be associated with the relative avail-
abilities of local Ps observations, with there being slightly
more available in the western Pacific.

The DART experiment has diminishing U and V ensem-
ble spread in the tropical free troposphere as the cycling pro-
gresses (not shown). That spread loss could be caused by pre-
viously documented characteristics of RTPS, which Bowler
et al. (2017b) found to produce inflation at much smaller
scales than RTPP. Thus, that behavior is not indicative of rel-
ative performances of EAKF and EDA algorithms. The full
investigation is reserved for future work, since the DART ex-
periment is not the target of our current effort. However, the
differences in U and V ensemble spread between DART and
EDA have a non-negligible impact on the deterministic re-
sults presented in Sect. 5.2.

In fact, the ensemble spread decrease is likely the cause
of differences in innovation RMSE for satellite AMVs be-
tween EDA and DART above 650 hPa (Fig. 3). Also shown
are the total spread (Andersson et al., 2003; Desroziers et al.,
2005) for both experiments. From Fig. 3, one might con-
clude that the observation error and/or the ensemble spread
are too small to account for the ensemble-mean RMSE. Af-
ter running all of the experiments in this study, we found
that GSI assigns unique observation errors for each satellite
AMV data source (e.g., Geostationary Operational Environ-
mental Satellite, GOES; European Organisation for the Ex-
ploitation of Meteorological Satellites, EUMETSAT; Japan
Meteorological Agency, JMA) and instrument band (e.g., in-
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Figure 1. Root mean square (rms) of ensemble-mean background difference to GFS analyses (δxGFSa) and background ensemble standard
deviation (σxb ) for model-simulated (a) temperature (T ), (b) water vapor mixing ratio (Qv), and (c) zonal (U ) and (d) meridional (V ) wind
components, all versus model level. Statistics are tabulated across all grid columns for DART and EDA experiments from every 6 h ensemble
background between 00:00 UTC on 17 April 2018 and 00:00 UTC on 14 May 2018.

frared window, infrared water vapor, visible). Therefore the
single vertical error distribution assigned in Table 1 for all
AMVs needs to be revisited.

All things considered, the EDA and DART experiments
produce remarkably similar behaviors. Those similarities are
attributable to their commonalities in settings used for ob-
servation processing and lack of tuning. There are still many
opportunities to reduce the prior ensemble-mean RMSE for
both experiments, including observation error tuning, fixing
known issues in GNSSRO assimilation (see Sect. 6), and
assimilating more observation types. There are also many
opportunities to increase the ensemble spread such that the
consistency between spread and RMSE is improved, includ-
ing accounting for model uncertainty, tuning the relaxation
mechanism(s), and applying additive and prior inflation.

5 Deterministic cycling

5.1 Setup

Both the EDA and DART ensemble cycling experiments suc-
cessfully cycled for an entire month, independent of a higher-
resolution centered EnVar state (i.e., such as that conducted
by Liu et al., 2022). EDA and DART exhibit nearly stable
spread characteristics, even if the spread tends to be too nar-
row relative to ensemble-mean RMSEs. Therefore, their re-
spective background ensemble forecasts might be effective to
use as Be in deterministic 3DEnVar cycling experiments. We
conduct four deterministic dual-mesh 30 km–60 km 3DEn-
Var cycling experiments following the same approach as Liu
et al. (2022), where the 30 km mesh is used in the DA outer
loop and in forecasts, and the 60 km mesh is used for anal-
ysis increments in the DA inner loop. In the experiments
presented, “dual-mesh” is wholly equivalent to a traditional
dual-resolution incremental variational minimization. How-
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Figure 2. Same as Fig. 1, except for model-simulated surface pres-
sure (Ps) versus latitude.

Table 2. Deterministic 3DEnVar experiments.

Experiment BEC

gefs100 100 % 20-member ensemble, 6 h 60 km MPAS-A forecasts
from GEFS analyses

dart100 100 % 80-member ensemble, DART background forecasts
eda100 100 % 80-member ensemble, EDA background forecasts
eda75c25 75 % EDA background forecasts, 25 % climatological

ever, it is also possible to use variable-resolution meshes in
either the inner or outer loop in JEDI-MPAS such that there
may be many more than two mesh spacings (resolutions).
EDA was limited to 1 outer iteration and 60 inner iterations
for cost savings, but many more iterations are cheap in de-
terministic cycling. We apply 2 outer iterations, each with 60
inner iterations, to improve convergence toward observations
with nonlinear operators. The same 1200 km horizontal and
6 km vertical localization length scales are applied as in the
two ensemble experiments.

The only difference between the four deterministic exper-
iments is the choice of BEC, which is summarized in Ta-
ble 2. There are three pure 3DEnVar experiments – gefs100,
dart100, and eda100 – that use 100 % ensemble BECs based
on 20-member GEFS, 80-member DART, and 80-member
EDA, respectively; gefs100 is equivalent to the clrama ex-
periment from Liu et al. (2022).

There is one hybrid 3DEnVar experiment, eda75c25, that
uses a mixture of 75 % EDA ensemble and 25 % climato-
logical BEC. The climatological BEC, Bc, is identical to the
one described by Jung et al. (2023). Bc is trained using the
National Meteorological Center (NMC) method (Parrish and
Derber, 1992) with 366 samples of 48 h minus 24 h GFS fore-
cast differences. The standard deviation of the trained Bc is

scaled by 1/3, which was determined to be a quasi-optimal
tuning justified by the need to match the 24 h forecast statis-
tics to the 6 h background forecast duration. The horizontal
length scales of stream function and unbalanced velocity po-
tential (see Sect. 2.1 for more details) are scaled by 1/2 to
account for differences between the sampled correlation ver-
sus separation distance relationship and the Gaspari–Cohn
fitting function used in BUMP. More details can be found in
Jung et al. (2023).

All four experiments are initialized with a 6 h forecast
initialized from a GFS analysis valid at 18:00 UTC on
14 April 2018, which was transformed to the MPAS-A 30 km
mesh. The results that follow in Sect. 5.2 reflect statis-
tics aggregated across twenty-seven 10 d forecasts initial-
ized from 00:00 UTC analyses valid from 18 April 2018 to
14 May 2018. When error bars are shown, they indicate 95 %
confidence intervals of those differences, tabulated via boot-
strap resampling. Each of the binned RMSE differences from
the 27 forecasts is treated as an independent and identically
distributed sample, and they are resampled 10 000 times with
replacement. The 95 % confidence intervals are then obtained
by selecting the sample values at the 2.5th and 97.5th quan-
tiles, referred to as the “percentile method” by Gilleland et al.
(2018). It should be noted that the number of samples used
here is small and does not account for seasonal variation in
forecast quality. A more robust approach is needed when de-
ploying an operational system.

5.2 Results

First we present results for the three pure 3DEnVar exper-
iments to evaluate the efficacy of the EDA ensemble BEC.
Our goal is to interrogate the EDA ensemble to determine
its utility for future investigations and not to claim anything
about its quality relative to the other data sources. A low wa-
ter mark is for forecasts initialized from eda100 analyses to
yield skills equivalent to or better than those initialized from
gefs100 analyses; dart100 is included to demonstrate how
small differences between EDA and DART affect determin-
istic cycling performance. As we describe in Sect. 4.2, those
differences are not necessarily related to the ensemble DA
algorithms.

Although GEFS was only available as a 20-member prod-
uct during the period of experimentation presented herein,
GEFS now provides 30-member ensemble forecasts (Zhou
et al., 2022). In either case, the GEFS initial conditions are
actually 6 h forecasts initialized from analyses drawn from
the 80-member GDAS (Zhou et al., 2017). Therefore, they
benefit from being produced by an 80-member EnKF. Addi-
tionally, GEFS initial conditions are expected to have added
value over JEDI-MPAS’s own ensemble because they benefit
from the GDAS’s EnKF assimilating many more observation
types, having operational-quality observation error and infla-
tion tuning, applying stochastic schemes to ensemble fore-
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Figure 3. Root mean square (rms) of ensemble-mean background innovation (d) and background ensemble total spread for satellite AMV
(a) zonal and (b) meridional wind components versus pressure. Statistics are tabulated globally for DART and EDA experiments from every
6 h ensemble background between 00:00 UTC on 17 April 2018 and 00:00 UTC on 14 May 2018.

casts to treat model error, and being operated at a higher res-
olution.

Figure 4 shows the dart100 and eda100 percent differ-
ence in RMSE with respect to GFS analyses compared to the
RMSE of the control experiment, gefs100, in 0 to 10 d fore-
casts; eda100 performs better than gefs100 with 95 % confi-
dence for T , U , and V . The relative performance of dart100
with respect to gefs100 follows similar trends for T , U , and
V , slightly outperforming eda100 for T and slightly under-
performing eda100 for U and V ; eda100 produces a nearly
neutral impact for Qv, although there is some degradation
near the model top that dominates these vertically aggregated
errors around day 5. The neutral Qv impact in this globally
and vertically aggregated metric is likely due to the limited
assimilation of moisture-sensitive observations (only sondes
and aircraft). Assimilating radiances from water vapor chan-
nels in all-sky scenes (i.e., Liu et al., 2022) would better re-
veal the Qv impacts of these experimental ensembles.

Figure 5 delves deeper into the largest source of wind ob-
servations to impact the DA analyses and subsequent fore-
casts: satellite AMVs. Although the verification against GFS
analyses indicated improvement for both experiments, here
the impact of the EDA ensemble in eda100 is nearly neutral
for 1 to 3 d forecasts, and the DART ensemble has negative
impacts, up to 5 % forU at 100 hPa, that are largely limited to
tropical latitudes. As described in Sect. 4.2, the observation
errors for satellite AMVs have much room for improvement,
and the DART ensemble has decreasing transient U and V
ensemble spread in the tropical free troposphere. More work
remains to tune both the observation errors (e.g., following
Desroziers et al., 2005) and BEC (either through spread tun-
ing or covariance and localization improvements) in both the

dart100 and eda100 experiments, which may explain some
of the poor wind forecast quality.

One observation that is generally consistent with the GFS
analyses is sonde T and U in the Northern Hemisphere
(Fig. 6). Both dart100 and eda100 achieve up to a 5 % pos-
itive impact above 50 hPa on day 1 for T and U , which
slightly decreases on day 2. That positive T impact is col-
located with a large cold bias that the non-GEFS BECs im-
prove upon but do not remove entirely. Neither experiment
gives statistically significant improvement in the troposphere
compared to gefs100. Since the positive impact on sondeU is
largely above 100 hPa, it is not surprising that is not reflected
in the AMV verification, since satellite AMVs are located at
100 hPa and below.

That vertical distribution of T and U impacts is corrob-
orated in model space via 2 d forecast verification versus
GFS analyses (Fig. 7); dart100 and eda100 yield their largest
improvements to T and U (more than 30 % locally) in the
southern polar stratosphere (approximately above levels 35
to 40). Modest positive impacts are seen at most latitudes in
the stratosphere consistently across both experiments. How-
ever, the tropical degradation in tropospheric T and U for
dart100 is more obvious in this model-space verification.
Also, eda100 has degradation in the northern polar tropo-
sphere. The vertical and latitudinal distribution of T impacts
in dart100 and eda100 largely aligns with the impacts on
GNSSRO refractivity.

Observations of GNSSRO refractivity, which is sensitive
to T and Qv, indicate a positive tropospheric impact from
both sets of 80-member BECs, although mostly limited to
40◦ S and poleward. Figure 8 shows the zonally aggregated
dart100 and eda100 percent difference in RMSE with re-
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Figure 4. Percent difference in rms(δxGFSa) of dart100 and eda100 with respect to rms(δxGFSa) of gefs100 (i.e., 100·(rms(δxGFSa|eda100)−
rms(δxGFSa|gefs100))/rms(δxGFSa|gefs100)). Values greater than zero indicate degradation relative to gefs100, while values less than zero
indicate improvement. Error statistics are aggregated for all model grid columns and levels as a function of forecast lead time (0 to 10 d) for
simulated (a) temperature, (b) specific humidity, and (c) zonal and (d) meridional wind components and pertain to 27 forecasts initialized
from 00:00 UTC analyses from 18 April to 14 May 2018. Error bars indicate 95 % confidence intervals determined via bootstrap resampling
(see text for description).

spect to refractivity compared to RMSE of gefs100 for 90 to
30◦ S. Both sensitivity experiments give a two-peak, statisti-
cally significant positive impact centered near 15 and 22 km
altitudes, with a dip near the tropopause that might be ex-
plained by its misrepresentation in DA background states;
eda100 and dart100 achieve at least a 15 % positive impact
at some stratosphere altitudes out to day 3. In the tropo-
sphere, both experiments give comparable positive impacts,
over 10 % on day 1 and declining slightly with lead time. All
positive impacts in the Southern Hemisphere are above the
planetary boundary layer. Although not shown in Fig. 8, the
stratospheric impact of the 80-member BECs persists out to
day 5.

It is useful to further explore the impacts of using a hybrid
BEC because that algorithmic enhancement is readily adapt-
able to future EDA applications. Therefore, we first compare
eda75c25 to eda100 to demonstrate the benefits of addition-
ally accounting for climatological BECs and then to gefs100
to show the total impact of developments herein and in Jung
et al. (2023).

Adding the 25 % climatological BEC component and scal-
ing the 80-member ensemble BEC component by 75 % adds
significant value across a wide range of observation- and
model-space verification metrics. Figure 9 shows the T , Qv,
U , and V RMSE with respect to GFS analyses at 2 d lead
time for eda100 and the corresponding percent differences
in RMSE for eda75c25. Most of the positive impacts for T
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Figure 5. Percent difference in rms(O-F) of dart100 and eda100 with respect to rms(O-F) of gefs100 for satellite AMVs. Error statistics
are aggregated for individual pressure bins and as a function of forecast lead time (1 to 3 d) for (a–c) zonal and (d–f) meridional wind
components and pertain to 27 forecasts initialized from 00:00 UTC from 18 April to 14 May 2018. Error bars indicate 95 % confidence
intervals determined via bootstrap resampling (see text for description).

are limited to the troposphere (below model levels 35–40)
and reach up to 14 % above the North Pole. Since the EDA
ensemble caused some degradation near the North Pole and
did not cause much improvement outside the southern ex-
tratropical to polar free troposphere and stratosphere, this is
a welcome benefit. The eda75c25 2 d forecast moisture also
aligns better with GFS analyses than eda100, although this
also makes up for some degradation in stratospheric Qv be-
tween eda100 and gefs100. Overall, eda75c25 consistently
improves the 2 d wind forecasts throughout the troposphere.
It is clear that the climatological BEC makes up for informa-
tion that is lacking in the completely flow-dependent ensem-
ble BEC.

Finally, we consider a metric which incorporates infor-
mation from multiple variables. According to Krishnamurti
et al. (2003), a 500 hPa geopotential height anomaly cor-
relation coefficient (ACC) “greater than 0.6 generally im-
plies that troughs and ridges at 500 hPa are beginning to
be properly placed in that forecast.” We calculate anomalies

with respect to the climatology derived from the 1980–2010
NCEP/NCAR reanalysis products (Kalnay et al., 1996). We
conduct cold-start forecasts initialized from GFS analyses as
a reference. The cold-start forecast anomalies are compared
to those of GFS analyses. For the eda75c25 and gefs100 ex-
periments, their forecast anomalies are compared to those of
their respective analyses. Figure 10 shows the 1 to 7 d fore-
cast ACC scores for eda75c25, gefs100, and the cold-start
forecasts. The gefs100 forecasts are approximately 0.6 d be-
hind the GFS analyses at 0.7< ACC< 0.9; eda75c25 pro-
vides approximately 0.1 to 0.2 d enhanced predictability for
4 to 6 d forecasts globally.

The EDA ensemble-based BEC and the climatological
BEC contribute complementary information in the determin-
istic cycling. Although there are still many avenues for future
improvements, these BECs are ready for the non-developer
user base. On the basis of this work, JEDI-MPAS has the
means to produce an ensemble of forecasts without relying
on an external analysis system at each cycle.
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Figure 6. Same as Fig. 5, except for 1 to 2 d forecasts of sonde (a–b) temperature and (c–d) zonal wind component between 30 and 90◦ N.

6 Conclusions and future outlook

This paper documents the implementation of En-3DEnVar
for JEDI-MPAS, and demonstrates its use in both ensem-
ble cycling and experiments in which a previously computed
EDA ensemble provides the BEC for cycling EnVar.

Our cycling DA experiments previously required ensem-
bles of initial conditions from an external system (GEFS)
(Liu et al., 2022). Using EDA gives ensemble initial condi-
tions that are consistent with the configuration of MPAS (for
example, including a set of hydrometeors consistent with the
chosen microphysical scheme) and with the observing net-
work used. The EDA also performs better in most scores rel-
ative to our previous approach, though with increased com-
putational cost. As a further check on the implementation
of EDA, we compared against an experiment using MPAS-
DART, a more mature ensemble data assimilation system,
for ensemble BEC generation and found comparable perfor-
mance in terms of ensemble spread, ensemble-mean back-
ground RMSE, and subsequent deterministic cycling forecast
quality.

A further refinement, which improves relative to using
the EDA in EnVar alone and across almost all latitudes and
heights, is the use of a hybrid BEC that is a weighted sum of
the ensemble covariances and the static covariances of Jung
et al. (2023). With this refinement, the system is ready to pro-
duce research-quality ensembles for future sensitivity studies
that aim to enhance JEDI-MPAS.

A non-standard element of our experiments is the use
of self-exclusion, as in Bowler et al. (2017a) and Buehner
(2020). In the update for a given member, the ensemble co-
variance in the BEC is based on the remaining members,
with its own member “excluded”. Self-exclusion improves
the EDA results because it significantly reduces the EDA bias
toward underestimating the analysis spread. We defer further
analysis of self-exclusion to a separate paper.

The largest improvements from EDA relative to using
GEFS-based BEC are found in temperature and wind in the
stratosphere and throughout the Southern Hemisphere. The
improvements in the stratosphere come despite the EDA en-
semble being underdispersive there and despite substantial
stratospheric temperature biases in both the analyses and
forecasts. We have since conducted multiple sensitivity tests
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Figure 7. (a, d) Reference rms(δxGFSa) for gefs100 and percent difference in rms(δxGFSa) for (b, e) dart100 and (c, f) eda100 at 2 d lead
time. Statistics are binned in groups of ∼ 5 model levels and 11◦ latitude bands for simulated (a, b, c) temperature and (d, e, f) zonal wind
component and pertain to 27 forecasts initialized from 00:00 UTC from 18 April to 14 May 2018. Inset black rectangles in individual bins
indicate that the difference in rms between experiments is nonzero with at least 95 % confidence, as determined via bootstrap resampling
(see text for description).

Figure 8. Same as Fig. 5, except for GNSSRO refractivity versus altitude between 90 and 30◦ S. Error bars indicate 95 % confidence intervals
determined via bootstrap resampling (see text for description).
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Figure 9. Same as Fig. 7, except that the (a, c, e, g) reference rms is for eda100, and (b, d, f, h) percent difference is shown for eda75c25.
Statistics are tabulated for simulated (a, b) temperature, (c, d) water vapor mixing ratio, and (e, f) zonal and (g, h) meridional wind compo-
nents.

where we assimilate GNSSRO bending angle instead of re-
fractivity and carefully tune the bending angle observation
errors. Those experiments reduce the stratospheric tempera-
ture bias significantly, and additional corrective measures are
still under investigation.

There are several paths to further improvements in the
short-range ensemble forecasts produced by the JEDI-MPAS
En-3DEnVar. In all ensemble and deterministic experiments,
most of the settings for observation error (R) and QC are
taken directly from operational-center-specific implementa-
tions in either UFO or GSI, and they reflect the characteristic
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Figure 10. The 1 to 7 d anomaly correlation coefficient (ACC) of
500 hPa geopotential height for gefs100, eda75c25, and cold-start
forecasts initialized from GFS analyses (Cold). Statistics are tabu-
lated over all grid cells and pertain to 17 forecasts initialized from
00:00 UTC from 18 April to 4 May 2018.

behavior of a different cycling system. Now that full deter-
ministic and ensemble cycling functionality has been demon-
strated with JEDI-MPAS, those settings can be robustly an-
alyzed and tuned (e.g., Desroziers et al., 2005). Accounting
for model error in the ensemble-forecast step is also a top
priority. Finally, additional improvements could be achieved
in EDA by using at least two outer iterations with more to-
tal inner iterations or by enabling an En-4DEnVar, both with
corresponding increases in cost.

Previous studies (e.g., Lorenc et al., 2017; Buehner et al.,
2017) have pointed out the significantly greater computa-
tional expense of EDA based on EnVar compared to an
EnKF. The same is true here: the EDA algorithm was roughly
4 times more expensive than the DART EAKF algorithm,
both with 80 members. The primary drivers of EDA cost
are the (1) reading and storing of 80 ensemble background
states by each of those independent Variational members and
(2) the performance of localization and multiplication for the
80 perturbations in each inner-loop iteration; together those
account for 2/3 of the total cost of the DA step. While recent
model-space localization techniques hold promise for main-
taining analysis covariance quality with fewer EDA members
(i.e., Lorenc, 2017), we did not exercise those here. However,
the total number of members strongly impacts both the EnKF
and EDA costs.

A solution to problem 1 using parallelization strategies
across minimization members was proposed by Arbogast
et al. (2017). A number of techniques also exist to address
problem 2. The multi-mesh minimizations used in determin-
istic experiments in Sect. 5 can be extended to the EDA.
“Mean–pert” methods (Lorenc et al., 2017; Buehner et al.,
2017) reduce computational costs by simplifying the update
of ensemble perturbations as compared to that of the en-
semble mean. Bowler et al. (2017b) used a mean–pert al-
gorithm to realize a cost reduction of a factor of 3 in their

En-4DEnVar (Lorenc et al., 2017). Block EDA algorithms
(Mercier et al., 2018) also hold promise for reducing in-
ner iteration count, which Gas (2021) demonstrated in JEDI.
Finally, because JEDI is relatively immature, there also re-
main many opportunities for basic computational optimiza-
tion of JEDI-MPAS. For example, after completing the EDA
and DART experiments, a single-precision in-core memory
and computation capability was added for JEDI-MPAS states
(e.g., xb, xa) and increments (e.g., δx). This development re-
duces the cost for the DA step of the EDA experiment by
25 %

The progress demonstrated herein is a testament to the
fact that innovations introduced into JEDI by one contrib-
utor (e.g., JCSDA, NOAA, NASA, US Navy, US Air Force,
UK Met Office, NCAR) are more easily leveraged by part-
ners than was previously possible with separate DA soft-
ware frameworks. Together with Liu et al. (2022) and Jung
et al. (2023), the demonstration of EDA for JEDI-MPAS pro-
vides a foundation for more complex endeavors. In particu-
lar, variable mesh resolution is one of the main motivations
for MPAS-A and has been demonstrated to produce more re-
alistic forecasts than a nested domain near regions of mesh
refinement (Park et al., 2014). Work is already under way to
demonstrate variable-resolution and regional mesh capabili-
ties in JEDI-MPAS.

Code and data availability. JEDI-MPAS 2.0.0-beta is publicly re-
leased on GitHub and accessible in the release/2.0.0-beta
branch of mpas-bundle (https://github.com/JCSDA/mpas-bundle/
tree/release/2.0.0-beta, last access: 8 March 2023). It is also
available from Zenodo at https://doi.org/10.5281/zenodo.7630054
(Joint Center For Satellite Data Assimilation and National Cen-
ter For Atmospheric Research, 2022). Global Forecast Sys-
tem analysis data are downloaded from the NCAR Re-
search Data Archive https://doi.org/10.5065/D65D8PWK (Na-
tional Centers for Environmental Prediction/National Weather Ser-
vice/NOAA/U.S. Department of Commerce, 2015). Global En-
semble Forecast System ensemble analysis data are downloaded
from https://www.ncei.noaa.gov/products/weather-climate-models/
global-ensemble-forecast (last access: 21 October 2022). Con-
ventional and satellite observations assimilated are downloaded
from https://doi.org/10.5065/Z83F-N512 (National Centers for En-
vironmental Prediction/National Weather Service/NOAA/U.S. De-
partment of Commerce, 2008), https://doi.org/10.5065/DWYZ-
Q852 (National Centers for Environmental Prediction/National
Weather Service/NOAA/U.S. Department of Commerce, 2009),
and https://doi.org/10.5065/39C5-Z211 (Satellite Services Divi-
sion, 2004).
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