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Abstract. Implicit neural representation (INR) networks
are emerging as a powerful framework for learning three-
dimensional shape representations of complex objects. These
networks can be used effectively to model three-dimensional
geological structures from scattered point data, sampling ge-
ological interfaces, units, and structural orientations. The
flexibility and scalability of these networks provide a poten-
tial framework for integrating many forms of geological data
and knowledge that classical implicit methods cannot easily
incorporate. We present an implicit three-dimensional geo-
logical modelling approach using an efficient INR network
architecture, called GeoINR, consisting of multilayer percep-
trons (MLPs). The approach expands on the modelling capa-
bilities of existing methods using these networks by (1) in-
cluding unconformities into the modelling; (2) introducing
constraints on stratigraphic relations and global smoothness,
as well as associated loss functions; and (3) improving train-
ing dynamics through the geometrical initialization of learn-
able network variables. These three enhancements enable the
modelling of more complex geology, improved data fitting
characteristics, and reduction of modelling artifacts in these
settings, as compared to an existing INR approach to struc-
tural geological modelling. Two diverse case studies also
are presented, including a sedimentary basin modelled using
well data and a deformed metamorphic setting modelled us-
ing outcrop data. Modelling results demonstrate the method’s
capacity to fit noisy datasets, use outcrop data, represent un-
conformities, and efficiently model large geographic areas
with relatively large datasets, confirming the benefits of the
GeoINR approach.

Copyright statement. © His Majesty the King in Right of Canada,
as represented by the Minister of Natural Resources, 2023.

1 Introduction

Understanding the geometry of the subsurface is of critical
importance to a wide range of applications including earth
resource estimation (e.g., mineral, hydrocarbon, geothermal,
groundwater), subsurface storage (e.g., carbon sequestration,
radioactive waste), urban planning, climate change, and ed-
ucation. Three-dimensional geological modelling provides a
means of representing the geometry of the subsurface based
on available geological point data, typically from boreholes
and outcrop observations, sampling geological units, the in-
terfaces between them, and orientations of various structural
features (Wellmann and Caumon, 2018).

The two most common types of three-dimensional ge-
ological modelling approaches are differentiated between
explicit and implicit surface representations. Explicit ap-
proaches (Caumon et al., 2009; Sides, 1997) characterize
three-dimensional surface meshes between geological units
and/or faults and rely on either (1) digitized wireframes inter-
preted by users possessing geological expertise – guided by
primary geological observations – which are converted into
Bézier or NURBS (non-uniform rational B-splines) curves
and surfaces (de Kemp and Sprague, 2003; Sprague and de
Kemp, 2005) or (2) minimizing the surface roughness on
a carefully constructed initial surface mesh using discrete
smooth interpolation (Mallet, 1992, 1997) and supplied ge-
ological observations. Although these approaches can pro-
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duce excellent structural models – given sufficient modelling
and geological interpretative skill – they can require exten-
sive time to develop and are difficult to update and repro-
duce. Implicit approaches, on the other hand, represent geo-
logical surfaces as iso-surfaces in a three-dimensional scalar
field, interpolated from surface interface points, orientations,
and potentially off-surface information (Lajaunie et al., 1997;
Frank et al., 2007; Hillier et al., 2014). These approaches di-
rectly consider stratigraphic continuities and allow for a more
flexible updating process but give rise to new problems, as
they can produce geological models with modelling artifacts
in structurally complex settings. For more details on the dif-
ferent geological modelling approaches see Wellmann and
Caumon (2018).

Classical implicit interpolation – that is, non-machine-
learning estimation – has been thoroughly studied and de-
veloped over the last two decades with many extensions and
enhancements (Boisvert et al., 2009; Calcagno et al., 2008;
Caumon et al., 2012; Cowan et al., 2003; de la Varga et
al., 2019; Grose et al., 2019, 2021a; Hillier et al., 2014;
Irakarama et al., 2021; Laurent et al., 2016; Renaudeau et
al., 2019; Yang et al., 2019). Although their extensions and
enhancements are remarkable, the underlying mathematical
models by which they have been developed are not flexible
and scalable enough to incorporate large volumes of geo-
logical data and knowledge. Inequality constraints (Dubrule
and Kostov, 1986; Frank et al., 2007; Hillier et al., 2014),
for example, useful for incorporating above and below spa-
tial relationships between geological features (e.g., geolog-
ical interfaces and units) have scalability limitations, as the
number of constraints increase, due to the computationally
expensive convex optimizations required. Furthermore, mod-
elling in structurally complex settings using sparse, heteroge-
neously distributed, and noisy datasets remains challenging.
In these circumstances, models can exhibit artifacts (Hillier
et al., 2016; von Harten et al., 2021; Pizzella et al., 2022)
that are geologically impossible given the known geological
history and spatial relationships between geological features.
A common strategy to address such artifacts is by adding in-
terpretative points for horizons and faults, curves, or local-
ized surface patches, resulting in a hybrid implicit–explicit
approach. However, this circumvents core objectives of im-
plicit modelling, namely to facilitate reproducibility and fast
modelling results. Furthermore, a useful three-dimensional
geological model constructed this way requires significant
time, and the result is just one possible realization amongst
a family of possibilities. Indeed, there is an infinite set of
reasonable geological models that fit the data (Jessell et al.,
2010), each of which has varying degrees of uncertainty
(Lindsay et al., 2012; Wellmann and Regenauer-Lieb, 2012),
as some models are more probable over others. With the ad-
vent of probabilistic approaches (de la Varga and Wellmann,
2016; Grose et al., 2019), these degrees of uncertainty can
be somewhat quantified but fundamentally rely on the space
of models that can be produced from the underlying mathe-

matical models, which do not directly incorporate all avail-
able geological data and knowledge. Instead, the variables
of these models are varied and optimized to maximize like-
lihood functions that are chosen and designed to integrate
other forms of knowledge and data. However, the frequency
of geologically valid models from the ensemble of models
generated from probabilistic approaches still may be under-
represented in some settings. It is also possible that the un-
derlying mathematical models are unable to be reparameter-
ized to conform and respect structural styles and complex
relationships known to exist in nature.

Geological models tend to converge towards subsurface
reality as more geological data and knowledge are incorpo-
rated in the modelling process. For complex geological struc-
tures, it becomes increasingly difficult in comparison to sim-
ple structures (e.g., layer–cake stratigraphy) to develop accu-
rate representations. For these scenarios, much more geomet-
ric and geological feature relationship information is needed
to generate realistic models, and better approaches are re-
quired to use this information within the modelling process.
Due to the inherent flexibility, efficiency, and scalability of
deep-learning approaches (Emmert-Streib et al., 2020) to in-
corporate data and knowledge, they have the potential to pro-
vide an ideal framework for incorporating new geological
data and knowledge constraints into the modelling process,
enabling the modelling of complex geological structures and
at scales (e.g., high resolution over mine, regional, and na-
tional scales) that were previously unfeasible. Beyond be-
ing able to expand on the types of geological constraints for
structural modelling in deep-learning approaches, they also
have potential for direct incorporation of relevant interdisci-
plinary datasets (e.g., fluid flow, mineralization) where there
exist latent relationships to structural features. Collectively,
we see potential for these approaches to provide a needed so-
lution for data and knowledge integration within a single end-
to-end manner, and thereby overcome the modelling limita-
tions of existing methodologies, and that more accurate rep-
resentations of three-dimensional geological structures are
efficiently produced.

In recent years there has been increasing interest in deep-
learning approaches for various geoscience applications in-
cluding seismic data interpretation (Bi et al., 2021; Perol et
al., 2018; Ross et al., 2018; Shi et al., 2019; St-Charles et
al., 2021; Wang and Chen, 2021; Wang et al., 2022; Wu et
al., 2018, 2019), spatial interpolation of geochemical and
geotechnical data (Kirkwood et al., 2022; Shi and Wang,
2021), remote sensing (Ma et al., 2019), and implicit three-
dimensional geological modelling (Hillier et al., 2021; Bi et
al., 2022). It is also worth noting the machine-learning ap-
proach that casts implicit modelling as a multi-class classifi-
cation problem by Gonçalves et al. (2017). While this is not
a deep-learning-based approach, it supports continuous im-
plicit modelling but not faulting or unconformities. Although
deep-learning approaches to implicit three-dimensional ge-
ological modelling are promising, they are still in their
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infancy, and much more research and development is re-
quired for them to reach their full potential. For example,
although the recently proposed deep-learning approach (Bi
et al., 2022) can generate faulted three-dimensional geolog-
ical models structurally consistent with the data, there exist
limitations: it cannot currently model unconformities, there
is ambiguity in how to properly annotate or set scalar con-
straints on horizon data, and it may suffer from edge effects
that can generate spurious discontinuities.

In this paper, we advance an existing implicit neural rep-
resentation (INR) approach to three-dimensional implicit ge-
ological modelling that used graph neural network (GNN)
architectures (Hillier et al., 2021). In recent years, there has
been substantial interest and advancements in using INR net-
works on a wide variety of problems including modelling of
discrete signals in audio, image, and video processing; learn-
ing complex three-dimensional shapes; and solving boundary
value problems (e.g., Poisson, Helmholtz) (Sitzmann et al.,
2020). Moreover, mathematical connections to kernel meth-
ods have emerged (Jacot et al., 2020) to establish a founda-
tion for numerical analysis. In the field of computer graphics,
they are being effectively used to represent complex three-
dimensional shapes (Park et al., 2019; Gropp et al., 2020;
Atzmon and Lipman, 2020; Davies et al., 2021; Wang et
al., 2021) and reminiscent of surface reconstruction methods
using radial basis function interpolation (Carr et al., 2001).
Here, our aim is to support more complex geological struc-
tures, in both very rich and sparse-data environments. To this
end, we demonstrate INR networks can be used efficiently to
incorporate a comprehensive set of inequality constraints on
stratigraphic relations; support modelling of unconformities;
improve data fitting characteristics; and reduce modelling ar-
tifacts when modelling complex geological structures with
large, dense, noisy, or sparse data.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the proposed methodology using INR net-
works for modelling complex geological structures contain-
ing unconformities. Section 3 presents modelling results us-
ing the proposed methodology. Section 4 discusses mod-
elling characteristics of the approach and comparisons with
other approaches. In the last section, Sect. 5, conclusions are
given.

2 Methodology

2.1 Definitions and notations

To better support the geological relations and feature repre-
sentations mathematically, we have employed specific sym-
bology. For clarity, definitions and notations used throughout
this paper are provided below.

First, the notations for scalar, vector, set/tuples, and matrix
quantities are as follows: lowercase, bold lowercase, UP-
PERCASE, and BOLD UPPERCASE, respectively.

Second, the paper utilizes three types of geological point
data: (1) sampled geological interfaces Ij (e.g., either strati-
graphic horizons or unconformities), (2) geological units Uj ,
and (3) orientation O (e.g., either planar or linear measure-
ments). For interfaces I = (I0,I1, I2, . . .), subscripts indicate
the chronological order in which the interface was created,
with smaller integers being older interfaces. For geologi-
cal units U = (UA,UB ,UC, . . .), subscripts also indicate the
chronological order of their formation, with the alphabetical
order reflecting the sequence of geological units.

Third, point sets in this paper are denoted byX. Subscripts
on point sets indicate the specific geological feature the point
set is sampling. For example, XI0 is the point set sampling
the geological interface I0.

Fourth, for scalar fields, the following notation is used to
shorten expressions. Consider a three-dimensional point xj ,
and let ϕij = ϕ

i
(
xj
)

denote the scalar field value associated
with the ith scalar field ϕi at that point. For a set of pointsXQ
sampling a specific geological feature Q, let ϕiQ = ϕ

i
(
XQ

)
denote the set of scalar values associated with scalar field
ϕi at the sampled points. For the mean scalar field value of a
set of points XQ let

ϕiQ =
1∣∣XQ∣∣∑ϕi

(
XQ

)
=

1∣∣XQ∣∣
|XQ|∑

xj∈XQ

ϕij , (1)

where
∣∣XQ∣∣ is the number of elements (e.g., points) in the set

XQ. Finally, let the gradient of scalar field ϕi at point xj be
denoted by ∇ϕij .

2.2 Objectives

Our objective is to use multilayer perceptron (MLP) neural
networks to perform three-dimensional implicit modelling of
complex geological settings having both conformable and
unconformable structures, given a set of N scattered data
points, a stratigraphic column, and set of geological rules
as illustrated in Fig. 1. Conformable structures, having un-
dergone the same geological history, exhibit sub-parallel ge-
ometries in nearby associated interfaces and strata. In con-
trast, unconformities are interfaces produced from erosion
or halting of sedimentation processes, thus separating strata
of different ages and marking a discontinuous transition in
the depositional process. Distinct conformable and uncon-
formable structures are modelled separately, each associated
with its own implicit scalar field ϕi (x) and data constraints
(Calcagno et al., 2008; de la Varga et al., 2019; Grose et al.,
2021b). The scalar field index i indicates its relative tempo-
ral position in the sequence of geological events. Data con-
straints associated with each scalar field ϕi can include points
sampling specific sets of geological features such as inter-
faces I ik , geological units U ik , and orientations Oi of inter-
faces and strata. The subscript k denotes the kth interface or
geological unit associated, while the superscript i indicates
those geological features are represented by ϕi . Importantly,
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Figure 1. Complex geological setting for three-dimensional im-
plicit geological modelling. Inputs for modelling include scattered
data constraints, a stratigraphic column, and set of geological rules
(erodes, ∼; onlaps, u) for scalar fields ϕi (x) representing distinct
conformal and unconformity structures.

the suite of stratigraphic relationships (e.g., above, below,
on) encapsulated within the stratigraphic column and the ge-
ological rules between scalar fields (e.g., erosional, onlap)
are incorporated into the modelling process.

Let M(X,ϕ,ξ) be an implicit model in three-dimensional
space where the point set X = {x0, . . .,xN−1} ⊆ R3 is the N
scattered data points, the tuple ϕ =

(
ϕ0, . . .,ϕF−1) is the F

indexed implicit scalar fields, and ξ is a global smoothness
constraint (Sect. 2.4.5). The global smoothness constraint is
to ensure a globally reasonable geological structural model.

Let ϕi
(
Xi,I ik,U

i
k,O

i,ε
)

be the ith implicit scalar field ap-

proximated from the set of points Xi =
{
XI ik

,XU ik
,XOi

}
⊆

X sampling interfaces I ik , geological units U ik , and orienta-
tions Oi respectively. The scalar field is approximated from
the set of interpolation constraints ε (Sect. 2.4) using these
sampled data points. The set of interfaces I ik and units U ik are
arranged in an order of older to younger.

2.3 Implicit neural representations

Implicit neural representations, also known as coordinate-
based representations (Tancik et al., 2020), are neural net-
works that parameterize implicitly defined functions ϕ (x),
where the network’s inputs x ∈ Rm aremth-dimensional spa-
tial or spatial–temporal coordinates. These networks typi-
cally utilize a MLP, as illustrated in Fig. 2, to learn how
to map coordinates into a geometrical representation of

shape/structure encoded as an implicit scalar field. Note that
other network architectures, such as GNNs (Hillier et al.,
2021), that learn this mapping are also categorized as INR
networks. MLPs are universal approximators capable of ap-
proximating any unknown function f (x) provided there are
enough hidden neurons (Hornik et al., 1989). They are com-
posed of three types of layers – input, hidden, and output
layers – which transform inputted data into abstract represen-
tations and model predictions in the hidden and output lay-
ers, respectively. There are three parameters that define MLP
networks: number of hidden layers Nh, dimensionality of
representations drep, and chosen non-linear activation func-
tion σ . At every training iteration t , errors between the net-
work’s outputted scalar fields and interpolation constraints
are measured using developed loss functions presented in the
proceeding section. These errors are minimized by the back-
propagation process where the network’s variables (W’s and
b’s Fig. 2a) are updated by gradient descent. For complex ge-
ologically settings where there are F distinct conformal and
unconformity structures, each associated with a separate im-
plicit scalar field ϕi , F MLPs are stacked together, resulting
in F scalar values being outputted for every point x (Fig.
2c). Following the training process, multiple scalar fields are
combined in a manner respecting the geological rules for ero-
sion and onlapping of conformal structures onto unconformi-
ties (Sect. 2.6).

2.4 Interpolation constraints and loss functions

For structural geological modelling, interpolation constraints
ε are split into four categories: interface, geological unit, ori-
entation, and global smoothness constraints. For interface
and geological unit data, a suite of knowledge constraints
on stratigraphic relations are developed and described in the
next section (Sect. 2.4.1). For each constraint type, a corre-
sponding loss function is developed to accumulate all errors
(Fig. 3), at every training iteration t , measured between the
predicted model and set of points for which a constraint is
imposed.

2.4.1 Stratigraphic relations and constraints

Stratigraphic relations are defined, in terms of scalar field dif-
ferences, to encapsulate above, below, and on relationships
(e.g., knowledge) between points sampling interfaces and ge-
ological units using a given stratigraphic column. From these
relations, a suite of constraints for scattered point sets are de-
veloped so that the constrained implicit model M respects
the stratigraphic column.

Given a point xl ∈Xϒj belonging to a point set Xϒj sam-
pling either a specific interface (ϒj = Ij ) or geological unit
(ϒj = Uj ), a stratigraphic relation is defined as follows:

Rxl ,I
i
k
= ϕil −ϕ

i

I ik
, (2)
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Figure 2. Neural network architecture for three-dimensional implicit geological modelling. (a) MLP architecture that generates scalar field
predictions from spatial coordinates. (b) Perceptron neural model and output for a neuron. (c) Multiple scalar field predictions for a given
point from stacked MLPs in the GeoINR network.

where ϕi
I ik

(Eq. 1) is the iso-value, at training iteration t , as-

sociated with interface Ik and represented by scalar field ϕi .
The relation indicates whether point xl is above, below, or on
a reference interface Ik , modelled with scalar field ϕi , when
the relation value is

Rxl ,I
i
k
> 0 above,

Rxl ,I
i
k
< 0 below,

Rxl ,I
i
k
= 0 on, (3)

respectively. Point sets Xϒj encoded as stratigraphically
above or below an interface Ik are given the following in-
equality constraints:

Rϒj ,I ik
= ϕiϒj −ϕ

i

I ik
> 0

Rϒj ,I ik
= ϕiϒj −ϕ

i

I ik
< 0, (4)

respectively. For a point set sampling the reference inter-
face Ik , the constraint

RIk,I ik
= ϕiIk −ϕ

i

I ik
= 0 (5)

is used. The complete set of stratigraphic constraints on re-
lations for both interface and geological unit point data illus-
trated in Fig. 1 is shown in Fig. 4. The set of relations con-
siders interface–interface and unit–interface pairs, and they
are expressed in matrix form with above relations (yellow)
in the upper right and below relations (light purple) in the
lower left. For the matrix of interface–interface relations, on
relations (green) are along the diagonal. For the above rela-
tions and associated constraints, only the ones within distinct
geological domains – created by the series of unconformity
interfaces – are considered, while the remaining ones (red)
are discarded. These are discarded because points sampling
younger geological features can be measured as being below
older modelled interfaces from other geological domains us-
ing their associated scalar fields and corresponding iso-value,
depending on their geometries. For example, consider the un-
conformity interface I2 (Fig. 4), it erodes portions of I1 and
therefore the presence of the unconformity can be measured
below I1 using ϕ0 (e.g., the scalar field that models I1) in
those portions. This characteristic does not apply to any be-
low relations and constraints, since points sampling an in-
terface or unit must always be below all younger interfaces.
In our available source code, we also provide a more effi-
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Figure 3. Errors associated with interface (circles), geological unit
(triangles), and orientation (black arrows) constraints at training it-
eration t , modelling two conformal interfaces I i1 and I i0 and three
geological units A, B, and C, with an implicit scalar field ϕi . Ap-
proximated signed distances δ are computed for interface and ge-
ological unit data, whereas angular residuals θ are computed for
orientation data. Insets: (black) stratigraphic column; (gray) angle
between scalar gradient (orange) and bedding.

Figure 4. Stratigraphic relations between specific interface–
interface and geological unit–interface pairs and associated con-
straints. Constraints are colored according to their above (yellow),
below (light purple), or on (green) spatial relation. For above rela-
tions (upper right matrix block), only the constraints on relations
within distinct geological domains are considered, while the re-
maining constraints are not used (red).

cient alternative option for below relations: excluding below
relations of conformal interfaces and associated units with
younger conformal interfaces from younger geological do-
mains. Only below relations of conformal interfaces and as-
sociated units to the next youngest unconformity are required
to constrain their geometries.

To measure errors at some training iteration t between
the implicit model M at sampled interfaces and geological
unit points xl and their associated constraints, approximate
signed distances δxl ,I ik (Caumon, 2010; Taubin, 1994) (Fig.

3) from a reference interface Ik , modelled by ϕi , are used
and defined as follows:

δxl ,I ik
=

ϕil −ϕ
i

I ik∥∥∇ϕil ∥∥ . (6)

The magnitude of the scalar gradient
∥∥∇ϕil ∥∥ in the denom-

inator is an important term to account for changes in unit
thickness between interfaces represented by the scalar field.
Smaller magnitudes correspond to thickening of units, while
larger ones are indicative of unit thinning. Consequently, the
approximate signed distances are a much more accurate mea-
sure of how far above or below a point is above some refer-
ence interface than the scalar differences themselves. This is
because scalar values for various geological features are not
meaningful in real-world distances and are not normalized
between features.

The three loss functions for the above, below, and on strati-
graphic constraints integrating all errors from point sets Xϒ
are given by

LAbove
ϒ =

|ϒ |∑
ϒj∈ϒ

1∣∣Xϒj ∣∣
∣∣∣Xϒj ∣∣∣∑

xl∈Xϒj

∣∣∣Bϒj ∣∣∣∑
I ik∈Bϒj

δ̂xl ,I ik
,

δ̂xl ,I ik
=


∣∣∣∣ϕil−ϕiI i

k

∣∣∣∣∥∥∇ϕil ∥∥ ϕil −ϕ
i

I ik
< 0

0 ϕil −ϕ
i

I ik
≥ 0

(7)

LBelow
ϒ =

|ϒ |∑
ϒj∈ϒ

1∣∣Xϒj ∣∣
∣∣∣Xϒj ∣∣∣∑

xl∈Xϒj

∣∣∣Aϒj ∣∣∣∑
I ik∈Aϒj

δ̌xl ,I ik
,

δ̌xl ,I ik
=


ϕil−ϕ

i

I i
k∥∥∇ϕil ∥∥ ϕil −ϕ

i

I ik
> 0

0 ϕil −ϕ
i

I ik
≤ 0

(8)

LOn
I =

|I |∑
k

1∣∣XIk ∣∣
∣∣XIk ∣∣∑

xl∈XIk

∣∣∣δxl ,I ik ∣∣∣ (9)

respectively. Note that Aϒj and Bϒj are a set of interfaces
I ik that are above or below, respectively, a specific geological
feature ϒj (either an interface or unit). For example, con-
sider the loss function for the below constraints (Eq. 8) asso-
ciated with the geological unit UD from Fig. 4. In this case,
ϒj = UD and Aϒj = AUD =

{
I 3

5 ,I
2
4 ,I

2
3
}

are the set of inter-
faces above that geological unit. The below constraints for
this geological unit require that the points within the setXUD
must be below the interfaces above AUD . If points xl ∈XUD
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Figure 5. The effect of above and below stratigraphic constraints in
coupling two scalar fields ϕ0 and ϕ1 modelling two unconformities.
(a) Without using the constraints and (b) with using the constraints.

are above, or ϕil −ϕ
i

I ik
> 0, those points will have non-zero

errors; otherwise the error will be zero (e.g., constraint re-
spected).

Loss functions associated with above or below strati-
graphic constraints are effective in constraining resultant im-
plicit models to respect the sequence provided by a given
stratigraphic column. These loss functions ensure not only
that modelled interfaces and strata respect the stratigraphic
sequence for each scalar field ϕi but also importantly that
they respect the presence of sampled interfaces and strata as-
sociated with other scalar fields. To clearly illustrate the lat-
ter, consider Fig. 5 where two unconformities are modelled
separately with two scalar fields. Without these constraints,
unconformities are modelled independently, and a portion of
the older unconformity is eroded incorrectly despite the pres-
ence of a valid unconformity observation point (e.g., point 1,
Fig. 5a). With these constraints, all scalar fields are coupled
so that the entire geological sequence of all sample interfaces
and strata are honored/considered. This resolves an issue in
other implicit approaches (Calcagno et al., 2008; de la Varga
et al., 2019; Grose et al., 2021b) that treat each scalar field
independently. And finally, these constraints help impose the
correct scalar field polarity – e.g., the alignment of the gra-
dient of the scalar field ∇ϕ with younging direction (direc-
tion of younger stratigraphy) – even in circumstances where
there are no bedding observations available. Having the cor-
rect scalar field polarity is critical in assigning geological do-
mains so that multiple scalar fields can be combined into a re-
sultant scalar field respecting geological rules (erosional and
onlap), as well as assigning geological units to modelled vol-
umes (Sect. 2.6).

2.4.2 Interface constraints

For interface data, there are four interpolation constraints.
Firstly, the variance of all scalar field values ϕi

I ik
on a sam-

pled interface I ik is roughly zero as follows:

Var
(
ϕi
I ik

)
= 0. (10)

This iso-value constraint ensures that the scalar field at the
sampled locations for kth interface XIk is the same and has
the following associated loss function:

Lvar
I =

|I |∑
Ik∈I

Var
(
ϕi
I ik

)
. (11)

The other three constraints utilize the stratigraphic rela-
tions to enforce the above, below, and on constraints. Com-
bined, the resulting loss function for interface data is as fol-
lows:

LI = L
var
I +L

On
I +L

Above
I +LBelow

I . (12)

The first two loss functions both constrain the implicit model
to respect the locations of sampled interfaces, while the last
two ensure that the sequence of sampled interfaces respects
the given stratigraphic column.

2.4.3 Geological unit constraints

To constrain the implicit model with geological unit data U ,
the above and below stratigraphic constraints are applied.
Consequently, the resulting loss function for geological unit
data is as follows:

LU = L
Above
U +LBelow

U . (13)

2.4.4 Orientation constraints

For an orientation data point xj ∈XOi associated with a
scalar field ϕi , an angular constraint θC

j characterizes the an-
gle between the orientation vector vj and the scalar gradient
∇ϕij at xj . For normal data (e.g., bedding orientation with
younging direction), the interpolation constraint is

θC
= 0◦, (14)

while for tangent data (e.g., lineations, fold axis) it is

θC
= 90◦. (15)

The loss function associated with orientation data θ i mea-
sures angular errors (Fig. 3) between the given angular con-
straints θC

j and angles θ ij computed from the implicit model
M at some training iteration, and it is given by

LO =

F∑
i=1

1∣∣Oi
∣∣
∣∣Oi ∣∣∑
j∈Oi

∣∣∣cosθC
j − cosθ ij

∣∣∣ , (16)

https://doi.org/10.5194/gmd-16-6987-2023 Geosci. Model Dev., 16, 6987–7012, 2023



6994 M. Hillier et al.: GeoINR 1.0

where cosθ ij is computed from

cosθ ij =
vj · ∇ϕ

i
j∥∥vj∥∥∥∥∥∇ϕij∥∥∥ . (17)

2.4.5 Global smoothness constraint

It is well established that a disadvantage of implicit ap-
proaches for structural geological modelling is that they
can produce modelling artifacts, commonly referred to as
“bubbly” artifacts, yielding geologically unreasonable mod-
els particularly in complex structural settings (de Kemp et
al., 2017). One way to address this problem is to impose a
global smoothness constraint over the modelling domain us-
ing energy minimization principles. Here, we use the eikonal
constraint (e.g., a unit-norm constraint) (Gropp et al., 2020)∥∥∥∇ϕi (x)∥∥∥= 1 (18)

for this purpose. The associated loss function for the implicit
model is as follows:

Lξ =

F∑
i

1
|�s|

|�s|∑
xj∈�s

(∣∣∣∥∥∥∇ϕij∥∥∥− 1
∣∣∣) , (19)

where �s represents a set of points sampling the modelling
domain �. Due to the efficiency and computational scal-
ability of MLP neural networks, sufficiently sampling the
domain, even densely, is feasible. The effect of the global
smoothness constraint on the scalar field is that it promotes
sub-parallel geometries in nearby strata throughout a mod-
elling domain. The effect is illustrated in the first case study
(Sect. 3.1).

2.4.6 Resultant loss function

The resultant loss function, or total loss function L, for all
geological constraints is simply the sum of the individual loss
functions and is given by

L= LI +LU +LO + λLξ , (20)

where the loss function Lξ for the global smoothness con-
straint is weighted by the lambda term, λ≥ 0. The larger
its value, the more scalar fields are smoothed. This function
represents the loss landscape (Li et al., 2018), or objective
function, given a set of constraints and in which the learn-
ing algorithm attempts to find its minimum. The location in
which the loss landscape is a minimum corresponds to the set
of neural network variables that yield minimal error between
the network’s predictions and geological constraints.

2.5 Training

An important training aspect to our proposed INR networks
is the geometrical initialization of network variables. The

Figure 6. Scalar fields generated from initialization of network vari-
ables. (a) Effect of increasing network complexity on the generated
scalar field by increasing the number of hidden layers Nh and di-
mension of hidden representations drep. (b) Scalar fields generated
from three random initializations of network variables. (c) Spherical
initialization. (d) Planar initialization using a pre-trained network
applied to points sampling layer–cake volume.

variables are initialized such that the resulting outputted
scalar field represents a shape with reasonable starting ge-
ometry for a specific geological application, which will be
evolved through training by fitting given data constraints. Us-
ing standard variable random initialization schemes (Glorot
and Bengio, 2010; He et al., 2015), resulting output scalar
fields can be far from an optimal starting point for training,
especially as the network’s complexity increases (Fig. 6a).
Consequently, if the training algorithm is rerun many times
using the same conditions (Fig. 6b), resulting structural mod-
els can exhibit large variance in modelled structures. To solve
these issues, training starts with a geometrically reasonable
scalar field by geometrical initialization of network variables.
For intrusive-like modelling, network variables are initialized
to produce a spherical geometry (Fig. 6c) (Atzmon and Lip-
man, 2020), whereas for stratigraphic modelling, they are ini-
tialized to produce a planar geometry (Fig. 6d).

To initialize our networks to produce a scalar field with a
planar geometry, we first pre-train a MLP network for 1000
epochs with the same parameterization (Nh, drep, σ ) on a
synthetic dataset densely sampling four layer–cake interfaces
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(Fig. 6d). The pre-trained network’s parameters are saved
and loaded into each of the F stacked MLP networks, which
are updated by training on an unseen stratigraphic dataset.
This can be viewed as transfer learning (Zhuang et al., 2021):
applying what is learned for one problem onto a similar prob-
lem. An added benefit to using pre-trained networks is repro-
ducibility in modelling results since the network is initialized
with the same parameters. Furthermore, the number of train-
ing epochs to converge is reduced.

Another training aspect utilized in the proposed method-
ology is applying learning rate schedules in the Adam op-
timizer (Loshchilov and Hutter, 2017). Learning rate sched-
ules adjust the learning rate during training by decreasing
the rate according to a prescribed schedule. While the Adam
optimizer does adapt the initialized learning rate on a per-
parameter basis, there is a benefit to decreasing the adaptable
learning rate with increasing training epochs. Empirically,
we have found that applying either step decay or cosine an-
nealing learning rate schedules yields much lower losses and
consequently better data fitting characteristics.

2.6 Geological domains and combining scalar field
series

After implicit scalar functions are constrained by training,
gridded points sampling a geological volume are inputted to
the trained MLP network to generate F separate continuous
scalar fields, each representing a distinct geological feature,
throughout the volume of interest (Fig. 7a). Since unconfor-
mity interfaces can erode (e.g., cut) older geological features,
there are regions of space where those features are no longer
present. To cut portions of a geological feature removed by
an unconformity, its associated continuous scalar field is cut
by the modelled unconformity interface. As a result, geologi-
cal features are partitioned into geological domains (Fig. 7b)
where those features are present, and their associated scalar
fields and geological units are defined (Fig. 7c). Since a point
in the modelled volume can only be associated with a single
scalar field, the scalar field series and their associated geolog-
ical units are combined such that only the domain in which
each scalar field and set of units is defined is merged into a
resultant scalar field and geological unit model (Fig. 7d).

Geological domains are spatial partitions created by
boundaries defining discontinuous features (e.g., unconfor-
mities) within which continuous geological features (e.g.,
conformable stratigraphy) exist. In this paper, only uncon-
formity boundaries are used to create geological domains,
although the same approach can be used for faulting. See
discussion (Sect. 4) for future work with incorporation of
faulting. To construct geological domains, first mask arrays
defining above and below (Fig. 7b) regions for each uncon-
formity interface within the modelling volume are computed
using the associated scalar field and inequalities. As men-
tioned previously, the notion of above/below a reference in-
terface defined by an iso-value, also known as polarity, is

provided by the scalar gradient (Fig. 7a) that points in the
direction of younger stratigraphy (e.g., younging direction).
For example, volumes above and below an interface I5 mod-
elled with ϕ3 are defined, respectively, by

ϕ3
≥ ϕ3

I 3
5

ϕ3 < ϕ3
I 3

5
, (21)

where ϕ3
I 3

5
is the iso-value associated with I5. The mask array

M i associated with the unconformity is set to true wherever
above the interface and false below it. Secondly, from the ge-
ological rules associated with the unconformity scalar fields,
an appropriate set of Boolean logic is applied to the mask
array(s) to define the geological domain. For example, con-
sider domainD1 in Fig. 7b; it is defined wherever it is below
I5 (where M3 is false; !M3) and above I2 (where M1 is true;
M1). Domains for older geological features have a larger
set of Boolean logic applied to mask arrays since there are
more younger unconformities that can erode those volumes
as compared to younger geological features. With the geo-
logical domains defined, scalar fields and geological units are
both assigned to their associated geological domains, thereby
combining all the scalar fields and geological units into a re-
sultant three-dimensional geological volumetric model.

2.7 Iso-surface extraction

Iso-surface extraction methods can be applied to specific re-
gions of implicit scalar field volumes provided appropriate
Boolean masks are given and can be useful for obtaining the
geological horizons of conformal domains. However, obtain-
ing unconformity interfaces using this approach will lead to
the production of anti-aliasing artifacts in triangulated sur-
faces. To resolve this issue, we develop an algorithm (see
Algorithm 1 in Appendix A) using the open-source library
PyVista (Sullivan and Kaszynski, 2019) to generate all iso-
surfaces that can be cut by unconformities. The algorithm
first extracts the set of continuous iso-surfaces for each of
the F scalar fields computed within a gridded volume. Next,
the set of iso-surfaces are iterated on, going from oldest to
youngest and processed. For a given surface being processed,
that surface is progressively cut by younger unconformities
above it in the stratigraphic column, again going from older
to younger.

3 Case studies

Modelling results are presented for two real-world case stud-
ies to demonstrate proof of concept: (1) a sedimentary basin
with large, dense, and noisy well data and (2) a deformed
metamorphic setting with sparse outcrop data. For both
case studies, the learnable variables of our network, called
GeoINR, are initialized with pre-trained models with planar
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Figure 7. Constructing geological domains and combining scalar fields. (a) (top) Scalar field series and modelled interfaces with their
regions (bottom) defined from associated inequalities. Scalar fields associated with unconformities have Boolean masks M i defining above
and below regions. (b) Geological domains constructed from Boolean masks. (c) Scalar fields and geological units assigned to geological
domains. (d) Combined scalar fields and geological units.

geometry (described in Sect. 2.5) using the model parame-
ters summarized in Table 1. These variables are updated us-
ing the Adam optimizer within the PyTorch framework so
that modelling errors are minimized during training through
the backpropagation process. Moreover, the cosine annealing
learning rate scheduler was used with this optimizer. The net-
work architecture parameters (Nh,drep,σ ) and learning rate
were established from INR literature (Atzmon and Lipman,
2020; Gropp et al., 2020; Park et al., 2019; Sitzmann et al.,
2020; Tancik et al., 2020) and refined through trial and error
using various combinations of parameter values. The non-
linear activation function used for our networks was the pa-

rameterized Softplus function:

σ (x)=
1
β

log
(
1+ eβx

)
, (22)

where the parameter β controls the variability of modelled
interfaces. Smaller values of β produce flatter modelled in-
terfaces, whereas higher values produce more locally variant
modelled interfaces. For these case studies and other syn-
thetic structural geological models, these parameters produce
structurally consistent models with respect to the sampled
point constraints.

Geosci. Model Dev., 16, 6987–7012, 2023 https://doi.org/10.5194/gmd-16-6987-2023



M. Hillier et al.: GeoINR 1.0 6997

Table 1. GeoINR model parameters values for case studies.

Parameters Case study 1 Case study 2
(well dataset) (outcrop dataset)

Number of hidden layers Nh 3 3
Dimension of representations drep 256 256
Learning rate 0.0001 0.0001
Non-linear activation function σ Softplus (β = 100) Softplus (β = 20)
Number of training epochs 5000 2000
Global constraint weight λ 0.1 0.0
Grid horizontal (xy) resolution 5000 m 100 m
Grid vertical (z) resolution 20 m 10 m

Organizing geological point datasets first requires all nec-
essary knowledge to be extracted from a stratigraphic col-
umn. Stratigraphic knowledge including the geological rule
of the interface (e.g., erosional, or onlap (conformable)) and
the set of interfaces above and below each interface and geo-
logical unit are tabulated (see Appendix B for tables associ-
ated with both case studies). Corresponding tables describe
the set of stratigraphic relations (Sect. 2.4.1) and associate
interfaces and units to a particular scalar field among the se-
ries. This information is used for implementation purposes
so that associated loss functions can compute measuring er-
rors between the stratigraphic constraints and the version of
the model at some training iteration t .

As with any machine-learning algorithm, neural network
inputs require normalization for the network to learn useful
latent representations and yield accurate predictions. Inputs
for INR networks, which are spatial coordinates in this case,
are normalized to some range for each coordinate dimen-
sion. For the first case study, each coordinate dimension is
normalized to the [−1, 1] range. This is particularly impor-
tant for the first case study where the dataset is covering a
large geographical area. Having a constant scaling term for
each coordinate dimension for this case study is not possi-
ble because there would be negligible variation in z coordi-
nates; network’s losses do not decrease with training. In ad-
dition, it is worth noting that if orientation data are available
for datasets covering large geographical areas (> 1000 km),
scalar field gradients computed from the network are re-
quired to be transformed back into the original space – using
the associated scaling term for each coordinate dimension.
This is required to accurately measure the angular residu-
als to constrain orientational data. For the second case study,
each coordinate dimension has the dataset’s center subtracted
then scaled by the maximum range of1x,1y,1z (Hillier et
al., 2021) since there is sufficient variation in normalized z
coordinates due to the much smaller geographical extents.

After the networks are trained using the supplied data
and knowledge constraints, inference is performed on all the
points within a voxel grid (e.g., grid corners) covering the
volume of interest. At these points, predicted scalar field
values and geological units are computed. Once computed,

scalar fields and geological units are assigned to geological
domains, followed by iso-surface extraction of modelled in-
terfaces.

Results for both case studies were obtained using a high-
end desktop PC with an Intel Core i9-9980XE CPU and a
single NVIDIA RTX 2080 Ti GPU.

3.1 Provincial-scale sedimentary basin case study

The first case study is of a provincial-scale sedimentary
basin covering an area approximately 451 000 km2 using a
well dataset of formation tops and unconformity picks from
the Lower Paleozoic portion of the Western Canadian Sedi-
mentary Basin (WCSB) in Saskatchewan, Canada (extracted
from March and Love, 2014). The interface constraint data
consist of 4708 formation tops and unconformity picks sam-
pling four unconformities and three conformable horizons.
The depths of the picks were interpreted from geophysical
well logs and correlated to core samples when available.
Due to the interpretative nature of the constraint data, it can
be characterized as noisy as their exact positions are uncer-
tain (Fig. 8a (right)). But this presents an opportunity to test
whether the proposed methodology is useful for modelling
data commonly obtained by Geological Survey Organiza-
tions (GSO). In addition to interface constraint data, aug-
mented data consisting of intraformational units were gen-
erated by sampling along well intervals to demonstrate their
modelling impact. These augmented data are not required
to produce a geologically representative model (Fig. 8b) but
serve to demonstrate that the methodology successfully han-
dles this type of data. Intraformational units are sampled
along a well interval between two interfaces only if the in-
terfaces are stratigraphically adjacent. Interpreted depths of
successive formation tops (e.g., interfaces) along the well
path may not always be stratigraphically adjacent, either be-
cause the top could not be identified or a portion of stratigra-
phy was eroded. In these cases, intraformational units are not
sampled along a well interval (Fig. 9). For this case study, se-
quenced well intervals were sampled at every 20 m (vertical
resolution of our voxel grid; 5 km was the horizontal reso-
lution) and generated 11 270 sampled intraformational units.
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Two three-dimensional implicit geological models are pro-
duced: one using both interface and intraformational points
and the other having just interface points.

The presented data and resulting models in Fig. 8 all have
a vertical exaggeration of 100× so that the data and variation
of geological structures can be visualized. For this dataset,
the augmented intraformational points provided incremental
refinements to modelled structures. An example of structural
refinements is shown on a cross section taken from the mid-
dle portion of the model (Fig. 8c). The model made with-
out the intraformational units (transparent curves) has the
sub-Winnipeg unconformity (orange) positioned lower than
it should since in that location there are no interface points
sampling that unconformity. In addition, there are slight ge-
ometry changes for other interfaces with the model using in-
traformational units (solid curves) that are attributed to the
presence of different units located off section. How the un-
conformities cut older stratigraphy and other unconformities
can be clearly seen in modelled interfaces and resultant scalar
fields in Fig. 8d, along with the visually impressive data fit-
ting characteristics (also seen in Fig. 8b (left), c). The effect
of adding the global smoothness constraint, or eikonal con-
straint (Eq. 18), can be seen in a scalar field associated with
the youngest unconformity (ϕ4) shown in Fig. 8e (top). With-
out a global smoothness constraint, production of implicit
modelling artifacts (e.g., isolated bubbles Fig. 8e (bottom))
can occur when paired with large training epochs and noisy
datasets.

Resulting model performance metrics on both datasets
used in this case study are summarized in Table 2. These met-
rics include loss function values at the last training iteration,
computing times, mean distance residuals between mod-
elled interfaces and associated point sets, and k-fold cross-
validation results. Loss function plots for constraints used in
the case study are provided in Fig. 10 to show how well they
fit and their relative impact during network training. For the
datasets used, the above/below stratigraphic relationship con-
straints significantly impact early (< 30 epochs) training dy-
namics so that modelled geological structures rapidly satisfy
supplied knowledge constraints. In training epochs greater
than 30, the total loss is more impacted by on stratigraphic
and global smoothing (eikonal) constraints to locally refine
and better fit modelled structures to individual observations.
For computing times, per-epoch training times on one GPU
led to a total of∼ 35 min for the model with intraformational
constraints and a total of ∼ 20 min without when using 5000
training epochs. A larger number of training epochs was cho-
sen to achieve the smallest total error possible. However,
even models generated with 1000 epochs were geologically
representative of the basin but had larger fitting residuals.
Note these computing times can be reduced by simply adding
more GPUs and performing distributed training. The tabu-
lated mean distance residuals, a real-world distance, were
computed for the generated models using PyVista (Sullivan
and Kaszynski, 2019) to give an intuitive notion of how well

the GeoINR network fits the provincial-scale dataset. The
mean distance residuals using the whole dataset, 1dTrain,
were 6.4 and 6.7 m for the model including intraformational
constraints and without, respectively. Most constraints had
distance residuals near 0 m; however, some constraints had
larger residuals; some data constraints exhibit a vertical shift
upward in comparison to the other wells in the immediate
vicinity surrounding the well. This could be due to faulting,
highly variable localized structures, or misinterpretation. Fi-
nally, a systematic k-fold cross-validation (Rodríguez et al.,
2009) analysis was completed to estimate the prediction error
of the GeoINR network where there are no data available in
the modelling domain and assess if the network suffers from
overfitting. This analysis involved splitting the dataset into k
partitions or “folds” and configuring them into k splits. For
each split, the GeoINR network is trained using k− 1 of the
folds as training data using the same parameters in Table 1.
Once the split is trained, the resulting model is validated on
the remaining part of the data, called test data, where the
mean distance residuals are computed. The mean distance
residuals on the test data 1dTest are averaged over all splits
and tabulated in Table 2. This procedure was performed for
k = 20, 10, 5, 2 and for both with and without intraforma-
tional constraints. From these results, it is evident that the
GeoINR network has a reasonably low prediction error, espe-
cially given the provincial scale of the geological model, and
the network does not suffer from overfitting. See Appendix C
for a more detailed summary of the k-fold cross-validation
results.

In addition to the model performance metrics provided,
we also present qualitative and quantitative comparisons of
our three-dimensional geological model – constructed using
interface and intraformational data – to a recent version of
the model for the same region constructed using a hybrid
implicit–explicit approach with Gocad/SKUA™ (geomod-
elling software) (Bédard et al., 2023). As shown in Fig. 11,
it is clearly demonstrated that the developed methodology
can produce geologically consistent modelling results since
both models are so similar (96 %). The small differences
(4 %) between them are attributed to the Gocad model us-
ing (1) updated top formation markers; (2) different interface
relationships (e.g., erosional, onlap) for interfaces I0,I1,I2;
and (3) extensive manual editing (e.g., explicit modelling) to
refine implicitly modelled geometries to conform to deposi-
tional outlines available for each of the formations. Further-
more, it must be recognized that the similarity not only sig-
nals an excellent correspondence between models, but also
supports the validity of both models through their cross-
correlations; and the 4 % difference does not necessarily rep-
resent an error on either side, given the overall uncertainties
of modelling over such a large area.
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Figure 8. Modelling results for the Lower Paleozoic portion of the WCSB in Saskatchewan generated using the proposed GeoINR method-
ology. Data and modelled results use 100× vertical exaggeration to visualize the provincial-scale model. (a) Model’s geographical coverage,
stratigraphic column, formation tops (larger spheres), and sampled intraformational data constraints (smaller spheres). (b) Modelled horizons,
resultant scalar field, and formation units. (c) Section view highlighting data fitting characteristics and the effect of removing intraformational
units from computation. (d) Side view highlighting geometry of unconformities in modelled interfaces and associated resultant scalar field.
(e) Effect of using a global smoothness constraint on a scalar field.

3.2 Regional outcrop case study

The second case study utilizes a regional-scale outcrop
dataset from central Baffin Island, Canada (de Kemp et al.,
2001; Scott et al., 2002; St-Onge et al., 2002). It consists of
data from a deformed metamorphic setting having Archean-
aged structural domes, composed of primarily felsic gneisses
and plutonic rocks, that are basement to Paleoproterozoic

rocks (Fig. 12a). The region is associated with a Himalayan-
scale collisional mountain belt – the Trans Hudson Orogen –
and consequently geologically complex. The dataset consists
of 23 planar orientations (e.g., normals) sampled from the
structural map (Fig. 12b), 352 geological unit (e.g., intrafor-
mational) observations (Fig. 12c), and 6 interface observa-
tions (Fig. 12d). While the geological unit and orientation
observations were taken in the field, the limited number of
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Table 2. GeoINR model performance metrics for case study 1.

Model Metric Value

With intraformational constraints
– 4708 interface points
– 11 270 intraformational points
– 5000 points for global constraint

Interface loss LI 0.0119
Unit loss LU 0.0010
Global smoothness loss Lξ 0.0059
Per-epoch training time 0.4 s
Inference time for voxel grid 1.4 s
1dTrain 6.4 m
k-fold (20) 1dTest 31.0 m [7.8, 412.1]
k-fold (10) 1dTest 27.0 m [10.0, 170.2]
k-fold (5) 1dTest 18.5 m [10.4, 47.8]
k-fold (2) 1dTest 13.0 m [12.8, 13.1]

Without intraformational constraints
– 4708 interface points
– 5000 points for global constraint

Interface loss LI 0.0122
Global smoothness loss Lξ 0.0046
Per-epoch training time 0.2 s
Inference time for voxel grid 1.4 s
1dTrain 6.7 m
k-fold (20) 1dTest 21.7 m [10.1, 191.4]
k-fold (10) 1dTest 17.5 m [10.8, 58.1]
k-fold (5) 1dTest 16.2 m [12.1, 27.7]
k-fold (2) 1dTest 15.6 m [15.5, 15.7]

1dX is the mean distance residual between modelled interfaces and point set X, either a training set or a test set. Brackets [] indicate the range of
1dTest values from a set generated by each k-fold cross-validation procedure.

Figure 9. Sampling intraformational units (smaller circles) along
the well path.

interface observations were randomly sampled from the ge-
ological map. For this case study, the objective is to demon-
strate that the developed methodology can generate represen-
tative three-dimensional geological models from typical out-
crop datasets: i.e., with limited interface data, moderate ge-
ological unit information, and orientation observations. The
resulting three-dimensional geological models are validated
by visually comparing the modelled objects with the general-
ized geological source map (Fig. 12c) of the structural domes
(red – Na-g), the onlapping quartzite (yellow – Pp-PD), and
the overlying units (blue – Pp-PL). To facilitate comparison,

the three-dimensional modelling results (Fig. 12e, f (right))
are clipped at the topographic surface (Fig. 12e, f (left), g).

Three sets of modelling results are presented. First, only
the limited interface and moderate intraformational data are
used (Fig. 12e). The resulting modelled map pattern with
these data closely matches the expected pattern on the gener-
alized map (Fig. 12c). Second, in Fig. 12f, the sampled ori-
entation observations were added, resulting in an even better
match: the quartzite (yellow) between the two domes (red)
is no longer connected. Note that the addition of orientation
data strongly influenced modelled geometries, which then
better conforms to the observed orientational data. Third, in
Fig. 12g, the addition of more interface points (sampled from
map contacts) results in only minor model refinement. This
case study, therefore, demonstrates the ability to successfully
model a complex geological scenario with limited interface
data, which is typical of outcrop datasets.

Quantitatively, model performance metrics for this case
study are summarized in Table 3. Note that the global
smoothness constraint Lξ was not used during training. This
was because the dataset did not require smoothing since there
was minimal data noise (e.g., nearby observations are geo-
logically consistent). In addition, note from the summarized
metrics it is possible to achieve near-exact fitting (e.g., to-
tal loss< 0.0001 after 2000 training epochs) while maintain-
ing geologically reliable models. Finally, detailed loss plots
(Fig. D1) are provided in Appendix D for those interested in
a deeper understanding of the impact of individual loss func-
tions for all geological models generated.
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Figure 10. Loss function plots of constraints used for network training for the two sedimentary basin models produced using interface data
only (a) and using both interface and intraformational data (b). Insets show loss function plots in the first 30 training epochs.

Figure 11. Similarity between the GeoINR model (left) for the Lower Paleozoic portion of the WCSB and the Gocad model (right) for the
same region. (a) Modelled interface surfaces from two perspectives for both models. (b) Geological volume similarity between models.

4 Discussion

Our results show INR networks can be successfully applied
to a diverse range of geological settings, using well and out-
crop datasets. In the first case study (Sect. 3.1), these net-
works were shown to be capable of generating large-area
basin-scale models containing numerous unconformities and
conformable stratigraphic interfaces from large and noisy
well datasets. While the intraformational constraints only
provided incremental improvements to the basin model, they
did help demonstrate their compatibility with the methodol-
ogy. However, these types of constraints proved to have much
more impact on modelling with outcrop datasets, which have
significantly fewer interface points (Sect. 3.2). They could

also provide a mechanism for better leveraging geological
maps in the modelling process by incorporating points sam-
pled within unit polygons and appropriately weighting them
in loss functions. Finally, it is clear, though unsurprising, that
orientation constraints can strongly influence and improve
modelled geometries of geological structures, especially in
highly deformed geological settings and sparse-data scenar-
ios.

The ability of INR networks to process above and below
inequality constraints on stratigraphic relations (Eqs. 4, 7,
8) shows these networks can efficiently incorporate atypical
knowledge constraints derived from stratigraphic columns
and geological rules (e.g., erosion, onlapping). In compari-
son, classical implicit interpolation methods must solve com-
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Figure 12. Modelled geological map patterns using the outcrop dataset in a deformed metamorphic setting containing structural domes (red)
and onlapping quartzite (yellow). (a) Geology source map for region of interest. (b) Structural map of available orientation observations.
(c) Three-class generalized source map. (d) Three-dimensional data constraints. (e) Results using only limited interface and moderate in-
traformational data. (f) Results adding orientation data. Insets are extracted modelled interface surfaces. (g) Results from increasing number
of interface points.
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Table 3. GeoINR model performance metrics for case study 2.

Model Metric Value

Limited interface and intraformational constraints
– 6 interface points
– 352 intraformational points

Interface loss LI 2.0× 10−7

Unit loss LU 3.4× 10−5

Per-epoch training time 0.028 s

Limited interface, intraformational, orientation constraints
– 6 interface points
– 352 intraformational points
– 23 orientation points

Interface loss LI 4.8× 10−7

Unit loss LU 7.1× 10−5

Orientation loss LO 4.2× 10−4

Per-epoch training time 0.061 s

putationally expensive convex optimizations in order to in-
corporate such constraints, resulting in poor scaling as the
number of constraints increases. Moreover, these classical
methods only apply inequality constraints to a single scalar
field, to the best of the authors’ knowledge, and not across
a series of scalar fields. In contrast, neural networks do not
need to solve such expensive optimizations and can effi-
ciently couple a series of scalar fields to apply constraints
across them, thus enabling improved integration of knowl-
edge.

Iso-values associated with modelled interfaces in the pro-
posed methodology vary in every training iteration of the
learning algorithm, so modelling results are independent of
user-defined iso-values. While defining specific interface iso-
values is a straightforward way to encode the stratigraphic se-
quence (e.g., larger values are younger than smaller values),
it is not optimal. Assigning specific iso-values for interfaces
heuristically (e.g., uniformly distributed between some nu-
merical range) can negatively impact resulting modelled ge-
ometries. This is particularly evident when dealing with vary-
ing unit thicknesses across the modelling domain and many
interfaces. However, the GeoINR algorithm avoids these is-
sues by learning the optimal set of interface iso-values during
training, thus permitting more complex geological structures
to be modelled. It is important to note that the stratigraphic
constraints (Sect. 2.4.1) embed the knowledge of the strati-
graphic sequence, with resulting interface iso-values respect-
ing that sequence.

Loss functions used to constrain resulting implicit scalar
functions make frequent use of scalar field gradients ∇ϕi

computed on point sets. To compute the gradient of a scalar
field generated by an implicit function parameterized by a
neural network for an input point, the chain rule is applied
to the networks output, ϕi(x), with respect to the coordi-
nates of the point x = (x, y,z). An advantage of machine-
learning programming frameworks (PyTorch, TensorFlow) is
the straightforward and efficient method of gradient com-
putation, which requires only one line of code. Note that
higher-order nth derivatives may also be similarly computed
(e.g., useful for Laplacian or curvature computations) pro-
vided that the non-linear activation function σ is at least n
times differentiable.

Although the MLP network architecture parameters
(Nh,drep,σ ) used in this contribution (Table 1) generated re-
liable and accurate three-dimensional modelling results, the
architecture may not be optimal for all geological scenar-
ios. As a general principle, increasing the number of hid-
den layers Nh tends to improve the capacity of the network
to model more complex structures, whereas increasing the
dimensionality of representations drep (number of the neu-
rons in a layer) tends to improve the smoothness of modelled
geometries (Hillier et al., 2021). But these effects have di-
minishing returns as these parameters are further increased.
It is important to note that the use of different non-linear
activation functions σ can dramatically affect modelled ge-
ometries. Empirically, we tested all currently available ac-
tivation functions within the PyTorch framework and found
the two most reliable activation functions were ReLU and
Softplus. In this paper, we used a parameterized Softplus ac-
tivation function that generated far smoother geometries and
improved data fitting compared to the commonly used ReLU.
ReLU activation functions typically result in modelled ge-
ometries with sharp creases, which could be more useful in
brittle geological settings. In scenarios where these architec-
tural parameters are not ideal, automated tools are available
for optimizing them (Liaw et al., 2018). In general, the best
architecture to use for a particular geological scenario is an
open research question. This motivates the development of
standardized three-dimensional geological models to be used
for benchmarking different methods and their parameteriza-
tions.

Several interesting points arise from comparing the
GeoINR and GNN deep-learning approaches (Hillier et al.,
2021) for three-dimensional geological modelling. First, the
generation of latent representations (e.g., embeddings, fea-
tures) in GeoINR is at a minimum 2 orders of magnitude
faster than in GNNs. Second, GeoINR does not require the
generation of an unstructured volumetric grid (e.g., tetrahe-
dral mesh), enabling the development of higher-resolution
models over larger areas. For example, for the provincial case
study, the GNN tetrahedral mesh with varying resolution re-
quired ∼ 10 GB of storage, whereas the GeoINR voxel grid
with a high resolution in vertical dimension required only
∼ 150 MB of storage, resulting in significant computational
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efficiencies. Lastly, the GeoINR models seemed superior as
the scalar fields generated by GNNs were much noisier, as
the graph-based convolution operations did not seem to ad-
just as effectively during network training. For GNNs to pro-
vide meaningful improvements to structural modelling, the
graph structure must represent meaningful geological con-
cepts and not simply something on which a scalar value is
predicted (e.g., tetrahedral mesh).

In other future work, we aim to tackle various discontin-
uous features commonly found in more complex orogenic
and shield terrains, such as faults and shear zones. Because
neural networks with similar architectures have shown the
capacity to approximate discontinuous functions (Llanas et
al., 2008; Santa and Pieraccini, 2023), we believe GeoINR
should support the modelling of these complex features with
appropriate enhancements and modifications (e.g., discontin-
uous activation functions).

INR networks have been reported as underrepresenting
high-frequency components of signals and shapes by un-
derfitting these components (Mildenhall et al., 2021). Posi-
tional encodings are a common strategy for addressing this
issue by transforming the coordinates of a point into a set of
Fourier features, which are then fed into the hidden layers
of the network (Tancik et al., 2020). Our preliminary tests
indicate that while this technique improved local fitting of
high-frequency detail when using either ReLU or Softplus
activation functions, it can generate unsupported large wave-
lengths of folded features.

5 Conclusions

We have introduced GeoINR, a geological modelling ap-
proach founded on INR networks composed of MLPs.
GeoINR advances an existing INR approach by incorporat-
ing unconformities, constraints for stratigraphic relations and
global smoothness, and improved training dynamics from
the geometrical initialization of network variables. These ad-
vances enable efficient modelling of more complex geology,
improved data fitting, and reductions in the generation of
modelling artifacts. Case studies demonstrate the effective-
ness and validity of the approach in diverse geological set-
tings, different-sized areas, and various data regimes. Future
work will extend GeoINR to support modelling of even larger
datasets in more complex geological settings involving fault-
ing and intrusions.
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Appendix A: Iso-surface extraction algorithm
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Appendix B: Interface and formation unit information
for case studies

Table B1. Interface information for case study 1. n/a denotes not available.

Interface Name Geological Series Unit Unit Above Above Below Below
rule above below interfaces series interfaces series

I6 Lower Paleo unc Erosional ϕ4 7 6 n/a n/a n/a n/a
I5 Stonewall Onlap ϕ3 6 5 I6 ϕ4 I4,I3,I2 ϕ3,ϕ3,ϕ2

I4 Stony Mountain Onlap ϕ3 5 4 I6,I5 ϕ4,ϕ3 I3,I2 ϕ3,ϕ2

I3 Red River Onlap ϕ3 4 3 I6,I5,I4 ϕ4,ϕ3,ϕ3 I2 ϕ2

I2 Sub-RR unc Erosional ϕ2 3 2 I6,I5,I4,I3 ϕ4,ϕ3,ϕ3,ϕ3 n/a n/a
I1 Sub-Wpg unc Erosional ϕ1 2 1 I6,I5,I4,I3,I2 ϕ4,ϕ3,ϕ3,ϕ3,ϕ2 n/a n/a
I0 Precambrian Erosional ϕ0 1 0 I6,I5,I4,I3,I2,I1 ϕ4,ϕ3,ϕ3,ϕ3,ϕ2,ϕ1 n/a n/a

The sequence of the above/below interface and series are associated. For example, consider the below interfaces and series for I5. Interface I4 is associated with series ϕ3. Similarly, interface
I3 is associated with series ϕ3, and interface I2 is associated with series ϕ2. Lower Paleo unc: Lower Paleozoic unconformity; sub-RR unc: sub-Red River unconformity; sub-Wpg unc:
sub-Winnipeg unconformity.

Table B2. Formation unit information for case study 1. n/a denotes not available.

Unit Name Series Unit Unit Above Above Below Below
above below interfaces series interfaces series

U7 Above Youngest (7) ϕ4 n/a 6 n/a n/a I6 ϕ4

U6 Interlake (6) ϕ3 7 5 I6 ϕ4 I5,I4,I3,I2 ϕ3,ϕ3,ϕ3,ϕ2

U5 Stonewall (5) ϕ3 6 4 I6,I5 ϕ4,ϕ3 I4,I3,I2 ϕ3,ϕ3,ϕ2

U4 Stony Mountain (4) ϕ3 5 3 I6,I5,I4 ϕ4,ϕ3,ϕ3 I3,I2 ϕ3,ϕ2

U3 Red River (3) ϕ3 4 2 I6,I5,I4,I3 ϕ4,ϕ3,ϕ3,ϕ3 I2 ϕ2

U2 Winnipeg (2) ϕ1 3 1 I6,I5,I4,I3,I2 ϕ4,ϕ3,ϕ3,ϕ3,ϕ2 I1 ϕ1

U1 Deadwood (1) ϕ0 2 0 I6,I5,I4,I3,I2,I1 ϕ4,ϕ3,ϕ3ϕ3,ϕ2,ϕ1 I0 ϕ0

U0 Precambrian (0) ϕ0 1 n/a I6,I5,I4,I3,I2,I1,I0 ϕ4,ϕ3,ϕ3,ϕ3,ϕ2,ϕ1,ϕ0 n/a n/a

Table B3. Interface information for case study 2. n/a denotes not available.

Interface Name Geological Series Unit Unit Above Above Below Below
rule above below interfaces series interfaces series

I1 Quartzite top Onlap ϕ1 2 1 n/a n/a I0 ϕ0

I0 Structural dome top Erosional ϕ0 1 0 n/a n/a n/a n/a

Above/below interfaces and series indicated here use the efficient option for stratigraphic relations mentioned in Sect. 2.4.1.

Table B4. Formation unit information for case study 2. n/a denotes not available.

Unit Name Series Unit Unit Above Above Below Below
above below interfaces series interfaces series

U2 Pp-PL ϕ1 n/a 1 n/a n/a I1,I0 ϕ1,ϕ0

U1 Pp-PD ϕ0 2 0 I1 ϕ1 I0 ϕ0

U0 Na-g ϕ0 1 n/a I0 ϕ0 n/a n/a

Above/below interfaces and series indicated here use the efficient option for stratigraphic relations mentioned in Sect.
2.4.1.
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Appendix C: k-fold cross-validation results for case
study 1

See https://scikit-learn.org/stable/modules/cross_validation.
html (last access: 17 November 2023) for implementation
details and illustration regarding the k-fold cross-validation
procedure. The range of mean distance residuals on test
points, 1dTest, from all k splits indicates the lower and up-
per bound of these residuals across all splits for a given k.
The large mean residual for upper bounds (e.g., 191.4 m for
k = 20 in Table C2) is the result of a single point constraint
associated with the sub-Winnipeg unconformity in the far
north-west corner of the modelling domain. For every k-fold
procedure carried out, there is always one split point that
is excluded from training and results in a larger mean dis-
tance residual, and it increases with larger k, on the corre-
sponding test set. It is important to note that the next nearest
constraint to this point associated with this interface (sub-
Winnipeg unconformity) is 150 km away. The upper bound
on mean distance residuals decreases with smaller k. This
is because with smaller k a higher percentage of constraint
points are removed from training, and generated models be-
come more generalized. The lower bound of mean distance
residuals decreases with larger k, since more points are used
to constrain generated models.

Table C1. k-fold metrics for the structural model generated from
interface and intraformational constraints.

k Data removed from 1dTest Range
from training (%) (meters) (meters)

20 5 31.0 [7.8, 412.1]
10 10 27.0 [10.0, 170.2]
5 20 18.5 [10.4, 47.8]
2 50 13.0 [12.8, 13.1]

Table C2. k-fold metrics for the structural model generated from
interface constraints only.

k Data removed from 1dTest Range
from training (%) (meters) (meters)

20 5 21.7 [10.1, 191.4]
10 10 17.5 [10.8, 58.1]
5 20 16.2 [12.1, 27.7]
2 50 15.7 [15.5, 15.7]

1dTest : mean distance residual computed on the testing set (not used to
train/fit the model).
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Appendix D: Loss function plots for case study 2

Note the following from loss plots shown in Fig. D1:
(1) when no orientation data are used in training (Fig. D1a),
early training is strongly influenced by the stratigraphic
constraints (on, above, below) imposed on interface data,
whereas all other models (Fig. D1b, c, d, e) are strongly in-
fluenced by the orientation data. (2) Beyond 50 epochs, train-
ing is influenced by on stratigraphic constraints, followed by
orientation constraints and then above/below constraints on
intraformational data.

Figure D1. Loss function plots as function of training epoch for individual constraints used in case study 2. (a, b, c, d, e) Plots corresponding
to generated geological models shown in Fig. 12 (e, f, g (left), g (middle), g (right)), respectively.
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Code and data availability. The source code for the
GeoINR neural network developed in PyTorch and
data can be freely downloaded from https://github.com/
MichaelHillier/GeoINR.git (last access: 17 September 2023)
or https://doi.org/10.5281/zenodo.8352541 (Hillier et al., 2023).
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