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Abstract. We present a framework that links in situ obser-
vations from the Biogeochemical Argo (BGC-Argo) array
to biogeochemical models. The framework minimizes the
technical effort required to construct a Lagrangian-type 1D
modelling experiment along BGC-Argo tracks. We utilize
the Argo data in two ways: (1) to drive the model physics
and (2) to evaluate the model biogeochemistry. BGC-Argo
physics data are used to nudge the model physics closer
to observations to reduce the errors in the biogeochem-
istry stemming from physics errors. This allows us to tar-
get the model biogeochemistry and, by using the Argo bio-
geochemical dataset, we identify potential sources of model
errors, introduce changes to the model formulation, and val-
idate model configurations. We present experiments for the
Nordic seas and showcase how we identify potential BGC-
Argo buoys to model, prepare forcing, design experiments,
and approach model improvement and validation. We use
the ECOSMO II(CHL) model as the biogeochemical com-
ponent and focus on chlorophyll a. The experiments reveal
that ECOSMO II(CHL) requires improvements during low-
light conditions, as the comparison to BGC-Argo reveals that
ECOSMO II(CHL) simulates a late spring bloom and does
not represent the deep chlorophyll maximum layer formation
in summer periods. We modified the productivity and chloro-
phyll a relationship and statistically documented decreased
bias and error in the revised model when using BGC-Argo
data. Our results reveal that nudging the model temperature
and salinity closer to BGC-Argo data reduces errors in bio-
geochemistry, and we suggest a relaxation time period of 1–
10 d. The BGC-Argo data coverage is ever-growing and the

framework is a valuable asset, as it improves biogeochemi-
cal models by performing efficient 1D model configurations
and evaluation and then transferring the configurations to a
3D model with a wide range of use cases at the operational,
regional/global and climate scales.

1 Introduction

Marine biogeochemical models are used to understand and
quantify physical, chemical and biological interactions and
how they respond or feed back to climate variability. Ocean
biogeochemistry is complex, with many poorly known pro-
cesses, and it is therefore necessary to simplify ecosys-
tem functions when constructing modelling frameworks that
represent the environment they are dedicated to in a cost-
efficient way. In addition to observational datasets, we re-
quire efficient tools that can maximize the benefits of these
datasets for model construction, tuning and evaluation. In
this study, we showcase how Biogeochemical Argo buoys
can be used for improving the formulation, parameterization
and performance of a biogeochemical model.

Biogeochemical Argo (BGC-Argo) is a network of free-
drifting, battery-powered profiling floats measuring temper-
ature and salinity as well as six core variables (oxygen,
nitrate, pH, chlorophyll a, suspended particles and down-
welling irradiance) down to a depth of 2000 m. In the context
of the Global Ocean Observing System, the BGC-Argo net-
work supports three main themes: climate, marine ecosystem
health and operational services. It has been used to estimate
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and assess the net community and export production, the air–
sea gas exchange, the oxygen minimum zone variability, and
biophysical interactions (Claustre et al., 2020, and references
therein). In the modelling community, BGC-Argo datasets
have been used with data assimilation for state correction
(Cossarini et al., 2019), model optimization and evaluation
(Verdy and Mazloff, 2017; Damien et al., 2018; Salon et al.,
2019; Wang et al., 2020), and model formulation improve-
ment (Terzić et al., 2019). These recent examples demon-
strate the synergy of BGC-Argo with biogeochemical mod-
els and that the use of BGC-Argo in the modelling commu-
nity is gaining momentum. Furthermore, the added value of
these profiling floats to modelling frameworks will likely in-
crease with increasing BGC-Argo coverage (Voosen, 2020).
Therefore, introducing frameworks (including the one pre-
sented in this study) that utilize these datasets will benefit
the modelling community as both the regional and temporal
BGC-Argo coverage increases.

During its two decades of operation, the BGC-Argo array
has challenged the historical capacity for in situ sampling,
which is biased towards coastal areas, the Northern Hemi-
sphere and seasons with easier sampling conditions, espe-
cially in the polar regions (Riser et al., 2016). BGC-Argo
covers open-ocean regions extensively and samples equally
throughout the seasons (see Sect. 2.1.1 for a sampling com-
parison for the high-latitude North Atlantic). For 1D mod-
els, which are preferably configured at the time-series sites,
the overhead for in situ sampling greatly limits the temporal
resolution, leading to undersampling, which limits our un-
derstanding of the ocean dynamics and model development
and assessment. While satellite images provide extensive re-
gional coverage (hindered by cloud coverage, especially at
high latitudes), they are limited to surface measurements and
can not constrain some of the parameters vital to model opti-
mization and validation alone (Tjiputra et al., 2007; Gharamti
et al., 2017; Wang et al., 2020).

In this study, we focus on using BGC-Argo as an addi-
tional observational data source to in situ sampling and re-
mote sensing as well as on how to take advantage of two
important aspects of the BGC-Argo dataset: (1) its regional
and temporal coverage and (2) the availability of both physi-
cal and biogeochemical high-resolution data. Our main ob-
jective is to establish the framework and showcase its ca-
pacity as a tool for model development and assessment. The
framework will allow the modeller to construct a Lagrangian-
type experiment along a BGC-Argo track in order to visu-
ally and objectively assess the model performance and sub-
sequently advance its dynamics and optimize its parameters.
Even though one of the ultimate aims of using this frame-
work for a modelling study is the assessment of the observed
biogeochemistry, our primary aim is to present the details of
the framework. Therefore, a full assessment of the observed
biogeochemical variables is outside the scope of this study.
Here, we present how BGC-Argo physical data can enhance
the realism of model physics, thereby allowing the evaluation

and improvement of the modelled biogeochemistry. Specifi-
cally, we show how its high-resolution vertical and temporal
chlorophyll a sampling can be used to advance model formu-
lation, and we objectively assess the model parameters. The
ultimate goal is to establish a 1D modelling framework for
improving regional and global models.

2 Materials and methods

2.1 Observation datasets

2.1.1 Biogeochemical Argo

BGC-Argo data were downloaded from the Copernicus Ma-
rine Services web portal (https://marine.copernicus.eu/, last
access: 22 November 2023) under the Global Ocean –
Delayed Mode Biogeochemical product category (INSITU
GLO BGC DISCRETE MY OBSERVATIONS 013 046;
https://doi.org/10.17882/86207; Copernicus Marine, 2023)
as separate NetCDF files for each BGC-Argo buoy. A re-
gional filter was applied to this dataset so that only BGC-
Argo buoys that were located in the North Atlantic and
above 50◦ N latitude at any time during their courses were
selected (Fig. 1). We only selected buoys that include the
CPHL_ADJUSTED variable (“chlorophyll a” from now on
unless stated otherwise), which indicates that a correction
has been applied to the chlorophyll a data. A visual in-
spection was performed, and only those BGC-Argo buoys
with chlorophyll a profiles representing continuous tempo-
ral and depth coverage were selected. A total of 53 BGC-
Argo buoys were selected for statistical validation of their
chlorophyll a (see Sect. 3.1). Throughout this selection pro-
cess, BGC-Argo chlorophyll a, salinity and temperature data
with quality control flags 1, 5 and 8 were used. These rep-
resent good, adjusted and interpolated data, respectively. A
final inspection was made, and eight buoys (see the Supple-
ment for the buoys used) were selected for the along-track
simulations: the most feature-rich buoys with multiple-year
continuous chlorophyll a coverage. We present the results
from the buoy 6902547 in the main text.

2.1.2 Satellite and in situ chlorophyll a

Ocean Colour Climate Change Initiative (OC CCI v5.0)
daily L3 chlorophyll a and kd490 data (Sathyendranath
et al., 2019, 2021) were read from the thredds server
(https://rsg.pml.ac.uk/thredds/catalog/cci/v5.0-release/
geographic/daily/catalog.html, last access: 22 Novem-
ber 2023) as subset datasets around the coordinates of
either BGC-Argo buoy profiles or surface in situ sam-
ples. Chlorophyll a samples collected by the Institute
of Marine Research (2018) were used for the statis-
tical evaluation of the BGC-Argo chlorophyll a data
(http://www.imr.no/forskning/forskningsdata/infrastruktur/
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Figure 1. Spatial distribution of the BGC-Argo profiles (orange) and in situ sample locations (blue) in the northern North Atlantic. The
two observing platforms have too few spatio-temporal matches to be able to perform a meaningful combined statistical analysis. For this
comparison, in situ samples from 2010–2017 were used.

viewdataset.html?dataset_id=104, last access: 22 Novem-
ber 2023).

2.2 Biogeochemical Argo, satellite and in situ data
co-location procedure and analysis

We performed a cross-validation of the BGC-Argo chloro-
phyll a in our study region (> 50◦ N) against in situ samples,
using satellite data as a reference for both BGC-Argo and in
situ chlorophyll a. We performed the statistical analysis using
the satellite data because the number of co-locations between
the BGC-Argo and in situ samples were not enough for a
representative statistical analysis. The satellite chlorophyll a
and kd490 data were retrieved from the thredds server and the
satellite data were averaged within a 2 km radius of the BGC-
Argo and in situ profile coordinates. Both BGC-Argo and in
situ chlorophyll a profiles were averaged within 1 / kd490 m
depth if kd490 data were available within the 2 km radius. If
kd490 data were missing, profiles were averaged within 10 m
depth. For the statistical analysis, the bias, root mean square
error (rmse), correlation (corr) and normalized standard de-
viation (nstd) were calculated for the co-located data using
the following formulae:

bias=
(∑

(M −O)
)
/
∑

O, (1)

rmse=
√∑

(M −O)2/N, (2)

corr=
∑N
i=1(Mi −M)(Oi −O)√∑N

i=1(Mi −M)2
∑N
i=1(Oi −O)

2
, (3)

nstd=

√(∑N
i=1(Mi −M)2

)
√(∑N

i=1(Oi −O)
2
) , (4)

whereM andO indicate estimated and observed data respec-
tively, N is the number of data points, and i indicates an in-
dividual sample.

2.3 Model description

Physical processes in the water column were simulated by
the 1D General Ocean Turbulence Model (GOTM; Burchard
et al., 1999), which simulates vertical turbulent fluxes of mo-
mentum, heat, and dissolved and particulate matter. All ex-
periments described in this article used 190 vertical layers
(2000 m deep) of varying thickness, with thin layers near the
surface and the bottom of the water column. A 1 h resolu-
tion atmospheric forcing was applied. We applied the GOTM
model’s default turbulence closure (2nd order) method with
the k-epsilon-style turbulence kinetic energy equation. The
physics along the BGC-Argo track was simulated with the
assumption that the lateral interactions in the water column
were minimized as the buoys travelled together with the wa-
ter mass they were located in. However, certain lateral in-
teractions were included through relaxation to prescribed
datasets (see Sect. 2.4.1).

We used ECOSMO II(CHL) (Y2022; Yumruktepe et al.,
2022b) to simulate the biogeochemical processes in the water
column. ECOSMO II(CHL) is an intermediate-complexity
lower trophic level biogeochemical model that resolves four
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inorganic nutrients (nitrate, ammonium, phosphate and sili-
cate) utilized by three types of phytoplankton (diatoms, flag-
ellates and cyanobacteria). In this study, cyanobacteria were
turned off since they were parameterized to grow in the Baltic
Sea (DS2013; Daewel and Schrum, 2013). North of 50◦ N in
the North Atlantic, cyanobacteria are not a significant com-
ponent of the phytoplankton community. Two types of zoo-
plankton (micro- and meso-size classes) are parameterized
as herbivores and omnivores respectively. Dissolved (DOM)
and particulate (detritus) organic matter are included in the
model. The model uses the molar Redfield ratio between
components, i.e. C : N : Si : P is 106 : 6.625 : 6.625 : 1, and
discrete nutrients are tracked both in the water column and in
a single sediment layer. A complete description of ECOSMO
II is given in Daewel and Schrum (2013). ECOSMO II(CHL)
version Y2022 includes chlorophyll a as an explicit state
variable for each phytoplankton functional type. The ele-
ment flow between ECOSMO II(CHL) variables is shown
in Fig. 2.

ECOSMO II(CHL) version Y2022 represents the
current (December 2022) operational marine biogeochem-
ical model for the Nordic seas and the Arctic Ocean
(ARC MFC – Arctic Marine Forecasting Centre) un-
der the umbrella of The Copernicus Marine Services
(https://marine.copernicus.eu, last access: 22 Novem-
ber 2023; https://doi.org/10.48670/moi-00003, Copernicus
Marine Service, 2023). This model’s formulation and its
parameterization were used as the reference model (referred
to as “REF”) for the experiments conducted in this study.
While Y2022 presents upgrades to the DS2013 version
with the addition of an explicit chlorophyll a variable for
each phytoplankton functional type, an evaluation of the
model by Yumruktepe et al. (2022b) revealed that further
refinement of the chlorophyll a is needed to improve its
dynamical response to varying light conditions. We address
this issue while presenting the use case of the along-track
BGC-Argo modelling framework. Thus, we have introduced
changes to the light limitation on phytoplankton growth
formulation and to various parameters, and these changes
will be validated using the BGC-Argo data.

ECOSMO II(CHL) formulates the biological interactions
for phytoplankton types RPhyj and chlorophyll a RChlj for
P1 and P2 (diatoms and flagellates respectively) as follows:

RPhyj = σjφPjCPj −

2∑
i=1

GiPjCzi −mpjCPj , (5)

RChlj = ρchlj σjφPjCPj −

2∑
i=1

GiPjCzi
ChlPj
CPj

−mpjChlPj , (6)

where

ρchlj =
θmax
Pj

φPjCPj

αPj I (x,y,z, t)Chlj
, (7)

φPj =min(αj (I ),βN,βP,βSi), (8)
αj (I )= tanh(ϕj I (x,y,z, t)), (9)
βN = βNH4 +βNO3 , (10)
βNH4 = NH4/(NH4+ rNH4), (11)
βNO3 = (NO3/(NO3+ rNO3))exp(−γNH4), (12)
βPO4 = PO4/(PO4+ rPO4), (13)
βSi = Si/(Si+ rSi), (14)

GiPj = σi,Pj
ai,PjCPj

ri +Fi
, (15)

Fi =

2∑
j=1

ai,PjCPj , (16)

with j = 1, 2 denoting the specific phytoplankton types and
i = 1, 2 denoting the specific zooplankton types. P (phyto-
plankton) and Z (zooplankton) concentrations in mg m−3 are
represented by C, while Chl denotes the chlorophyll a con-
centration in mg m−3. Silicate is not included in the flagellate
equations. The parameter definitions and units are provided
in Table 1. Photosynthetically active radiation (PAR) is de-
fined as I (x,y,z, t) and formulated as

I (z)= 0.42 · Is · exp(−kwz− kchl

0∫
z

ChlPj ∂z). (17)

While chlorophyll a was introduced as an explicit vari-
able in Y2022, its effect on phytoplankton growth was only
indirectly included through Eq. (17) as a self-shading param-
eter that affects light attenuation. Variability under varying
light conditions was allowed by defining the C : Chl ratio
as a function of light (Eq. 7). In this study, we expand on
the Y2022 approach and assume that chlorophyll a has a
direct effect on phytoplankton growth, e.g. low-light condi-
tions trigger a higher production of chlorophyll a (present
in Y2022) and will increase production (introduced in this
study) as the higher chlorophyll a concentration resembles
an increased use of light energy. This was achieved in exper-
iments (denoted “EXP”) by modifying αj (I ) in Eq. (9), the
light limitation on growth, according to the formulation of
Evans and Parslow (1985) and the parameterization of Bag-
niewski et al. (2011):

αj (I )=
(

Chlj
Pj
·αPj I (x,y,z, t))√

(θmax
Pj

)2+ (
Chlj
Pj
)2 ·α2

Pj
· I (x,y,z, t)2

. (18)

Following these changes, the chlorophyll a concentration has
a direct influence on phytoplankton productivity, and our ini-
tial experiments suggested that the model was too productive
compared to the observed values obtained from BGC-Argo
profilers (results not shown) when using the REF parameter-
ization set. For this reason, the parameters relating to pro-
ductivity, such as growth and grazing rates, were modified
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Figure 2. Schematic diagram (after Yumruktepe et al., 2022b) of biochemical interactions in ECOSMO II(CHL) (DOM: dissolved organic
matter; Chl prefixes stand for phytoplankton-type-specific chlorophyll a content; Sed. denotes a sediment pool with silicate, phosphorus and
nitrate contents).

Table 1. Definitions of symbols used in Eqs. (5)–(18).

Symbol Description Unit

CPj phytoplankton biomass mg C m−3

Czi zooplankton biomass mg C m−3

ChlPj chlorophyll a concentration mg Chl m−3

RPhyj phytoplankton biomass sources/sinks mg C m−3 d−1

RChlj chlorophyll a biomass sources/sinks mg Chl m−3 d−1

σj phytoplankton maximum growth rate d−1

φPj growth limitation
mpj phytoplankton mortality rate d−1

θmax
Pj

maximum Chl : C ratio mg Chl mg C−1

αPj initial slope of the P–I curve mg C m2 (mg Chl d W)−1

I (x,y,z, t) photosynthetically active radiation (PAR) W m−2

ϕj photosynthesis efficiency parameter m2 W−1

rNH4,NO3,PO4,Si nutrient-specific half-saturation constant mmol(N, P, Si) m−3

γ NH4 inhibition m3 molN−1

σi,Pj zooplankton-specific grazing rate d−1

ai,Pj zooplankton food preference
ri half-saturation constant for grazing mg C m−3

kw light attenuation due to water constant m−1

kChl light attenuation due to chlorophyll a concentration constant m2 mg Chl−1

j = 1, 2 denote the specific phytoplankton types and i = 1, 2 denote the specific zooplankton types. Please refer to Yumruktepe et al. (2022b)
and Daewel and Schrum (2013) for the parameter values that are not given in Table 2.

in the EXP simulations to keep the primary production level
comparable with the observations. The new values (Table 2)
are similar to those given in Daewel and Schrum (2013). The
changes can be summarized as decreases in the phytoplank-
ton growth rates, decreases in the grazing rates to reduce the

pressure on phytoplankton with the new lower growth rates,
and reductions in the zooplankton mortality rates to balance
the reduced grazing rates. For more details on the use of these
parameters, see Sect. 3.3.2.
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Table 2. Comparison of ECOSMO II(CHL) parameters used in the REF and EXP configurations.

Model parameter REF EXP

Max growth rate for diatoms (σj ) (d−1) 1.75 1.15
Max growth rate for flagellates (σj ) (d−1) 1.45 1.0
Max grazing rate of mesozooplankton on phytoplankton (σi,Pj ) (d−1) 1.2 0.8
Max grazing rate of microzooplankton on phytoplankton (σi,Pj ) (d−1) 1.5 1.0
Max grazing rate of mesozooplankton on microzooplankton (σi,Pj ) (d−1) 0.75 0.5
Zooplankton half-saturation constant for grazing (ri ) (mmolN m−3) 0.5 0.3
Mesozooplankton mortality rate (mZi ; Daewel and Schrum, 2013) (d−1) 0.2 0.08
Microzooplankton mortality rate (mZi ; Daewel and Schrum, 2013) (d−1) 0.4 0.16

2.4 Along-track modelling setup

2.4.1 Preparation of forcing files

Along-track BGC-Argo modelling was conducted on eight
BGC-Argo trajectories. One experiment was performed sep-
arately for each trajectory, and the models were configured
in separate folders. Several criteria were involved in the
choice of trajectories suitable for the modelling experiments.
(1) The resolution of the BGC-Argo chlorophyll a data had
to be sufficient to represent temporal variations and high-
resolution changes at depth in order to validate the model
chlorophyll a. In the case of temporal resolution, Silva et al.
(2021) gives a range of 28–58 d for the duration of the spring
bloom for the Norwegian and Barents seas. It is highly un-
likely that conventional on-board in situ observations could
provide the samples to cover the onset, peak and decay of
the spring bloom within a large regional area, whereas with
a sampling frequency of 5–10 d, BGC-Argos can capture the
changes for the duration of the spring bloom in the Nordic
seas. BGC-Argo buoys with long gaps in time were either
avoided or the years with missing data were not included in
the experiment. (2) BGC-Argo buoys that were sampling a
continuous and similar water mass in the same region during
their courses were selected to construct suitable environmen-
tal conditions for the model (e.g. the nutrient, temperature
and salinity climatology). (3) BGC-Argo buoys with at least
1 year of time-series data were chosen to represent a full-year
cycle, and buoys with multiple years were prioritized. (4) Al-
though the Norwegian Sea is given priority, buoys from other
regions such as the south of Greenland or the North Atlantic
Subpolar Gyre were selected for wider regional coverage. If
a subsection of the whole BGC-Argo trajectory fitted those
criteria, only that time frame was included in the model.

We set the model’s initial conditions using profiles repre-
sentative of the BGC-Argo location data for both the physics
(temperature T and salinity S) and nutrients (nitrate, silicate
and phosphate). WOA18 monthly nutrient, temperature and
salinity were retrieved from the closest location to the buoy
coordinates at the start of the simulation. A monthly time-
series text file indicating year, month and the 15th day cov-

ering the years 2000–2020 was prepared for each nutrient,
temperature and salinity variable. The model automatically
interpolated the data to the exact date of the model time.
WOA18 data files were set to cover the whole water col-
umn. For each T and S profile, values for the upper 1000 m
(for which there was the most coverage and continuity) were
taken from BGC-Argo buoys, whereas those for depths be-
low 1000 m were copied from WOA18 data interpolated to
the exact coordinates of the buoy and date. This was to ensure
that realistic environmental conditions were present prior to
the model spin-up. World Ocean Atlas 2018 (WOA18; Boyer
et al., 2018; Locarnini et al., 2019; Zweng et al., 2019; Gar-
cia et al., 2019a, b)) monthly climatology for temperature,
salinity, nitrate, silicate, phosphate and oxygen was used as
the initial conditions and monthly relaxation data.

The high-resolution (1 h) ECMWF Reanalysis v5 (ERA5;
Hersbach et al., 2020) was used to construct the atmospheric
forcing along the buoy trajectory in order to replicate the
physical conditions at the ocean surface, and the surface
short-wave radiation was included as an atmospheric forc-
ing to drive the primary production by the phytoplankton.
The latitudes and longitudes of the buoys were linearly inter-
polated to 1 h intervals to precisely locate the closest point
with atmospheric data for each forcing. The ERA5 products
used to construct the atmospheric forcing were (1) the to-
tal cloud cover, (2) the mean total precipitation rate, (3) the
mean surface net short-wave radiation flux, (4) the mean sea
level pressure, (5) the 2 m temperature, (6) the 2 m dew-point
temperature, and (7) the 10 m U and V wind components.
These datasets were stored in a text file with a column for
each and an extra column for the time variable.

2.4.2 Model experiments

We experimented with two versions of ECOSMO II(CHL),
REF and EXP, with three generic sets of simulations for each:
(1) spin-up (“spinup”), (2) along-track relaxation to the cli-
matology (“WOA”) and (3) along-track relaxation to BGC-
Argo (“Argo”). Each BGC-Argo track modelling experiment
involved the common set of simulations depicted in Fig. 3.
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Figure 3. Summary of the two sets of simulations: (1) those using the reference ECOSMO II(CHL) configuration (REF, blue box) and
(2) those using the updated ECOSMO II(CHL) configuration (EXP, green box). The experiments relied on temperature (T ) and salinity
(S) relaxation to either WOA2018 or BGC-Argo data with varying relaxation timescales, where the spin-up simulations were relaxed to
WOA2018 T and S at a fixed location (which was the initial point in along-track simulations). Along-track simulations were conducted in
parallel using the final day of spin-up #2 as the initial conditions. Spin-up simulations were also relaxed to WOA2018 NO3, PO4 and Si with
a 1-year relaxation timescale. No nutrient relaxation was applied to along-track simulations.

An along BGC-Argo track experiment started with two 8-
year cycles of spin-up. The 8-year integration window was
used to reduce the boundary condition size and preparation
time for a longer-term atmospheric forcing. For the spin-
up simulations, the model temperature, salinity and nutrients
were weakly relaxed to the monthly climatology (1-year re-
laxation timescale: 3× 107 s). The spin-up simulations were
performed at the coordinates of the first time-step of the
along-track simulations, thus establishing stable initial con-
ditions for the model. The nutrients were relaxed to clima-
tology values to prevent drifts during a 16-year simulation.
Since the spin-up model location was common to all ex-
periments for a particular BGC-Argo buoy, it was simulated
once and the restart file was stored for the along-track exper-
iments.

Each along-track simulation started with the initial condi-
tions provided by the second spin-up. The along-track exper-
iments differed from each other by the temperature and salin-

ity datasets they were relaxed to (WOA18 or BGC-Argo)
and the relaxation timescale that was used in the simulation.
To prevent artificial nutrient additions, relaxation to nutri-
ents was turned off for both the WOA and Argo simulations.
Each of these experiments was identified by an abbreviation
consisting of a prefix indicating the ECOSMO version, the
BGC-Argo number (if necessary for the text), and a suffix
indicating the dataset it was relaxed to and the simulation’s
relaxation length scale (e.g. REF-6902547-WOA-1year or, in
short, REF-WOA-1year when it is obvious from the text that
the BGC-Argo number is 6902547).

The concept behind the experiment setup depicted in Fig. 3
is as follows:

1. The experiments are divided into two major groups:
(1) REF, which use the reference ECOSMO formulation
and the parameterization of Yumruktepe et al. (2022b),
and (2) EXP, which use the final formulation and the
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parameterization set obtained after a series of experi-
ments conducted during this study. The sensitivity anal-
yses conducted to achieve the EXP parameter set is
not presented here. In the following sections, the REF
and EXP experiments are compared and the improve-
ments achieved with and shortcomings of the EXP ex-
periments are discussed.

2. Relaxing a 1D model to a climatology dataset is a very
common practice. Thus, for each REF and EXP cate-
gory, the WOA simulations are used as the reference
simulations to evaluate the added value of relaxing the
model T and S to the BGC-Argo T and S with the as-
sumption of reducing errors in the modelled physics.

3. The Argo simulations, each of which has a unique relax-
ation timescale showcasing the effect of the strength of
relaxation towards the BGC-Argo T and S on the bio-
geochemistry. Comparing each Argo simulation to the
respective WOA simulation, and comparing them all,
including the WOA, to the BGC-Argo chlorophyll a,
yields the performance of our modelling approach along
the BGC-Argo track. An analysis of the physics of the
WOA and Argo simulations is performed to determine
the optimal relaxation timescale as a reference for future
studies using a similar approach.

4. The best-performing EXP simulation’s formulation and
parameterization represent the final outcome of our ap-
proach and are subjected to further testing in a 3D-
modelling framework for use in a potential upgrade to
the ECOSMO II(CHL) model formulation.

2.5 Model statistical analysis

When constructing the statistical evaluation of the model
along the BGC-Argo track, the BGC-Argo sample points
were linearly interpolated to model depth. The model and
BGC-Argo data were separated into monthly and 10 m depth
interval clusters. A statistical analysis was performed for
each cluster, and the bias and rmse were calculated us-
ing Eqs. (1) and (2) respectively (see Sect. 3.3.3). The
statistics were calculated for chlorophyll a in units of
log10(mg Chl m−3).

3 Results and discussions

3.1 Biogeochemical Argo data evaluation in the Nordic
seas

BGC-Argo chlorophyll a data have been undergoing qual-
ity checks and adjustments (e.g. Xing et al., 2012; Roesler
et al., 2017) and have improved significantly in recent years.
A key adjustment is the division by 2 suggested by Roesler
et al. (2017). They suggested that this division improves the
overestimation of the factory-calibrated chlorophyll a seen

in estimates from the WET Labs Environmental Character-
ization Optics (ECO) series of chlorophyll fluorometer sen-
sors. However, this adjustment is a global average correc-
tion, whereas regional values may differ, and therefore, be-
fore progressing further with the model experiments, it is im-
portant to evaluate the BGC-Argo chlorophyll a data for the
Atlantic north of 50◦ N and to evaluate whether the division
by 2 is also valid for that region.

Evaluating the BGC-Argo chlorophyll a against in situ
data would have been the preferred choice, as these samples
cover deeper layers in the water column. However, there were
too few co-locations between BGC-Argo and in situ samples
(Fig. 1), leading to an unreliable statistical analysis. There-
fore, satellite chlorophyll a data were used as an indepen-
dent cross-validation dataset, and the BGC-Argo and in situ
sample chlorophyll a were separately analysed statistically
against satellite data. We note that van Oostende et al. (2022)
showed that there are inconsistencies in the continuity of the
OC CCI v5.0 chlorophyll a product that appear as sudden
steps in the time series. These steps appear when a satellite
is launched or removed. For this reason, we limited our sta-
tistical analysis to the period from May 2012 to May 2016,
when only MODIS and VIIRS were continuously active, as
this time frame fitted our study period. Figure 1 in van Oos-
tende et al. (2022) depicts no sudden steps in the OC CCI
V5.0 data for this period.

Both visually and statistically (Fig. 4), the BGC-Argo and
in situ sample chlorophyll a are generally similar to the satel-
lite chlorophyll a. This analysis indicates that the default
quality corrections applied to BGC-Argo chlorophyll a en-
sure a good representation of the in situ sample chlorophyll a
while noting that the satellite data are limited to the optical
depth at the surface. Unfortunately, we do not have the re-
quired data at depth to compare the BGC-Argo data to, and
we rely on the quality information document for the repro-
cessed in situ observations (Jaccard et al., 2018). Follow-
ing this evaluation, we conclude that the BGC-Argo chloro-
phyll a dataset is of sufficient quality to be used as a vali-
dation tool for biogeochemical models for the Nordic seas
without any further post-processing. This evaluation ensures
that we can proceed with the modelling experiments.

3.2 Along-track model physics evaluation

The model physics and variations of it stemming from differ-
ent relaxation scales play a crucial role in the biogeochem-
istry, and we therefore evaluated the effectivenesses of the
different relaxation scales at reproducing the observed tem-
perature and salinity profiles along the tracks. By simulating
temperatures and salinities as similar as possible to the ob-
served values (within a margin that allows the model dynam-
ics the freedom to perform properly), we establish the foun-
dation for biogeochemical model experiments that minimize
the impact of errors stemming from model physics. As a re-
sult, we can target the biogeochemistry for improvements.
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Figure 4. Statistical analyses of chlorophyll a based on in situ bottle samples with search radii of (a) 2 km and (c) 10 km and BGC-Argo
with search radii of (b) 2 km and (d) 10 km reveal that a comparison of BGC-Argo statistics against satellite chlorophyll a shows the same
pattern as a comparison of in situ bottle statistics against satellite chlorophyll a. The computed statistics and number of sample points for
each sample set are depicted in the figures. Equations for the computed statistics are described in Sect. 2.2. Data from all sources are log10
transformed.

In our approach, we considered a simulation where the
model T and S were relaxed to WOA18 with a 1-year relax-
ation timescale (i.e. REF-WOA-1year) as the typical setup
for a 1D simulation, so this can be considered a reference
experiment. This is the case for both the model physics
and the biology. The remaining experiments (i.e. REF-Argo-
“relaxation_scale”) are iterations that allow us to evaluate the
optimal relaxation timescale for progressing with the biogeo-
chemical experiments. The simulations REF and EXP can be
used interchangeably as they both use the same physics.

We use BGC-Argo 6902547 (Fig. 5) to showcase the ca-
pabilities of the framework we designed; the figures from
the other experiments are included in the Supplement. We
use the BGC-Argo and satellite sea surface temperatures to
evaluate the simulated temperature, salinity and mixed layer
depth (MLD) from the experiments with different relaxation
scales (Figs. 6, 7 and 8). For visual clarity, Fig. 8 focuses on
a portion of the BGC-Argo track with a limited number of
simulations. The full time period and set of simulations are
depicted in Fig. A1.

Both the simulated temperature and simulated salinity
(Fig. 6) become progressively more similar to the observed

values as the relaxation timescale is shortened (i.e. there
was a stronger influence of the BGC-Argo T and S pro-
files), with the simulation using WOA18 relaxation having
the least short-term variability. Even in the case of 30 d of re-
laxation (REF-Argo-30days), temporal variability is less pro-
nounced compared to that of 1 d of relaxation (REF-Argo-
1day). An argument can be made that evaluating the model
results with the dataset that it was relaxed to could raise
concern, but when the simulations were compared to an in-
dependent dataset (i.e. the satellite sea surface temperature
(SST; Fig. 7)), the differences between the experiments are
evident, especially for the months of October–May, when
vertical mixing is high. REF-WOA-1year presented the low-
est performance for those months, and it required relaxation
timescales of 30 d or less to achieve a better fit with the
observed SST, while the short-term relaxations (1–5 d) per-
formed better.

We focus in particular on the MLD, as it is important
for controlling phytoplankton phenology (e.g. the timing,
depth and duration of bloom events). All the simulations use
the same atmospheric forcing, so the choices of relaxation
dataset and timescales are the dominant drivers of differences
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Figure 5. During its drift, BGC-Argo 6902547 was confined to the
Norwegian Sea and was mostly trapped in the Lofoten Basin. Later
in 2016, it drifted westwards. We limit our model evaluation to the
period before this, mainly focusing on 2014 and 2015.

in MLD. Notably, the MLDs (Figs. 8 and A1) for both cases
with 1-year relaxation scales, REF-WOA-1year and REF-
Argo-1year, are similar, and MLDs deeper than the observed
ones are consistently calculated for these cases, especially
for 2014 and the early spring of 2016. This is also evident
in Fig. 7, where the SSTs for the mixing period in these two
simulations are cooler compared to the SSTs in the other ex-
periments and the observed values. Due to a better fit with
the observed MLD estimate, the short-term relaxation scale
experiments (30 d or less) achieve a more pronounced inter-
annual variability in MLDs (e.g. shallower winter MLDs for
2014 and deeper ones for 2016). These results demonstrate
that the use of Argo-driven model physics produces more
optimal physics in the biogeochemical simulations. For this
purpose, as we progress through the model results in the
following sections, we will be focusing on those of the 1 d
relaxation-scale experiments when showcasing the relaxation
to the BGC-Argo experiments.

3.3 Modelled chlorophyll a evaluation

3.3.1 Evaluation of the reference ECOSMO II(CHL)
formulation

We first evaluate the reference ECOSMO II(CHL) simula-
tions in order to detect shortcomings, and later focus on these
to improve the model results by objectively analysing them
against the BGC-Argo chlorophyll a. Investigating this ap-
proach and its outcome is the primary objective of our study.

We present the observed (Fig. 9a) and simulated (REF-
WOA-1year and REF-Argo-1day; Figs. 9b and c respec-
tively) chlorophyll a along the same BGC-Argo trajectory
described in Sect. 3.2. We used REF-Argo-1day for this com-
parison since the MLD, T and S were better represented with
a short-term relaxation timescale (Figs. 6, 7 and 8). Inves-
tigating the optimal timescale for relaxation (see Sect. 3.4)
reveals that 1 d relaxation provides the best results statisti-
cally, although differences between the short-term (1–10 d)
relaxation timescales are minor and are subject to the require-
ments of the modelling study.

The observed chlorophyll a shows relatively minor in-
creases in concentration (< 0.5 mg Chl m−3) in early March
for the 3 years, with the first peak bloom of the year oc-
curring during early May. The first peak in 2014 was fol-
lowed by a decrease in concentration and then a second (al-
beit weaker) peak in late June 2014. Following the second
peak, the data show the formation of a deep chlorophyll a
maximum (DCM) at around 20–50 m depth. A comparable
second peak in June 2015 was not observed, but a DCM
layer formed at similar depths to the layer that formed in
2014. The formation of the DCM started earlier in 2015. For
both 2014 and 2015, a late-summer (September–October)
increase in chlorophyll a concentration from the surface to
deeper than 75 m was observed. During the spring bloom
events, the observed chlorophyll a concentrations exceeded
5 mg Chl m−3, and, in the case of 2015, DCM concentra-
tions exceeded 4 mg Chl m−3. Such continuous and high-
resolution vertical, seasonal and inter-annual variability in
the observed data showcases the unique value of BGC-Argo
observations for model evaluation. Especially for the vertical
case, BGC-Argo buoys are often the only available source of
observations made in the open ocean.

In general, the two sets of simulated chlorophyll a, REF-
WOA-1year (Fig. 9b) and REF-Argo-1day (Fig. 9c), have
similar vertical and temporal patterns and concentrations.
Their first peaks occur in May–June in 2014 and 2015, and
those peaks are followed by lower concentrations in summer.
However, there are notable differences between the two ex-
periments (see Fig. 9d, which shows REF-WOA-1year sub-
tracted from REF-Argo-1day). In addition, the differences
are not consistent between the simulated years. The timing
and depth of the differences vary between 2014 and 2015.
For 2014, the REF-Argo-1day chlorophyll a concentration is
higher at the surface during the spring bloom (May), while,
in response, REF-WOA-1year chlorophyll a is higher be-
low 40 m. This pattern for May–June is reversed for 2015.
REF-WOA-1year chlorophyll a is higher in the 0–25 m range
and REF-Argo-1day is higher below. During July in both
years, REF-Argo-1day chlorophyll a is higher for the sur-
face to 25 m depth range. After July, REF-WOA-1year sim-
ulates higher peaks in chlorophyll a concentration for this
depth interval during August–September 2015. Although mi-
nor (∼ 0.5 mg Chl m−3), REF-Argo-1day simulates higher
chlorophyll a concentrations below the MLD. The difference
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Figure 6. Along-BGC-Argo 6902547-track vertical temperature (a) and salinity (b) Hovmöller plots depict increasing similarities between
the BGC-Argo temperature and salinity and the modelled temperature and salinity as the relaxation timescale parameter decreases, such that
they have practically identical values when a 1 d relaxation scale is used.

Figure 7. Similar to T in Fig. 6a, the model surface temperature performs better against the satellite sea surface temperature as the relaxation
scale decreases. The simulation identified as “woa” corresponds to REF-WOA-1year, and the remaining simulations correspond to REF-Argo
with different timescales of relaxation.

is prominent during October and is located as low as∼ 100 m
depth. Although the difference is not as prominent as during
October, the REF-Argo-1day chlorophyll a is slightly higher
during early May down to ∼ 100 m depth.

These earlier increases in chlorophyll a concentrations in
May due to modified model T and S may be attributed to

the earlier shoaling of the MLD in the REF-Argo-1day case
(Fig. 8), which is in better agreement with the estimated
BGC-Argo MLD. Shallower MLDs may decrease the light
limitation on phytoplankton growth and thus conditions suit-
able for growth may occur earlier compared to the REF-
WOA-1year case. At the end of the growth season, dur-
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Figure 8. Similar to the cases of temperature and salinity, the mixed layer depth (MLD), estimated by using a density change criterion of
0.03 kg m−3 from 10 m, is represented better in experiments that use shorter relaxation timescales. The model MLDs depicted in this figure
are the GOTM model output “MLD_surf” calculated from turbulence. For visual clarity, the time period of the BGC-Argo track has been
shortened, and model experiments are limited to a few representative simulations. The full time period that includes every simulation is
provided in Fig. A1. The simulation identified as “woa” corresponds to REF-WOA-1year, while the remaining simulations correspond to
REF-Argo with different timescales of relaxation.

ing October (especially in 2015), the deeper MLD in the
REF-Argo-1day case (in better agreement with the estimated
BGC-Argo MLD) allows for greater intrusion by nutrients
into the nutrient-limited surface layers. This allows more pro-
ductivity during these late summer periods, which is promi-
nent in the∼ 25–100 m depth range. These noted differences
correspond to the changes in biology when the model T and
S are altered by strongly relaxing them to the BGC-Argo T
and S, and they showcase the changes in biology that occur
when only the model physics is changed.

After minimizing the model physics errors and the re-
sulting errors in biology, we can identify and target the
differences between the simulated and observed chloro-
phyll a. To identify the differences, we compare the esti-
mated chlorophyll a of the REF-Argo-1day simulation to the
observed chlorophyll a from BGC-Argo. In a similar fash-
ion to Fig. 9d, the observed chlorophyll a is subtracted from
the REF-Argo-1day chlorophyll a (Fig. 9e). With this com-
parison, we detect important patterns of differences: (1) the
model fails to reproduce a distinct deep chlorophyll max-
imum (DCM) as the difference is always highly negative
throughout June–September in the 20–50 m depth range (and
sometimes as deep as 75 m) and highly positive near the sur-
face, and (2) the timing of spring bloom initiation is late, as
the difference is small and negative during April–May, which
is consistent with the simulated shallower MLD during this
period.

3.3.2 Phytoplankton growth formulation and
parameterization

Prior to discussing the changes to the model, it is important
to elaborate on the effect of the uncertainty of the BGC-
Argo data, as we rely on this dataset to exert changes to the
model code and parameterization. As is the nature of obser-
vations, they all are different from the true value, and there
will be mismatches (Skogen et al., 2021), even in the case
of in situ chlorophyll a bottle samples. Nevertheless, while
we acknowledge that there are mismatches between differ-
ent datasets (Fig. 4), we can still retrieve enough informa-
tion from the BGC-Argo dataset to detect model shortcom-
ings and propose improvements. For example, in every case
where the model was nudged towards the BGC-Argo temper-
ature, stronger relaxations result in a better match between
the model T and the SST, which is a dataset that is inde-
pendent of BGC-Argo (Fig. 7). Similarly, in the case of the
BGC-Argo chlorophyll a uncertainty, we are not pursuing a
precise one-to-one match between the model and BGC-Argo
but exploring notable differences that should be improved re-
gardless of the concentration differences. As such, there are
fundamental errors in the model that need to be addressed,
i.e. the late bloom, which disrupts the timing of energy trans-
fer to the upper trophic levels, and the absence of the DCM,
which is the production that is not accounted for in the model.
These fundamental dynamics are observed in the BGC-Argo
data even if they may not be represented with precise accu-
racy. Therefore, in the experimental phase, we focus on these
two issues and investigate ways to improve the mechanics of
the model in general. Noting these, fine-tuning model param-
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Figure 9. Comparisons between the (a) observed (BGC-Argo
6902547) and the (b) REF-WOA-1year and (c) REF-Argo-1day
modelled chlorophyll a reveal notable differences between the two
models (d; REF-Argo-1day – REF-WOA-1year) and between the
model and observed data (e; REF-Argo-1day – BGC-Argo). Note
that, for panel (e), the BGC-Argo chlorophyll a was linearly inter-
polated to the model depth points.

eters in a follow-up study would require more research on the
effect of the BGC-Argo data uncertainty.

There are various hypotheses on the effect of mixing or
stratification on the initiation of the spring bloom in the
north North Atlantic, ranging from the “critical stratifica-
tion threshold” (Sverdrup, 1953), where sufficiently abun-
dant light due to shallower convective mixing allows the
growth to exceed losses, to the “dilution–recoupling hypoth-
esis”, where deep winter mixing dilutes prey and predators,
thus decoupling phytoplankton growth and grazing loss rates
by reducing encounter rates (Behrenfeld, 2010). Later dur-
ing the spring stratification, phytoplankton and zooplankton
recouple with enhanced growth rates due to increased light
abundance and greater grazing rates due to increased en-
counter rates. For the Nordic seas, Mignot et al. (2016) sug-
gests that the photoperiod (the number of hours of light expe-
rienced by the phytoplankton daily) exceeds a critical value.

Common to all of these hypotheses is the idea that stratifi-
cation plays an important role in phytoplankton productiv-
ity, and errors in the model physics can thus be an impor-
tant source of errors in the modelled biogeochemistry. How-
ever, we have shown the reduction in model physics errors
achieved by relaxing the model T and S to the observed val-
ues in Sect. 3.2 and documented the changes in biogeochem-
istry in Sect. 3.3.1. This suggests that the major source of
error in phytoplankton growth is related to the biogeochemi-
cal model.

Also common to all these hypotheses is the critical im-
portance of light abundance. Even in the case of Behrenfeld
(2010), which focuses more on prey/predator interactions,
light has a central role. During periods where phytoplanton
are decoupled from zooplankton, the phytoplankton are still
dependent on light to sustain growth. However, neither REF-
WOA-1day nor REF-Argo-1day simulations reproduce the
winter biomass detected by BGC-Argo (Fig. 9a and e). Both
the late bloom and the absence of a DCM suggest that the
modelled phytoplankton growth is too low under low-light
conditions. This evidence is supported by the model growth
limitation results (Fig. 10), which show that the growth is
light limited during low-light conditions.

A prime candidate for growth limitation due to low light
could be high light attenuation, but this is unlikely in the
present case as the low growth occurs throughout the year;
hence, in the case of a late bloom, there is not enough phyto-
plankton to cause excess self-shading. This suggests that the
model phytoplankton are not optimally utilizing the avail-
able light (PAR). The default (REF experiments) ECOSMO
II(CHL) formulation for light limitation (Eq. 9) defines the
light limitation as a hyperbolic tangent curve with a photo-
synthesis efficiency multiplier. This function is later multi-
plied by the maximum growth rate, but it does not introduce
variability in various conditions (e.g. light intensity, internal
cellular structure). The strength of growth is moderated by
the efficiency constant, which can increase/decrease the pro-
ductivity as a whole rather than introducing seasonality or
variations at different depths.

To achieve a certain level of variability in the EXP simu-
lations, we have introduced a more dynamic light limitation
on growth (Eq. 18) that takes into account the C : Chl ratio,
which is defined as a function of light intensity. This formu-
lation introduces enhanced productivity in the case of high
intra-cellular chlorophyll a content, which the model repro-
duces for low-light conditions. By introducing this function-
ality, we disrupted the fine balance of the model parameter-
ization, and we therefore needed to modify some of the pa-
rameters related to phytoplankton growth and, in turn, the
grazing rates. The aim with this study is not to fine-tune
the model parameters but to showcase the ability to use the
BGC-Argo buoys as tools for model improvements. Fine-
tuning the model parameters requires a cluster of model ex-
periments and multi-regional representations, whereas we fo-
cus on a limited number of BGC-Argo tracks here. We have
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Figure 10. Simulated limitations due to (a) light, (b) nitrogen, (c) phosphate, and (d) silicate on growth show that the model is mostly light
limited, which can partly explain the low chlorophyll a below the surface during early spring or summer. The BGC-Argo chlorophyll a
(Fig. 9a) forms a DCM in the 15–50 m depth range during the summer months, whereas the model is light limited for this depth interval. The
model effectively simulates silicate limitation during the spring and late summer blooms, allowing a switch in dominance from diatoms to
flagellates (results not shown). During summers, surface layers are nutrient (mainly nitrogen) limited. Note that, although the limitation on
growth is a value between 0 and 1, for visual purposes we have limited the colour range to 0.25–0.75. Darker colours suggest limitation.

performed a series of experiments on model parameters to
present the value added to the model and show how the model
can be objectively validated using the BGC-Argo data. Ta-
ble 2 summarizes the changes to the parameters which lead
to a decrease in the maximum phytoplankton growth rate.
We decreased the grazing pressure of the zooplankton on the
phytoplankton to balance this change. Due to the lower zoo-
plankton food intake, we also decreased their mortality rate
to sustain the zooplankton biomass.

3.3.3 Evaluation of the updated ECOSMO II(CHL)
formulation

The results for the experiments described in Sect. 3.3.2 are
presented in Fig. 11. The simulated chlorophyll a (Fig. 11a)
shows bloom initiation in April for both 2014 and 2015, with
peak concentrations reached in May, followed by consecu-
tive decreases and increases in concentration at the surface
throughout the summer and prominent DCMs within the 20–
50 m depth interval during July–September. Similar to the
previous simulations, after the DCM period, with the in-
crease in MLDs, late summer peaks occur as deep as 75 m
in October. At its highest, the chlorophyll a concentration is
∼ 5–6 mg Chl m−3.

While, in general, the simulated chlorophyll a is simi-
lar to that described in Sect. 3.3.1, there are notable struc-
tural differences between EXP-Argo-1day and REF-Argo-
1day (REF-Argo-1day is subtracted from EXP-Argo-1day
in Fig. 11b): (1) the initiation and the peak of the spring
bloom occur earlier, and (2) the summer subsurface chloro-
phyll a is more prominent in the EXP-Argo-1day simula-
tion. As the spring bloom occurs earlier, the grazing pres-
sure and the nutrient limitation (not shown) also initiate ear-
lier. Both increasing the grazing pressure and increasing the
nutrient limitation result in a decreased chlorophyll a con-
centration. During the chlorophyll a concentration decrease

in EXP-Argo-1day, REF-Argo-1day is experiencing its peak
bloom. This misalignment in the chlorophyll a concentration
peaks indicate consecutive high positive or negative differ-
ences (Fig. 11b). Similar positive or negative differences ap-
pear throughout the summer at the surface, suggesting that
the phytoplankton growth versus loss imbalance has shifted
to occur earlier, resulting in mismatches in local peak con-
centration timings. During July–September, EXP-Argo-1day
simulates higher chlorophyll a levels below the surface (20–
50 m), along with lower values towards the surface, suggest-
ing the presence of a DCM. The late-summer surface chloro-
phyll a concentrations are also higher in EXP-Argo-1day.

The differences between EXP-Argo-1day and BGC-Argo
chlorophyll a (BGC-Argo is subtracted from EXP-Argo-
1day in Fig. 11c) suggest that the applied changes do not
perfectly fix the model. The results still depict differences at
the highly positive or negative ends. However, when com-
paring them to the differences between REF-Argo-1day and
BGC-Argo (Fig. 9e), we can see that the high negative bias
throughout June–September for the 20–50 m depth range
(see Sect. 3.3.1) is reduced, as Fig. 11c depicts highs and
lows for the 20–50 m depth interval which indicate increased
phytoplankton growth at lower light conditions. For better
accuracy, the timing of peak concentrations in the DCM layer
should be improved when tuning the model parameters in the
future.

In addition to the visual comparison, the statistical anal-
ysis provides an objective evaluation of the model results
(Fig. 12). The high model bias and rmse during March–April
are significantly decreased in the EXP-Argo-1day simula-
tion, which can be attributed to an earlier bloom (in better
agreement with the observed values). Similarly, the subsur-
face bias and rmse are improved during July–October, es-
pecially below 50 m. These improvements suggest that the
model is now able to represent effective growth during low-
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Figure 11. The chlorophyll a simulated by the updated ECOSMO II(CHL) formulation (a, EXP-Argo-1day) is notably different to (b) REF-
Argo-1day. The updated formulation improves the timing of the spring bloom and the summer DCM formation, as the simulated chlorophyll a
is higher during these events. The opposite patterns shown in Fig. 9e (i.e. the modelled chlorophyll a is higher at the surface and lower
below, suggesting the absence of a DCM) are weakened with the updated formulation; the difference between the simulated and observed
chlorophyll a (c) depicts (c) local highs and lows at the observed DCM depth. The differences are also reduced for the spring bloom period,
suggesting an earlier simulated bloom, which is an improvement in the model. Note that, for panel (c), BGC-Argo chlorophyll a was linearly
interpolated to the model depth points, so its vertical resolution was decreased.

light conditions because the bias improvements for the highly
negative ends show that the previously very low chloro-
phyll a concentrations are increased under low-light condi-
tions, which was our primary target for model improvement.

The simulated chlorophyll a still has flaws, including oc-
casionally being too high. For example, although the timing
of the spring bloom has improved, the peak concentrations
are high for April–May (Fig. 11c). The late-summer concen-
trations during September–October are also high, which is
more pronounced in 2014. Although the model occasionally
produces higher DCM concentrations, those differences can
be partially attributed to the dislocated depth positioning of
the observed DCM. For example, during July–August 2014
(Figs. 9a and 11a), the observed DCM location ascends from
below 25 m to above it, whereas the model DCM location
descends from above 25 m to below it. The model does not
produce a DCM during mid-June to early July 2015, thus
leading to a negative difference. However, similar to the case
in 2014, from mid-July to September there is a mismatch in
the depth location of the DCM. Apart from these major dif-
ferences, the model has shifted from a negative bias at the
surface to a positive bias (which is more prominent within
0–40 m).

To improve the clarity of our experimental study and the
reasoning behind our thought process, we have focused only
on BGC-Argo 6902547 in the main text of this paper. This
allowed us to present how one can approach our framework
for model evaluation and improvement. However, an argu-
ment can be raised that our changes to the model formula-
tion and parameterization are case specific, i.e. they only ap-
ply to BGC-Argo 6902547, which was located in the Norwe-
gian Sea between 2014–2016. In response to this argument,
we point out that we targeted the phytoplankton growth un-
der low-light conditions, as we concluded this was necessary
for the model based on what the experiments revealed (see
Sect. 3.3.2). The parameter changes given in Table 2 repre-
sent parameter tuning to adapt the model to its new formu-
lation for growth. Thus, although the prescribed parameters
target the specific case of BGC-Argo 6902547, the formula-
tion change for low-light conditions should benefit the model
in general, which was the case in other experiments we con-
ducted in this study. We did not include the results of those
experiments here, but the alternatives to Figs. 6, 7, 8, 9, 11
and 12 for each specific experiment are provided in the Sup-
plement. All reference experiments (REF simulations) were
mostly light limited, whereas every modified model exper-
iment (EXP simulations) showed objectively improved re-
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Figure 12. The reference model bias (a) is improved upon by including chlorophyll a in the light-limitation function; in a light-limited
environment, the model produces a lower C : Chl ratio, effectively decreasing the light limitation on phytoplankton growth rates. The bias
obtained with the modified model (b) shows the greatest improvements in conditions where the light is limited, such as during the winter and
early spring or at the subsurface in the summer period. Similarly, compared to the rmse for the reference model (c), the rmse for the modified
formulation (d) shows the greatest improvement under the aforementioned conditions. To construct these statistics, the BGC-Argo sample
points were linearly interpolated to model depth and monthly averages were taken at 10 m intervals along the water column. The statistics
were calculated for chlorophyll a in [log10(mg Chl m−3)] units.

sults for light-limited conditions according to the assessment
statistics (see the Supplement).

These experiments were not only located in the Norwe-
gian Sea; they covered various regions in the northern North
Atlantic (Fig. 1), showing that the changes can improve mod-
elling results throughout the northern North Atlantic, which
is the main region that ECOSMO II(CHL) was actively de-
veloped for (Yumruktepe et al., 2022b). As discussed above,
fine-tuning is necessary, as the model is too productive,
which is also the case for other experiments presented in this
study. However, the fine-tuning of the parameters is beyond
the focus of this study, as it requires detailed sensitivity anal-
yses. Here we have focused on building a framework where
BGC-Argo can be easily used for driving the model physics
and, at the same time, provides a high-resolution dataset for
its evaluation. This paper is an example of how one can ap-
proach this framework. A follow-up study is needed to fine-
tune the model parameters using multiple BGC-Argo tracks
(and to update the number of tracks with the most recent
BGC-Argo deployments) in order to support model improve-
ments in a 3D-model domain.

3.4 Discussion of the relaxation timescales

An important issue which we briefly discussed earlier (see
Sect. 3.2) is the choice of the relaxation timescale used for T
and S. Referencing the T , S and MLD comparisons (Figs. 6,
7 and 8), we settled on the use of the 1 d relaxation timescale,
as the model physics performance was (visually) better when
using a short timescale. Following up on this decision, we

hypothesized that the physical correction would also lead to
improved performance of the modelled biogeochemistry. It
is important to objectively analyse and quantify the improve-
ments and prove that the hypothesis is valid.

The bias and rmse across the different BGC-Argo tracks
used in this study for each relaxation timescale are depicted
in Figs. 3, 6, 7 and 8 (Fig. 13). Since the effects of the re-
laxation timescales were more prominent during the win-
ter and spring periods (Figs. 7 and 8), and since the days
are short at high latitudes during winter, the statistics we
present in Fig. 13 are the averages of the data points in
Fig. 12 for March–May in the 0–200 m depth range. In gen-
eral, Fig. 13 depicts a common pattern: as the relaxation
timescale increases, the simulations become statistically less
representative of the observed data, with the statistics for
some BGC-Argo track experiments varying more than those
for other experiments. The 6902547 case presented in detail
in this study varies moderately. Since both the physics and
the chlorophyll a respond more positively with shorter relax-
ation timescales, for this kind of approach, we suggest using
a timescale that is as short as possible. We note that the dif-
ferences in statistics are marginal for timescales shorter than
the 10 d relaxation scale. In these cases, the scale will be de-
cided upon based on how flexible towards the BGC-Argo T
and S the model physics are intended to be. The model MLD
for the 10 d scale (Fig. 8) is comparable to that for the 1 d
scale.

One can argue that the statistical differences between the
timescale experiments are not strikingly different, and, as
such, the choice of a different timescale would be arbitrary.

Geosci. Model Dev., 16, 6875–6897, 2023 https://doi.org/10.5194/gmd-16-6875-2023



V. Ç. Yumruktepe et al.: An along-track Biogeochemical Argo modelling framework 6891

Figure 13. EXP-Argo experiments: mean estimated (a) bias and (b) rmse in March–May for different timescales of T and S relaxation to
BGC-Argo. All the along-track experiments show improvements to varying degrees.

We argue that even if the statistical differences are relatively
low for the particular case of the Nordic seas, the relax-
ation to climatology (WOA18) is statistically the least capa-
ble. Using climatology data, the relaxation scheme will miss
anomalous events and will thus poorly represent the inter-
annual variability. Capturing such variability plays an impor-
tant role in understanding the ecosystem dynamics of regions
where the seasonal and annual productivity is highly depen-
dent on the strength and duration of vertical mixing events
due to nutrient limitation, such as the subtropical North At-
lantic (Siegel et al., 1999; Neuer et al., 2007; Helmke et al.,
2010; Yumruktepe et al., 2020). Correcting the model win-
ter physics (e.g. the timing and depth extent of the MLD and
the mesoscale activity) will not only improve the model bio-
geochemistry in general; it will also introduce inter-annual
variability.

The framework we have presented in this study may yield
important applications for regions with nutrient limitation. In
our case, except in the summer months, the biogeochemistry
is not nutrient limited (Fig. 10b–d), and the correction we ap-
plied using the BGC-Argo physics is therefore mainly related
to the light limitation and the strength of vertical mixing.
While improving the strength of convective mixing, we im-
proved the timing of the spring bloom, but the overall effect
on the total productivity could be more significant in nutrient-
limited regions. This hypothesis was not tested in this study,
but we suggest that this would be a valuable follow-up study.

4 Concluding remarks

In this study, we established a 1D ocean modelling frame-
work that employs BGC-Argo buoys for improving and eval-

uating biogeochemical process representations. The code we
developed for this study is written in a generic format, and
any BGC-Argo (or Argo if biogeochemical validation is not
required) trajectory data can be used as the physical set-
ting for a biogeochemistry simulation. The supplied code
(see the “Code and data availability” section) prepares a
1D model setup by creating atmospheric forcing, climato-
logical and Argo relaxation data along the Argo track. The
framework uses the well-established GOTM physics model
and The Framework for Aquatic Biogeochemical Models
(FABM) biogeochemical model coupler. These allow the ex-
periments to be set up quickly and the application of a wide
range of biogeochemical models. In this study, we focused
on presenting the framework, its approach and an example
use case. The use case shows how the modeller can set up
the experiments from scratch, so this article is also a guide to
replicating similar experiments with any BGC-Argo buoy.

In addition to the presentation of technical details, we
have showcased how the framework can be used to improve
biogeochemical models using both the physical and biogeo-
chemical Argo data. As our focus in this study was on pre-
senting the technical approach, our experiments were lim-
ited to simulating the observed chlorophyll a from a limited
number of buoys. Thus, immediate follow-up work to this
study that utilizes the framework in a scientific focused ap-
proach is essential. We suggest extending the approach us-
ing other BGC-Argo variables such as oxygen, light, nitrate
and particle backscatter. The combined use of these vari-
ables in the analyses would provide a more complete pic-
ture of light vs. nutrient limitation and the timing and depths
of biogeochemical processes as well as estimates of organic
matter concentrations. Such an assessment would allow for
a more in-depth tuning of the model dynamics. An interest-
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ing approach would be to construct a similar study for re-
gions where the oceanic production is highly dependent on
the vertical transfer of nutrients to the surface, as improving
the model physics using the BGC-Argo buoys may benefit
modelling studies of regions with high nutrient limitation. A
regional (or global) assessment of the biogeochemical vari-
ables using the BGC-Argo dataset (which has matured for
over a decade) together with the improved models may allow
an understanding of the trends in these variables.

On the topic of tuning, a planned follow-up to this study
focuses on the application of more systematic parameter tun-
ing approaches (e.g. Gharamti et al., 2017) compared to the
relatively simple exercise presented here. In the future, the
number of buoys that are used in the experiments should be
increased, preferably establishing a region-wide sample set,
and a detailed sensitivity analysis should be performed for
a wider parameter set. For instance, we note that the model
chlorophyll a is at the higher end with the parameter values
chosen in this study (see Sect. 3.3.3). Dedicated parameter
tuning approaches should consider uncertainties in the BGC-
Argo data as well as the uncertainty ranges of the tuned pa-
rameters. Because this study focused on improving the model
formulation (i.e. increasing growth rates under low-light con-
ditions) rather than model parameter fine tuning, a dedicated
assessment of BGC-Argo data errors was not included. To
limit the effects of observation uncertainties, we only in-
cluded (see Sect. 2.1.1) the “adjusted” BGC-Argo variables
(i.e. temperature, salinity, pressure and chlorophyll a), which
provide either a “real-time-adjusted” or a “delayed-mode”
data control and correction (Bittig et al., 2019). Despite ap-
plying a level of correction, there are still observational errors
present. For example, the measured ”fluorescence chloro-
phyll a concentration” to ”chlorophyll a pigment concentra-
tion” ratio can vary due to various factors, which can lead
to an uncertainty as high as ±300 % (Roesler et al., 2017).
However, some of these errors can be reduced to a maxi-
mum of 0.12 mg Chl m−3, corresponding to an average re-
duction of ±40 % (Johnson et al., 2017; Bittig et al., 2019).
On the other hand, the BGC-Argo estimated particulate or-
ganic carbon (POC) uncertainty is lower but can be as high
as 40 mg C m−3, about 50 %. In the case of oxygen, the sen-
sors show a strong drift (on the order of −5 % yr−1 between
calibration and deployment), this can be corrected (to ap-
prox. 1.0–1.5 µmol kg−1) with surface measurement adjust-
ments along the track (Bittig et al., 2018). Similar uncertain-
ties that exist for all the other BGC-Argo variables should
also be accounted for in model validation studies.

We envision an ensemble simulation approach for model
biogeochemical parameter tuning as a follow-up study where
we construct a suite of ensemble experiments with system-
atic perturbations of selected model parameters within a ±
uncertainty range from the respective reference parameter
value. However, depending on the number of modified pa-
rameters and BGC-Argo buoys, the number of experiments
can be in the thousands, which raises the question of how to

select the parameter set(s) that yields the best results objec-
tively. The statistical analyses performed in this study were
done on a limited number of BGC-Argo buoys and a sin-
gle biogeochemical variable (i.e. chlorophyll a), and such
an analysis may give inconclusive results in a fine-tuning
parameter study, given the BGC-Argo uncertainty. Newer
BGC-Argo buoys are equipped with multiple biogeochem-
ical sensors, making the statistical analysis of a parameter
fine-tuning experiment more robust as the number of exper-
iments increases while also accounting for multiple BGC-
Argo variables and their associated uncertainty ranges. The
inclusion of the statistics for multiple BGC-Argo variables
would enhance the ecosystem representation by the parame-
ters, and multiple variables would provide more constraints
to help achieve realistic representations. At that stage of the
analyses, the uncertainty ranges of the observed variables can
be included, and the search for the better-performing exper-
iments could be narrowed down for the less uncertain vari-
ables (e.g. POC, oxygen) and widened for the more uncertain
ones (e.g. chlorophyll a). In addition, instead of directly in-
corporating the concentrations from the full experiment into
the statistical analyses, valuable insights may be gained by
separately assessing the timing of seasonal events driven by
the mixed layer dynamics. Alternatively, comparing correla-
tions between the model and the depth locations of key fea-
tures in the BGC-Argo profiles, such as the nutricline, would
give an insight to the mixing and production dynamics (e.g.
Salon et al., 2019). These approaches would reduce the influ-
ence of observation errors but would rely on the consistency
of the sensor along the track. Finally, a more elaborate data
assimilation scheme that takes into account model variable
and parameter uncertainties, such as one based on the ensem-
ble Kalman filter, could be considered for use in this frame-
work in an idealized setting to investigate whether or not the
current model parameterization is suitable to represent the
observed real-world process (e.g. Singh et al., 2022).

In parallel to fine-tuning the model parameters, it is
equally important to further evaluate mechanistic approaches
to phytoplankton growth, mortality, grazing pressure and or-
ganic matter export dynamics. Such mechanistic approaches
allow the models to adapt to changing environmental condi-
tions due to regional coverage, changes in climate and the
state of the oceans. Our study demonstrates the possibility
of designing and applying such approaches by considering
(1) different regional coverages and (2) the ever-growing
time period covered by BGC-Argo data, allowing us to in-
vestigate the model discrepancy at a large scale but also at
the local scale when considering (3) high-resolution depth
and time coverage. The study presented here is an example
of the latter, as we detected a shortcoming of the simulated
primary production in low-light environments and applied
a mechanistic change to the model chlorophyll a dynamics
with minor parameter tuning. This application was an initial
attempt to showcase the utility of the framework to the wider
scientific community, and a follow-up study that focuses on

Geosci. Model Dev., 16, 6875–6897, 2023 https://doi.org/10.5194/gmd-16-6875-2023



V. Ç. Yumruktepe et al.: An along-track Biogeochemical Argo modelling framework 6893

further mechanistic approaches is a natural extension of this
study.

With this framework, we provide modellers with an alter-
native/additional dataset to in situ or remote sensing data,
cover wider regions, depths and time periods, and, with the
least effort, make these data points available for model eval-
uation. We envision advancements in the understanding of
the functioning of marine biogeochemistry through the use
of models which will be improved with the use of this frame-
work. The cost-effective nature of this framework should al-
low (1) the employment of multiple models of variable com-
plexity, (2) the application of them to various regions and
time periods to cover multiple ecosystems, (3) the improve-
ment and fine-tuning of process formulations, (4) the com-
parison of results for a beyond-model-specific approach, and
(5) ultimately, and most importantly, the application of these
models in a 3D setting to a range of use cases ranging from
operational oceanography (e.g. Yumruktepe et al., 2022b) to
regional or global links to higher trophic levels (e.g. Utne
et al., 2012) and climate (e.g. Tjiputra et al., 2020). Through
these use cases, models have the potential to be an important
accessory to observations in efforts to improve our under-
standing of nature and the future of our oceans.

Appendix A

A1 BGC-Argo 6902547 modelled MLDs

This section includes the extended time period and the full set
of simulations depicted in Fig. A1. The inclusion of multiple
years and 12 different time series of data makes the readabil-
ity of the figure challenging. However, the inclusion of each
dataset in the figure is essential for achieving an understand-
ing of the model dynamics as a response to different relax-
ation timescales. Therefore, we included the simpler form in
the main text (Fig. 8) and provide the full set here in “Ap-
pendix A.”

A2 Observational data sources

The input files that were used for the discussed experi-
ment in the study are archived on Zenodo; see Yumruktepe
et al. (2022a). The “experiments/example” folder includes
the files necessary to reproduce the experiment. The fol-
lowing web links are the sources of these input files, and
“build_experiment.sh” in Yumruktepe et al. (2022a) is con-
figured to connect to these links for the preparation of a new
experiment:

1. World Ocean Atlas 2018, temperature:
https://www.ncei.noaa.gov/access/
world-ocean-atlas-2018/bin/woa18.pl?parameter=t
(last access: 7 February 2023)

2. World Ocean Atlas 2018, salinity:
https://www.ncei.noaa.gov/access/

world-ocean-atlas-2018/bin/woa18.pl?parameter=s
(last access: 7 February 2023)

3. World Ocean Atlas 2018, nitrate:
https://www.ncei.noaa.gov/access/
world-ocean-atlas-2018/bin/woa18oxnu.pl?parameter=
n (last access: 7 February 2023)

4. World Ocean Atlas 2018, silicate:
https://www.ncei.noaa.gov/access/
world-ocean-atlas-2018/bin/woa18oxnu.pl?parameter=
i (last access: 7 February 2023)

5. World Ocean Atlas 2018, phosphate:
https://www.ncei.noaa.gov/access/
world-ocean-atlas-2018/bin/woa18oxnu.pl?parameter=
p (last access: 7 February 2023)

6. Ocean Colour Climate Change Initiative v5.0, chloro-
phyll a and kd490:
https://rsg.pml.ac.uk/thredds/catalog/cci/v5.0-release/
geographic/daily/catalog.html (last access: 7 Febru-
ary 2023)

7. BGC-Argo along-track data:
https://data.marine.copernicus.eu/product/INSITU_
GLO_BGC_DISCRETE_MY_013_046/description
(last access: 7 February 2023)

8. ERA5 atmospheric forcing data:
https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-single-levels?tab=form (last access:
7 February 2023)
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Figure A1. The MLD, estimated by using a density change from 10 m criterion of 0.03 kg m−3, similar to the temperature and salinity
cases, is represented better in experiments that use shorter relaxation timescales. The model MLD depicted in this figure is the GOTM model
output “MLD_surf” calculated from the turbulence. This figure depicts the full time period of the BGC-Argo track and model experiments.
The simulation identified as “woa” corresponds to REF-WOA-1year, and the remaining simulations correspond to REF-Argo- with different
timescales of relaxation.

Code and data availability. The exact version of the ECOSMO
II(CHL) model used to produce the results used in this
paper is archived on Zenodo (Yumruktepe et al., 2022a,
https://doi.org/10.5281/zenodo.7773509), which includes the input
data and scripts to produce the model input, run the model and pro-
duce plots for all the simulations presented in this paper. They are
openly available under a Creative Commons Attribution 4.0 Inter-
national license. The GOTM model and FABM coupler are devel-
oped at https://github.com/fabm-model/fabm/wiki/GOTM (last ac-
cess: 24 February 2023), and the version used (GOTM version 7
revision: 2219) is included at Yumruktepe et al. (2022a) in the
“gotm” directory. Yumruktepe et al. (2022a) includes a shell script,
“build_gotm_fabm.sh”, that will, by default, install the GOTM-
FABM version we have used in this study. The ECOSMO II(CHL)
model code is written in FORTRAN. Pre- and post-processing
scripts are written in Python 3. Yumruktepe et al. (2022a) includes
various folders. The experiment we presented here is stored in the
“experiments” folder and can be used as an example for other ex-
periments. The “figure_codes” folder includes the scripts needed to
reproduce the figures in this paper. The “nersc” folder includes the
ECOSMO II(CHL) code to be coupled with FABM during com-
pilation. “build_gotm_fabm.sh” builds the coupled GOTM-FABM-
ECOSMO II(CHL). The model outputs and data used for the fig-
ures are stored in “output_files”. The main folder of Yumruktepe
et al. (2022a) contains “argoinput.py”, which is a compilation of the
Python subroutines that are used to build and post-process the ex-
periments. It is recommended that you should either copy this script
to your Python path or use a symbolic link where the Python scripts
are executed. Investigate “README.md” for further instructions.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-16-6875-2023-supplement.

Author contributions. VÇY built the framework and, together with
EAM, JT and AS, designed the experiments which were then car-
ried out by VÇY. VÇY and AS are the developers of ECOSMO
II(CHL). EAM and JT coupled their respective biogeochemical
models to FABM (not presented here) for a follow-up work. Their
experience with the coupling helped to generalize the framework
code for the wider community. VÇY prepared the paper, with all
co-authors providing contributions.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. Model input data were stored and used
through the Norwegian Sigma2 infrastructure under the project
NS9481K.

Geosci. Model Dev., 16, 6875–6897, 2023 https://doi.org/10.5194/gmd-16-6875-2023

https://doi.org/10.5281/zenodo.7773509
https://github.com/fabm-model/fabm/wiki/GOTM
https://doi.org/10.5194/gmd-16-6875-2023-supplement


V. Ç. Yumruktepe et al.: An along-track Biogeochemical Argo modelling framework 6895

Financial support. This research was financially supported by the
Bjerknes Centre for Climate Research projects Fast Track Initiative
and The Breathing Ocean.

Review statement. This paper was edited by Christopher Horvat
and reviewed by two anonymous referees.

References

Bagniewski, W., Fennel, K., Perry, M. J., and D’Asaro, E. A.: Op-
timizing models of the North Atlantic spring bloom using phys-
ical, chemical and bio-optical observations from a Lagrangian
float, Biogeosciences, 8, 1291–1307, https://doi.org/10.5194/bg-
8-1291-2011, 2011.

Behrenfeld, M. J.: Abandoning Sverdrup’s critical depth hy-
pothesis on phytoplankton blooms, Ecology, 91, 977–989,
https://doi.org/10.1890/09-1207.1, 2010.

Bittig, H. C., Körtzinger, A., Neill, C., Van Ooijen, E., Plant,
J. N., Hahn, J., Johnson, K. S., Yang, B., and Emerson,
S. R.: Oxygen optode sensors: principle, characterization, cali-
bration, and application in the ocean, Front. Marine Sci., 4, 429,
https://doi.org/10.3389/fmars.2017.00429, 2018.

Bittig, H. C., Maurer, T. L., Plant, J. N., Schmechtig, C., Wong,
A. P., Claustre, H., Trull, T. W., Udaya Bhaskar, T., Boss,
E., Dall’Olmo, G., Organelli, E., Poteau, A., Johnson, K. S.,
Hanstein, C., Leymarie, E., Le Reste, S., Riser, S. C., Rupan, A.
R., Taillandier, V., Thierry, V., and Xing, X.: A BGC-Argo guide:
Planning, deployment, data handling and usage, Front. Marine
Sci., 6, 502, https://doi.org/10.3389/fmars.2019.00502, 2019.

Boyer, T. P., Garcia, H. E., Locarnini, R. A., Zweng, M. M., Mis-
honov, A. V., Reagan, J. R., Weathers, K. A., Baranova, O. K.,
Seidov, D., and Smolyar, I. V.: World Ocean Atlas 2018 [temper-
ature, salinity, nitrate, phosphate, silicate, oxygen], NOAA Na-
tional Centers for Environmental Information [data set], https:
//www.ncei.noaa.gov/archive/accession/NCEI-WOA18 (last ac-
cess: 22 November 2023), 2018.

Burchard, H., Bolding, K., and Ruiz-Villarreal, M.: GOTM, a Gen-
eral Ocean Turbulence Model: Theory, Implementation and Test
Cases, Tech. Rep. Report EUR 18745, European Commission
Joint Research Centre Space Applications Institute, https://op.
europa.eu/s/y5wj (last access: 22 November 2023), 1999.

Claustre, H., Johnson, K. S., and Takeshita, Y.: Observing the
Global Ocean with Biogeochemical-Argo, Annu. Rev. Marine
Sci., 12, 23–48, https://doi.org/10.1146/annurev-marine-010419-
010956, 2020.

Copernicus Marine: Copernicus Marine In Situ – Global
Ocean – Delayed Mode Biogeochemical product, SEANOE,
https://doi.org/10.17882/86207, 2023.

Copernicus Marine Service: Arctic Ocean Biogeochemistry Analy-
sis and Forecast, https://doi.org/10.48670/moi-00003, 2023.

Cossarini, G., Mariotti, L., Feudale, L., Mignot, A., Salon, S., Tail-
landier, V., and Teruzzi, A.: Towards operational 3D-Var assim-
ilation of chlorophyll Biogeochemical- Argo float data into a
biogeochemical model of the Mediterranean Sea, Ocean Model.
133, 112–128, https://doi.org/10.1016/j.ocemod.2018.11.005,
2019.

Daewel, U. and Schrum, C.: Simulating long-term dynamics of the
coupled North Sea and Baltic Sea ecosystem with ECOSMO II:
Model description and validation, J. Marine Syst., 119–120, 30–
49, https://doi.org/10.1016/j.jmarsys.2013.03.008, 2013.

Damien, P., de Fommervault, O. P., Sheinbaum, J., Jouanno,
J., Camacho-Ibar, V. F., and Duteil, O.: Partitioning of
the Open Waters of the Gulf of Mexico Based on the
Seasonal and Interannual Variability of Chlorophyll Con-
centration, J. Geophys. Res.-Oceans, 123, 2592–2614,
https://doi.org/10.1002/2017JC013456, 2018.

Evans, G. T. and Parslow, J. S.: A Model of Annual Plankton Cy-
cles, Biol. Oceanogr., 3, 327–347, 1985.

Garcia, H. E., Weathers, K. W., Paver, C. R. , Smolyar, I., Boyer, T.
P., Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova,
O. K., Seidov, D., and Reagan, J. R.: World Ocean Atlas 2018,
Volume 4: Dissolved Inorganic Nutrients (phosphate, nitrate and
nitrate+nitrite, silicate), edited by: Mishonov, A., NOAA Atlas
NESDIS 84, 35 pp., 2019a.

Garcia, H. E., Weathers, K. W., Paver, C. R. , Smolyar, I., Boyer, T.
P., Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova,
O. K., Seidov, D., and Reagan J. R.: World Ocean Atlas 2018,
Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and
Oxygen Saturation, edited by: Mishonov, A., NOAA Atlas NES-
DIS 83, 38 pp., 2019b.

Gharamti, M., Tjiputra, J., Bethke, I., Samuelsen, A., Skjel-
van, I., Bentsen, M., and Bertino, L.: Ensemble data as-
similation for ocean biogeochemical state and parameter
estimation at different sites, Ocean Model., 112, 65–89,
https://doi.org/10.1016/j.ocemod.2017.02.006, 2017.

Helmke, P., Neuer, S., Lomas, M. W., Conte, M., and
Freudenthal, T.: Cross-basin differences in particulate or-
ganic carbon export and flux attenuation in the subtropi-
cal North Atlantic gyre, Deep-Sea Res. Pt. I, 57, 213–227,
https://doi.org/10.1016/j.dsr.2009.11.001, 2010.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo,
G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara,
G. D., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R.,
Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger,
L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S.,
Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The
ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–
2049, https://doi.org/10.1002/QJ.3803, 2020.

Jaccard, P., Hjermann, D. Ø., Ruohola, J., Marty, S., Kristiansen, T.,
Sørensen, K., Kaitala, S., Mangin, A., and Pouliquen, S.: Qual-
ity information document. For Global Ocean Reprocessed in-situ
Observations of Biogeochemical Products., Tech. Rep. CMEMS-
INS-QUID-013-046, https://doi.org/10.13155/54846, 2018.

Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W.,
Sakamoto, C. M., Riser, S. C., Swift, D. D., Williams, N.
L., Boss, E., Haëntjens, N., Talley, L. D., and Sarmiento, J.
L.: Biogeochemical sensor performance in the SOCCOM pro-
filing float array, J. Geophys. Res.-Oceans, 122, 6416–6436,
https://doi.org/10.1002/2017JC012838, 2017.

Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P.,
Zweng, M. M., Garcia, H. E., Seidov, D., Weathers, K. W., Paver,
C. R., and Smolyar, I. V.: World Ocean Atlas 2018, Volume 1:

https://doi.org/10.5194/gmd-16-6875-2023 Geosci. Model Dev., 16, 6875–6897, 2023

https://doi.org/10.5194/bg-8-1291-2011
https://doi.org/10.5194/bg-8-1291-2011
https://doi.org/10.1890/09-1207.1
https://doi.org/10.3389/fmars.2017.00429
https://doi.org/10.3389/fmars.2019.00502
https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18
https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18
https://op.europa.eu/s/y5wj
https://op.europa.eu/s/y5wj
https://doi.org/10.1146/annurev-marine-010419-010956
https://doi.org/10.1146/annurev-marine-010419-010956
https://doi.org/10.17882/86207
https://doi.org/10.48670/moi-00003
https://doi.org/10.1016/j.ocemod.2018.11.005
https://doi.org/10.1016/j.jmarsys.2013.03.008
https://doi.org/10.1002/2017JC013456
https://doi.org/10.1016/j.ocemod.2017.02.006
https://doi.org/10.1016/j.dsr.2009.11.001
https://doi.org/10.1002/QJ.3803
https://doi.org/10.13155/54846
https://doi.org/10.1002/2017JC012838


6896 V. Ç. Yumruktepe et al.: An along-track Biogeochemical Argo modelling framework

Temperature, edited by: Mishonov, A., NOAA Atlas NESDIS 81,
52 pp., [data set] (last access: 22 November 2023), 2019.

Mignot, A., Ferrari, R., and Mork, K. A.: Spring bloom on-
set in the Nordic Seas, Biogeosciences, 13, 3485–3502,
https://doi.org/10.5194/bg-13-3485-2016, 2016.

Neuer, S., Cianca, A., Helmke, P., Freudenthal, T., Dav-
enport, R., Meggers, H., Knoll, M., Santana-Casiano,
J. M., González-Davila, M., Rueda, M. J., and Llinás,
O.: Biogeochemistry and hydrography in the eastern sub-
tropical North Atlantic gyre. Results from the European
time-series station ESTOC, Prog. Oceanogr., 72, 1–29,
https://doi.org/10.1016/j.pocean.2006.08.001, 2007.

Riser, S. C., Freeland, H. J., Roemmich, D., Wijffels, S., Troisi, A.,
Belbéoch, M., Gilbert, D., Xu, J., Pouliquen, S., Thresher, A.,
Traon, P. Y. L., Maze, G., Klein, B., Ravichandran, M., Grant, F.,
Poulain, P. M., Suga, T., Lim, B., Sterl, A., Sutton, P., Mork,
K. A., Vélez-Belchí, P. J., Ansorge, I., King, B., Turton, J.,
Baringer, M., and Jayne, S. R.: Fifteen years of ocean observa-
tions with the global Argo array, Nat. Clim. Change, 6, 145–153,
https://doi.org/10.1038/nclimate2872, 2016.

Roesler, C., Uitz, J., Claustre, H., Boss, E., Xing, X., Organelli, E.,
Briggs, N., Bricaud, A., Schmechtig, C., Poteau, A., D’Ortenzio,
F., Ras, J., Drapeau, S., Haëntjens, N., and Barbieux, M.: Recom-
mendations for obtaining unbiased chlorophyll estimates from
in situ chlorophyll fluorometers: A global analysis of WET
Labs ECO sensors, Limnol. Oceanogr.-Methods, 15, 572–585,
https://doi.org/10.1002/lom3.10185, 2017.

Salon, S., Cossarini, G., Bolzon, G., Feudale, L., Lazzari, P.,
Teruzzi, A., Solidoro, C., and Crise, A.: Novel metrics based
on Biogeochemical Argo data to improve the model uncertainty
evaluation of the CMEMS Mediterranean marine ecosystem
forecasts, Ocean Sci., 15, 997–1022, https://doi.org/10.5194/os-
15-997-2019, 2019.

Sathyendranath, S., Brewin, R. J., Brockmann, C., Brotas, V., Cal-
ton, B., Chuprin, A., Cipollini, P., Couto, A. B., Dingle, J.,
Doerffer, R., Donlon, C., Dowell, M., Farman, A., Grant, M.,
Groom, S., Horseman, A., Jackson, T., Krasemann, H., Laven-
der, S., Martinez-Vicente, V., Mazeran, C., Mélin, F., Moore,
T. S., Müller, D., Regner, P., Roy, S., Steele, C. J., Steinmetz,
F., Swinton, J., Taberner, M., Thompson, A., Valente, A., Züh-
lke, M., Brando, V. E., Feng, H., Feldman, G., Franz, B. A.,
Frouin, R., Gould, R. W., Hooker, S. B., Kahru, M., Kratzer,
S., Mitchell, B. G., Muller-Karger, F. E., Sosik, H. M., Voss,
K. J., Werdell, J., and Platt, T.: An Ocean-Colour Time Se-
ries for Use in Climate Studies: The Experience of the Ocean-
Colour Climate Change Initiative (OC-CCI), Sensors, 19, 4285,
https://doi.org/10.3390/s19194285, 2019.

Sathyendranath, S., Jackson, T., Brockmann, C., Brotas, V., Calton,
B., Chuprin, A., Clements, O., Cipollini, P., Danne, O., Dingle,
J., Donlon, C., Grant, M., Groom, S., Krasemann, H., Lavender,
S., Mazeran, C., Mélin, F., Müller, D., Steinmetz, F., Valente,
A., Zühlke, M., Feldman, G., Franz, B., Frouin, R., Werdell,
J., and Platt, T.: ESA Ocean Colour Climate Change Initiative
(Ocean_Colour_cci): Version 5.0 Data, NERC EDS Centre
for Environmental Data Analysis [data set], 19 May 2021,
https://doi.org/10.5285/1dbe7a109c0244aaad713e078fd3059a,
(last access: 22 November 2023), 2021.

Siegel, D. A., McGillicuddy Jr, D. J., and Fields, E. A.:
Mesoscale eddies, satellite altimetry, and new production in

the Sargasso Sea, J. Geophys. Res.-Oceans, 104, 13359–13379,
https://doi.org/10.1029/1999jc900051, 1999.

Silva, E., Counillon, F., Brajard, J., Korosov, A., Petters-
son, L. H., Samuelsen, A., and Keenlyside, N.: Twenty-
one years of phytoplankton bloom phenology in the Bar-
ents, Norwegian, and north seas, Front. Marine Sci., 8, 1626,
https://doi.org/10.3389/fmars.2021.746327, 2021.

Singh, T., Counillon, F., Tjiputra, J., Wang, Y., and Gharamti,
M. E.: Estimation of ocean biogeochemical parameters in
an earth system model using the dual one step ahead
smoother: A twin experiment, Front. Marine Sci., 9, 775394,
https://doi.org/10.3389/fmars.2022.775394, 2022.

Skogen, M. D., Ji, R., Akimova, A., Daewel, U., Hansen, C., Hjøllo,
S. S., van Leeuwen, S. M., Maar, M., Macias, D., Mousing, E.
A., Almroth-Rosell, E., Sailley, S. F., Spence, M. A., Troost, T.
A., and van de Wolfshaar, K.: Disclosing the truth: Are models
better than observations?, Marine Ecol. Prog. Ser., 680, 7–13,
https://doi.org/10.3354/meps13574, 2021.

Sverdrup, H. U.: On Conditions for the Vernal Bloom-
ing of Phytoplankton, ICES J. Marine Sci., 18, 287–295,
https://doi.org/10.1093/icesjms/18.3.287, 1953.
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Yumruktepe, V. Ç., Salihoğlu, B., and Neuer, S.: Controls on carbon
export in the subtropical North Atlantic, Prog. Oceanogr., 187,
102380, https://doi.org/10.1016/j.pocean.2020.102380, 2020.

Yumruktepe, V. Ç., Mousing, E. A., Tjiputra, J., and Samuelsen,
A.: Model code and output files for “An along-track biogeo-
chemical Argo modelling framework, a case study of model im-
provements for the Nordic Seas”, Zenodo [code and data set],
https://doi.org/10.5281/zenodo.7773509, 2022a.

Yumruktepe, V. Ç., Samuelsen, A., and Daewel, U.: ECOSMO
II(CHL): a marine biogeochemical model for the North At-
lantic and the Arctic, Geosci. Model Dev., 15, 3901–3921,
https://doi.org/10.5194/gmd-15-3901-2022, 2022b.

Zweng, M. M., Reagan, J. R., Seidov, D., Boyer, T. P., Locarnini,
R. A., Garcia, H. E., Mishonov, A. V., Baranova, O. K., Weath-
ers, K. W., Paver, C. R., and Smolyar, I. V.: World Ocean Atlas
2018, Volume 2: Salinity, edited by: Mishonov, A., NOAA Atlas
NESDIS [data set], 82, 50 pp., (last access: 22 November 2023),
2019.

https://doi.org/10.5194/gmd-16-6875-2023 Geosci. Model Dev., 16, 6875–6897, 2023

https://doi.org/10.4319/lom.2012.10.483
https://doi.org/10.1016/j.pocean.2020.102380
https://doi.org/10.5281/zenodo.7773509
https://doi.org/10.5194/gmd-15-3901-2022

	Abstract
	Introduction
	Materials and methods
	Observation datasets
	Biogeochemical Argo
	Satellite and in situ chlorophyll a

	Biogeochemical Argo, satellite and in situ data co-location procedure and analysis
	Model description
	Along-track modelling setup
	Preparation of forcing files
	Model experiments

	Model statistical analysis

	Results and discussions
	Biogeochemical Argo data evaluation in the Nordic seas
	Along-track model physics evaluation
	Modelled chlorophyll a evaluation
	Evaluation of the reference ECOSMO II(CHL) formulation
	Phytoplankton growth formulation and parameterization
	Evaluation of the updated ECOSMO II(CHL) formulation

	Discussion of the relaxation timescales

	Concluding remarks
	Appendix A
	Appendix A1: BGC-Argo 6902547 modelled MLDs
	Appendix A2: Observational data sources

	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

