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Abstract. Idealized test cases for the dynamical cores of at-
mospheric general circulation models are informative tools
to assess the accuracy of the numerical designs and inves-
tigate the general characteristics of atmospheric motions. A
new test case is introduced that is built upon a baroclinically
unstable base state with an added orographic barrier. The to-
pography is analytically prescribed and acts as a trigger of
both baroclinic Rossby waves and inertia–gravity waves on
a rotating, regular-sized planet. Both dry and idealized moist
configurations are suggested. The latter utilizes the Kessler
warm-rain precipitation scheme. The test case enhances the
complexity of the existing test suite hierarchy and focuses
on the impacts of two midlatitudinal mountain ridges on the
circulation. Selected simulation examples from four dynam-
ical cores are shown. These are the Spectral Element and
Finite Volume dynamical cores, which are part of the Na-
tional Center for Atmospheric Research (NCAR) Commu-
nity Earth System Model (CESM), versions 2.1.3 and 2.2,
and the Cubed-Sphere Finite Volume dynamical cores, which
is new to CESM version 2.2. In addition, the Model for Pre-
diction Across Scales (MPAS) is tested. The overall flow pat-
terns agree well in the four dynamical cores, but the details
can vary greatly. The examples highlight the broad palette
of use cases for the test case and reveal physics–dynamics
coupling issues.

1 Introduction

An important component of an atmospheric general circula-
tion model (AGCM) is the dynamical core, which solves the
fluid flow equations on a computational grid. The dynami-
cal core thereby captures the resolved scales of the flow; de-

fines the accuracy of the horizontal, vertical, and temporal
numerical discretizations; determines the dissipation charac-
teristics of the flow; and also selects the treatment of topog-
raphy via the choice of the vertical coordinate. Testing the
accuracy of a dynamical core is a paramount development
step for weather and climate models. This is typically fa-
cilitated by performing dynamical core integrations of ide-
alized test cases. These test cases have lower complexity
than realistic weather forecasts or climate simulations and,
for example, use only dry dynamical core configurations, dry
or moist model setups with simplified physical processes or
simplified lower-boundary conditions, and/or idealized ini-
tial conditions. This provides a controlled environment that
captures selected atmospheric motions of interest. Such ide-
alized model configurations serve two purposes. First, they
allow assessments of the numerical schemes and serve as a
standardized testing framework for model intercomparisons,
thereby guiding the design and tuning decisions of the de-
velopers. Second, idealized test cases are also used as at-
mospheric dynamics tools to understand physical phenom-
ena, such as the dependence of orographic gravity waves on
the Froude number, or to assess the impacts of mountains on
midlatitudinal dynamics, precipitation, or the general circu-
lation of the atmosphere. Our proposed test case serves both
purposes. The goal of this paper is to introduce a new test
technique for the dynamical cores of atmospheric general cir-
culation models. The novel approach is that we combine an
existing baroclinic instability test case with idealized topo-
graphic barriers, which has been a missing link in the exist-
ing test case hierarchy. Selected examples are then used to
illustrate possible application areas.

The suite of test cases for dynamical core and idealized
climate model validations spans a hierarchy of complexities.
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Test cases have, for example, been developed for the simpler
shallow water equations (Williamson et al., 1992; Galewsky
et al., 2004; Shamir et al., 2019), which serve as a 2D hori-
zontal test bed for atmospheric motions. In addition, the hi-
erarchy includes test cases for dry 3D dynamical cores (Held
and Suarez, 1994; Jablonowski and Williamson, 2006; Wedi
and Smolarkiewicz, 2009; Lauritzen et al., 2010; Kent et al.,
2014a; Ullrich et al., 2014; Shamir and Paldor, 2016), ideal-
ized moist 3D dynamical cores (Thatcher and Jablonowski,
2016; Klemp et al., 2015), and aqua planet models (Neale
and Hoskins, 2000; Lee et al., 2008). Aqua planet models
use a full-complexity physical parameterization suite but a
simplified lower boundary condition. The latter is either built
upon a flat, ocean-covered earth, with analytically prescribed
sea surface temperatures, as in Neale and Hoskins (2000),
or utilizes a slab ocean configuration with a constant mixed-
layer depth, as in Lee et al. (2008) or Kang et al. (2008).

One dynamical core design aspect that can be studied at
various levels of complexity is the treatment of topography
and the vertical coordinate. Often, the inclusion of topog-
raphy in a dynamical core is first tested via simpler equa-
tion sets that, for example, utilize a hydrostatic, Boussinesq,
or anelastic approximation and set the Coriolis parameter
to zero. Typically, 2D Cartesian x− z configurations with
smoothly varying (e.g., bell-shaped) mountain profiles and
idealized initial conditions with a constant background strat-
ification and zonal flow are used. Examples are the 2D non-
rotating test configurations by Klemp and Lilly (1978), Dur-
ran and Klemp (1983), Satomura et al. (2003), and Kurowski
et al. (2013) that were designed for dry and moist orographic
flows. Alternatively, Schär et al. (2002) and Guerra and Ull-
rich (2021) used dry, nonrotating orographic gravity wave
tests to assess their 2D x− z nonhydrostatic model designs.
A portfolio of 2D hydrostatic and nonhydrostatic gravity
waves, as well as inertia–gravity waves with rotation on a
fixed f plane, were assessed in Dudhia (1993) and Ullrich
and Jablonowski (2012a). In addition, 3D Cartesian nonro-
tating mountain waves were analyzed in, e.g., Smolarkiewicz
and Rotunno (1989) and Schär and Durran (1997). For such
idealized test scenarios, linear and nonlinear analytic steady-
state gravity wave solutions can be computed, as shown in
Smith (1980) and Guerra and Ullrich (2021), respectively.

However, dynamical core test cases for orographic flows
on the sphere are less abundant in the literature. In gen-
eral, three aspects are discussed. The first aspect addresses
the accuracy of the vertical, often orography-following, co-
ordinate and is sometimes called the acid test. This as-
sesses whether a resting nonrotating atmosphere in hydro-
static equilibrium stays motionless in the presence of topog-
raphy as, e.g., assessed in Lin (1997), Qian et al. (1998), or
Zängl (2012). The second test principle mimics the Carte-
sian gravity wave configurations mentioned above. Ideal-
ized ridge mountains or mountains with circular shapes are
then embedded in idealized flows with a solid body rotation
and constant stratification on a nonrotating planet with ei-

ther a full-size or reduced-size radius. Such configurations
were suggested in Tomita and Satoh (2004) (case 3), Ullrich
et al. (2012) (case 2), and Klemp et al. (2015). In particular,
the Ullrich et al. (2012) test variant was specifically devel-
oped for the Dynamical Core Model Intercomparison Project
(DCMIP), which conducts regular international dynamical
core assessments (see also Jablonowski et al., 2008; Ullrich
et al., 2016, 2017; Zarzycki et al., 2019). The third test prin-
ciple uses a full-size earth with the earth’s rotation and fo-
cuses on the representation of orographically induced Rossby
wave trains instead of gravity waves. Such test configurations
with bell-shaped mountains were described in Tomita and
Satoh (2004) (case 5), Jablonowski et al. (2008) (case 5),
and Ullrich and Jablonowski (2012b). These are built upon
highly idealized initial conditions, such as isothermal states,
a constant stratification, and solid body rotation. The induced
3D Rossby wave train thereby mimics the widely used 2D
shallow water “test case 5”, as defined in Williamson et al.
(1992). However, test cases for more complex, analytically
prescribed initial flows with topography have not been de-
scribed yet for spherical geometries. Our proposed test case
helps fill this gap and, in particular, assesses the impact of
mountains on baroclinic waves for both dry and idealized
moist dynamical core configurations.

Previous work in spherical geometry highlighted the de-
sign and usefulness of baroclinic wave test cases for atmo-
spheric flows without orographic obstacles (Polvani et al.,
2004; Jablonowski and Williamson, 2006; Staniforth and
White, 2011; Ullrich et al., 2014, 2016). The life cycle of
the baroclinic waves can differ significantly, depending on
the structure of the baroclinically unstable atmosphere from
which they develop (Thorncroft et al., 1993). In the absence
of analytical solutions, the evolution of a baroclinic wave is
then typically computed over 10–20 d and intercompared to
numerical solutions from other dynamical cores to gain in-
sight into the flow characteristics. This sheds light on the dif-
fusivity of the models and can even reveal dynamical core de-
sign flaws as, for example, demonstrated in Williamson et al.
(2009). This can also be used to determine adequate vertical
grid spacing for a given grid resolution, such as in Iga et al.
(2007). Adding 2D mountains to such test configurations is
not necessarily straightforward, since the initial steady-state
background conditions are analytically balanced and zonally
symmetric. These characteristics of the initial conditions are
disrupted by 2D mountain shapes. Therefore, orographic ef-
fects on idealized baroclinic waves have only been assessed
in 3D Cartesian model configurations so far. The initial con-
ditions are easier to balance in Cartesian geometry and have,
for example, been used to study baroclinic waves and their
interaction with a ridge mountain in Menchaca and Durran
(2017, 2018).

The proposed test extends the test case hierarchy and de-
scribes the evolution of baroclinic waves on the rotating full-
sized planet, which are triggered by idealized topography.
The background flow field is based upon the ideas in Stan-
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iforth and White (2011) and Ullrich et al. (2014, 2016),
who defined a family of steady-state initial conditions for
baroclinic waves without topography in dry and moist en-
vironments. In particular, the moist steady state from Ull-
rich et al. (2016) is mainly utilized here, in conjunction with
a Kessler warm rain scheme. The latter represents an ideal-
ized parameterization of moisture processes without a cloud
phase (Kessler, 1969; Klemp et al., 2015) and was also used
during DCMIP in 2016 (Ullrich et al., 2016). The idealized
precipitation triggered by the baroclinic wave then amplifies
the wave in a highly nonlinear way. However, the moisture
processes are optional, and both dry and moist dynamical
core evaluations with topography are insightful use cases.
In this paper, we chose to add two mountain ridges in the
northern midlatitudes, which require adjustments of the ini-
tial state to recover the well-balanced background condition
for baroclinic waves. A broad palette of topographic shapes,
peak heights, and locations is possible, as long as the topo-
graphic profile has an analytic description. The latter informs
the computation of the well-balanced, although not perfectly
balanced, initial state. The mountains then act as triggers for
baroclinic waves. They thereby replace the overlaid initial
wind or temperature perturbations that are typically used in
the absence of a topographic trigger.

In summary, this work introduces a test case that combines
idealized moisture physics, topographic forcing, mountain-
enhanced precipitation, and the evolution of baroclinic waves
on a rotating full-sized planet. The paper has three goals.
First, we introduce the design of the mountain-induced baro-
clinic wave test case. Second, selected examples from the
Spectral Element (SE; Lauritzen et al., 2018) dynamical core
of the Community Earth System Model (CESM) are used to
illustrate the characteristics of the test case and its orograph-
ically induced flow. Third, snapshots of a brief model inter-
comparison are shown to gain insight into various dynami-
cal core designs and the associated model spread. This inter-
comparison includes simulations with the Model for Predic-
tion Across Scales (MPAS; Skamarock et al., 2012) and the
CESM Finite Volume (FV; Lin, 2004) and CESM Cubed-
Sphere Finite Volume (FV3; Harris et al., 2021) configura-
tions. The latter two are part of the CESM version 2.2 release
of the National Center for Atmospheric Research (NCAR).
The test case is expected to help diagnose numerical arti-
facts resulting from the inclusion of topography in dynam-
ical cores and reveal physics–dynamics coupling issues. In
addition, the test enables general assessments of the atmo-
spheric circulation driven by mountain-generated gravity and
Rossby waves. It thereby serves as a new generic tool in the
atmospheric dynamics toolbox.

This article is structured as follows. Section 2 lays out the
specifications of the test case and justifies the chosen param-
eters. Section 3 introduces the dynamical cores, which are
used for a brief model intercomparison. Section 4 analyzes
the important characteristics of the orographically induced
baroclinic wave via the SE model. Section 5 highlights se-

lected dynamical core intercomparisons and briefly surveys a
physics–dynamics coupling aspect revealed by this test case.
The Appendix provides technical specifications for all four
dynamical cores assessed here to make the results repro-
ducible.

2 Test case design

Previously designed 3D dynamical core test cases
(Jablonowski et al., 2006; Ullrich et al., 2014, 2016)
have demonstrated that baroclinic waves are an efficient
tool for assessing the characteristics of dry and moist
flow fields. These test cases have two key components,
namely a steady-state background state that is designed to
be baroclinically unstable and an added perturbation that
triggers the formation of a baroclinic wave. Our test case
is designed with a moist and dry variant. In moist runs,
Kessler physics (Kessler, 1969; Klemp et al., 2015; Ullrich
et al., 2016) is chosen as the precipitation mechanism. It is
an idealized warm-rain scheme with three water species,
namely dry mixing ratios of water vapor, liquid water, and
rainwater without ice. The Kessler physics package is ex-
plained in Appendix A. No other physical parameterizations
are employed. This test setup thereby sheds light on the
impact of the diabatic forcing from the precipitation on the
evolution of the wave and the physics–dynamics coupling
strategy. The dry, adiabatic variant of the test case is obtained
by simply setting the initial humidity content to zero and
avoiding the use of physical parameterizations.

The design of the test case is inspired by real-world phe-
nomena and topographic shapes like the Andes or the Rocky
Mountains. In nature, extreme precipitation can result from
topographic forcing, such as the interaction between atmo-
spheric rivers and mountains in the Pacific Northwest re-
gion of the United States. The test case is not designed to
be complex enough to compare directly to real-world atmo-
spheric rivers. However, the evolving precipitation bands that
develop along with the topographically triggered baroclinic
wave make our idealized test configuration a controlled set-
ting for studying the effects of the dynamical core design on
such high-intensity precipitation scenarios.

2.1 Properties of the initial background state

The atmospheric base state for the baroclinic wave with-
out an overlaid perturbation is taken from Ullrich et al.
(2014, 2016). They describe an analytic steady-state solu-
tion to the dry and moist 3D fluid flow equations on a ro-
tating sphere without topography. Both shallow-atmosphere
and deep-atmosphere dynamical core designs are accommo-
dated. All base-state prognostic variables are zonally sym-
metric in the absence of topography. Because the base state
is drawn from previous work, most functional forms for the
prognostic variables are relegated to Appendix B. In partic-
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Figure 1. Latitude–height profiles at 72◦ E of the initial (a) zonal wind u, (b) temperature T , (c) specific humidity qv, and (d) relative
humidity. The idealized topographic profile is shown in white in the lower right of the plots.

ular, the Appendix lists the equations for the temperature T ,
zonal wind u, meridional wind v, pressure p, density ρ, and
specific humidity qv in Eqs. (B1)–(B6). The latitude–height
(z) cross sections of the initial conditions along 72◦ E lon-
gitude are shown in Fig. 1. This longitudinal location cor-
responds to the center position of the first mountain ridge,
which is depicted by the white area (see also Sect. 2.2).
As outlined in Ullrich et al. (2014, 2016), models with a
pressure-based vertical coordinate can be initialized by us-
ing a numerical root-finding technique to solve for the height
z for any given pressure p and then substituting this height
value into the provided equations. Figure 1a shows that the
zonal wind is characterized by westerly jets in the midlati-
tudes. Their vertical wind shear profiles support the growth
of baroclinic instability waves. The temperature distribution
T (Fig. 1b) is in thermal wind balance with the zonal wind.
The specific humidity qv (Fig. 1c) is chosen to resemble the
zonal mean distribution of water vapor. Above the artificial
tropopause level pt = 150 hPa, the q field is set to zero, as
listed in Eq. (B6) and Table B1. We note that this setting devi-
ates slightly from Ullrich et al. (2016), which specified a min-
imum stratospheric specific humidity value of 10−12 kg kg−1

above 100 hPa. This change is irrelevant for the tropospheric

baroclinic wave but prevents an initial supersaturation in the
stratosphere. The moisture profile attains a maximum relative
humidity of about 85 % in the lower midlatitudes, as shown
in Fig. 1d. This calculation makes use of Tetens’s formula
Eq. (B8) for the saturation condition, as further explained in
Appendix B.

2.2 Inclusion of topography: surface height and
surface pressure

The balanced background state is a steady-state solution in
the absence of topography. The forcing by the added topog-
raphy then triggers the baroclinic Rossby wave trains. The
topographic profile and balanced surface pressure are shown
in Fig. 2. These profiles utilize the mountain parameters
and physical constants from Tables 1 and B1 and describe
two nonoverlapping ridges in the northern midlatitudes. The
mountain shapes and peak heights impact the strength of the
topographic forcing. They are chosen so that the baroclinic
waves mature over the course of 6 d.

For the functional form of the topographic shape, we de-
fine a modified longitude variable to make the description
independent of the implemented longitudinal range of the
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Figure 2. Latitude–longitude cross sections of the (a) surface height zs and (b) initial surface pressure ps.

Table 1. Parameters for the test case. The degrees are specified in radians, as needed by the equations.

Variable name Variable description Value

h0 Peak mountain height 2× 103 m
φ1,2 Latitude of the mountain peaks in radians π/4
λ1,2 Longitudes of the two mountain peaks in radians 72π/180, 140π/180
λ Nominal longitudinal width of the mountain in radians 7π/180
φ Nominal latitudinal width of the mountain in radians 40π/180

d Latitudinal-scale parameter φ
2 (− log(0.1))−1/6

c Longitudinal-scale parameter λ
2 (− log(0.1))−1/2

model, such as [0,2π ] or [−π,π ]. Suppose that an AGCM
parameterizes longitude over the interval λ ∈ [λmin,λmax]

and λmax−λmin = 2π . Then, we define dn(λ)= (λ−λmin)−

λn, where n ∈ {1,2} indexes each mountain. The correspond-
ing longitudinal center locations λ1,2 are listed in Table 1.
This leads to the modified longitude ln(λ)=min(dn(λ),2π−
dn(λ)), which ranges over the longitudinal distance [−π,π ],
as measured from the longitudinal center point. The latitude
φ spans the interval

[
−π/2,π/2

]
. The mountain profile is

then defined via the surface height, as follows:

zs(λ,φ)= h0

2∑
n=1

exp

[
−

((
φ−φn

d

)6

+

(
ln(λ)

c

)2
)]

. (1)

Generally, any topographic profile is possible, as long as it
can be described by an analytical equation. The parameter
h0 represents the peak height of the topography. The func-
tional form of each mountain, shown in Fig. 2a, is Gaussian
in longitude. The exponent of the latitude term is increased
to 6 from 2 to elongate the peak of the mountain merid-
ionally. This elongation helps minimize any deviation of the
maximum height of the discretized surface topography from
the analytic maximum surface height h0. The parameters φn
and λn represent the center latitude and longitude of the nth
mountain, respectively. The parameter φ specifies the dis-
tance along a line of constant longitude λ= λn between the
points where the surface topography is 10 % of its maximum;
that is, zs(φn±φ/2,λn)= 0.1·h0. We treat this dimension as
the nominal meridional extent of the mountain. The parame-

ter d transforms the specified φ into the form required for the
Gaussian-like functional form for the topography. Likewise,
the parameter λ specifies the distance along a line of constant
latitude φ = φn, such that zs(φn,λn± λ/2)= 0.1 ·h0, which
is treated as the nominal zonal extent of the mountain. The
parameter c transforms the specified λ into the form required
by the Gaussian functional form for the topography in the
zonal direction.

The corresponding, balanced surface pressure can be cal-
culated by evaluating the pressure profile from Eq. (B4)
along the topographic profile as follows:

ps(λ,φ)= p0 exp
[
−
g

Rd

(
τint,1(zs(λ,φ))− τint,2(zs(λ,φ))IT (φ)

)]
. (2)

Figure 2b shows that the surface pressure varies from p0 =

1000 hPa at sea level to about 773 hPa near the northern tip
of the ridges.

2.3 Vertical velocity

In hydrostatic dynamical cores with a pressure-based vertical
coordinate, the initial vertical pressure velocity ω does not
need to be initialized. It will be computed diagnostically dur-
ing the model integration. However, nonhydrostatic models
must account for the initial vertical velocity induced by the
nonzero zonal wind along the sloping topographic boundary.
A nonzero w can be added so that the vector [u,v,w]> runs
parallel to vertically sloping model levels if a topography-
following coordinate is used. This is achieved by setting
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Figure 3. Cross sections of the initial w profile in the Gal-Chen height coordinates for nonhydrostatic models. (a) Latitude–longitude cross
section at a height of 10 km and (b) longitude–height cross-section at 45◦ N. The topography is schematically shown by the gray contours in
panel (a) and the white profile in panel (b). The computed extrema of w are ±0.209 m s−1.

w = vh ·∇s∗z, where vh symbolizes the horizontal wind vec-
tor at constant height z. The subscript s∗ denotes that the
horizontal gradient must be computed along the transformed
orography-following vertical coordinate, which is symboli-
cally represented as an s∗ surface.

For our background state with zero meridional wind v, the
vertical velocity for nonhydrostatic models can be expressed
as

w =
u

a cosφ

(
∂z

∂λ

)
s∗
, (3)

which utilizes a spherical notation for the derivative in the
zonal direction. The exact functional form for w depends on
the choice of s∗. However, for illustration purposes, a con-
crete example is displayed below. This closed form for w is
shown for the height-based orography-following Gal-Chen
and Somerville (1975, hereafter Gal-Chen) vertical coordi-
nate s∗ = z (Gal-Chen and Somerville, 1975; Kent et al.,
2014a), which is often used in nonhydrostatic models. The
relationship between the geometric height z and the trans-
formed Gal-Chen coordinate z= ztop(z− zs)(ztop− zs)

−1 is
then given by

z= z+ (1− z/ztop)zs(φ,λ), (4)

with
∂z

∂λ
=
∂zs

∂λ
(1− z/ztop),

where ztop symbolizes the constant height position of the
model top, and z is a constant along the sloping model lev-
els. For the mountain profile shown in Eq. (1), the vertical
velocity from Eq. (3) can then be expressed as

w(λ,φ,z)=−
u(λ,φ,z)

a cos(φ)

(
2h0

(
1−

z

ztop

) 2∑
n=1

(
∂ln

∂λ

)

·

(
ln(λ)

c2

)
exp

[
−

((
φ−φn

d

)6

+

(
ln(λ)

c

)2
)])

, (5)

where

∂ln

∂λ
=

{
1 if dn(λ) < π

−1 if dn(λ)≥ π.

For the example of a Gal-Chen coordinate with ztop = 31 km,
the magnitude and spatial structure of w given by Eq. (5) is
plotted in Fig. 3. The vertical velocity in Fig. 3 is shown for
both mountains. Figure 3a shows a latitude–longitude profile
at a constant geometric height of z= 10 km above mean sea
level. Updrafts are observed on the upwind side west of the
mountain peaks, and downdrafts are present on the down-
wind side east of the mountain peaks. Figure 3b shows a
longitude–height cross section at 45◦ N. The Gal-Chen co-
ordinate exhibits vertically sloped model levels, which are
present near the zonal jet maxima. This causes w to achieve
its peak magnitudes at the approximate height of the zonal
jet. Other choices for transformed vertical coordinates are
also popular, which let the terrain-following characteristics
decay more rapidly from the surface, such as described in
Klemp (2011) for MPAS. In this case, the maximum initial
magnitudes of w are expected to be located at a lower po-
sition in the atmosphere. If non-Gal-Chen coordinates are
used, then the expressions (4) and (5) need to be adjusted and
might no longer have closed-form analytical descriptions.

The initial vertical velocities for the mountain profiles de-
scribed in Eq. (1) are small. Therefore, we suggest that it is
also acceptable to start these simulations with w = 0 m s−1 if
the dynamical core and numerical scheme tolerate the initial
imbalance. This is the case for MPAS. When comparing an
MPASw = 0 simulation with a simulation that used a numer-
ically computed w in MPAS, the evolutions of the baroclinic
waves were almost indistinguishable (not shown). Therefore,
the initialization of the nonzero w profile can likely be omit-
ted in most models for moderately steep mountain profiles
with initial vertical velocities of the order of 10−1 m s−1 or
smaller. The initialization choice for w must be documented
when using the test case for nonhydrostatic configurations.
For simplicity and to ease the comparison to other nonhydro-
static dynamical cores, all MPAS examples in this paper are
shown for w = 0 m s−1, which is adjusted to the expected
vertical updraft and downdraft patterns over one time step
without triggering numerical noise. Our other three chosen
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dynamical cores are hydrostatic and compute the vertical ve-
locity as a diagnostic quantity.

2.4 Design considerations

The moist test variant allows the examination of the interac-
tions between subgrid-scale physical parameterizations and
the dynamical evolution of baroclinic waves. In addition, the
impact of topographic forcing on both dry and moist waves
can be assessed. Several design considerations guide the
choice of the parameters and functional forms of the initial
conditions. As displayed in Fig. 2a, the two mountain ridges
are centered at 45◦ N, are separated by 68◦ in longitude, and
have a peak height of 2000 m. The shape of each mountain
is chosen to broadly resemble the mean height of real moun-
tain ranges such as the Andes or the Rocky Mountains and
to have a comparable nominal zonal extent of around 7◦ in
longitude. By design, but unlike the real mountain ranges on
Earth, a second ridge with an identical shape is placed to the
east of the first mountain.

Although a single mountain is a sufficient perturbation to
the steady state to trigger a baroclinic wave, adding a sec-
ond mountain increases the utility of the test case in several
ways. For notational convenience, we refer to the mountain
centered at λ1 = 72◦ E as Mountain 1 (M1) and the mountain
centered at λ2 = 140◦ E as Mountain 2 (M2). The developing
baroclinic wave downwind of M1 is called Wave 1; likewise,
the wave downwind of M2 is called Wave 2. The evolution of
Wave 1 is nearly identical to the wave downwind of Wave 2,
until Wave 1 is forced over M2. The evolution of Wave 1
and Wave 2 can then be directly compared to determine the
impact of the topographic lifting on the evolving Wave 1.

The longitudinal offset between the two mountains was
chosen so that the band of large-scale precipitation along the
leading frontal zone of Wave 1 has time to reach peak inten-
sity and length before the precipitation band is forced over
M2. This is shown in Fig. 4e–h, which display the precipi-
tation rates of the evolving waves at days 3, 4, 5, and 6, re-
spectively. The topographic lifting of Wave 1 occurs before
the wave breaking sets in slightly after that (around day 5.5–
6). This destroys the coherent structure of the precipitation
band. A full discussion of Fig. 4 and the flow characteristics
is provided in Sect. 4.1.

In the dry configuration of this test case, the missing dia-
batic forcing from the precipitation slows down the growth
rate of the waves, as shown later. This means that wave
breaking has not occurred yet when the dry variant of Wave 1
reaches M2. This allows high-resolution model runs to be
used as a reference solution. Although mathematical conver-
gence cannot be expected when moist physics is added, the
model intercomparisons presented in Sect. 5 show that model
statistics still allow insightful comparisons between the dy-
namical cores for up to 6 d.

3 Description of the dynamical cores

Before discussing the simulation results, we briefly intro-
duce the four dynamical cores used in this study. Two of
these dynamical cores are available as options in the CESM
model (Danabasoglu et al., 2020) version 2.1.3 (CESM 2.2)
and version 2.1.3 (CESM 2.1.3). A third dynamical core is
new in CESM 2.2. In particular, the versions of these three
dynamical cores in CESM 2.2 are embedded in the CESM
atmospheric component, called the Community Atmosphere
Model version 6 (CAM6). CAM6 includes the Spectral El-
ement dynamical core (SE; Taylor and Fournier, 2010; Lau-
ritzen et al., 2018), Finite Volume model (FV) on a latitude–
longitude grid (Lin, 2004), and the Cubed-Sphere Finite Vol-
ume model (FV3) from the Geophysical Fluid Dynamics
Laboratory (GFDL), as described in Harris et al. (2021).
In addition, we use the MPAS dynamical core (Skamarock
et al., 2012), which is available as a development version in
CAM6. However, for the comparisons here, the MPAS (ver-
sion 7) simulations were performed with the standalone ver-
sion of MPAS (Jacobsen et al., 2019). Due to the experimen-
tal nature of CESM2.2 at the beginning of this work, model
simulations for SE and FV were performed in CESM ver-
sion 2.1.3. All simulations are performed with 30 vertical
levels. The hybrid pressure-based model level positions for
SE, FV, and FV3 are listed in Reed and Jablonowski (2012)
and are recommended to users of this test case. The model
top lies near 2 hPa, corresponding to a model-top height of
around 35 km. MPAS uses a height-based vertical coordi-
nate with a model top of about 31 km. This position corre-
sponds to a top pressure of about 8 hPa. The relevant config-
uration details and the namelist settings for all four dynam-
ical cores, including the portfolio of the dynamics, physics,
tracer, remapping, or acoustic time steps, are listed in Ap-
pendix C and Tables C1–C4.

3.1 Spectral Element (SE)

The hydrostatic SE dynamical core in CESM is documented
in Lauritzen et al. (2018) and was originally designed by Tay-
lor et al. (1997) and Taylor and Fournier (2010). The Spec-
tral Element method is also used in the Energy Exascale
Earth System Model (E3SM) and supports nonhydrostatic
extensions (Taylor et al., 2020). The finite Spectral Element
method is formulated on an equiangular gnomonic cubed-
sphere grid. Its horizontal discretization uses a mimetic
A grid, with 4×4 continuous collocation points in each Spec-
tral Element (the so-called np4 configuration). This renders
the numerical scheme fourth-order accurate in the horizontal
direction. The numerical method exactly satisfies several dif-
ferential identities that provide desirable conservation prop-
erties, such as the conservation of the dry air mass to ma-
chine precision. The continuous equations of motion also
conserve a measure of moist total energy, which accounts
for all prognostic water species (Taylor, 2011). The dry air
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mass is used to formulate the orography-following pressure-
based vertical η coordinate, which utilizes the Lorenz vertical
staggering. The vertical discretization utilizes a floating La-
grangian coordinate, similar to FV. All prognostic variables
are then periodically remapped to their reference positions
during a physics time step. Fourth-order hyperviscosity terms
are added to the prognostic equations to prevent the accumu-
lation of numerical grid-scale noise. The time stepping for
the prognostic variables is done using a five-stage, nonlinear,
third-order Runge–Kutta method.

Various physics–dynamics coupling strategies are avail-
able and controlled by a namelist parameter se_ftype.
For se_ftype=0, the forcing due to physical parameter-
izations is distributed in equal increments (dribbled) and
added to the prognostic variables during the integration of the
subcycled dynamical core. For se_ftype=1, all physics
adjustments are added as a lump adjustment after each
physics time step. In the case of se_ftype=2, the forc-
ing of mass quantities like moisture tracers are added via the
se_ftype=1 sudden adjustment strategy. In contrast, all
other forcings for the, e.g., temperature or velocity, are drib-
bled in (se_ftype=0). This option is considered the hybrid
option. We use se_ftype=0, except in Sect. 5.3, where the
impact of the SE default se_ftype=2 is demonstrated.

3.2 Finite Volume (FV)

The FV dynamical core solves the hydrostatic primitive
equations on a latitude–longitude grid, using a flux-form
semi-Lagrangian scheme and a floating Lagrangian vertical
coordinate (Lin, 2004). It utilizes the piecewise parabolic
method (Colella and Woodward, 1984) to represent subgrid
flux distributions and is horizontally third-order accurate.
The horizontal discretization uses a combined C–D grid stag-
gering. The vertical treatment allows several Lagrangian dy-
namics steps to be taken before remapping the vertical levels
to a reference grid. Nonlinear limiters within the FV method
introduce implicit diffusion. Explicit fourth-order horizontal
divergence damping is added to the model to prevent en-
ergy accumulation at the grid scale (Whitehead et al., 2011).
Second-order horizontal divergence damping is applied in
the top layers to decrease the impact of wave reflection from
the model top. The dynamics are integrated on a shorter sub-
cycled time step than the physics time step, and forcing due
to microphysics is added to the prognostic variables as a
lump adjustment after the physics time step (Neale et al.,
2010).

3.3 Cubed-Sphere Finite Volume (FV3)

The FV3 dynamical core (Harris et al., 2021) was originally
developed by the National Oceanic and Atmospheric Admin-
istration (NOAA) Geophysical Fluid Dynamics Laboratory
and now serves as the fluid dynamics backbone of the NOAA
Unified Forecast System (UFS) for weather prediction ap-

plications in the USA. It shares many characteristics of the
FV dynamical core. FV3 is a finite-volume model that can
solve either the hydrostatic primitive equations or the non-
hydrostatic shallow-atmosphere equations on an equiangu-
lar gnomonic cubed-sphere grid. Here, the hydrostatic ver-
sion is chosen, as implemented in CESM 2.2. Like FV, FV3
uses the piecewise parabolic method on a C–D grid (Lin and
Rood, 1997; Putman and Lin, 2007, 2009) and is horizon-
tally third-order accurate. A floating Lagrangian vertical dis-
cretization is used. The cubed-sphere grid reduces the numer-
ical difficulties posed by the pole point singularities in the FV
latitude–longitude grid. To prevent the accumulation of noise
at the grid scale, sixth-order horizontal divergence damping
is activated. In addition, monotonicity constraints are used in
the horizontal advection and vertical remapping algorithms,
which implicitly adds viscosity to the model. As in FV, a
second-order divergence damping mechanism is utilized as a
sponge layer near the model top. In addition, Rayleigh fric-
tion is applied to the horizontal wind velocities in the sponge
layer if the model-level pressure is less than 7.5 hPa. In our
L30 configuration, this only affects the topmost full model
level. The maximum relaxation time is set to 10 d at the
model top.

3.4 Model for Prediction Across Scales (MPAS)

MPAS (Skamarock et al., 2012) is a finite-volume model
that solves the nonhydrostatic shallow-atmosphere equa-
tions. The horizontal discretization is built upon a centroidal
Voronoi tessellation mesh with a staggered C grid and is
designed to use the mimetic so-called TRiSK discretization
(Thuburn et al., 2009; Ringler et al., 2010). Horizontal ad-
vection is nominally third–fourth-order accurate. The ver-
tical dimension is treated with a second-order FV method,
with a smoothed terrain-following geometric height coordi-
nate, as specified in Klemp (2011). Various smoothing op-
tions are available for the orography-following vertical coor-
dinate called ζ , which impact the accuracy of the numerical
scheme. In our MPAS model simulations, we do not acti-
vate the smoothing and therefore convert to the Gal-Chen
configuration shown in Eq. (4) with ζ = z. MPAS has sev-
eral diffusion options to damp numerical noise, including
a Smagorinsky-type eddy viscosity, fourth-order hyperdiffu-
sion, and 3D divergence damping. Our MPAS model integra-
tions are configured to use the Smagorinsky-type diffusion.
A detailed discussion of the MPAS treatment of the physics
tendencies can be found in Klemp et al. (2007).

4 Characteristics of the test case

For demonstration purposes, the evolution of the baroclinic
wave is first discussed for the Spectral Element dynamical
core. Any other dynamical core could have been picked.
The simulations were run with nominal grid spacings of 1◦
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(ne30), 0.5◦ (ne60), 0.25◦ (ne120), and 0.125◦ (ne240) and
30 vertical levels, where the “neXXX” notation refers to the
number of supporting Spectral Elements in the horizontal di-
rection per cubed-sphere face. For example, the ne30 setting
has 30× 30 supporting elements per cubed-sphere face. The
construction of the Gauss–Lobatto–Legendre points at which
solutions are computed reduces nominal grid spacing by a
factor of 3 (see Lauritzen et al., 2018, for further details).
Therefore, the above grids have nominal geometric grid spac-
ings of 100, 50, 25, and 12.5 km, respectively. As men-
tioned before, our SE simulations used the se_ftype=0
physics–dynamics strategy, which deviates from the SE de-
fault se_ftype=2. The latter default setting is explored in
Sect. 5.3.

4.1 Baroclinic instability

Baroclinic instability is a crucial driver of weather systems in
the midlatitudes. A systematic treatment of this phenomenon
from the viewpoint of quasi-geostrophic theory can be found
in, e.g., Holton (1992). Because the initial conditions in this
test case are baroclinically unstable, each mountain triggers a
synoptic-scale wave, which develops downwind of the topo-
graphic forcing. Each wave exhibits characteristics of baro-
clinic waves in the real atmosphere. For example, strong tem-
perature gradients develop ahead of the synoptic-scale low-
pressure systems, which trigger strong precipitation bands
along these frontal zones.

Figure 4 illustrates the time evolution of the mean sea level
pressure (MSLP), precipitation rate, and 850 hPa temperature
for the moist baroclinic wave at days 3, 4, 5, and 6. In par-
ticular, Fig. 4a–d show the intensifying low- and high-MSLP
systems that develop behind both mountains. At day 4, the
two developing low-pressure systems are nearly identical.
At day 5, topographic forcing begins to impact Wave 1, as
Wave 1 is forced over M2. By day 6, topographic forcing
has caused a significant deviation between the structure of
the two waves. Figure 4e–h illustrate the development of the
large-scale precipitation bands. These are fed by the high
moisture transported from the tropical regions by the devel-
oping waves. At day 4, the bands begin forming to the east
of the low-pressure system. At day 5, the precipitation band
associated with Wave 1 is forced up over the mountain. By
day 6, the topographic forcing has significantly disrupted the
structure of the precipitation band associated with Wave 1
compared to the precipitation associated with Wave 2. Fig-
ure 4i–l show the evolution of the synoptic-scale temperature
fronts at 850 hPa. Note that this 850 hPa position represents
an interpolated level that uses extrapolation in the neighbor-
hood of the mountain peaks. Nevertheless, we selected this
low-lying level for the analysis, as the wave signatures lose
their sharpness with increasing altitude. These temperature
fronts are driven by the transport of warm, moist equatorial
air into the midlatitudes, which in turn causes updrafts and
the development of intense precipitation bands. The expo-

nentially growing mode triggered by the addition of topogra-
phy is well-resolved in horizontal grids with a 1◦ grid spac-
ing. The agreement across resolutions breaks down in the
moist case when wave breaking becomes dominant beyond
day 6 (not shown).

In addition to the qualitative characteristics, several quan-
titative metrics are also assessed. Common quantities for as-
sessing the development of baroclinic waves are the time
evolution of the minimum MSLP and the eddy kinetic en-
ergy (EKE; Lorenz, 1955; Simmons and Hoskins, 1978; Pa-
van et al., 1999; Ullrich et al., 2014; Kurowski et al., 2015).
Minimum MSLP measures the intensity of the most devel-
oped eddy and is calculated point-wise on an interpolated
latitude–longitude grid. EKE measures the evolution of the
kinetic wave energy relative to the background flow. It is
computed in three steps. First, subtract the initial base state
from the horizontal wind velocities u and v at each time slice.
Second, calculate the point-wise kinetic energy of these eddy
wind fields. Third, integrate the point-wise eddy kinetic en-
ergy over the entire volume of the atmosphere. The calcula-
tion can be conducted in either height z or pressure p coor-
dinates via

EKE(t)= 1
4π a2
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)2
+
(
v− v̄

)2)
ρ
]

dA dz (6)

=
1

4π a2 g

ps∫
ptop

∫
A

1
2

((
u− ū
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where A denotes the area of a grid cell, and ρ is the density
of the air. The symbols ztop and ptop denote the height and
pressure at the model top, respectively. The calculation only
takes the horizontal velocities and their initial states ū and
v̄ at each grid point into account and measures the EKE (in
units of J m−2).

In the dry adiabatic configuration, the point-wise conver-
gence of EKE can be expected as the horizontal grid spacing
is decreased. As was argued in Jablonowski and Williamson
(2006) and Ullrich et al. (2014), this empirical point-wise
convergence allows high-resolution model integrations to be
used as reference solutions, even when a closed-form solu-
tion for the evolution of the wave cannot be derived. Fig-
ure 5 shows a time series of the minimum MSLP in dry SE
model integrations with decreasing horizontal grid spacing.
The temporal progression of the minimum MSLP measured
in the baroclinic wave converges with increasing resolution.
Therefore, the dry version of the test case can be used to
benchmark the treatment of topography in the absence of
moisture processes. When wave breaking sets in around and
after day 6.5 in the dry configuration, the model solutions
start to diverge due to the dominance of grid-scale turbu-
lence and mixing. As an aside, the dry and moist baroclinic
wave simulations without topography and an overlaid wind
perturbation (Ullrich et al., 2014, 2016) start breaking be-
tween days 9 and 10. This shows that the presence of the
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Figure 4. Latitude–longitude cross sections of the baroclinic waves in the SE dynamical core on a 0.5◦ grid at days 3, 4, 5, and 6 (from left
to right). The top row shows the mean sea level pressure, the middle row shows the precipitation rate, and the bottom row shows the 850 hPa
temperature. The contour lines indicate the location of the mountain ridges.

Figure 5. Time series of point-wise minimum MSLP over 8 d for
a dry atmosphere over the SE resolution range ne30–ne120 (100–
12.5 km).

large mountain ridges greatly accelerates the evolution of
the waves, while using identical background states. In moist
runs, the evolution of the wave is further accelerated and in-
tensified by the diabatic heating from the precipitation, as
shown in Fig. 6b and further discussed in the following sub-
section.

4.2 Impact of precipitation and orography

In the moist variant of the test case, the thermodynamic forc-
ing caused by large-scale precipitation intensifies the devel-
opment of the wave. Figure 6 shows the calculated mini-
mum MSLP and EKE for the moist SE model integrations
for decreasing grid spacings. Unlike the dry case (Fig. 5),
Fig. 6b illustrates that the minimum sea level pressure in the
highest-resolution simulation diverges significantly from the
lowest-resolution simulation once precipitation sets in be-
tween days 3 and 4. Figure 6a shows a time series of the inte-
grated EKE. This demonstrates that the divergence of higher-
resolution from lower-resolution model runs occurs over the
whole wave structure, and the resolution dependence is not
limited to the grid point at which MSLP is lowest. The EKE
time series only illustrates the initial growth phase of the
baroclinic wave. Saturation of the EKE values occurs later,
around day 10, with peak EKE values around 2× 105 J m−2,
which compare well to the peak EKE values in Pavan et al.
(1999).

The strength of the eddy moisture flux convergence, which
drives large-scale precipitation, is well correlated with the di-
abatic heating in idealized studies of baroclinic modes (Pa-
van et al., 1999). This diabatic heating speeds up the growth
rate of the wave. The correlation can be seen by examining
the temperature anomaly, defined as the difference between
the temperature at a given time and the base-state tempera-
ture. In addition, the vertical pressure velocity ω is a suitable
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Figure 6. Time series of baroclinic wave summary statistics from the moist SE model at nominal 1◦ (ne30), 0.5◦ (ne60), 0.25◦ (ne120),
and 0.125◦ (ne240) grid spacings. (a) Eddy kinetic energy and (b) point-wise minimum MSLP, which is a proxy for the amplification of the
baroclinic wave.

Figure 7. Longitude–height cross sections at 45◦ N of the (a, b) temperature perturbation and (c, d) vertical pressure velocity ω for the (a,
c) moist and (b, d) dry atmosphere. SE ne60 (50 km) model integrations at day 5 are shown.

proxy for the wave activity. The longitude–height cross sec-
tions of these fields are displayed at day 4 in Fig. 7 for both
the dry and moist model integrations. Figure 7c shows that
in the moist version, updrafts due to precipitation follow the
progression of the temperature front. The updrafts are signif-
icantly larger in the moist case than in the dry case, as shown
in Fig. 7c in the neighborhood of the frontal zone at around
125◦ E. In addition, the ω patterns highlight the hydrostatic,

mostly upward-propagating inertia–gravity wave oscillations
downwind of M2 near 140◦ E. These mountain wave patterns
resemble the stationary hydrostatic inertia–gravity wave so-
lutions from 2D x−z slice models on constant f planes when
tested with bell-shaped mountains (Dudhia, 1993; Ullrich
and Jablonowski, 2012a). However, the spatial scale of the
mountain-generated gravity waves in SE with full rotational
effects is larger than that of the 2D models due to the differ-
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ent model setups. Figure 7a and b display the distribution of
the temperature perturbation at day 4. The moist configura-
tions in Fig. 7a shows that the diabatic forcing triggered by
the precipitation combined with the induced updrafts places
the maximum positive temperature perturbation several kilo-
meters into the atmosphere. The maximum positive temper-
ature perturbation in the dry case (Fig. 7b) is located at the
surface. The dependence of the wave intensification on the
model resolution in Fig. 6 can be explained by noting that
the maximum intensity of the extreme precipitation within
the moisture bands increases as the horizontal grid spacing
decreases. We cannot expect point-wise convergence, as the
grid spacing is decreased due to the nonlinearity of this forc-
ing. However, it is reasonable to compare the statistics of the
precipitation between models in the absence of point-wise
convergence. We demonstrate an example of such a compar-
ison in Sect. 5.2.

The evolving circulation around the low-pressure systems
induces moisture transport from the equatorial region when
moisture is present. The circulation around the developing
low-pressure systems creates bands of extreme precipitation
to the east of the low-pressure centers. The spatial extent of
these precipitation bands reaches as far as 60◦ N. In addition,
the bands reach length scales of several thousand kilome-
ters before wave breaking sets in (Fig. 4g). The leading band
of Wave 1 is orographically lifted over M2 at day 5, which
qualitatively mimics the impacts of the mountain ranges on
atmospheric rivers along the US West Coast. Although the
bands are narrow, the geographic distribution is well re-
solved, even at the coarsest 1◦ horizontal grid spacing. Be-
cause any sources of moisture are omitted in our simulations,
water exits the atmosphere when precipitation occurs. Sur-
face fluxes of latent heat do not replenish it. Such a config-
uration with idealized surface fluxes represents a natural ex-
tension of the test case complexity, as described in Reed and
Jablonowski (2012) and Thatcher and Jablonowski (2016),
but it is not considered here.

The presence of orography forces an upward motion of
the precipitable water at day 5, thereby intensifying the pre-
cipitation rate, as displayed in Fig. 4g. The comparison of
the leading precipitation band triggered by M1 and the band
triggered by M2 at day 6 (Fig. 4h) shows the reduction in
the precipitation rate in Wave 1. This is caused by the oro-
graphic forcing of M2, which diminished the Wave 1 mois-
ture pool compared to Wave 2. Furthermore, Fig. 4d illus-
trates that the interaction between the precipitation band and
M2 slows down the intensification of the dominant Wave 1
low-pressure system.

5 Selected dynamical core intercomparisons

Besides SE, we also tested the moist variant of the test case
with FV, FV3, and MPAS to conduct a brief, non-exhaustive
dynamical core intercomparison. Here, we provide selected

snapshots of this intercomparison to highlight the capabil-
ities of the test case. The simulations are conducted with
30 vertical levels and a nominal 0.5◦ grid spacing in all dy-
namical cores, which are labeled “ne60” for SE, “FV05” for
FV, “C192” for FV3, and “60 km” for MPAS. The SE, FV3,
and MPAS dynamical core analyses utilize model data on in-
terpolated latitude–longitude grids with uniform 0.5◦× 0.5◦

horizontal grid spacings. The FV05 simulation uses the grid
spacings 0.47◦× 0.625◦ for its latitude–longitude grid.

5.1 Baroclinic wave metrics

Quantitative metrics can be used to compare the strength
of an evolving baroclinic wave across dynamical cores. Al-
though Fig. 6 shows a significant dependence of the wave in-
tensification to the horizontal grid spacing in the SE model,
comparisons can be made across dynamical cores if the hor-
izontal grid spacings are comparable. Figure 8 shows a time
series of the evolution of EKE and minimum MSLP for the
four moist dynamical cores over 6 d. In addition, the dry SE
simulation is depicted to illustrate the differences between
the moist and dry simulations. This shows the slower growth
rate of the waves in the dry configuration. The time evolution
of both the EKE (Fig. 8a) and minimum MSLP (Fig. 8b) met-
rics is tightly clustered until intense precipitation develops
along the frontal zones in the moist runs after day 3. With the
onset of precipitation, the evolution in the FV dynamical core
(dycore) diverges from the others. The FV model integra-
tions use fourth-order horizontal divergence damping. This
is a more scale-selective dissipation process than the second-
order horizontal divergence damping that is typically the de-
fault in FV. However, the slower amplification of the mini-
mum MSLP in the FV dycore indicates that the model is still
more diffusive than the other dynamical cores. The evolution
of the integrated EKE is less sensitive to isolated point-wise
changes in the wave structure. The decreased EKE in the FV
integration indicates that increased diffusion slows the rate of
intensification across the entire wave pattern. After Wave 1
passes over M2 (at and after day 5) and, not taking FV into
account for this discussion, the EKE spread between the dy-
namical cores increases, which is a consequence of the more
and more dominant nonlinear effects. The minimum MSLP
spread also increases at this point. However, this mostly hap-
pens after day 6 and is therefore less evident in Fig. 8b.

Figure 9 shows an intercomparison of the precipitation
bands at day 5, which is when Wave 1 is being orographi-
cally lifted. The most intense precipitation rate is observed
on the upwind side of M2. However, the precipitation at the
leading edge of Wave 1 on the downwind slope is still signif-
icantly more intense than the precipitation rate in the leading
edge of Wave 2. The differences in the flow patterns are am-
plified by the highly nonlinear forcing provided by the com-
bination of the topographically induced vertical motion and
the diabatic forcing resulting from the increase in precipita-
tion. We observe that the dynamical cores differ in their abil-
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Figure 8. Time series of baroclinic wave summary statistics from moist model integrations with nominal 0.5◦ grid spacing in all four dycores.
Evolution of (a) eddy kinetic energy integrated over the entire volume of the model domain and (b) the point-wise minimum MSLP. The
time series for the corresponding dry SE 0.5◦ model integration is shown in black.

Figure 9. Intercomparison of the precipitation rates with nominal 0.5◦ grid spacings in (a) SE, (b) FV, (c) FV3, and (d) MPAS at day 5. The
light contours mark the locations of the mountain ridges.

ity to keep the long precipitation bands together as coherent
structures before wave-breaking processes break them up af-
ter day 5. For example, the precipitation bands in SE and
MPAS in Fig. 9 already start developing small-scale but in-
tense precipitation patches at day 5 that were separated from
the main bands. These patches resemble so-called grid point
storms, which are characterized by intense, truncation-scale
storms with extreme updraft speeds and precipitation rates,
as analyzed in Williamson (2013). The coherent precipitation
patches in FV and FV3 also break up due to wave breaking
and stretching, but this happens slightly later. The reasons
for these differences are complex, and an in-depth analysis is
beyond the scope of this paper. However, the differences are
likely caused by a combination of the following factors: in-
sufficient resolution to represent the thin bands, the simplic-

ity of the precipitation scheme, and the choice of the physics
and dynamics time steps. These factors are tightly coupled to
the differences in the diffusion characteristics and the associ-
ated so-called effective resolutions of the dynamical cores
(see also Jablonowski and Williamson, 2011; Kent et al.,
2014b, c) and the physics–dynamics coupling strategies (see
also Gross et al., 2016, 2018). The physics–dynamics cou-
pling aspect will be briefly highlighted for the SE dynamical
core in Sect. 5.3, which sheds light on additional application
areas for the test case.

Figure 10 illustrates each model’s MSLP at day 5 as the
wave is forced over M2. All models exhibit qualitative agree-
ment in the overall structure of the low- and high-pressure
systems. The most obvious difference is that the MPAS high-
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Figure 10. Intercomparison of latitude–longitude MSLP cross sections at day 5 from the moist (a) SE, (b) FV, (c) FV3, and (d) MPAS
simulations with nominal 0.5◦ grid spacings. The oval-shaped contours mark the locations of the mountain ridges.

pressure systems with MSLP values over 1010 hPa occupy
visibly larger areas.

5.2 Precipitation and diabatic forcing

It was argued by Chen and Knutson (2008) that the parame-
terizations of large-scale precipitation are best understood as
an area average of the precipitation within a grid cell. Under
this interpretation, different dynamical cores with compara-
ble nominal grid spacings should have similar precipitation
statistics, e.g., when assessing the accumulated precipitation.
This holds true even when point-wise convergence is not ob-
served within a particular dynamical core as the grid spacing
decreases.

Therefore, we treat the precipitation rate from the Kessler
physics routine as an area average over a grid cell. Using this
interpretation, the area integrals of the precipitation rate over
a selected region should be comparable, even when there are
significant differences between the precipitation rates at in-
dividual grid points across the dynamical cores. Figure 11
shows a time series of the accumulated precipitation inte-
grated between 60 and 300◦ E in the Northern Hemisphere.
The accumulation in the FV dynamical core is notably higher
than the accumulation in the other dynamical cores. This
holds even before day 3, when the precipitation bands along
the developing frontal zones start to form. In FV, stationary
orographic rain over the mountaintops is already present be-
fore hour 12. Other dynamical cores, like FV3, start the sta-
tionary orographic rain around hour 36. The reasons for these
differences are not entirely clear. They are likely linked to the
FV diffusion characteristics, which also caused the time evo-

Figure 11. Time series of the accumulated precipitation integrated
between 60–300◦ E and 0–90◦ N.

lution of the integrated EKE and minimum MSLP to differ
in Fig. 8.

Figure 12 compares the longitude–height cross sections at
45◦ N of the temperature anomaly, the vertical pressure ve-
locity, and the cloud liquid water mixing ratio as the Wave 1
precipitation band travels across the downwind slope of M2
at day 5. In particular, Fig. 12a–d show the temperature per-
turbation in the four dynamical cores. Despite the grid-scale
differences between models in Fig. 9, the temperature struc-
ture over the mountain is qualitatively similar across dynam-
ical cores. The MPAS model exhibits the largest deviation
from the base temperature profile. Figure 12e–h illustrate the
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vertical pressure velocities over the mountain at day 5. The
color range for ω deliberately saturates to highlight the spa-
tial patterns and match the color scheme of Fig. 7 (at day 4),
while not displaying the actual ω minima and maxima at
day 5. Overall, the vertical patterns of ω are qualitatively
similar in all dynamical cores but with differences in the
peak magnitudes. Figure 7 suggests that MPAS exhibits the
most intense up- and downdrafts, closely followed by FV3,
which mimics the relative strength of the temperature anoma-
lies in Fig. 12c and d. The vertical velocity and tempera-
ture anomaly patterns and magnitudes are tightly connected
to the precipitation rates of the baroclinic rainbands at 140
and 210◦ (= 150◦W in Fig. 9). Intense updraft areas are co-
located with the rain bands. Therefore, the varying magni-
tudes of the updrafts help explain the local differences in the
precipitation rates.

Figure 12i–l display the distributions of the cloud liquid
water mixing ratios that serve as the reservoir for rainwater
and precipitation in the Kessler warm-rain physics scheme.
The cloud liquid water patterns broadly resemble each other,
but the small-scale details vary. For example, the maximum
cloud liquid water mixing ratios in MPAS near 140 and 210◦

are located at lower altitudes under 6 km. In contrast, the
peak cloud water regions in SE, FV, and FV3 are mostly
found at heights of around 9–10 km. However, this might not
explain the precipitation differences as the majority of the
precipitation forms below 6 km. The latter is indirectly de-
picted by the positive temperature anomaly patterns, which
also capture the diabatic heating effects of precipitation. The
positive temperature anomaly maxima near the rain bands at
140 and 210◦ are confined to regions under 6 km. MPAS ex-
hibits the largest heating signals among the four dynamical
cores. It is also interesting to observe that FV3 develops two
low-lying and small cloud water clusters near 125 and 195◦.
These are sensitive to the numerical diffusion settings in FV3
and do not appear in more diffusive FV3 configurations (not
shown). As an aside, the FV simulations have difficulty keep-
ing the cloud liquid water mixing ratio pattern compact near
the 210◦ rain band.

5.3 Additional application aspects: physics–dynamics
coupling

The following brief discussion focuses on the physics–
dynamics coupling strategy in SE and highlights an addi-
tional application area of the test case. The discussion refers
back to the various physics–dynamics coupling choices for
the SE model available in CESM 2.1.3 and CESM 2.2. Here,
we shed light on the CESM 2.1.3 default “hybrid” coupling
strategy, which was not used for the other plots in this paper.

The hybrid physics–dynamics coupling strategy in SE uses
sudden adjustments of the moisture and mass fields after the
physics time step (900 s in our case) and the dribbling strat-
egy for all other physical forcings. In the chosen example at
the nominal 0.5◦ resolution, SE’s subcycled dynamics time

step is 150 s. However, this strategy triggers spurious numer-
ical noise (ringing) in SE, which we analyze via the vertical
pressure velocity. Figure 13 shows snapshots of the 850 hPa
vertical pressure velocity ω at day 5 for all four dynamical
cores. All dynamical cores show small-scale gravity wave
activity caused by the mountains. These are physical waves
and not the focus here. Note that we saturate the color scale
to draw attention to numerical artifacts. These are otherwise
difficult to detect.

Figure 13a demonstrates the presence of grid-scale oscil-
lations in SE, which become more severe as the precipitation
bands mature and the diabatic forcings become stronger. The
oscillations appear in concentric circles and likely originate
from small hotspots with strong diabatic forcing, such as grid
point storms. The magnitude of the numerical noise is small
compared to the vertical velocities caused by the baroclinic
wave and the mountain-generated gravity waves. However,
vertical velocities are tightly coupled to cloud and rainfall
characteristics. Any numerical interference in this relation-
ship is undesirable and could lead to artificial responses in
the physical parameterization.

The grid-scale oscillations occur due to the sudden mois-
ture adjustments present with SE’s hybrid coupling option.
These oscillations are characteristic of SE’s numerical ap-
proach, which utilizes a continuous Galerkin technique for
the horizontal discretization. This phenomenon in models
with local or global spectral numerical schemes is also
known as Runge’s phenomenon or Gibbs ringing. It resem-
bles a shockwave that appears when large and unbalanced
physical forcings are added to the rather balanced motions in
the dynamical core. The SE dynamical core is a highly accu-
rate model with very low intrinsic dissipation. It becomes ap-
parent that the explicitly added diffusion mechanisms in the
SE dynamical core are insufficient to suppress these oscil-
lations. Therefore, this noise is also tightly linked to the im-
plicit numerical and explicitly added diffusion characteristics
of dynamical cores. In contrast, FV (Neale et al., 2010) and
FV3 (Harris et al., 2021) perform lump adjustments of prog-
nostic fields, but their implicit numerical and explicitly added
diffusion characteristics do not exhibit grid-scale oscillation.
Similarly, the more complex strategy used by MPAS (Klemp
et al., 2007), which addresses the challenges of nonhydro-
static simulations, prevents these oscillations from develop-
ing.

When dribbling is used as SE’s physics–dynamics cou-
pling strategy so that all physics tendencies are dribbled in
with the subcycled 150 s dynamics time step, the spurious
oscillations disappear. This was, for example, demonstrated
in Hughes and Jablonowski (2021), who compared the de-
fault hybrid coupling strategy to an SE configuration with
identical physics and dynamics time steps of 150 s. Reduc-
ing the time step length in the physics reduces the strength of
the physical forcings. This leads to more gentle adjustments
of the dynamical core and avoids spurious oscillations.
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Figure 12. Intercomparison of longitude–height cross sections of the (top) temperature perturbation and (middle) vertical pressure velocity
ω and (bottom) cloud liquid water mixing ratio at day 5. The columns correspond to each dynamical core, with a nominal 0.5◦ grid spacing.
Latitude is constant at 45◦ N in SE, FV3, and MPAS and at 44.88◦ N in FV (the closest grid point to 45◦ N). The outline of mountain M2 is
shown near 140◦ E along the x axis (longitudes).

Figure 13. Latitude–longitude cross sections of the 850 hPa vertical pressure velocity ω from moist model simulations with a nominal 0.5◦

grid spacing in the (a) SE (with se_ftype= 2), (b) FV, (c) FV3, and (d) MPAS. The color range saturates to highlight the numerical ringing
or noise.
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Our analysis indicates that there is a downside to using
the SE default hybrid physics–dynamics coupling strategy,
which was also reported for more complex, but still ideal-
ized, SE simulations in Thatcher and Jablonowski (2016).
The damping of oscillations that occurs when dribbling is
used is qualitatively, similar to comparisons found in Gross
et al. (2018). Therefore, a direct comparison between SE sim-
ulations with hybrid and dribbled coupling is omitted. How-
ever, the dribbling strategy is also not free of numerical arti-
facts. Dividing the tracer tendencies for the mass quantities
across dynamics substeps can result in negative tracer values,
such as negative moisture (Peter H. Lauritzen, personal com-
munication, 2022). Although this is a rare circumstance, neg-
ative moisture values are unphysical and lead to problems in
the physical parameterization schemes if not filtered out be-
forehand via tracer mass fixers. More studies will be needed
to diagnose the ringing phenomenon in more complex model
configurations and determine the best way to mitigate it.

As an aside, Fig. 13a also demonstrates another unique be-
havior of the SE dynamical core. When comparing the ver-
tical pressure velocity fields, SE shows very different pat-
terns between 30–90◦ E just west of mountain M1. This is
the signature of a horizontally traveling hydrostatic acous-
tic mode (a Lamb wave), which initially becomes excited in
all dynamical cores, due to the slight imbalance of the initial
fields near the topography. The FV, FV3, and MPAS dynam-
ical cores damp out the Lamb wave efficiently after about
1–2 d. However, this is not the case in SE, where the Lamb
wave propagates persistently around the sphere with a phase
speed of about 330 m s−1. This topic will be discussed in a
future paper.

6 Conclusions

This paper enhances the suite of idealized test cases for the
dynamical cores of AGCMs in spherical geometry. It is the
first dynamical core test case that combines a complex ini-
tial flow field, such as the base condition for a baroclini-
cally unstable wave with varying stratification and vertical
wind shear, with idealized topographic barriers on a rotating
regular-size earth. Both dry and idealized moist test config-
urations are suggested for pressure-based and height-based
dynamical cores. The moist configuration utilizes a warm-
rain Kessler physics parameterization that triggers precipita-
tion and provides diabatic forcing. The test accommodates
the portfolio of hydrostatic and nonhydrostatic, as well as
shallow-atmosphere and deep-atmosphere, dynamical core
designs. In particular, we add an analytically defined topog-
raphy profile to an existing baroclinic wave base state. This
necessitates rebalancing the initial conditions, with a partic-
ular focus on the surface pressure and vertical velocity fields.
The latter is only needed for nonhydrostatic models. The re-
sulting initial conditions are well balanced but not a steady-

state solution. The topography field acts as the trigger for
rapidly growing baroclinic waves over several days.

The test case provides a controlled environment that serves
two purposes. First, it can be used as a model assessment,
debugging, or tuning tool by model developers, who need to
assess the inclusion of topography and the chosen vertical co-
ordinate in a dynamical core. This informs numerical design
decisions for dynamical cores and their physics–dynamics
coupling strategy and contributes to dynamical core model
intercomparisons. Second, the test case also serves the at-
mospheric dynamics science community. It is a tool in the
atmospheric dynamics toolbox and sheds light on, for exam-
ple, the impact of mountains on the general circulation. All
mountain shapes can be accommodated as long as they are
prescribed via analytic functions. An analytical solution does
not exist. However, high-resolution reference solutions and
dynamical core intercomparisons can be used to gain con-
fidence in the model simulations. This is straightforward in
dry configurations that converge with increasing resolution
before nonlinear wave-breaking and mixing processes set in
after day 6.5. However, moist configurations are impacted by
the nonlinear forcing from the stationary orographic rain and,
most importantly, the precipitation along the frontal zones
from day 3 onwards. This leads to an increased spread in the
model simulations that typically exhibit wave breaking after
day 5 for the chosen topographic profile.

We illustrated the characteristics and capabilities of the
test case via example simulations with various dynamical
cores, which are available at NCAR. These are the SE and FV
dynamical cores of the CESM 2.1.3 model framework, the
FV3 of the CESM 2.2 model framework, and the standalone
distribution of MPAS version 7. The dynamical characteris-
tics of the topographically triggered baroclinic waves were
studied, and model intercomparisons was performed. Real-
world flow phenomena and mountain shapes were used to
inspire the selection of the flow parameters, such as the shape
of the two chosen ridge mountains. These triggered baro-
clinic waves that have similarities with atmospheric rivers.
The chosen examples showcase the potential use cases of
this test case. Besides serving as a debugging tool, we briefly
discussed the impact of diffusion on the flow and precipita-
tion characteristics. Furthermore, the test revealed physics–
dynamics coupling problems in the SE dynamical core. It
also led to the discovery of an acoustic mode in the SE model
that persistently propagates in the horizontal direction with-
out much damping. Overall, the overall flow patterns in the
dynamical core simulations resembled each other when eval-
uating selected quantitative metrics. However, the details can
differ greatly at the local level. The results suggest that FV’s
diffusion characteristic noticeably impacted how the wave
evolved.

There are several future directions for this research. First,
the underlying atmospheric base state has both a shallow-
atmosphere and a deep-atmosphere variant. So far, we have
tested the shallow-atmosphere variant, but we are intrigued
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to apply the test to deep-atmosphere dynamical cores, which
are becoming popular. Second, the test can also utilize a
reduced-radius configuration to trigger nonhydrostatic model
responses more easily. However, Skamarock et al. (2021)
identified that care needs to be taken so that statically un-
stable regions do not develop when the radius reduction fac-
tor X is large. The authors of that study suggested slight ad-
justments to the base flow to prevent the formation of un-
stable regions. Third, the model integrations with the SE dy-
namical core revealed that the dynamical core preserves a
rapidly propagating acoustic gravity (Lamb) mode. Although
this mode is initially present in other dynamical cores due
to slight imbalances of the initial conditions, it is rapidly
damped in all tested dynamical cores, except for SE. A sys-
tematic analysis of this phenomenon is deferred to a future
publication. In addition, it will be interesting to systemati-
cally investigate the impact of implicit numerical and explic-
itly added diffusion on the evolution of the geographically
triggered baroclinic waves.

Appendix A: Description of the Kessler physics
parameterization

This appendix reviews the Kessler physics processes
(Kessler, 1969), which represent a warm-rain cloud micro-
physics scheme without an ice phase. The recommended
method for adding the Kessler physics processes to a dynam-
ical core is to use and adapt the provided kessler.F90
Fortran file. This Fortran template routine is available in
the Zenodo archive that accompanies this publication (see
the “Code and data availability” section for the web link).
The routine was originally developed for the DCMIP mod-
eling groups in 2016. It was based on the Kessler physics
routine listed in appendix C in Klemp et al. (2015). The
Kessler parameterization is often available as a switch-on
option in many existing code bases, such as CESM, MPAS,
the Weather Research and Forecasting (WRF) model (Ska-
marock et al., 2008), and in the GFDL “Solo” configuration
of the FV3 dynamical core (available via GitHub).

Some variants of the Kessler physics scheme exist in the
literature. Here, we document our chosen variant that closely
resembles the implementation in Klemp and Wilhelmson
(1978) and Klemp et al. (2015) and was furthermore utilized
for the DCMIP dynamical core intercomparison in 2016 (Ull-
rich et al., 2016; Zarzycki et al., 2017). A similar implemen-
tation of the Kessler processes is also detailed in Durran and
Klemp (1983) (see their Appendix 2). The scheme utilizes
three prognostic moisture variables, namely the dry mixing
ratios for water vapor mv, cloud water mc, and rainwater
mr. The included microphysical processes are (a) the pro-
duction, sedimentation, and evaporation of rainwater; (b) the
collection (accretion) and autoconversion of cloud water; and
(c) and the production of cloud water from condensation. The
time tendencies for the potential temperature θ and the three

water species are then expressed via the following equation
set:

dθ
dt
=

L

c̃p5

(
Ccond−Er

)
(A1)

dmv

dt
=−Ccond+Er (A2)

dmc

dt
= Ccond−Ar−Cr (A3)

dmr

dt
=−Er+Ar+Cr− S, (A4)

where5 is the Exner function. L= 2.5×106 J K−1 is the la-
tent heat of vaporization. c̃p = 1003 J K−1 is the specific heat
at constant pressure, as utilized in Klemp et al. (2015). p is
the moist pressure (see also Eq. B5). The symbol Ccond de-
notes the condensation rate (defined to be positive in case of
condensation); Er represents the rainwater evaporation rate;
Ar symbolizes the autoconversion rate of cloud water to rain-
water; Cr stands for the collection rate of rainwater; and S
displays the sedimentation rate. Contrary to the notation in
Klemp and Wilhelmson (1978), Klemp et al. (2015), and Ull-
rich et al. (2016), we denote the dry mixing ratios for the wa-
ter species with the symbol m instead of the symbol q. The
symbol q is typically used for moist mixing ratios in the lit-
erature. The general conversion equations between dry and
moist mixing ratios are given by

qX =
mX

1+ (mv+mc+mr)
(A5)

mX =
qX

1− (qv+ qc+ qr)
, (A6)

where the subscript X is a placeholder for “v”, “c”, and
“r”. In case a dynamical core uses moist mixing ratios, it is
paramount to convert the moist mixing ratios to dry mixing
ratios before the Kessler physics routine is called. After the
Kessler physics routine updates the dry mixing ratios, they
must be converted back to their moist equivalents for the sub-
sequent dynamical core computations. This moist or dry con-
version requires knowledge about the design of the dynam-
ical core. Some dynamical cores only use the water vapor
contribution to compute the moist mixing ratios and leave
out the contributions from the condensates. If this is the case,
then the conversions (A5) and (A6) simplify and need to uti-
lize mc =mr = qc = qr = 0. Another notational difference is
the use of the symbol Ccond for the condensation rate, which
is equivalent to the term −dqvs/dt (equal to −dmvs/dt) in
Klemp and Wilhelmson (1978) or Klemp et al. (2015). The
computation of the saturation mixing ratio mvs uses Tetens’s
formula, which is shown in Eq. (B8).
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The autoconvection rate Ar and collection rate Cr follow
the Kessler parameterization and are defined by

Ar = k1 (mc− ar) (A7)

Cr = k2mcm
0.875
r , (A8)

with k1 = 0.001 s−1, ar = 0.001 g g−1, and k2 = 2.2 s−1. In
addition, 1mr is defined as the rain production term

1mr =m
n
c −

mnc −1t max(Ar,0)
1+1tCr

, (A9)

with the physics time step 1t , which is typically subcycled
(see the additional explanations below). The sedimentation
rate S is described by

S =
1
ρd

d(ρd Vr mr)

dz
, (A10)

as shown by Eq. (2.9b) in Klemp and Wilhelmson (1978),
which utilizes the rainwater terminal velocity Vr (in units of
m s−1) as follows:

Vr = 36.34
(
ρgmmr

)0.1346
√
ρ0

ρd
. (A11)

The expression for Vr corresponds to Eq. (2.15) in Klemp
and Wilhelmson (1978), where ρgm symbolizes the density
of dry air (in units of g cm−3), and ρ0 and ρd denote the
density of dry air at the lowest model level and the chosen
vertical position, respectively. This term is discretized via an
upstream finite-difference method. The implementation de-
tails are shown in appendix C in Klemp et al. (2015) and the
kessler.F90 Fortran file.

These processes are then used to provide a temporarily up-
dated rainwater mixing ratio given by

m∗r =max(mnr +1mr+ S1t,0), (A12)

where n is the current time index. The final update of mr
takes the rainwater evaporation into account. The rainwater
evaporation rate (Eq. 2.14a in Klemp and Wilhelmson, 1978;
in units of s−1) is

Er =
1
ρgm

(
1− mv

mvs

)
C(ρgmm

∗
r )

0.525

5.4× 105
+

2.55×106

phPamvs

, (A13)

which utilizes the ventilation coefficient C,

C = 1.6+ 124.9(ρgmm
∗
r )

0.2046, (A14)

and the pressure phPa (in units of hPa). Condensation is trig-
gered if the water vapor mixing ratio mv exceeds the satura-
tion mixing ratio mvs. In this case, the condensation rate is
positive and utilizes the equation

Ccond =
1
1t

mv−mvs

1+mvs
17.27×237.3 L
c̃p(T−36)2

, (A15)

which is also shown as an update equation (without 1t)
in Durran and Klemp (1983) (their Eq. A14). The factor
17.27× 237.3 is about 4098, which is close to the factor
17.27× 237≈ 4093 listed in Klemp and Wilhelmson (1978)
and Klemp et al. (2015).

Implementation details

It is essential to recognize that the provided kessler.F90
Fortran file expects vertical column data that start at the low-
est model level near the surface and extend upward. If a
dynamical core counts the levels from the top down, then
the levels need to be reordered before the Kessler param-
eterization is called. In addition, the sedimentation process
is discretized via an upstream finite-difference approach, as
mentioned above, which needs to obey numerical stability
constraints. Therefore, the Kessler physics processes must
be subcycled in time, unless the physics time step is short
enough to guarantee numerical stability. The subcycling is
implemented in the provided Fortran routine. It is not part
of the Kessler implementation shown in Klemp et al. (2015)
that implicitly assumes that the physics time step is numeri-
cally stable. The Kessler physics routine computes five out-
put variables. These are the updated water vapor, liquid wa-
ter, and rainwater mixing ratios at the future time step (after
the duration of a full physics time step), the updated potential
temperature, and the averaged precipitation rate. The precip-
itation rate

Precipitation=
ρ0 mr0 Vr0

ρwater
(A16)

represents the sedimentation from the lowest model level in-
dicated by the subscript 0. It accounts for the precipitation
rate (in meters of water per second) over a subcycled time
step with the density of water ρwater = 1000 kg m−3. The pre-
cipitation rate differs from substep to substep and must be av-
eraged. All precipitation rates are therefore summed up over
the full physics time step and then divided by the number of
substeps to compute the average precipitation rate as an out-
put quantity. There are also other implementation details that
affect the accuracy of the parameterization. For example, the
computation of the rainwater evaporation rate Er and the up-
dated water substances must ensure that the mixing ratios do
not become negative. This necessitates the use of max and
min functions, as well as limiters. Therefore, we recommend
using the provided Fortran routine or closely reviewing the
implementation details to avoid any numerical difficulties.

Appendix B: Description of the initial state

This Appendix presents selected equations for the moist ini-
tial state in a shallow-atmosphere configuration introduced
in Ullrich et al. (2016). The equations containing the adjust-
ments for the topographic profile are discussed in Sect. 2.2.
These topographic adjustments enter the equations via the
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height variable. Users of deep-atmosphere dynamical cores
should review the needed slight adjustments outlined in Ull-
rich et al. (2014). The equations below do not formally spec-
ify a dependence on the longitude. However, this depen-
dence is implicit, as the height z and pressure p along a
model level are now functions of both horizontal directions
over the topography. Table B1 lists all parameters and physi-
cal constants for the initial conditions, including an optional
small-earth scaling factor X. It is set to an unscaled value
of X = 1 here but could be varied in future work to trig-
ger nonhydrostatic model responses. Note that such scal-
ing reduces the earth’s radius and speeds up the earth’s ro-
tation simultaneously to keep the Rossby number constant.
As further explained in Ullrich et al. (2016), other changes
are also needed for reduced-radius experiments. The imple-
mentation details for the initial conditions and the CESM 2.2
(FV3), CESM 2.1.3 (FV and SE), and MPAS simulations are
provided in Appendix C. If a chosen dynamical core uses
slightly different values for the physical constants, then we
recommend using the model’s defaults to provide an inter-
nally consistent initialization.

B1 Temperature base state

The temperature equation is a particular form of the temper-
ature family given in Staniforth and White (2011), which the
interested reader can consult for explanations of how these
functional forms were chosen. This has a variation in the
meridional direction, which is determined by the parameter
K , as follows:

IT (φ)= (cosφ)K −
K

K + 2
(cosφ)K+2.

In addition, two height-dependent functions are needed.
They are given by

τ1(z)=
1
T0

exp
(
0z

T0

)
+

(
T0− TP

T0TP

)[
1− 2

(
zg

bRdT0

)2
]

exp

[
−

(
zg

bRdT0

)2
]

τ2(z)=
K + 2

2

(
TE− TP

TETP

)[
1− 2

(
zg

bRdT0

)2
]

exp

[
−

(
zg

bRdT0

)2
]
,

with the vertical lapse rate 0, and the meridional temperature
gradient. The latter is expressed via the equatorial and polar
temperature parameters TE and TP, respectively. The param-
eter T0 =

1
2 (TE+ TP) denotes the arithmetic mean.

To incorporate water vapor into our base state, we first
specify the virtual temperature Tv as follows:

Tv(φ,z)=
1

τ1(z)− τ2(z)IT (φ)
,

which obeys the thermal wind balance. The prognostic tem-
perature initialization T is therefore

T =
Tv

1+mvqv
, (B1)

withmv = 0.608. The symbol qv denotes the specific humid-
ity, as explained below.

B2 Zonal wind base state

The zonal wind and virtual temperature are connected via the
thermal wind balance. The dependence on Tv is sequestered
in the auxiliary quantity as follows:

U(φ,z)=
gK

a
τint,2(z)

[
(cosφ)K−1

− (cosφ)K+1
]
Tv(φ,z),

from which we can derive the prognostic zonal wind initial-
ization as

u(φ,z)=−�a cos(φ)

+

√
(�a cos(φ))2+ a cos(φ)U(φ,z). (B2)

B3 Meridional wind base state

The meridional wind is set to zero, with

v ≡ 0ms−1. (B3)

B4 Pressure and density base state

The pressure distribution is determined by

p(φ,z)= p0 exp
[
−
g

Rd

(
τint,1(z)− τint,2(z)IT (φ)

)]
, (B4)

where the integrals of the height-dependent functional forms
for temperature are given by

τint,1(z)=
1
0

[
exp

(
0z

T0

)
− 1

]
+ z

(
T0− TP

T0TP

)
exp

[
−

(
zg

bRdT0

)2
]

and

τint,2 =
K + 2

2

(
TE− TP

TETP

)
z exp

[
−

(
zg

bRdT0

)2
]
.

The symbol p denotes the pressure of the moist air. The sur-
face pressure ps is then provided when plugging the topo-
graphic height zs (Eq. 1) into Eq. (B4), as shown in Eq. (2).
Using the virtual temperature equation, the density of the
moist air is determined by the ideal gas law

ρ =
p

RdTv
. (B5)
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Table B1. Parameters and physical constants for the initial conditions.

Variable name Variable description Value

X 1 Reduced-size planet scaling factor
a 6.37122× 106 m ·X−1 Scaled radius of the earth
� 2π (86164s)−1

·X Scaled angular speed of the earth
g 9.80616ms−2 Gravity
Rd 287Jkg−1 K−1 Gas constant for dry air
p0 105 Pa Reference pressure
b 2 Jet half-width parameter
K 3 Power used for temperature field
TE 310 K Reference surface temperature at the equator
TP 240 K Reference surface temperature at the poles
0 0.005Km−1 Temperature lapse rate
φw 4π/18 Specific humidity latitudinal width parameter in radians
pw 3.4× 104 Pa Specific humidity vertical pressure width parameter
q0 0.018 kg kg−1 Maximum specific humidity
qt 0 kg kg−1 Specific humidity above artificial tropopause
pt 1.5× 104 Pa Pressure at artificial tropopause
L 2.5× 106 J kg−1 Latent heat of vaporization
cp 1004.5 J kg−1 K−1 Specific heat at constant pressure
Rv 461.5 J kg−1 K−1 Gas constant for water vapor
5 (p/p0)

Rd/cp Exner function; p is the pressure of the moist air in Pa

B5 Base states for the moisture variables

With the help of the auxiliary quantity η

η(φ,z)=
p(φ,z)

p0
,

the initial distribution of the specific humidity is given by

qv(φ,η)=


q0 exp

[
−

(
φ
φw

)4
]

exp
[
−

(
(η−1)p0
pw

)2
]
,

if η > pt/p0

qt, otherwise.

(B6)

The specific humidity corresponds to a wet mixing ratio for
water vapor. The initial values for the wet mixing ratios of
cloud water qc and rainwater qr are set to zero. This means
that the initial values for the dry mixing ratios of cloud water
mc and rainwater mr are also zero. If a dynamical core uti-
lizes the dry mixing ratio for water vapor mv instead of the
specific humidity qv, then the conversion shown in Eq. (A6)
needs to be applied. The conversion can either involve just
the vapor contribution or also the condensates, which de-
pends on the design of the dynamical core.

B6 Relative humidity

The relative humidity distribution makes use of Tetens’s for-
mula for the saturation mixing ratio, as also shown in Klemp
and Wilhelmson (1978), Klemp et al. (2015), and Durran and
Klemp (1983). Note that the Klemp et al. (2015) formulation

(their Eq. 12) contains a typographical error when stating that
their pressure p̄eq has units of hectopascals. The correct unit
for the pressure p in the denominator is pascals, as shown be-
low. Here, we use Tetens’s formula for the saturation specific
humidity qvs, which is approximately equal to the saturation
mixing ratio mvs. The formula is

qvs =
ε

p
e∗0 exp

(
17.27

T − 273K
T − 36K

)
(B7)

=
380Pa
p

exp
(

17.27
T − 273K
T − 36K

)
(B8)

≈mvs,

where the units of p and T are in pascals and kelvins, respec-
tively. For illustration purposes, Eq. (B7) also lists the satura-
tion vapor pressure e∗0 = 610.78 Pa at the temperature triple
point T00 = 273.16 K and the symbol ε = RdR

−1
v ≈ 0.622,

which denotes the ratio of the gas constant for dry air Rd
to that for water vapor with Rv. This explains the physical
meaning of the constant 380 Pa in Eq. (B8). The relative hu-
midity (RH) can then be defined as

RH= 100% ·
qv

qvs
.

Appendix C: Implementation details for the CESM2
dynamical cores and MPAS

We recommend using the default physical constants, as im-
plemented in a chosen dynamical core and ideally in-lining
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Table C1. Key CESM 2.1.3 namelist parameters used in nominal 0.5◦ SE model integrations.

Namelist parameter Value

analytic_ic_type 'moist_baroclinic_wave_dcmip2016'
se_ftype 0
se_hypervis_on_plevs .true.
se_hypervis_subcycle 3
se_hypervis_subcycle_q 1
se_limiter_option 8
se_ne 60
se_nsplit 2
se_qsplit 1
se_rsplit 3
se_tstep_type 4
se_vert_remap_q_alg 1
se_nu 0.40E+14
se_nu_div 0.10E+15
se_nu_p 0.10E+15
se_nu_top 2.5e5

Table C2. Key CESM 2.1.3 namelist parameters used in nominal 0.5◦ FV model integrations.

Namelist parameter Value

analytic_ic_type 'moist_baroclinic_wave_dcmip2016'
fv_div24del2flag 4
fv_fft_flt 1
fv_filtcw 0
fv_nspltvrm 2
fv_nsplit 0
fv_iord 4
fv_jord 4
fv_kord 4

the initialization routine in the code base of the chosen
model. This was the initialization strategy for the CESM 2
and MPAS dynamical cores, and all code modifications are
provided in Hughes and Jablonowski (2022). In CESM 2, we
made use of CESM’s “Simpler Models” framework, which
invokes the Kessler physics routine described in Appendix A
and the analytic initialization of the moist baroclinic wave
(the Ullrich et al., 2016, default without topography). We
utilize the CESM compset “FKESSLER” and a CAM
namelist entry for the variable analytic_ic_type
= 'moist_baroclinic_wave_dcmip2016'.
The CESM 2 code change then augments the exist-
ing initialization for the baroclinic wave and adds the
topographic changes via a swap of the CAM rou-
tine ic_baroclinic.F90. Note that the routine
ic_baroclinic.F90 also accommodates the dry variant
of the baroclinic wave, which can be selected via the
adiabatic compset “FADIAB”, the configure command
./xmlchange -append -file env_build.xml
-id CAM_CONFIG_OPTS -val="-analytic_ic"
to activate the analytic in-lined initialization, and the

alternative namelist option analytic_ic_type =
'dry_baroclinic_wave_dcmip2016'. These set-
tings initialize the dry configuration with q = 0 and do not
activate any physical parameterizations. All key namelist
entries are provided in Tables C1–C4. The CESM values
for the physical constants are listed in Table B1. For the
MPAS simulations, the default physical constants of the
MPAS standalone distribution were used (Jacobsen et al.,
2019). MPAS provides the implementation of the Kessler
warm-rain microphysics routine, which can be activated
via a namelist option, as shown in Table C4. In addition,
the initialization routine for the moist baroclinic wave with
topography was added to the MPAS existing framework for
idealized test cases via a code change.

All dynamical core simulations are run with 30 model lev-
els and use model tops near 2 hPa (SE, FV, and FV3) and
8 hPa (MPAS). These model tops lie between 30–35 km for
the provided temperature structure. The positions of the hy-
brid pressure-based model level used for SE, FV, and FV3 are
listed in Reed and Jablonowski (2012) and are recommended
to users of this test case. These are the default levels in
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Table C3. Key CESM 2.2 namelist parameters used in nominal 0.5◦ FV3 model integrations.

Namelist parameter Value

analytic_ic_type 'moist_baroclinic_wave_dcmip2016'
fv3_hydrostatic .true.
fv3_hord_mt 5
fv3_hord_vt 5
fv3_hord_tm 5
fv3_hord_dp -5
fv3_hord_tr 8
fv3_kord_mt 9
fv3_kord_tm -9
fv3_kord_tr 9
fv3_kord_wz 9
fv3_n_split 6
fv3_k_split 2
fv3_do_vort_damp .false.
fv3_nord 2
fv3_d4_bg 0.15
fv3_d2_bg 0
fv3_d2_bg_k1 0.15
fv3_d2_bg_k2 0.02
fv3_rf_cutoff 750
fv3_tau 10

Table C4. Key namelist parameters used in nominal 0.5◦ MPAS model integrations.

Namelist parameter Value

config_dt 300.0
config_split_dynamics_transport true
config_number_of_sub_steps 2
config_dynamics_split_steps 3
config_horiz_mixing '2d_smagorinsky'
config_len_disp 60000.0
config_visc4_2dsmag 0.05
config_u_vadv_order 3
config_w_vadv_order 3
config_w_adv_order 3
config_theta_vadv_order 3
config_scalar_vadv_order 3
config_theta_adv_order 3
config_scalar_adv_order 3
config_scalar_advection true
config_positive_definite false
config_coef_3rd_order 0.05
config_del4u_div_factor 10.0
config_apvm_upwinding 0.5
config_monotonic true
config_epssm 0.1
config_smdiv 0.1
config_physics_suite 'none'
config_microp_scheme 'mp_kessler'
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CESM 2.1.3 and CESM 2.2, once the compset FKESSLER
is invoked. For MPAS, we use the 30 default levels for the
MPAS idealized testing framework. Most simulations pre-
sented in this study are run with a nominal 0.5◦ (about
50 km) grid spacing, which corresponds to the grid resolu-
tion settings ne60 (SE), FV05 (FV), C192 (FV3), and 60 km
(MPAS). These identifiers are used as labels in the figures
and correspond to the time step and diffusion settings quoted
below.

Table C1 contains the key namelist parameters to replicate
our SE model integrations. The time steps used by the
SE dynamical core are 1phys = 900s, 1vertical remap =

1phys/2= 450s,1dynamics =1vertical remap/3= 150s, and
1hyperviscosity =1dynamics/3= 50s as, for example, ex-
plained in Lauritzen et al. (2018). The se_nu_XX parameters
denote the diffusion coefficients, which are resolution
dependent.

Table C2 contains the key namelist parameters to replicate
the FV model integrations. The time steps used by the
FV dynamical core are 1phys = 900s, 1vertical remap =

1phys/2= 450s, 1tracer =1vertical remap = 450s, and
1dynamics =1tracer/4= 112.5s. The namelist entry
fv_div24del2flag selects the fourth-order hori-
zontal divergence damping mechanism. The monotonicity
constraints for the horizontal advection and the vertical
remap algorithm, denoted by the fv_Xord namelist entries,
are called the “relaxed constraint” by Lin (2004) and denote
the default settings.

Table C3 contains the key namelist parameters for
the FV3 model integrations. The time steps used by the
FV3 dynamical core are 1phys = 900s, 1vertical remap =

1phys/2= 450s, 1tracer =1vertical remap = 450s, and
1dynamics =1vertical remap/6= 75s. The “fv3_nord = 2” set-
ting activates the sixth-order horizontal divergence damping
mechanism with the dimensionless resolution-independent
coefficient fv3_d4_bg. The optional vorticity damping is not
activated. The choice of the monotonicity constraint for the
horizontal advection, as determined by fv3_hord_XX, picks
the least diffusive option.

Table C4 contains the key namelist parameters for MPAS.
The time steps used by the MPAS dynamical core are
1phys = 300s, 1dynamics =1phys/3= 100s, and 1acoustic =

1dynamics/2= 50s. MPAS is a nonhydrostatic model, and so
it ensures numerical stability in the presence of 3D acoustic
waves by handling acoustic propagation with very short time
steps.

Code and data availability. Model data, the Kessler physics rou-
tine, and source code to run the test case in the CESM and
MPAS models have been uploaded to a Zenodo dataset at
https://doi.org/10.5281/zenodo.8327365 (Hughes and Jablonowski,
2022). The collection includes the data analysis scripts that repro-
duce the figures from this work.
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