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Abstract. A chemical transport model (CTM) is an essen-
tial tool for air quality prediction and management, widely
used in air pollution control and health risk assessment. How-
ever, the current models do not perform very well in re-
producing the observations of some major chemical compo-
nents, for example, sulfate, nitrate, ammonium and organic
carbon. Studies have suggested that the uncertainties in the
model chemical mechanism, source emission inventory and
meteorological field can cause inaccurate simulation results.
Still, the emission source profile (used to create speciated
emission inventories for CTMs) of PM2.5 has not been fully
taken into account in current numerical simulation. Based
on the characteristics and variation rules of chemical com-
ponents in typical PM2.5 sources, different simulation sce-
narios were designed and the sensitivity of simulated PM2.5
components to the source chemical profile was explored. Our
findings showed that the influence of source profile changes
on simulated PM2.5 components’ concentrations cannot be
ignored. Simulation results of some components were sensi-
tive to the adopted source profile in CTMs. Moreover, there
was a linkage effect: the variation in some components in
the source profile would bring changes to the simulated re-
sults of other components. These influences are connected

to chemical mechanisms of the model since the variation in
species allocations in emission sources can affect the poten-
tial composition and phase state of aerosols, chemical reac-
tion priority, and multicomponent chemical balance in ther-
modynamic equilibrium systems. We also found that the per-
turbation of the PM2.5 source profile caused variation in sim-
ulated gaseous pollutants, which indirectly indicated that the
perturbation of source profile would affect the simulation of
secondary PM2.5 components. Our paper highlights the ne-
cessity of paying enough attention to the representativeness
and timeliness of the source profile when using CTMs for
simulation.

1 Introduction

Ambient fine particulate matter (PM2.5) pollution in some
key regions of China has attracted much attention (Liang et
al., 2020; Huang et al., 2021). The chemical components of
PM2.5, including elements (Al, Si, Fe, Mn, Ti, Cu, Zn, Pb,
etc.), water-soluble ions (SO2−

4 , NO−3 , Cl−, F−, NH+4 , Na+,
K+, Mg2+, Ca2+, etc.) and carbon-containing components
(organic carbon, OC; elemental carbon, EC) (Yang et al.,
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2011; Li et al., 2013), have different physical and chemi-
cal properties, such as reactivity, thermal stability, particle
size distribution, residence time, optical properties or health
hazards (Seinfeld and Pandis, 2006; Tang et al., 2006). Ac-
cording to long-term monitoring results, in most regions of
China, SO2−

4 , NO−3 , NH+4 and OC are the most important
species in ambient PM2.5 (Li et al., 2017a, 2021), which has
a certain adverse impact on human health (Shi et al., 2018)
and ecosystems, such as acid rain in southwest China (Han
et al., 2019) or food security (Zhou et al., 2018).

Chemical transport models (CTMs) play an important role
in policymaking for regulatory purposes. Based on the sci-
entific understanding of atmospheric physical and chemical
processes, CTMs are built to simulate the transport, reaction
and removal of pollutants on a certain scale in horizontal and
vertical directions. With the development of CTMs, the simu-
lation accuracy of PM2.5 concentration has been significantly
improved. Higher requirements have been put forward for
the precise simulation of PM2.5 components so as to provide
support for the use of CTMs in human health risk assess-
ment, climate effects, pollution sources apportionment and
so on (Peterson et al., 2020; Lv et al., 2021). However, the
current models do not perform very well in simulating some
components (for example, PM2.5-bound sulfate, nitrate, am-
monium, trace elements) (Zheng et al., 2015; Fu et al., 2016;
Ying et al., 2018; Cao et al., 2021). In the current litera-
ture, the correlation coefficient (R) and normalized mean
bias (NMB) are highly variable and inconsistent between the
simulated and the observed values (listed in Table S1 in the
Supplement). This is mainly attributable to the uncertainties
in the model chemical mechanism, source emission inven-
tory and meteorological field simulation.

The chemical mechanisms involved in CTMs are derived
from parameterized assumptions based on laboratory simula-
tion and field observations. The actual atmospheric chemical
processes are very complex, and some reaction mechanisms
are still limitedly understood. In addition, the integration of
chemical reactions and simplified treatment methods in the
model cannot fully reflect the correlation among atmospheric
pollutants. For example, in some model mechanisms, im-
portant sulfate and nitrate formation pathways through new
heterogeneous chemistry were added, including the chemi-
cal reaction between SO2 and aerosol, NO2/NO3/N2O3 and
aerosol (Zheng et al., 2015); nitrous acid oxidizing SO2 to
produce sulfate (Zheng et al., 2020); dust particles promot-
ing the oxidation of SO2 (Yu et al., 2020); modifying the
uptake coefficients for heterogeneous oxidation of SO2 to
sulfate (Zhang et al., 2019); and updating the heterogeneous
N2O5 parameterization (Foley et al., 2010). Even though the
aforementioned processes can significantly improve the sim-
ulation of SO2−

4 and NO−3 , there is still a gap between the
modeled and the actual atmospheric chemical processes.

The uncertainty in meteorological field simulation is an-
other crucial reason for the simulation deviation; especially
on heavy-pollution days, the variation trends of PM2.5 chem-

ical components were not well-captured (Ying et al., 2018;
Qi et al., 2019; Wang et al., 2022). Precipitation is the key
meteorological factor determining wet removal of pollutants;
boundary layer height and wind speed are the main factors
affecting convection and transport of pollutants; solar radi-
ation, temperature and relative humidity are the key factors
affecting the formation of secondary particles (Huang et al.,
2019; Chen et al., 2020). Some literature has reported that
deviation from precipitation and wind field simulation might
lead to underestimation of SO2−

4 , NO−3 and NH+4 (Cheng et
al., 2015; Zhang et al., 2017). Devaluation of the liquid wa-
ter path and cloud cover causes a decrease in sulfate forma-
tion in cloud and ultimately results in significantly underesti-
mated components in simulation values (Sha et al., 2019; Fo-
ley et al., 2010). Underestimation of temperature and relative
humidity may also cause adverse effects of the temperature-
dependent and/or relative-humidity-dependent chemical re-
action in the simulation (Sha et al., 2019).

The uncertainty in the source emission inventory also sig-
nificantly affects the simulation results of PM2.5 components
(Shi et al., 2017; Sha et al., 2019). Due to incomplete in-
formation or insufficient representativeness, pollutant emis-
sions are sometimes overestimated or underestimated, and
the method for temporal and spatial allocation also needs to
be improved.

In particular, the emission source profile of PM2.5 (here-
inafter referred to as the “source profile”), used to create spe-
ciated emission inventories for CTMs (Hsu et al., 2019), has
not been fully taken into account in the current numerical
simulation. In the reported literature, PM2.5 species alloca-
tion coefficients of emission sources are commonly treated
in the following ways: (1) allocating PM2.5 components of
source emissions by referring to source profile data in pub-
lished literature or databases like US SPECIATE (Fu et al.,
2013; Wang et al., 2014; Ying et al., 2018) and (2) deter-
mining chemical profiles from local measurement (Fu et al.,
2013; Appel et al., 2013). However, with the development
of production technology and the innovation of pollution
treatment technology in recent years, some source profiles
have changed dramatically (Bi et al., 2019a), such as SO2−

4
from coal burning: its content in PM2.5 is generally low in
coal-fired power plants without desulfurizing facilities, while
existing coal-fired power plants use limestone–gypsum wet
desulfurization, and the contents of SO2−

4 in PM2.5 are sig-
nificantly higher than those without desulfurization facilities
(Zhang et al., 2020). The timeliness of PM2.5 species allo-
cation coefficients in current CTMs also needs to be consid-
ered.

This paper attempts to answer the following questions:
(1) whether the variation in the source profile adopted in the
model has an impact on the simulated results of PM2.5 chem-
ical components. (2) How large is that impact? (3) How does
the impact work? Aiming to address these problems above,
chemical composition and its variation law for typical PM2.5
emission sources are summarized; on this basis, sensitivity
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tests are designed to identify whether PM2.5 source profiles
and species allocation in the model are important parameters
that affect the simulation results of chemical components’
concentrations in PM2.5. We take the Community Multi-
scale Air Quality model (CMAQ, one of the most widely
used CTMs) and the Multi-resolution Emission Inventory for
China (MEIC, a high-resolution inventory of anthropogenic
air pollutants in China) as the carriers. The same kind of ex-
periment is also applicable to other CTMs and emission in-
ventories. The aim of this study is to provide support for the
effective utilization of source profiles in the CTMs and im-
provement of the simulation schemes.

2 Model and data

2.1 Model configuration

The Weather Research and Forecasting model (WRF 3.7.1),
the widely used Community Multiscale Air Quality model
(CMAQv5.0.2) (Eder and Yu, 2006; Yu et al., 2014), and the
Multi-resolution Emission Inventory for China (MEICv1.3)
have been used in this study. MEIC, developed by Tsinghua
University, mainly tracked anthropogenic emissions in China
including coal-fired power plant, industry, vehicle, residen-
tial and agricultural sources (http://meicmodel.org/?page_
id=135, last access: 14 November 2023) (Li et al., 2017b;
Zheng et al., 2018). The WRF model was used to generate
meteorological inputs for the CMAQ model. Three nested
modeling domains consisting of 36 km× 36 km (Dom1),
12 km× 12 km (Dom2) and 4 km× 4 km (Dom3) horizontal
grid sizes were set, as shown in Fig. 1. The initial and bound-
ary conditions for WRF were based on the North American
Regional Reanalysis data archived at National Center for At-
mospheric Research (NCAR). In addition, surface and upper-
air observations obtained from NCAR were used to further
refine the analysis data. The modeling was conducted from 1
to 30 October 2018, and the major configurations we used in
CMAQ were as follows: gas-phase chemistry was based on
the CB05 mechanism, and the aerosol dynamics and chem-
istry were based on the AERO6 module (cb05tucl_ae6_aq).
The detailed model configurations are shown in Table S2, and
the regional distribution of PM2.5 emission sources is shown
in Fig. S1.

2.2 Selection and comparison of the PM2.5 emission
source profile

The PM2.5 emission source profiles from the database of
Source Profiles of Air Pollution (SPAP) (http://www.nkspap.
com:9091/, last access: 14 November 2023) and the US En-
vironmental Protection Agency (EPA) SPECIATE database
(https://www.epa.gov/air-emissions-modeling/speciate, last
access: 14 November 2023) as well as from the published
literature were selected. SPAP was developed by the State
Environment Protection Key Laboratory of Urban Particu-

late Air Pollution Prevention, Nankai University, China. This
database contains more than 3000 size-resolved source pro-
files of stationary combustion sources, industrial processes,
vehicle exhaust, biomass burning, dust and other sources,
collected from more than 40 cities in China since 2001. In
addition to inorganic elements, water-soluble ions, OC, EC
and other conventional components, some source profiles
also encompass tracer information, such as organic markers,
isotopes, single-particle mass spectrometry, volatile organic
compounds (VOCs) and other gaseous precursors. Based
on species in the aerosol chemical mechanism (AERO6) of
CMAQ (Appel et al., 2013; Chapel Hill, 2012), we selected
15 components in PM2.5 source profiles including Al, Ca,
Cl, EC, Fe, K, Mg, Mn, Na, OC, Si, Ti, NH+4 , NO−3 and
SO2−

4 ; the remaining components are classified as “other”. In
the database of Source Profiles of Air Pollution (SPAP) and
the US EPA SPECIATE database, the four source categories
(coal-fired power plant, industry process, transportation sec-
tor and residential coal combustion) contain a series of sub-
categories. But MEIC does not include the corresponding
sub-categories. So we take the average values of source pro-
files in each source category as representing the source pro-
file; the details can also be seen in our previous work (Bi et
al., 2019a). Then we multiply inventory emissions by profile
fraction to get emissions of specific chemical components.

To determine the similarity between the two groups of
source profiles. The coefficient divergence (CD) is calculated
using the following formula (Wongphatarakul et al., 1998):

CDjk =

√
1
p

∑p

i=1

(
xij − xik

xij + xik

)2

, (1)

where CDjk is the coefficient of divergence of the source
profile j and k, p is the number of chemical components in
the source profile, xij is the weight percentage for the chem-
ical component i in source profile j , and xik is the weight
percentage for i in source profile k (%). The CD value is in
the range of 0 to 1; if the two source profiles are similar, the
value of CD is close to 0, and if the two are very different,
the value is close to 1.

2.2.1 Coal-fired power plant (PP)

Coal-fired power plants remain the main coal consumers in
China and accounted for 50.2 % of total coal consumption
in 2019 (NBS, 2021). They have gained much attention, es-
pecially with the wide implementation of the ultralow emis-
sion standards by which PM2.5 emission characteristics have
changed accordingly (Wu et al., 2020, 2022). There are ob-
vious differences in PM2.5 source profiles between SPAPPC
(SPAP database and published source profiles in China) and
SPECIATE (US EPA SPECIATE database); the CD value of
these two groups lies between 0.34 and 0.92 (0.64± 0.10).
Detailed information is shown in Table S3 and Fig. S2 in the
Supplement. The percentages of species in PP source pro-
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Figure 1. Modeling domains of the CMAQ model. (a) The three-domain nested CMAQ domains. (b) Land use and observation sites of Dom3
(data source of land use: GlobeLand30, https://www.webmap.cn/mapDataAction.do?method=globalLandCover, last access: 14 Novem-
ber 2023, National Geomatics Center of China).

files are plotted in Fig. 2a. The main components in SPAPPC
are sorted by Si, SO2−

4 , OC and Ca with average values
of 8.7± 6.8 %, 8.5± 11.5 %, 6.8± 9.1 % and 6.5± 6.9 %,
respectively. The SPECIATE data are enriched in SO2−

4
(16.9 %± 20.0 %), OC (12.7± 21.8 %), Si (9.6± 5.0 %) and
Ca (9.3± 7.3 %), which are higher than SPAPPC. Coal prop-
erties, burning conditions, pollution control measures and
emission sampling methods are the main reasons for those
great percentage fluctuations. Different treatment processes
of flue gases, e.g., wet/dry limestone, ammonia and double-
alkali flue gas desulfurization, will affect the percentages of
components in source profiles (Zhang et al., 2020). It has
been reported that the percentage of Ca, Mg, SO2−

4 and Cl−

in PP profiles increased after the limestone–gypsum method
was used in coal-fired power plants (Bi et al., 2019a). Be-
sides that, the percentage of Cl− in SPAPPC is obviously
higher than that in SPECIATE, which might be attributed to
the generally higher Cl− content in raw coal in China (Guo
et al., 2004).

2.2.2 Industrial process (IN)

Industrial emissions are one of the major sources of PM2.5
(Hopke et al., 2020); the percentages of Ca, Fe, OC and
SO2−

4 are relatively high in both SPAPPC and SPECIATE,
but the shares in different source profile databases vary.
Their CD values vary from 0.45 to 0.94 (0.72± 0.09) (de-
tailed information is shown in Tables S4–S7 and Fig. S3). In
SPAPPC, these four components account for 16.4± 14.9 %,
10.4± 14.4 %, 6.9± 6.1 % and 6.2± 6.4 %; the proportions
in SPECIATE are 10.4± 9.8 %, 11.4± 10.6 %, 8.5± 4.9 %
and 16.3± 13.3 %, respectively (Fig. 2b). Large variations in

components and their percentages in industrial processes are
attributed to the manufacturing processes, raw material, pol-
lution control measures and so on (Ji et al., 2017; Bi et al.,
2019a; Gao et al., 2022). For example, Ca, Al, OC and SO2−

4
are found to have the highest percentages in cement sources
(Guo et al., 2021); Fe, Si and SO2−

4 are the most abundant
species in steel industry emissions (Guo et al., 2017).

2.2.3 Transportation sector (TR)

Traffic contributed a large fraction of PM2.5 in many loca-
tions (Hopke et al., 2022). It is well-known that the trans-
portation sector makes a dominant contribution of OC and
EC. The main components of PM2.5 emitted from traffic
sources are OC, EC and SO2−

4 in both SPAPPC and SPE-
CIATE, but they still vary in a wide range: their CD values
fall between 0.33 and 0.86 (0.69± 0.09) (detailed informa-
tion is given in Tables S8–S10 and Fig. S4). In SPAPPC,
the percentages of OC, EC and SO2−

4 are 40.8± 15.0 %,
23.1± 13.8 % and 3.1± 3.7 %, and in SPECIATE, the per-
centages are 40.6± 16.4 %, 36.1± 21.5 % and 6.4± 9.9 %,
respectively (Fig. 2c). These significant differences can
mainly be attributed to the vehicle type, fuel quality, mixing
ratio between oil and gas, and combustion phase in vehicle
engine (Xia et al., 2017).

2.2.4 Residential coal combustion (RE)

Residential coal combustion, as the leading source of global
PM2.5 emissions (Weagle et al., 2018), has a much higher
emission factor than coal-fired power plants (Wu et al.,
2022). The fraction of components varies greatly in the pro-
files measured from SPAPPC and SPECIATE; their CD val-
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Figure 2. Chemical profiles for PM2.5 emitted from (a) coal-fired power plants (PP), (b) industry processes (IN), (c) the transportation sector
(TR) and (d) residential coal combustion (RE). Data obtained from SPAPPC (SPAP database and published source profiles in China) and
SPECIATE (US EPA SPECIATE database).

ues are 0.75± 0.10 (detailed information is given in Ta-
ble S11 and Fig. S5). SO2−

4 , OC, NH+4 and EC make the main
contribution to PM2.5 emitted from residential coal com-
bustion. In SPAPPC, the average percentages of SO2−

4 , OC,
NH+4 and EC are 27.1± 10.1 %, 20.7± 20.6 %, 11.3± 7.7 %
and 2.6± 2.8 %, respectively. In SPECIATE, the average per-
centages are 58.2± 14.0 % for OC, 24.6± 5.4 % for EC,
3.2± 2.3 % for SO2−

4 and 1.6± 1.0 % for NH+4 (Fig. 2d). To-
tal percentages of OC and EC in SPECIATE are over 80 %,
obviously higher than that in SPAPPC, while higher percent-
ages of SO2−

4 , Cl−, K and Si are observed in SPAPPC. The
coal type and properties and burning conditions are the main
factors affecting the percentages of PM2.5 components; for
example, the chunk coal burning has relatively high percent-

ages of OC, EC, SO2−
4 , NO−3 and NH+4 compared to honey-

comb briquettes (Wu et al., 2021; Song et al., 2021).
Briefly, many factors can affect PM2.5 source profiles, and

with the innovation of manufacturing techniques and pol-
lution control technology and changes in fuel and raw and
auxiliary materials, the main chemical components and their
percentages can change dramatically. To explore whether the
variations in the source profile adopted in the CMAQ model
are one of the important factors affecting the simulated PM2.5
component, we designed a series of simulation tests to ad-
dress the following issues.
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3 Is there an impact of variation in the source profile
on the simulation results?

In this part, we separately selected source profiles from the
SPAPPC and SPECIATE databases and applied them to an
emission inventory for simulating PM2.5 and its components
with other modeling conditions unchanged, corresponding to
cases CMAQ_SPA and CMAQ_SPE. The detailed informa-
tion about source profiles is shown in Fig. S6.

By comparing the selected SPAPPC source profiles with
the selected SPECIATE source profiles, the coefficient
divergences for the four main source categories were
CDPP(0.67)>CDRE(0.62)>CDTR(0.60)>CDIN(0.60),
which meant the selected source profiles in the two sim-
ulation cases were quite different. The average simulated
concentration of PM2.5 and its components at each ambient
air quality monitoring station (Table S12) was extracted
from CMAQ outputs. We selected one air quality monitoring
station (Site 8 as the selected station here but any site
could be available) to explore the effect of emission source
chemical profiles on simulated PM2.5 components and then
used the nine sites left to further illustrate the conclusions
suggested.

The simulation results for PM2.5 species under the
CMAQ_SPA and CMAQ_SPE scenarios also showed big
differences (as shown in Fig. 3 and Table S13). The largest
difference in average simulated concentration was for EC,
with CMAQ_SPE higher than CMAQ_SPA by 167 %. For
OC and Mn, higher values were also given by CMAQ_SPE
than by CMAQ_SPA (45 % and 126 % on average, respec-
tively). For the other components of concern, the simulated
concentration by CMAQ_SPE was lower than CMAQ_SPA
with Ti (58 %), Na (55 %), Mg (53 %), Ca (51 %), Al (33 %),
Cl (31 %), K (29 %), Si (22 %), Fe (16 %), NH+4 (3 %), SO2−

4
(9 %) and NO−3 (8 %). The simulated PM2.5 concentrations
for the two cases were quite close. The influence of source
profile variation on the simulated PM2.5 concentration was
not significant, but the influence on the simulation of chemi-
cal components in PM2.5 could not be ignored.

4 How large is the impact?

To quantitatively characterize how much the source profiles
affect the simulation results, we selected the chemical com-
position of code 000002.5 (variety of different categories
used for the overall average composite profiles; Hsu et al.,
2019) in the US EPA SPECIATE_5.0_0 database for species
allocation of PM2.5 components. The corresponding percent-
ages of EC, OC, Mn, Fe, Ti, Al, Si, Ca, Mg, K, Na, Cl, NH+4 ,
NO−3 and SO2−

4 in PM2.5 are shown in Fig. 4 (SGL, base case
simulation).

Given the large quantity and complex chemical composi-
tion of PM2.5, it was advisable to classify the chemical com-
position reasonably before designing sensitivity experiments.

Figure 3. The relative concentration difference in average sim-
ulated results (PM2.5 and its components) between CMAQ_SPE
and CMAQ_SPA (relative to CMAQ_SPA) during the simulation
period; PM2.5 source profiles from the SPAPPC and SPECIATE
databases were used to create speciated emission inventories for
CMAQ, corresponding to cases CMAQ_SPA and CMAQ_SPE, re-
spectively.

The DBL case consisted of doubling the percentage of the
15 components mentioned in the above base case (SGL) (de-
tails are shown in Fig. 4 and Table 1). As the percentage of
these components increased, the proportion of unlisted com-
ponents (represented by other) decreased to 9 % in order to
meet the requirement that the total percentage of all com-
ponents is 100 %. Then we compared the simulation results
before (SGL case) and after (DBL case) perturbation in the
species allocation of PM2.5 sources.

In the case of DBL, when the percentages of all the com-
ponents except those in the other category were doubled in
the source profile, the simulated concentrations of Al, Ca, Cl,
EC, Fe, K, Mg, Mn, Na, OC, Si and Ti doubled as well, while
the simulated concentration of NO3 and SO2−

4 increased at
about 3 % and 10 % and NH+4 decreased by 4 %, respectively,
although the simulated concentration of PM2.5 was not obvi-
ously changed (detailed simulation results are shown in Ta-
ble S14). The simulation test results for SNA (SO2−

4 , NO−3
and NH+4 ) and non-SNA were obviously different. There-
fore, we divided the components in the source profile into
two groups (non-SNA and SNA) and designed a series of
sensitivity tests listed in the next section to further explore
how species allocation of PM2.5 in emission sources affects
the simulation results. A sketch of the sensitivity experiment
design idea is shown in Fig. S7.

4.1 Sensitivity tests design

Sensitivity tests were designed by changing the percentages
of the target components and related components in the base

Geosci. Model Dev., 16, 6757–6771, 2023 https://doi.org/10.5194/gmd-16-6757-2023
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Figure 4. The general roadmap of sensitivity tests (the histogram in each case is the speciation profile in CTMs; SNA represents SO2−
4 , NO−3

and NH+4 ; non-SNA represents other components in PM2.5).

case (SGL): add the perturbation to each component of non-
SNA, to SO2−

4 , to NO−3 and to NH+4 . A general roadmap of
sensitivity tests is shown in Fig. 4, and an illustration of each
case is summarized in Table 1. Basic rules must be followed:
(a) the perturbation in the percentage of each component in
the source profile falls within the variation range of its mea-
sured value described in Sect. 2.2. (b) The sum of the per-
centage of listed non-SNA, SNA and other components in
the PM2.5 source profile is 100 %.

4.2 Sensitivity of simulated components to changes in
the source profile

We propose the sensitivity coefficient (δ) as an evaluation
index. The calculation formula is as follows:

δi,p =

Ci_case
CPM2.5_case

× 100%− Ci_base
CPM2.5_base

× 100%

Pp_case−Pp_base

(for DBL and DBP, p = i; for other cases, p = j), (2)

wherein δi,p is the sensitivity coefficient of component i rela-
tive to component p, representing the change in the simulated
value of its content in ambient PM2.5 corresponding to 1 %
perturbation in the source profiles. Ci_case is the simulated
concentration of component i in each sensitivity experiment
case (µg m−3), Ci_base is the simulated concentration of com-
ponents i in the base case (µg m−3), CPM2.5_case is the simu-
lated concentration of PM2.5 in each sensitivity experiment

case (µg m−3), CPM2.5_base is the simulated concentration of
PM2.5 in the base case (µg m−3), Pp_case is the percentage of
component p in the source profile of the sensitivity experi-
ment case (%), j is the perturbed component j in different
source profiles of sensitivity experiment cases and Pp_base is
the percentage of component p in the source profile of the
base case (%).

A positive value of δ means the simulated concentration of
the PM2.5 component increases (decreases) with the increase
(decrease) in perturbation in the percentage of components in
the source profile, and negative δ is just the opposite. If the
absolute value of δ is less than or equal to 0.1, the simulated
component is considered to be insensitive to the correspond-
ing variation in the source profile; if the absolute value of
δ falls between 0.1 and 0.4 (included), the simulated com-
ponent is considered to be sensitive to the variation in the
source profile; if the absolute value of δ is larger than 0.4,
the simulated component is very sensitive to the variation in
the source profile. The greater the absolute value of δ, the
more obvious the impact of the variation in the source profile
adopted in CMAQ on the simulated results of PM2.5 chemi-
cal components.

Figure 5 lists the sensitivity coefficients of simulated am-
bient PM2.5 components according to the perturbation of the
source profile under each test case. In the DBL case (double
the percentage of the listed components in the source profile
of the base case and decrease the proportion of other unlisted
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Table 1. The content of sensitivity experiment cases.

Experiment cases Description3

Case DBL:
add perturbation to non-SNA and SNA1

The percentages of all the listed components in the source profile of the base
case (SGL) were doubled, and the proportion of unlisted components (other)2

decreased to 9 %.

Case DBP:
add perturbation to non-SNA

The percentages of non-SNA were doubled, and those of SNA (SO2−
4 , NO−3 ,

NH+4 ) species stayed the same as those in SGL (the cumulative percentage of
listed species was 85.3 %); the proportion of unlisted components decreased to
14.7 %.

Cases DBS and TPS:
add perturbation to SO2−

4

The percentage of SO2−
4 doubled (11 %, DBS, representing double sulfate) and

tripled (16.5 %, TPS, representing triple sulfate), and the other 14 listed species
stayed the same as that in SGL (the cumulative percentage of listed species was
51 % and 57 %, respectively); the proportion of unlisted components decreased
to 49 % and 43 %.

Cases TWN and FON:
add perturbation to NO−3

The NO−3 content was increased to 20 times (3.3 %, TWN) and 40 times (6.6 %,
FON) that in SGL (0.16 %), and the other 14 species stayed the same as SGL
(the cumulative percentage of listed species was 48.6 % and 51.9 %, respec-
tively); the proportion of unlisted components decreased to 51.4 % and 48.1 %.

Cases OHA and THA:
add perturbation to NH+4

The NH+4 content was raised up to 100 times (2.2 %, OHA), 200 times (4.4 %,
THA) of that in SGL (0.02 %), the other 14 species stayed the same with SGL
(the cumulative percentage of listed species was 47.7 % and 49.9 %, respec-
tively), the proportion of unlisted components decreased to 52.3 % and 50.1 %.

1 SNA represents SO2−
4 , NO−3 and NH+4 ; non-SNA represents the other components in PM2.5. 2 The listed components contained Al, Ca, Cl, EC, Fe, K, Mg, Mn,

Na, OC, Si, Ti, NH+4 , NO−3 and SO2−
4 ; unlisted components were classified as other. 3 The source profiles in all cases listed in the table were calculated based on the

base case SGL. In the design of simulation cases, the reason why the disturbance amplitude of NH+4 and NO−3 was significantly higher than that of other components

such as SO2−
4 and non-SNA was that the percentages of NH+4 and NO−3 in the base source profile (SGL, based on the chemical composition of code 000002.5 in the

EPA SPECIATE_5.0_0 database) were very low, while the percentages of NH+4 and NO−3 in SPAPPC presented in Sect. 2.2 were orders of magnitude higher than
those in SGL.

components to 9 %), the sensitivity coefficient (δ) of NH+4
was negative and the absolute value was high, indicating that
the simulated proportion of NH+4 in ambient PM2.5 decreased
and it was very sensitive to the variation in the source profile.
Conversely, the sensitivity coefficient of NO−3 was close to
1, which illustrated that the simulated proportion of NO−3 in
ambient PM2.5 increased proportionally with the change in
source profile. The simulated SO2−

4 also showed a very sen-
sitive property. The simulated non-SNA concentrations were
doubled when compared to the base case (SGL).

In case DBP, when the percentages of listed non-SNA (Al,
Ca, Cl, EC, Fe, K, Mg, Mn, Na, OC, Si and Ti) in the source
profile were doubled, the simulated proportions of non-SNA
in ambient PM2.5 synchronous increased and were very sen-
sitive to the change in the adopted source profile, with a sen-
sitivity coefficient (δ) of 0.5. Interestingly, the simulated con-
centration of SNA in ambient PM2.5 also changed although
SNA in the source profile did not change; the concentration
of NO−3 and SO2−

4 increased by 2 % and 3 %, respectively,
and NH+4 decreased by 10 % (detailed simulation results of
each case are shown in Tables S15–S21).

Under SO2−
4 perturbation cases (Case DBS and Case

TPS), we found the simulated results of non-SNA and NO−3

Figure 5. The sensitivity coefficients (δ) of simulated components
according to the perturbation of the adopted source profile in dif-
ferent cases. Note: each small color box in the figure represents the
sensitivity level (indicated by the legend on the right) of PM2.5 com-
ponents (x coordinate) in different cases (y coordinate). The blank
grids in the DBP case indicate no perturbation to SNA in the PM2.5
source profile.
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had no obvious variation compared with the base case. In
both Case DBS and Case TPS, the δ values of non-SNA
and NO−3 were between −0.1 and 0.1. But when the per-
centage of SO2−

4 was doubled in source profile (DBS), the
simulated concentration of NH+4 and SO2−

4 increased by 6 %
and 8 %, respectively. In Case TPS (the percentage of SO2−

4
was tripled), the simulated concentrations of NH+4 and SO2−

4
were increased by 11 % and 16 %, respectively. The δ val-
ues of NH+4 and SO2−

4 were 0.12 and 0.36, sensitive toward
the positive direction with the increase in SO2−

4 in the source
profile.

In the situation of NO−3 perturbation in the source profile
(Case TWN and Case FON), the simulated non-SNA hardly
changes when compared to the base case, while changing
patterns of simulated SNA were different. The simulation
concentration of NH+4 increased by 2.6 % and 5.4 % com-
pared with the base case, the simulated NO−3 increased by
14 % and 30 %, and the simulated SO2−

4 decreased slightly
and even could be neglected in some observation sites. The
simulated concentrations of non-SNA and SO2−

4 were insen-
sitive to the perturbation of NO−3 in the source profile; NH+4
was sensitive, and NO−3 was very sensitive.

When we add perturbation to NH+4 in the source profile
(Case OHA and Case THA), the simulation results of non-
SNA were almost not changed, whereas the simulated con-
centration of SO2−

4 , NH+4 and NO−3 increased. The δ values
of SNA in response to the variation in NH+4 in the source pro-
file were positive, and δSO2−

4 ,NH+4
>δNH+4 ,NH+4

>δNO−3 ,NH+4
;

SO2−
4 and NH+4 were sensitive to the NH+4 perturbation in

the source profile, but NO−3 was not so sensitive.
In general, the simulation results of components in ambi-

ent PM2.5 were affected in one way or another by the change
in source profiles adopted by CMAQ. Both of the simulated
non-SNA and the simulated SNA were very sensitive to the
perturbation of non-SNA in the source profile. When the per-
centage of SNA changed in the source profile, simulated non-
SNA generally changed little, but the simulation results of
SNA could change in different patterns: the simulated SO2−

4
was very sensitive and NH+4 was sensitive to the perturbation
of SO2−

4 in the source profile; simulated NO−3 was very sen-
sitive and NH+4 was sensitive to the perturbation of NO−3 in
the source profile; SO2−

4 and NH+4 were sensitive to the per-
turbation of NH+4 in the source profile. The simulated com-
ponent such as SO2−

4 was influenced not only by the change
in SO2−

4 itself but also by other components like some non-
SNA and NH+4 in the source profile. In other words, there was
a linkage effect, variation in some components in the source
profile would bring changes to the simulated results of other
components.

5 How does the impact work?

The variation in species allocation in emission sources can
directly affect the composition of aerosol systems in CTMs.
In CMAQv5.0.2, the aerosol thermodynamic equilibrium
process is carried out according to ISORROPIA II, including
a SO2−

4 –NO−3 –Cl−–NH+4 –Na+–K+–Mg2+–Ca2+–H2O sys-
tem (detailed equilibrium relations are shown in Table S22).
Some assumptions have been made in the ISORROPIA
model to simplify the simulation system (Fountoukis and
Nenes, 2007): (1) because the vapor pressure of sulfuric acid
and metal salts (such as Na+, Ca2+, K+, Mg2+) is very low,
it is assumed that all the sulfuric acid and metal salts in the
system existed in the aerosol phase; (2) for ammonia in the
system, it is preferred to have an irreversible reaction with
sulfuric acid to produce ammonium sulfate. Only when there
is still surplus NH3 after the neutralization of H2SO4 can it
have a reversible reaction with HNO3 and HCl to produce
NH4NO3 and NH4Cl. (3) For sulfuric acid in the system, if
there are metal ions (such as Ca2+, Mg2+, K+, Na+) in the
system, sulfuric acid would react with metal ions to produce
metal salts. Only in the case of insufficient sodium would sul-
furic acid react with ammonia. Based on these assumptions,
the ISORROPIA model introduces the following three judg-
ment parameters (R1,R2 andR3) to determine the simulation
subsystems; these parameters are calculated by the following
formulas:

R1 =

[
NH+4

]
+
[
Ca2+]

+
[
K+
]
+
[
Mg2+]

+
[
Na+

][
SO2−

4

] , (3)

R2 =

[
Ca2+]

+
[
K+
]
+
[
Mg2+]

+
[
Na+

][
SO2−

4

] , (4)

R3 =

[
Ca2+]

+
[
K+
]
+
[
Mg2+][

SO2−
4

] , (5)

where [X] denotes the molar concentration of the component
(mol m−3) and R1, R2 and R3 are termed as the “total sulfate
ratio”, “crustal species and sodium ratio” and “crustal species
ratio”, respectively. The numbers of species and equilibrium
reactions are determined by the relative abundance of NH3,
Na, Ca, K, Mg, HNO3, HCl and H2SO4, as well as the am-
bient relative humidity and temperature. Guided by the val-
ues of R1, R2 and R3, five aerosol composition regimes in
ISORROPIA are defined. (Detailed rules are shown in Ta-
ble S27 and the solving procedure in Fig. S8.) R1, R2 and R3
in each sensitivity test case are shown in Fig. 6. These com-
ponents achieved thermodynamic equilibrium in the order of
preference for more stable salts; obviously, the simulation
processes of these components may influence each other.
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Figure 6. R values’ distribution among the base case and different
sensitivity test cases.

5.1 General results

Our sensitivity experiment focuses on examining the impact
of source profile changes on simulated PM2.5 components.
For given meteorological conditions, we analyze the sensitiv-
ity of simulated components to variations in the source chem-
ical profile by comparing the simulation results between per-
turbed cases and the base case.

In the non-SNA perturbation case, when the percentage
of non-SNA in the source profile was doubled (Case DBP),
there were more Na, K, Mg, Ca and Cl participating in the
aerosol chemistry; the model system needed more SO2−

4 and
NO−3 on the basis of charge balance; and the thermodynamic
equilibrium shifted to the direction of consuming Ca, Mg, K
and Na, which resulted in the increase in the simulated con-
centration of SO2−

4 and NO−3 . Meanwhile, according to the
rule of anions preferentially binding with nonvolatile cations
in ISORROPIA, the increased cations of Na+, K+, Mg2+

and Ca2+ directly led to the decrease in anions binding with
NH+4 ; there was less reaction dose between SO2−

4 and NH+4
to form (NH4)2SO4 or NH4HSO4, ultimately resulting in a
decrease in the simulated concentration of NH+4 compared
with the base case. Because in this case more anions such
as SO2−

4 were passively needed, according to the principle
of chemical equilibrium mentioned above, the chemical con-
version of SO2 to SO2−

4 was promoted and the simulated sec-
ondary SO2−

4 increased; this could be proved by the sensitiv-
ity coefficient δ of SO2 in Case DBP being negative (shown
in Fig. 7; details of other monitoring stations’ results are
shown in Table S25).

Similarly, with the increase in metal ions in the system to
bond with anions, the number of anions which can bind to
NH+4 decreased. The system needed less NH+4 , and the need
for conversion from NH3 to NH+4 was weakened; the simu-
lated NH+4 concentration decreased, while the δ of NH3 was

Figure 7. The sensitivity coefficients (δ) of simulated gas pollutants
according to the change in the adopted source profile in different
cases.

positive and very sensitive. Different trends of the simulated
concentration of gaseous pollutants mirrored the rules men-
tioned above in terms of another aspect. The δ of SO2 and
NOx was negative and that of NH3 was positive. We could
see the same phenomena in DBL case (Fig. 7). When the
percentages of non-SNA in the source profile increased, they
affected not only the simulated concentration of non-SNA,
but also the secondary SO2−

4 , NO−3 and NH+4 .
In SO2−

4 perturbation cases (Case DBS and Case TPS),
as the percentage of SO2−

4 in the source profile increased,
for the chemical reactions of sulfate radical consumption (as
shown in Table S22), the chemical equilibrium would move
toward the products compared with the base case. In contrast,
for the chemical reactions of sulfate radical formation (the
equations are shown in Table S23), the product was added
in and the chemical equilibrium was pushed toward the reac-
tants. The chemical reactions between SO2−

4 and NH+4 would
shift to the direction of (NH4)2SO4 or NH4HSO4 generation,
and we could see the simulated concentrations of NH+4 in
DBS and TPS were both higher and in NH3 were lower than
those in the base case (SGL). In addition, when more SO2−

4
was added to the system, the conversion of SO2 to SO2−

4 was
affected at some level, less SO2 was consumed than in the
base case and simulated SO2 showed an insensitive but posi-
tive trend (Fig. 7). The potential solid-phase species in ISOR-
ROPIA II under DBS and TPS cases (shown in Table S27)
mainly consisted of sulfate salts, so the simulated concentra-
tion of NO−3 did not change apparently.

As the percentage of NO−3 in the source profile increased
(Case FON and Case TWN), the associated chemical equi-
librium shifted toward the consumption of NO−3 , such as
NH+4 + NO−3 → NH4NO3, which would also result in the
consumption of more NH+4 and formation of more ammo-
nium salt and finally the consumption of more NH3 because
of NH3(gas) + H2O(aq)→ NH+4 (aq) + OH−(aq). The sim-
ulation results also showed that the concentration of NH+4
increased while that of NH3 decreased. Based on the assump-
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Figure 8. The sensitivity coefficients (δ) under different hierarchical patterns.

tion of ISORROPIA, the cations like Na+, K+, Mg2+, Ca2+

and NH+4 preferentially react with SO2−
4 ; only if there are

cations left after neutralized SO2−
4 can they react with NO−3

to form salts, so the simulated concentration of SO2−
4 was

not obviously changed. Accordingly, the simulated concen-
tration of NOx and SO2 was almost unchanged (the δ of NOx
and SO2 was insensitive).

In the cases of NH+4 perturbation (Case OHA and Case
THA), when the percentage of NH+4 in the source profile in-
creased, the related chemical equilibrium shifted toward the
direction of NH+4 consumption, such as in 2NH+4 + SO2−

4
→ (NH4)2SO4 or NH+4 + H+, SO2−

4 → NH4HSO4; more
SO2−

4 was consumed at the same time, which further pro-
moted the conversion of SO2 to SO2−

4 . The increased NH+4
in OHA and THA would also inhibit the conversion of NH3
to NH+4 compared with the base case. This, in turn, appeared
as an increase in the simulated secondary SO2−

4 and NH3 and
a decrease in the simulated SO2.

5.2 Results from stratified analysis

For each case, the distribution of R values was related to me-
teorological conditions (as shown in Fig. 6). To illustrate the
role of meteorological conditions in the mechanism of how
the source profile affected the simulated PM2.5 components,
stratified analysis was used. The hourly simulation result of
temperature and humidity (affecting the ISORROPIA solv-

ing procedure) and the wind field (affecting flux in and flux
out for each grid) were incorporate into k-means clustering.
When the number of clusters was equal to or greater than
four, there was a significant inflection point between data
points and their assigned cluster centroids (Fig. S9). Hence,
four patterns of meteorological conditions were selected for
the subsequent analysis.

For patterns I, II, III and IV, as shown in Fig. 8, the rule
similar to the general result was observed. From a global
view, the subdivisional (category-specific) sensitivity of sim-
ulated PM2.5 components to the source chemical profile un-
der different patterns is similar; from a local perspective,
their sensitivity levels are slightly different. For example, in
pattern II, the simulated NH+4 was very sensitive to the per-
turbation of SO2−

4 , while in patterns I, III and VI it was sen-
sitive, but it remained the major component that underwent
change (these results are also shown in Table S28 of the Sup-
plement).

When we perturb the source profile, some species/reac-
tants increase (or decrease) in the system and the chemi-
cal equilibrium shift to the direction of consuming more (or
fewer) reactants, as shown in Fig. S10. According to different
patterns of meteorological conditions (determining the val-
ues of R), the influence pathways of chemical source profile
changes on the simulated PM2.5 components has the same
laws as the general results.

In summary, the effects of source profile variation on
the simulation results of different components were linked.
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When the percentages of non-SNA, SO2−
4 , NO−3 and NH+4 in

the source profile changed, they not only affected the simu-
lated concentration of themselves, but also affected the sim-
ulation results of some other components. The simulation
results of both primary components and secondary compo-
nents were affected by the change in the source profile; the
secondary SO2−

4 and NH+4 were affected more than the sec-
ondary NO−3 .

6 Conclusions

The influence of source profile variation on the simulated
PM2.5 components cannot be ignored, as simulation results
of some components are sensitive to the adopted source pro-
file in CTMs; e.g., both the simulated non-SNA and the sim-
ulated SNA are sensitive to the perturbation of non-SNA in
the source profile, the simulated SO2−

4 and NH+4 are sen-
sitive to the perturbation of SO2−

4 , the simulated NO−3 and
NH+4 are sensitive to the perturbation of NO−3 , and SO2−

4
and NH+4 are sensitive to the perturbation of NH+4 . These
influences not only are specific to an individual component,
but also can be transmitted and linked between components.
The influence path is connected to chemical mechanisms in
the model, since the variation in species allocation in emis-
sion sources directly affects the thermodynamic equilibrium
system (ISORROPIA II, SO2−

4 –NO−3 –Cl−–NH+4 –Na+–K+–
Mg2+–Ca2+–H2O system).

It is generally believed that changes in the source profile
would have an impact on the simulation result of primary
PM2.5, but interestingly, the simulation of secondary compo-
nents could be affected as well. We found the perturbation of
the PM2.5 source profile caused the variation in simulation
results of gaseous pollutants by influencing related chemical
reactions like gas-phase chemistry of SO2, NOx and NH3.
Overall, the emission source profile used in CTMs is one
of the important factors affecting the simulation results of
PM2.5 chemical components. Additionally, organic species
are one of the most important components in PM2.5 and gain
much attention in relation to human health. While the num-
ber of organic species in the source profile is relatively low,
which brings a challenge for simulation test designing, the
influence of the source profile on the simulation results of
organic species is not taken into account in this study.

With changes in fuel and raw materials, the development
of production technology, and the innovation of pollution
treatment technology in recent years, some components have
changed significantly in source profiles. Given the important
role of air quality simulation in decision-making for pollu-
tion control and health risk assessment, the representative-
ness and timeliness of the source profile should be consid-
ered.

Our study tentatively discussed the influence of mecha-
nisms of PM2.5 emission source profiles on the simulation re-
sults of components in CTMs. The size distribution, mixing

state, aging and solubility for different aerosol components
might have something to do with source profile; the extent of
the influence of source profile changes on the simulation of
these physical and chemical process deserves future study.
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