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Abstract. The Canadian Earth System Model version 5.0
(CanESM5.0), the most recent major version of the global
climate model developed at the Canadian Centre for Climate
Modelling and Analysis (CCCma) at Environment and Cli-
mate Change Canada (ECCC), has been used extensively
in climate research and for providing future climate projec-
tions in the context of climate services. Previous studies have
shown that CanESM5.0 performs well compared to other
models and have revealed several model biases. To address
these biases, the CCCma has recently initiated the “Analy-
sis for Development” (A4D) activity, a coordinated analysis
activity in support of CanESM development. Here we de-
scribe the goals and organization of this effort and introduce
two variants (“p1” and “p2”) of a new CanESM version,
CanESM5.1, which features important improvements as a
result of the A4D activity. These improvements include the
elimination of spurious stratospheric temperature spikes and
an improved simulation of tropospheric dust. Other climate
aspects of the p1 variant of CanESM5.1 are similar to those
of CanESM5.0, while the p2 variant of CanESM5.1 fea-
tures reduced equilibrium climate sensitivity and improved
El Niño–Southern Oscillation (ENSO) variability as a re-

sult of intentional tuning of the atmospheric component. The
A4D activity has also led to the improved understanding of
other notable CanESM5.0 and CanESM5.1 biases, including
the overestimation of North Atlantic sea ice, a cold bias over
sea ice, biases in the stratospheric circulation and a cold bias
over the Himalayas. It provides a potential framework for
the broader climate community to contribute to CanESM de-
velopment, which will facilitate further model improvements
and ultimately lead to improved climate change information.

1 Introduction

Efforts to adapt to and mitigate future climate change rely
on climate change projections, which can be provided by cli-
mate models. It is therefore important to develop physically
realistic climate models in order to provide credible and user-
relevant output. The latest major version of the global climate
model developed at the Canadian Centre for Climate Mod-
elling and Analysis (CCCma) in the Climate Research Di-
vision (CRD) of Environment and Climate Change Canada
(ECCC) is the Canadian Earth System Model version 5.0

Published by Copernicus Publications on behalf of the European Geosciences Union.



6554 M. Sigmond et al.: CanESM5.0 and CanESM5.1

(CanESM5; Swart et al., 2019b). Since its inception in 2018,
simulations of CanESM5.0 have contributed to 21 model in-
tercomparison projects (MIPs), 18 of which were done in the
context of the World Climate Research Programme (WCRP)
Coupled Model Intercomparison Project Phase 6 (CMIP6).
Participation in CMIP6 resulted in about 154 000 simula-
tion years (∼ 300 TB) of published CanESM5.0 output on
the Earth System Grid Federation (ESGF) system encom-
passing almost 600 different physical variables. Through par-
ticipation in a broad range of MIPs and its large ensembles
(Fig. 1), CanESM5.0 simulations were particularly valuable
in underpinning many parts of the Working Group I (WGI)
contribution to the IPCC Sixth Assessment Report. For ex-
ample, CanESM5.0’s 50-member ensemble, as the largest
CMIP6 ensemble, was used to estimate the internal vari-
ability in projected warming in the assessment (Lee et al.,
2021). CanESM5.0 was also used as one of five models to il-
lustrate a high warming storyline (Lee et al., 2021), as one
of four Earth system models (ESMs) to illustrate the re-
sponse to carbon dioxide removal (Canadell et al., 2021),
and was the only model to provide multiple ensemble mem-
bers of idealized zero-emission scenarios providing valuable
understanding on the recovery of the Atlantic Meridional
Overturning Circulation (AMOC) under stabilized warm-
ing (Lee et al., 2021; Sigmond et al., 2020). In addition
to CMIP6, CanESM5.0 simulations have contributed to a
number of other MIPs including CovidMIP (Jones et al.,
2021), the Southern Ocean Freshwater Initiative (SOFIA),
and the Stratospheric Nudging And Predictable Surface Im-
pacts (SNAPSI) project (Hitchcock et al., 2022), providing
input to other key science questions.

While CanESM5.0’s atmospheric climatology has been
found to be particularly good compared to other models
(Eyring et al., 2021, Fig. 3.42a), several studies have revealed
some model deficiencies and biases, such as the occurrence
of spurious stratospheric warming spikes (Santer et al., 2021)
and an overestimation of the aerosol optical depth variability
(Jones et al., 2021). A notable characteristic of CanESM5.0
is its high equilibrium climate sensitivity, which at 5.65 K is
the highest among all CMIP6 models (Zelinka et al., 2020).
To support model development and help eliminate or reduce
biases in future versions of CanESM, the CCCma has re-
cently initiated the “Analysis for Development” (A4D) ac-
tivity. This activity has established a process through which
CanESM output is analyzed in a systematic and ongoing
manner. This process and the goals of the A4D activity are
described in Sect. 2. One important result of the A4D ac-
tivity is a new CanESM version, CanESM5.1, which in-
cludes several improvements over CanESM5.0 as described
in Sect. 3. A basic comparison between the characteristics of
CanESM5.0 and two variants of CanESM5.1 (“p1”, the de-
fault variant, and “p2”, with an alternate atmospheric model
tuning) will be provided in Sect. 4. Finally, Sect. 5 pro-
vides a more in-depth analysis of various CanESM5.0 and
CanESM5.1 biases and characteristics.

2 Analysis in support of model development

The focus of model development is to produce new model
versions for use in applications (such as CMIP). Here,
“model version” is synonymous with model finalization,
whereby all properties of a model are decided and held fixed
(model resolution, dynamical core, formulation of physical
parameterizations, assignment of free parameters, etc.). Such
model versions are assigned a version number, or ID, for ref-
erence (the naming convention for CanESM versions is de-
scribed in Sect. 3). A primary goal of model development
is to bring about improvement in the model properties and
behaviour with each succeeding version. To accomplish this,
model development efforts generally focus on systematic er-
rors, or issues, that have been found with the properties and
behaviour of recent and predecessor model versions.

Model issues are generally first identified as a simple bias
in some quantity relative to observations, but ideally they
would ultimately be connected to and understood in terms of
the specific representation of physical processes or dynam-
ical mechanisms in the model. While there are potentially
many ways to characterize model issues, we have found it
useful to broadly categorize them into three types:

– Version-specific issues are unique to a particular model
version; by definition they are due to changes made in
that version relative to its predecessor.

– Model-systemic issues are shared across multiple ver-
sions of a model; such issues have proved relatively in-
sensitive to recent development efforts.

– Community-systemic issues are systematic errors shared
by multiple diverse climate models (e.g., across CMIP
ESMs) and are typically due to a community-wide issue
related to the absence, or manner of treatment, of one or
more physical processes.

The utility of categorizing issues in this way is that it pro-
vides an indication of where the sources of the biases po-
tentially reside, which could subsequently be investigated
by sensitivity tests in the next round of model development.
For example, to resolve a version-specific issue, the focus of
such tests should be directed toward all changes made since
the predecessor version; for a model-systemic issue, focus
should shift away from the changes made over the last sev-
eral model versions toward other model aspects; and for a
community-systemic issue, focus should be directed toward
properties shared by other climate models.

Ideally, model development would involve an iterative pro-
cess in which each new candidate version would undergo a
comprehensive evaluation exercise to gauge the success of
development efforts and to inform the utility of that ver-
sion for its intended applications. However, given the com-
plex nature of model development and tight deadlines asso-
ciated with large projects such as CMIP, there is typically
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Figure 1. CanESM5.0 number of simulations (red) and total simulation years (blue) contributed to experiments defined by CMIP6-endorsed
MIPs. For each MIP, thinner inset bars show the median (black) and maximum (white) number of contributions by all models participating
in the MIP, with the number of contributing models indicated at top. Determined by a search of the ESGF archive on 22 October 2022 for
monthly-mean atmospheric near-surface temperature (tas), precipitation (pr), ocean surface temperature (tos) and surface salinity (sos).

insufficient time and resources to iteratively undertake the
breadth of experiments and subsequent diagnostic analysis
that would be required to derive such insight. Each modelling
centre meets this challenge in some undocumented manner in
the finalization of production versions of their ESM.

At the CCCma, we have recently focused on this chal-
lenge and initiated a new activity, Analysis for Development
(A4D), to critically review existing procedures and to de-
velop strategies to evaluate new versions of our Earth system
model, CanESM. There are three primary objectives of A4D:

– The first is to make more systematic and increase our ef-
forts to resolve model issues. To this end, a regular A4D
meeting (separate from model development meetings)
was established, and two lead scientists were appointed
to coordinate and oversee its activities. Through such
meetings, issues with CanESM are reviewed and their
potential sources discussed. A more detailed, deep-dive,
scrutiny of some issues is undertaken by starting work-
ing groups to independently investigate specific issues
through additional analysis and sensitivity tests. As a
result of the A4D initiative, we now better engage CC-
Cma’s full resources to identify and maintain focus on
model issues. While a large portion of a climate labora-
tory’s scientists are engaged in model development, typ-
ically a much smaller subset are responsible for bring-
ing the major components together to obtain a new ESM
version with acceptable properties and behaviour (e.g.,
biases relative to observations and responses to external
forcings such as climate sensitivity). With the A4D ini-
tiative, we have chosen to make the acceptance of new
ESM versions a group-wide responsibility. The value of
this approach is that it engages all CCCma staff – partic-
ularly those with extensive analysis expertise who might
not typically engage in model development activities –
and it provides a process to engage the expertise of ex-
ternal colleagues in the academic community.

– The second is to better document our efforts to resolve
model issues – including both successes and failures.

To this end, a new GitLab A4D issue tracker was estab-
lished on the same GitLab version control system used
to manage all of the CanESM code base, which is used
to keep track of, permanently document and discuss our
efforts to resolve model issues.

– The third is to make more systematic and increase
our efforts to identify and monitor model issues. To
this end, a new A4D standardized diagnostic package
is being developed. Systematic and automated evalu-
ation of climate model versions has been highlighted
by the community as an important tool for advancing
model development (e.g., Gleckler et al., 2016; Eyring
et al., 2016, 2020). All working groups are required
to propose metrics that are salient to the issue they
are tasked with investigating (even if that issue was
eventually resolved). The collection of such CanESM-
specific metrics, along with more standard diagnostics,
are brought together to form a suite of diagnostics that
can be run automatically. The advantages of such an au-
tomatic package are that it can be applied to the model
at any time during development, provide early detec-
tion of new issues, be used to monitor the occurrence
and severity of known issues across model versions, and
remove the burden from individual scientists to repro-
duce their analysis on future versions long after their
working group responsibilities have ended. The output
of this package is organized in standardized diagnos-
tic reports and posted on the public CanESM GitLab
page for key model versions (https://gitlab.com/cccma/
canesm/-/wikis/home, last access: 3 November 2023).

The rest of the paper documents results from the A4D
activity. This includes substantial contributions to the de-
velopment of a new and improved version of CanESM,
CanESM5.1, and a number of deep-dive analyses that pro-
vide insight into the origin and possible elimination of sys-
tematic model biases in CanESM.
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3 Models and experiments

3.1 CanESM5.0

Swart et al. (2019b) described the model characteristics and
climatological properties of CanESM5.0, which was also
referred to as “CanESM5” in that study, and has the pre-
cise version name CanESM5.0.3. The CCCma uses a three-
digit naming convention for our models: Major.Minor.Patch.
Changes in the patch version represent technical changes
which generally do not alter the bit pattern (and are tested
not to alter the climate) and are not advertised externally,
changes in the minor version number represent the incorpo-
ration (or activation) of new physics and technical changes
within the existing model components, and changes in the
major version number represent wholesale replacement or
major changes to the model basic components. Further
changes to model configuration, such as adjustment of tun-
able parameters, can also be represented by the physics vari-
ant label, as described further below.1 Following this naming
convention, the CanESM version from Swart et al. (2019b),
CanESM5.0.3, is referred to publicly as CanESM5.0 and is
distinguished by its minor version number from CanESM5.1,
which is the new CanESM version described in Sect. 3.2.

CanESM5.0 represented a major change compared to its
predecessor CanESM2 (Arora et al., 2011; von Salzen et al.,
2013), CCCma’s Earth system model that contributed to
most of the experiments of CMIP5. Compared to CanESM2,
CanESM5.0 includes completely new models for the ocean,
sea ice and marine ecosystems, as well as a new cou-
pler, while the atmosphere, land surface and terrestrial
ecosystem models improved incrementally. The resolution of
CanESM5.0 is T63 spectral with 49 vertical levels for the at-
mosphere and nominally 1◦ with 45 vertical levels for the
ocean. This is similar to that of CanESM2 and at the lower
end of CMIP6 models, allowing for more simulation years
(and larger ensemble sizes) to be achieved than other CMIP6
models with higher resolution.

Two CanESM5.0 model variants, labelled by the physics
variant labels p1 and p2, have been released, as described in
Swart et al. (2019b). Compared to the p1 variant, the p2 vari-
ant featured improved remapping of wind-stress fields passed
from the atmosphere to the ocean and the removal of a bug
that led to cold spots over Antarctica. It should be noted,
though, that for most variables differences between the sim-
ulated mean climate and its response to forcing are generally
small and physically insignificant. Here we use the p2 ver-
sion, which will be referred to in this paper as CanESM5.0
or CanESM5.0-p2. For further details on CanESM5.0, we re-
fer the reader to Swart et al. (2019b).

1The physics variant label identifies alternate model configura-
tions that have physically meaningful differences and hence a po-
tential impact on the simulated climate. It is completely unrelated
to the patch version, which denotes technical changes that do not
impact the simulated climate.

3.2 CanESM5.1

CanESM5.1 is a new version of CanESM for which two
model versions labelled p1 and p2 have been released. The
distinctions between the p1 and p2 variants are described be-
low (Sect. 3.2.1). It is important to note that the differences
between the p1 and p2 variants of CanESM5.1 are com-
pletely independent from, and unrelated to, the differences
between the p1 and p2 variants of CanESM5.0. Figure 2 sum-
marizes the evolution from CanESM5.0 to CanESM5.1, list-
ing the key model changes for each version and its variants.
The following main improvements compared to CanESM5.0
are common to both versions of CanESM5.1:

– The first is a retuning of parameters associated with
the hybridization of advective tracers, including dust
and moisture. In particular, the dust hybridization pa-
rameters were poorly tuned in CanESM5.0, which led
to unrealistic spikes in dust burdens. These improve-
ments and impacts on the simulation of stratospheric
temperatures and tropospheric dust will be described in
Sect. 5.1.

– The second is an improved remapping of atmospheric
heat fluxes that are passed to the ocean grid within
the coupler, by changing to a second-order conservative
scheme (Jones, 1999) that preserves a smooth derivative
across grid cells.2 This helped to reduce the nonphysi-
cal “blocky” pattern in the heat fluxes on the ocean grid
(see Fig. A1).

– Very significant technical changes were implemented in
the structure of the source code of the Canadian Atmo-
spheric Model (CanAM), the atmospheric general cir-
culation model component of CanESM, with the syn-
tax updated from pre-Fortran 77 to free-form Fortran
(F90+) and, more significantly, a major reorganization
of array structures within the model to improve effi-
ciency and flexibility. An important objective behind
these changes was to facilitate the interfacing of the
CanAM physics with different dynamical cores (and
specifically GEM; Qaddouri and Lee, 2011), as well
as to provide quality-of-life improvements for develop-
ers such as making configurable parameters available in
input lists rather than hard-coded. The syntax changes
provide bit-identical results (i.e., they preserved the bit
pattern of the model results). The changes to array struc-
ture are not bit-identical but had no statistically dis-
cernible impact on the model climate.

2Specifically, the remapping was changed from the Earth
System Modeling Framework (ESMF) conservative routine in
the p2 version of CanESM5.0 to the conservative2 option in
CanESM5.1. For further details, we refer to the ESMF refer-
ence manual (https://earthsystemmodeling.org/docs/release/latest/
ESMF_refdoc.pdf, last access: 3 November 2023).
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Figure 2. Schematic indicating model development history from
CanESM5.0 to CanESM5.1 and their variants (p1 and p2). The text
in grey boxes summarizes the model changes implemented in the
version(s) to which the arrows point. Model improvements labelled
with an asterisk are the result of the A4D activity (see the main text
for further details).

3.2.1 The p1 and p2 variants of CanESM5.1

The source code of both p1 and p2 variants of CanESM5.1
is essentially identical, with the two model versions differing
only in the tuning of parameterizations in the atmospheric
component of the model (as indicated in Fig. 2). As will be
shown in Sect. 4, the physical climate of the p1 variant of
CanESM5.1 is virtually indistinguishable from both the p1
and p2 variants of CanESM5.0.

The climate characteristics of the p2 version of
CanESM5.1, by contrast, are quite different, as the atmo-
spheric component of CanESM5.1-p2 was retuned to best
match historical warming, El Niño–Southern Oscillation
(ENSO) amplitude and ENSO seasonality. The goal of this
retuning exercise was to investigate the extent to which an
alternative parameter tuning could (1) alleviate the high bias
in historical warming of our CMIP6 model (CanESM5.0,
and equivalently CanESM5.1-p1) and (2) improve the skill
of CanESM5.1-p1 seasonal-to-decadal forecasts for which
the representation of the ENSO is crucial. This tuning was
accomplished by adjusting the nine free parameters summa-
rized in Table 1 within their physically plausible ranges. The
impacts of this retuning exercise on ENSO variability and
climate sensitivity will be described in Sect. 5.2.

3.3 Experiments

3.3.1 CMIP experiments

Pre-industrial control experiments and large ensembles of
experiments with standard CMIP6 historical forcings (i.e.,
the CMIP6 “historical” experiments) were run and up-
loaded to the ESGF system, consisting of 40 members for
CanESM5.0-p2, 47 members for CanESM5.1-p1 and 25
members for CanESM5.1-p2.3 These runs are used for the
analysis in this paper. Note that we use all ensemble mem-
bers, except when explicitly mentioned. In such cases, fewer
ensemble members were needed to obtain robust conclu-
sions. In addition, single member abrupt-4xCO2 and SSP5-
8.5 experiments, also available on the ESGF system, are used
here to study the response climate change.

Note that the strong similarity in physical climate between
three of the CanESM versions that are available on the ESGF
system (CanESM5.0-p1 and p2, and CanESM5.1-p1) sup-
ports combining these into a single large ensemble for those
applications that could benefit from this size of historical
ensemble (25 members of CanESM5.0-p1, 40 members of
CanESM5.0-p2 and 47 members of CanESM5.1-p1, giving
112 members in total).

3.3.2 Sensitivity experiments

In addition to the standard CMIP-style experiments, the
A4D activity has led to a number of bespoke experiments
run to gain understanding of the causes of several notable
CanESM5.0 and CanESM5.1 biases. Details of these sensi-
tivity experiments are presented in Table 2 and are used in
the analysis presented in Sect. 5.1 and 5.3.

4 Basic comparison between CanESM5.0 and
CanESM5.1

4.1 Historical mean climate

In this section, we provide a high-level comparison between
the model characteristics of CanESM5.0 and the two vari-
ants of CanESM5.1. As documented in Swart et al. (2019b),
CanESM5.0 reproduces the large-scale features of the ob-
served climate but suffers from several regional biases. As
shown in Fig. 3a and d, these biases include a cold bias over
sea-ice-covered regions in winter in both hemispheres (fur-
ther discussed in Sect. 5.3.2); a cold bias over the Tibetan
Plateau (Sect. 5.3.4); warm biases over the eastern boundary
current systems, the Amazon, and North America in sum-
mer; and a cold bias in the North Atlantic associated with
a positive sea-ice bias (Sect. 5.3.1 and Fig. A3). This pos-
itive North Atlantic sea-ice bias results in an overestima-

3Note that a 25-member historical ensemble of the p1
CanESM5.0 version is also available on the ESGF system.

https://doi.org/10.5194/gmd-16-6553-2023 Geosci. Model Dev., 16, 6553–6591, 2023



6558 M. Sigmond et al.: CanESM5.0 and CanESM5.1

Table 1. Summary of the nine tuned parameters for the p1 and p2 variants of CanESM5.1.

Scheme Parameter Physical description p1 p2 unit

Cloud microphysics ap_facacc Mass accretion rate of cloud water to precipita-
tion due to the collection of cloud droplets by
raindrops

15 5.3874 s−1

ap_facaut Efficiency coefficient in mass autoconversion
rate of cloud water to precipitation due to
the collision–coalescence processes of cloud
droplets which determines cloud life cycle

0.1204 0.2355 –

ap_uicefac Empirical constant in calculations of the ice
crystal fall speed due to the influence of grav-
ity

4200 5688 s−1

Deep convection ap_alf Proportionality parameter relating vertically in-
tegrated convective kinetic energy with the
cloud-base mass flux

5.00× 108 3.97× 106 m4 kg−1

ap_taus1 Dissipation timescale of Convective Available
Potential Energy (CAPE) in prognostic closure

21600 2332 s

ap_weight Evaporation efficiency in downdrafts of deep
convection regions

0.7500 0.8165 –

Shallow convection ap_scale_scmbf Scaling factor for shallow convection cloud-
base mass flux

0.0300 0.0493 –

Surface layer
(atmosphere)

ap_ct Neutral drag coefficient over water controlling
the heat ventilation and evaporation rates

0.0010 0.0012 –

Surface module (land) ap_drngat Scaling factor for soil drainage at the bottom of
the soil levels

0.1000 0.1748 –

tion of total Arctic sea-ice area in winter (Fig. 4a); a simi-
lar North Atlantic bias is found in one other CMIP6 model
(CAMS-CSM1-0; Fig. 5c). By contrast, September Arctic
sea-ice area only shows a very small (positive) bias, which
is among the smallest among CMIP6 models as shown by
Fig. 5a. CanESM5.0 shows a year-round overestimation of
Arctic sea-ice volume compared to the observation-based
product PIOMAS (Fig. 4b). In the Antarctic, CanESM5.0
generally simulates too much sea ice (Fig. 4c), and in austral
winter this positive bias is largest among the CMIP6 models
considered here (Fig. 5b).

Compared to CanESM5.0, CanESM5.1-p1 has a slightly
warmer Arctic winter (Fig. 3b). While Arctic sea-ice area
is slightly smaller in CanESM5.1-p1 (Fig. 4a), the main
cause of these slightly warmer temperatures is likely the thin-
ner sea ice, as the Arctic sea-ice volume is smaller (and
closer to PIOMAS) than in CanESM5.0 (Fig. 4b). Apart
from these small differences, the climates of CanESM5.0 and
CanESM5.1-p1 are virtually indistinguishable, as supported
by panels (b) and (e) of Figs. A2–A8.

Differences between the historical climates of
CanESM5.1-p2 and CanESM5.0 are larger. The pre-
industrial climate in CanESM5.1-p2 is 0.5 ◦C warmer than
that of CanESM5.0 and CanESM5.1-p1, with a global mean
surface air temperature of 13.8 ◦C in CanESM5.1-p2 versus

13.3 ◦C in CanESM5.1-p1 and CanESM5.0 (not shown).
While CanESM5.1-p2 warms less over the historical period
(as described below), its global mean surface temperature is
still slightly higher than that of CanESM5.0 when averaged
over 1981–2010 (Fig. 3c, f). Cloud fraction is generally
lower than in CanESM5.0 and CanESM5.1-p1, especially
over the ocean (Fig. A2). The warmer surface temperatures
are consistent with a warmer troposphere (Fig. A7c, f), a
larger tropical wet bias (Fig. A5c, f) and a stronger subtrop-
ical jet (Fig. A8c, f). In addition, the strong stratospheric
polar vortex bias that was seen in CanESM5.0 is slightly
larger in CanESM5.1-p2, which has implications for sudden
stratospheric warmings (Sect. 5.3.3). An exception to the
warmer temperatures in CanESM5.1-p2 is the North At-
lantic, which experiences a slightly larger cold bias (Fig. 3c,
f). This is consistent with a slightly larger wintertime high
sea-ice bias, both in the North Atlantic (Figs. 5c and A3c)
and over the entire Arctic (Fig. 4a). For mean biases in
other physical aspects of the historical climate, we refer
to the reports published at the CanESM GitLab page
(https://gitlab.com/cccma/canesm/-/wikis/home, last access:
3 November 2023).
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Table 2. Details of the sensitivity experiments. Note that for the OMIP experiments, no p version is specified, as for those experiments
CanESM5.1-p1 is equivalent to CanESM5.1-p2.

Section CanESM Model Experiment Figure Details
version component (experiment label)

5.1 5.1-p1 Atmosphere Historical 9 Atmosphere nudged to observations;
(CanAM5.1-refBGF, old versus corrected bare-ground
CanAM5.1-newBGF) mask

5.3.1 5.1 Ocean Historical 16a CMIP6 OMIP experiment

5.3.1 5.1 Ocean Historical 16b Same as CMIP6 OMIP except with
CanESM5.0-p2 forcings

5.3.1 5.0-p2 Coupled Historical 16c Variable snow density and conductivity
(Table 3, Experiment 2 settings)

5.3.1 5.1-p1 Coupled Historical 16d Reduced snow density and conductivity
(Table 3, Experiment 1 settings)

5.3.1 5.0-p2 Coupled piControl 16e Observed runoff

5.3.1 5.1-p1 Coupled Historical 16f Atmosphere nudged to observations

5.3.2 5.0-p2 Coupled piControl A13 Varying snow density and conductivity
(Table 3)

5.3.3 5.0-p2 Coupled Historical 18, 19 Perturbed orographic gravity wave
(CanESM5-G) drag (Table 4)

5.3.3 5.0-p2 Atmosphere Historical 18, 19 Perturbed orographic gravity wave
(CanAM5-G1 to drag (Table 4)
CanAM5-G3)

5.3.4 N/A Land Historical 20c–h Driven by model and observed
(CLASSIC) forcings

Figure 3. Ensemble-mean surface air temperature bias relative to ERA5 (Hersbach et al., 2020) in CanESM5.0 (a, d) and the ensemble-mean
difference between CanESM5.1-p1 and CanESM5.0 (b, e) and between CanESM5.1-p2 and CanESM5.0 (c, f), averaged over 1981–2010
for the December–February (DJF; a–c) and June–August (JJA; d–f) seasons. Note the different contour intervals for (a) and (d) compared to
(b), (c), (e) and (f).
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Figure 4. Seasonal cycles of sea-ice area (SIA) (a, c) and sea-ice volume (SIV) (b, d) in the Northern Hemisphere (a, b) and the Southern
Hemisphere (c, d), averaged over 1981–2010, for CanESM5.0, CanESM5.1-p1, CanESM5.1-p2, NSIDC (Meier et al., 2021) and Had2CIS
(Lin et al., 2020) for sea-ice area, as well as the PIOMAS and GIOMAS reanalyses (Zhang and Rothrock, 2003) for sea-ice volume. The
lines represent the ensemble means, and the blue shading represents the ensemble range in CanESM5.1-p2.

Figure 5. The 1981–2010 climatological mean (horizontal axis) versus historical trends (vertical axis) in September Arctic sea-ice area
(SIA) (a), February Antarctic SIA (b) and March North Atlantic SIA (c). Stars indicate observations, grey dots indicate ensemble means
of CMIP6 models, small coloured solid dots indicate the ensemble means of CanESM5.0 and CanESM5.1, the large red dot indicates the
CMIP6 ensemble mean, horizontal and vertical bars indicate the across-ensemble standard deviations for models with multiple ensemble
members, and the faint coloured dots indicate the individual ensemble members of the CanESM5.0 and CanESM5.1 simulations. The figure
is an updated version of Fig. 3.20 from IPCC AR6 WGI (Eyring et al., 2021).
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4.2 Climate change

As documented by Swart et al. (2019b) and shown in Fig. 6a,
CanESM5.0 simulates more historical warming than in ob-
servations, while historical September Arctic sea-ice trends
are very close to observations (Fig. 5a, vertical axis). This
implies that the September sea-ice decline per degree of
global warming is underestimated, which is a common model
bias (Notz and SIMIP Community, 2020). Historical Antarc-
tic sea-ice trends are negative as in almost all other CMIP6
models (Roach et al., 2020), which appears inconsistent
with the positive historical trends in observations (Parkinson,
2019; Fig. 5b). Although, we note that, as a result of inter-
nal variability in CanESM5.1-p1, 3 of 47 ensemble members
(6 %) simulate a positive Antarctic sea-ice trend in February
(for CanESM5.1-p2, it is 1 of 25 members, 4 %), suggesting
that CanESM5.1 is consistent with observations.

While historical global warming (Fig. 6a) and sea-ice
trends (Fig. 5) in CanESM5.1-p1 are virtually identical to
those in CanESM5.0, historical warming in CanESM5.1-p2
is about 20 % weaker than in CanESM5.0 (Fig. 6a) as a result
of the atmospheric model tuning described in Sect. 3.2.1. The
lower warming rate is also seen in the abrupt-4xCO2 simula-
tions (Fig. 6b), used in Sect. 5.2.2 to calculate the equilibrium
climate sensitivity, and in future projections such as the pro-
jection that follows the SSP5-8.5 scenario (Fig. 6c). We note,
though, that while the historical warming in CanESM5.1-p2
is closer to observations, the lower end of the global mean
surface air temperature (GSAT) ensemble spread (blue shad-
ing in Fig. 6a) still exceeds observations after 2005, implying
that historical warming is still biased high. Finally, we point
out that historical Arctic and Antarctic sea-ice area trends
in CanESM5.1-p2 are similar to those in CanESM5.0 and
CanESM5.1-p1 (Fig. 5a, b), with the exception that historical
winter trends in North Atlantic sea-ice are somewhat smaller
and more consistent with observations (Fig. 5c).

5 Model characteristics and systematic model biases

In this section, we provide more detailed analyses of spe-
cific model biases and characteristics in CanESM5.0 and
CanESM5.1. We start with the improvements in CanESM5.1
compared to CanESM5.0 that are the result of the improved
dust tuning (Sect. 5.1). This is followed by a description
of changes in ENSO characteristics and climate sensitivity
between the two variants of CanESM5.1 as a result of the
retuning of the atmospheric component (Sect. 5.2). Finally,
Sect. 5.3 describes the analysis of a number of outstanding
biases in CanESM5.0 and CanESM5.1, which in most cases
have led to promising paths to resolving these biases in future
versions of CanESM.

5.1 Improvements in CanESM5.1 compared to
CanESM5.0: dust tuning

Recent analyses have revealed some unrealistic features in
CanESM5.0, including the occurrence of spurious strato-
spheric temperature spikes in certain ensemble members of
its historical large ensemble (Santer et al., 2021) and spuri-
ous tropospheric dust storms. Subsequent testing and anal-
ysis revealed that both of these features were the result of
improperly tuned free parameters associated with the “hy-
bridization” of the fine- and coarse-mode mineral dust trac-
ers in CanESM5.0. Hybridization is a transform applied to
tracer variables designed to reduce their dynamic range and
alleviate artefacts associated with the spectral advection of
positive definite tracers (von Salzen et al., 2013). However,
the advected tracer mass may not be conserved as a conse-
quence of the hybridization, depending on the values of two
free hybridization parameters. Conservation of global tracer
mass is ensured in CanESM by correcting the tracer mass
following each advection time step (von Salzen et al., 2013),
and improper tuning of the hybridization parameters associ-
ated with mineral dust resulted in anomalously large mass
corrections in some instances. Subsequent retuning of these
parameters reduced the magnitude of the mass corrections
in CanESM5.1 and eliminated spurious stratospheric warm-
ing events and tropospheric dust storms that were present
in CanESM5.0, as we document here. As these features
were not present in CanESM2 and have been corrected in
CanESM5.1, they can be considered version-specific issues.

We first describe the spurious lower-stratospheric warm-
ing spikes in CanESM5.0 and their relationship to the min-
eral dust spikes. Figure 7a shows the monthly time series
of global mean lower-stratospheric temperature anomalies in
the first ensemble members of CanESM5.0, CanESM5.1-p1
and CanESM5.1-p2. All three model versions show multi-
month warming peaks in response to the major volcanoes and
long-term cooling in response to increasing carbon dioxide
concentrations, but only CanESM5.0 shows ∼ 1–2-month
warming spikes that cannot be explained by external forc-
ings. To more clearly highlight these warming spikes, we
subtract the ensemble-mean time series (which averages out
internal variability and hence represents the forced response),
which leaves the part of the temperature anomalies that is
due to internal variability and is hereafter referred to as the
unforced variability (Fig. 7b). It appears that the warming
spikes coincide with large peaks in the global coarse mineral
dust burden (Fig. 7c). This is further quantified in Fig. 7d,
which shows the relationship between the dust and temper-
ature spikes in all months of all available ensemble mem-
bers. It clearly shows a positive correlation between coarse-
mode mineral dust burden and unforced lower-stratospheric
temperature. It also shows that elimination of coarse mineral
dust spikes in CanESM5.1-p1 and CanESM5.1-p2 is asso-
ciated with the elimination of lower-stratospheric tempera-
ture spikes. Lagged scatter plots reveal that there is no cor-
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Figure 6. Global mean surface air temperature (GSAT) anomaly relative to the mean in the piControl runs in CanESM5.0-p2, CanESM5.1-p1
and CanESM5.1-p2 for (a) historical, (b) abrupt-4xCO2 and (c) SSP5-8.5 simulations. In panel (a) the coloured lines represent the ensemble
mean, the blue shading is the ensemble range in CanESM5.1-p2, the grey line is the observed anomaly relative to the 1850–1900 mean from
HadCRUT5 (Morice et al., 2021) and the number in the legend indicates the ensemble size. Only one ensemble member was available for
the simulations plotted in panels (b) and (c).

relation between coarse mineral dust spikes and the lower-
stratospheric temperature in the prior month (Fig. A9a),
which is evidence that the temperature spikes are the result of
and not the cause of the dust spikes. They also show that there
is a weak impact of coarse mineral dust spikes on lower-
stratospheric temperature in the following month (Fig. A9b),
and that this impact does not last for longer than a month
(Fig. A9c, d). Further analysis revealed that the coarse min-
eral dust spikes (defined as spikes whose global burden ex-
ceeds 12× 109 kg) occur once every ∼ 50 years (mainly in
boreal summer) (Fig. A10a), rarely last longer than 2 months
(Fig. A10b) and have a maximum impact on zonal mean tem-
perature in the low-latitude lower stratosphere (Fig. A11).

We next document the impact of the improved hybrid min-
eral dust tracer tuning in CanESM5.1 on the aerosol optical
depth (AOD). A more detailed analysis shows that dust AOD
in CanESM5.0 is primarily associated with concentrations of
fine-mode tropospheric dust and less so with stratospheric
coarse-mode dust (not shown). Differences in seasonality of
the fine and coarse dust are plausible, given that they have
rather different spatial distributions and are therefore subject
to different transport processes, including uplifting and deep
convection.

Figure 8 shows total aerosol optical depth from 2007–
2014 (Fig. 8a, c) and the mean seasonal cycle over that
time period (Fig. 8b, d) in CanESM5.0-p2, CanESM5.1-p1,
and CanESM5.1-p2. Also shown are remotely sensed AOD
observations from the Moderate Resolution Imaging Spec-
troradiometer (MODIS, dashed lines; Platnick et al., 2017;
King et al., 2013), Multi-angle Imaging SpectroRadiometer
(MISR, dash–dot lines; Diner et al., 1998) and the Cloud-
Aerosol LIdar with Orthogonal Polarization (CALIOP, solid
lines; Winker et al., 2009). These datasets are described in
Appendix B.

Figure 8a and b show near-global-mean AOD (restricted to
60◦ S–60◦ N to facilitate comparison with observations), and
Fig. 8c and d show AOD over eastern and central Asia. The
time period 2007–2014 is chosen because 2007 is the earliest
year for which all observational data products are available,
and 2014 is the last year of the historical simulation.

In CanESM5.0, events with high AOD were predomi-
nantly associated with dust emissions in eastern and central
Asia, with AOD that exceeded 10 locally (near the emission
source), and produced extended plumes with aerosol optical
depth of order 1 that covered most or all of the northern ex-
tratropics. In general, CanESM5.0 was characterized by un-
physically high variability in AOD across a range of differ-
ent timescales, even during time periods that did not produce
any notable stratospheric dust spikes (Fig. 8), both regionally
and globally (see Jones et al., 2021). Furthermore, periods
with high AOD preferentially occurred in boreal spring and
autumn, producing a double-peaked seasonal cycle (Fig. 8b,
d), with an especially large autumn peak in eastern and cen-
tral Asia (Fig. 8d). A recent assessment of simulated min-
eral dust in CMIP6 models (Zhao et al., 2022) identified sub-
stantial variability in the regional seasonal cycles simulated
by different models, and a number of models exhibit similar
double-peaked behaviour over northern China, which the au-
thors attributed to excessive surface wind speeds in autumn
and winter. However, CanESM5.0 is unique in the magnitude
of this second peak. These issues are substantially improved
in CanESM5.1. The retuning of the hybridization parame-
ters removes the mechanism by which mineral dust emission
spikes were formed, such that they are absent in CanESM5.1.
This correction reduces both the AOD variability and time
mean and improves the seasonal cycle relative to observa-
tions by substantially suppressing the boreal autumn peak
(Fig. 8b, d).
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Figure 7. Lower-stratospheric temperature spikes and their relation to coarse mineral dust. The monthly time series of (a) global mean
lower-stratospheric temperature anomalies, (b) unforced variability in the global mean lower-stratospheric temperature (details in text), (c)
total global coarse mineral dust burden in the first ensemble member of each model version and (d) a scatter plot of the unforced global mean
lower-stratospheric temperature versus total global coarse mineral dust burden in all months of all ensemble members.

Figure 8. Time series (a, c) and mean seasonal cycles (b, d) of near-global mean (60◦ S–60◦ N; a, b) and East Asian (20–55◦ N, 70–150◦ E;
c, d) total AOD at 550 nm in CanESM5.0-p2 (and CanESM5.1-p1 and CanESM5.1-p2) and in remotely sensed observations (black and
grey). For the models, solid lines indicate ensemble medians and shaded envelopes indicate the 5th-to-95th percentile range across ensemble
members. The ensemble spread of CanESM5.1-p1 is omitted for visual clarity but is similar to that of CanESM5.1-p2.

Figure 9 demonstrates the improvement in the spatial pat-
tern and spatial variability of mineral dust optical depth from
CanESM5.0 to CanESM5.1, as well as in comparison to re-
motely sensed observations and other CMIP6 models. Obser-
vations of dust optical depth are more uncertain than those of
total optical depth, and the observations used here are there-
fore less reliable than those shown in Fig. 8; these limitations
are described in Appendix B.

The left panel of Fig. 9 shows the coefficient of determina-
tion (R2, which indicates how close the distributions fall to a
1 : 1 relationship), between the spatial patterns of 2007–2014
averaged dust optical depth fields in various model simula-
tions and observational datasets, following Fig. 13h of Zhao
et al. (2022). The CMIP6 models included here were selected
on the basis of data availability. Rows correspond to differ-
ent reference observations. Vertical bars give the R2 of the
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Figure 9. Improvements in the 2007–2014 mean spatial pattern and variability of global dust optical depth from CanESM5.0 to CanESM5.1
compared to observational datasets and select CMIP6 models. (a) Correlation between simulated datasets (points) and six remotely sensed
observational datasets. Each row corresponds to a different reference observation, and vertical bars show the correlation between that refer-
ence observation and the other five. (b) Taylor diagram comparing simulations and observations to the average dust optical depth field across
observational products.

other observations against each reference observation, and
they can be considered a benchmark of what performance
is reasonable to expect from the models. The right panel of
Fig. 9 shows a Taylor diagram (Taylor, 2001) of dust opti-
cal depths, using as reference the average of the six observa-
tional datasets. Note that the “correlation” axis in the Taylor
diagram refers to the spatial Pearson correlation coefficient
of the patterns, which quantifies how tight the scatter be-
tween two quantities is but does not compare the magnitudes
of their values. Given the data limitations described in Ap-
pendix B, precise position on this diagram should be consid-
ered with scepticism, but relative groupings are robust. The
left- and right-hand panels of Fig. 9 together demonstrate that
while development from CanESM5.0 to CanESM5.1 brought
dramatic improvement in the spatial distribution of dust vari-
ability (further illustrated in Fig. A12), it brought only mod-
est improvement in the mean spatial pattern. The spatial cor-
relation of both CanESM5.0 and CanESM5.1 with observa-
tions remains lower than for other CMIP6 models.

One outstanding issue for dust simulation in CanESM is
the estimation of the bare-ground fraction, which is used to
determine potential mineral dust sources in the model. An in-
terpolation error has been identified in the bare-ground mask
used in CanESM5.0 and CanESM5.1 which led to errors in
the input emissions. While this error will be corrected in fu-
ture versions of CanESM, we here quantify the impact of this
error on already existing simulations. This is done by com-
paring two atmosphere-only simulations (with and without
bare-ground fraction correction), in which the atmosphere
is nudged to reanalysis so that the observed meteorological
conditions, which have a large impact on dust, are well repro-
duced. We use atmosphere-only simulations with sea surface

temperatures (SSTs) and sea ice following observations to
exclude the possible impact of SST and sea-ice biases on our
results. Comparison of these simulations (denoted by, respec-
tively, the yellow and pink plus sign in Fig. 9) suggests that
the correction improves the dust simulation, with the Pearson
correlation coefficient increasing from 0.73 with the interpo-
lation error to 0.80 without the error (Fig. 9b). Although the
spatial pattern appears improved in this test simulation, the
variability is substantially reduced such that the RMSE is ap-
proximately unchanged. In addition, the hybridization tun-
ing parameters used in this simulation were not updated to
reflect the corrected bare-ground fraction. Thus, while these
results are suggestive, they are also preliminary, and further
analysis is required to determine whether corrections to the
bare-ground fraction are sufficient to make the spatial pattern
of dust in CanESM as realistic as that of most other CMIP6
models, as suggested by Fig. 9a.

5.2 Differences between CanESM5.1-p1 and
CanESM5.1-p2

The p2 variant of CanESM5.1 was obtained by systemati-
cally retuning the atmospheric component in an attempt to
reduce biases in ENSO characteristics and historical warm-
ing (Sect. 3.2). This section provides a detailed description
of the ENSO characteristics and climate sensitivity in var-
ious CanESM versions, with a focus on the changes that
are the result of the atmospheric tuning in the p2 variant of
CanESM5.1 compared to the p1 variant.
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Figure 10. Standard deviations of interannual variability of the
Niño 3.4 index (the average SST anomaly in the region bounded
by 5◦ S to 5◦ N and 170 to 120◦W) for each calendar month in
1950–2014. For CanESM5.1-p2, the shading represents the range
over 10 ensemble members. Dots indicate months for which the 10
ensemble ranges bracket the observations from ERSSTv5 (Huang
et al., 2017).

5.2.1 ENSO

The ENSO phenomenon, driven by atmosphere–ocean inter-
actions in the near-equatorial Pacific Ocean, is the strongest
and most wide-reaching pattern of interannual climate vari-
ability. A long-standing objective has therefore been for cou-
pled climate and Earth system models to simulate ENSO re-
alistically in order to better understand and predict ENSO, its
global impacts and likely changes in a warming climate.

Many metrics have been devised to describe various as-
pects of modelled ENSO variability and associated phys-
ical processes (e.g., Planton et al., 2021). One common
community-systemic bias is that equatorial Pacific SST
anomalies associated with warm (El Niño) and cool (La
Niña) episodes often extend significantly farther westward
than is observed (Jiang et al., 2021). This is the case for
CanESM5.0 (Swart et al., 2019b) and the updated versions
considered here, as well as for earlier CCCma model ver-
sions (Merryfield et al., 2013), making it a model-systemic
issue as well. However, there are biases in other aspects of
ENSO variability that are version-specific to CanESM5.0
and CanESM5.1, as they differ from its immediate major-
version predecessors, CanESM2 and CanCM4.4 Of partic-
ular note is that the seasonal cycle of ENSO SST variabil-
ity is relatively accurate in CanESM2 and CanCM4, with
strong seasonal differences peaking in December as observed
(Guilyardi et al., 2012; Merryfield et al., 2013) and over-

4CanCM4 is almost identical to CanESM2 except that it does
not include an interactive carbon cycle. CanCM4 has contributed to
the decadal prediction experiments of CMIP5, as well as ECCC’s
operational seasonal and decadal forecasts.

all ENSO amplitude slightly overestimated, as shown for
CanESM2 in Fig. 10. By comparison, Fig. 10 also shows
that ENSO in CanESM5.0 is too weak and displays little sea-
sonal variation with a minimum in boreal summer instead of
spring and no distinct winter peak, as also reported in Swart
et al. (2019b), Planton et al. (2021) and Eyring et al. (2021).
This likely bears on why experimental seasonal predictions
from CanESM5.0 (not shown) are considerably less skilful
at predicting future ENSO evolution out to 12 months than
CanCM4, which has relatively high ENSO prediction skill
relative to other operational seasonal prediction models (e.g.,
Ham et al., 2019). On the other hand, Fig. 11 shows that the
distribution of ENSO variability across timescales is more
realistic in CanESM5.0, with the CanESM2 spectral peak
occurring at shorter periods than for the observed spectrum,
whereas for CanESM5.0 the distribution of spectral power is
closer to that of the observed time series.

While the p1 variant of CanESM5.1 has slightly higher
ENSO variability than CanESM5.0, its seasonal cycle peaks
in March as in CanESM5.0, which is inconsistent with the
December peak in observations (Fig. 10). The impact of the
atmospheric retuning on ENSO variability can be seen by
comparing the p1 and p2 variants of CanESM5.1. Figures 10
and 11 show that in CanESM5.1-p2 the ENSO amplitude is
indeed higher than in CanESM5.1-p1, and that the seasonal
cycle is somewhat improved with a December peak, although
overall the seasonal variation remains too weak.

Some insights into why ENSO seasonality is too weak in
CanESM5.0 and CanESM5.1 can be gained from several re-
cent studies comparing ENSO and climatological SST sea-
sonality in CMIP5 and CMIP6 models. The climatological
seasonal cycle (annual mean subtracted) of equatorial Pacific
SST from observations and the three model versions are com-
pared in Fig. 12. All are concentrated in the eastern part of
the domain where the thermocline is relatively shallow. No-
tably, the observed seasonal cycle primarily consists of the
first annual harmonic despite the semi-annual cycle of insola-
tion, whereas all CanESM5 versions display a distinct semi-
annual component in the east (Fig. 12c–e). Song et al. (2020)
evaluated the simulated eastern equatorial Pacific SST sea-
sonal cycle in CMIP5 and CMIP6 models. They found that
the correlation between the simulated and observed seasonal
cycle in the region 110–85◦W where the seasonal cycle is
strongest is only 0.55 for CanESM5.0, the lowest among 17
CMIP6 models considered, whereas for CanESM2 it is much
higher (0.87). This suggests a connection between how real-
istically the equatorial Pacific SST seasonal cycle and ENSO
seasonality are modelled, in accordance with studies indicat-
ing that they are linked (e.g., Neelin et al., 2000).

A pair of additional studies have examined ENSO season-
ality in terms of its phase-locking to the mean seasonal cy-
cle across numerous CMIP5 and CMIP6 models. Liu et al.
(2021) showed that the month of peak ENSO variability
and the distribution over different calendar months in which
ENSO events peak in CanESM2 are among the most realis-
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Figure 11. Power spectra of detrended monthly Niño 3.4 anomalies during 1950–2014 for (a–d): CanESM2, CanESM5.0, CanESM5.1-p1
and CanESM5.1-p2. Black curves represent spectra of the observed time series from ERSSTv5, coloured curves represent the mean of the
spectra from 20 ensemble members, and shading represents the range of those spectra. Spectra are obtained from wavelet transforms based
on the Morlet wavelet (Torrence and Compo, 1998), and dashed curves represent the 95 % confidence level for a red-noise background
spectrum. Note the different vertical scale for CanESM2.

Figure 12. Mean seasonal cycle (i.e., the monthly minus annual means) of equatorial Pacific SST during 1950–2014 for (a) ERSSTv5,
(b) CanESM2, (c) CanESM5.0p-2, (d) CanESM5.1-p1 and (e) CanESM5.1-p2. Each model version is represented by the mean of the first
10 ensemble members.

tic of all models considered, whereas CanESM5.0 is among
the most unrealistic; they argued that the fidelity of the sim-
ulated SST seasonal cycle may be a major factor responsi-
ble for such differences. Liao et al. (2021) applied differ-
ent metrics but ranked the performances of CanESM2 and
CanESM5.0 in simulating ENSO seasonality, similarly to
Liu et al. (2021), and furthermore associated ENSO season-
ality biases with biases in representing the seasonal zonal
equatorial SST gradient. They found the temporal correla-
tion of observed and modelled seasonality of a metric de-
scribing the large-scale zonal differences5 to be among the
lowest in CanESM5.0 of all models considered. Such a cal-
culation based on the CanESM versions considered here and
the OISSTv2 dataset (Reynolds et al., 2007) for 1982–2021
yields the same value of 0.49 for CanESM5.1-p1 and for
CanESM5.0. This correlation is modestly improved to 0.56

5Diff_CE, defined as SST averaged over 2◦ S–2◦ N and 160◦ E–
160◦W minus SST averaged over 2◦ S–2◦ N and 120–90◦W.

in CanESM5.1-p2, in accordance with the similarly modest
improvement in ENSO seasonality in Fig. 10.

The hypothesis that ENSO seasonality biases across
CanESM5.0 and CanESM5.1 versions are tied to biases in
the simulated mean seasonal cycle, as strongly suggested by
the above results, raises the question of how those climato-
logical biases can be reduced. CanESM5.0 and CanESM5.1
employ different atmosphere and ocean model components
than CanESM2, making it difficult to assess whether one or
the other is primarily responsible for the degradation of cli-
matological and ENSO seasonality between these model ver-
sions. However, comparisons presented in Merryfield et al.
(2013) between CanCM4, whose ENSO-related metrics are
nearly the same as for CanESM2 according to Planton et al.
(2021), and the earlier model version CanCM3 provide some
insights. In particular, the mean seasonal cycle of equato-
rial Pacific SST is very similar between these two coupled
models, which employ the same CanOM4 ocean model but
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different atmospheric model versions.6 This strongly sug-
gests that the change from CanOM4 in CanESM2 to Can-
NEMO (Madec and the NEMO team, 2012) in CanESM5.0
and CanESM5.1, which involves many differences in the
grid configuration, numerics and physical parameterizations,
may be the main underlying reason for the equatorial Pacific
seasonal cycle changes between CanESM2 and CanESM5.0
and CanESM5.1. The relative insensitivity to atmospheric
model differences in the CanESM5 versions described here
aligns with this view. Which specific attributes of CanNEMO
should be examined in this context is not obvious, because
the mean seasonal cycle of equatorial Pacific SST is gov-
erned by a complex interplay of both oceanic and atmo-
spheric processes (Wang and McPhaden, 1999), indicating
that considerable model experimentation will likely be re-
quired.

5.2.2 Climate sensitivity

A second metric that was used to tune the p2 version of
CanESM5.1 was historical warming, which was unrealisti-
cally high in CanESM5.0 (Swart et al., 2019b) and is about
20 % weaker than in CanESM5.0 and the p1 version of
CanESM5.1 (Sect. 4.2). Here we quantify the associated
change in climate sensitivity, and compare that with the cli-
mate sensitivity in other versions of CanESM. The metric
that we use is the effective climate sensitivity (EffCS), which
is based on the regression method of Gregory et al. (2004).
In addition, we decompose top-of-atmosphere (TOA) radia-
tive feedbacks using radiative kernels. Non-cloud radiative
feedbacks were calculated using radiative kernels from the
Community Atmosphere Model (CAM3; Shell et al., 2008).
Climate responses for temperature, water vapour, surface
albedo and cloud radiative effects (CREs; long wave (LW)
and short wave (SW)) were calculated as the mean over
years 125–150 of an abrupt-4xCO2 simulation relative to
a 100-year mean from a pre-industrial control simulation.
Cloud feedbacks were calculated using the adjusted cloud
radiative effect (Soden et al., 2008), where the CRE is ad-
justed according to differences between clear- and total-sky
non-cloud feedbacks (Chung and Soden, 2015). The adjusted
CRE method assumes that clouds dampen the instantaneous
radiative forcing (IRF, the radiative forcing associated with a
particular forcing agent assuming that all other variables are
held fixed) by 16 % (Soden et al., 2008). Hence, the total-
sky IRF is calculated by multiplying the clear-sky IRF with
a globally uniform proportionality constant of 1/1.16. Then,
taking the difference between the two yields the portion of
the IRF from clouds.

6CanOM4 was derived from the National Center for Atmo-
spheric Research (NCAR) Climate System Model ocean component
(Gent et al., 1998), with significant modifications and additions to
physical parameterizations as summarized in Arora et al. (2011) and
Merryfield et al. (2013).

As described in Swart et al. (2019b) and Virgin et al.
(2021) and shown in Fig. 13a, CanESM5.0 has an EffCS
of 5.65 K, making it the CMIP6 model with the highest cli-
mate sensitivity (Zelinka et al., 2020). Since its EffCS is 54 %
larger than that of CanESM2, the issue is considered version-
specific (it cannot be termed a bias since the true value of
EffCS is unknown). Virgin et al. (2021) showed that while
no single feedback fully explains this increase, the increase
in the short-wave cloud feedback explains over half (1.08 K),
as shown in Fig. 13b. They further showed that this increase
in short-wave cloud feedback comes primarily from a de-
creased boundary layer cloud fraction over subtropical east-
ern ocean basins and that this is also reflected in the warming
rate asymmetry in the Pacific ocean, where the eastern versus
western equatorial Pacific warming difference was larger in
CanESM5.0 than in CanESM2 – also known as the pattern
effect (Dong et al., 2020).

As expected based on the almost identical tuning settings
of their atmospheric components, the EffCS and associated
feedbacks in CanESM5.1-p1 are almost identical to those
in CanESM5.0. By contrast, Fig. 13a shows that the at-
mospheric tuning in CanESM5.1-p2 reduced the EffCS to
4.09 K, a reduction of 28 %. TOA feedback decomposition
reveals that this is due to a decrease in the SW cloud feed-
back, which is substantially weaker relative to CanESM5.1-
p1/CanESM5.0 (Fig. 13b).

Previous studies have shown that SW cloud feedback and
climate sensitivity across CMIP5 and CMIP6 models corre-
late well with the shallowness of low cloud in weakly subsid-
ing tropical regions (Brient et al., 2016; Liang et al., 2022).
It appears that CanESM5.0 has the strongest high bias in
Brient cloud shallowness (BCS; Brient et al., 2016) among
all the CMIP6 models (Fig. 14c), contributing to its high
climate sensitivity. The BCS of CanESM5.1-p1 is slightly
lower than that of CanESM5.0, which may be due to the
fact that the retuning of the hybridization parameters from
CanESM5.0 to CanESM5.1 described in Sect. 3.2 also af-
fects moisture and hence clouds. The atmospheric retuning
in CanESM5.1-p2 resulted in an even lower BCS and hence
a slightly smaller high bias relative to observations. Given the
multi-model relationship between BCS and EffCS evident
from Fig. 14c and other studies (Brient et al., 2016; Liang
et al., 2022), it is likely that this slight BCS reduction con-
tributes modestly to CanESM5.1-p2’s lower climate sensitiv-
ity. These results suggest that tuning future model versions to
further reduce BCS would make such model versions agree
better with observations in terms of BCS itself as well as in
terms of historical warming (Fig. 14a). This result is further
strengthened by the findings of Vogel et al. (2022b), who find
that many models overestimate short-wave cloud feedbacks
compared to observations. A similar analysis of the sensi-
tivity of cloud fraction and cloud albedo to SST variations
over the tropics, which also correlate with SW cloud feed-
back (Fig. 14b and d), shows only relatively small changes
between CanESM5.1-p1 and CanESM5.1-p2, which explain
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Figure 13. (a) Effective climate sensitivity (EffCS) and (b) global, annual mean TOA radiative feedbacks (in W m−2 K−1). From left to
right, feedbacks are listed as Planck +2 (for display purposes), lapse rate+water vapour, surface albedo, long-wave cloud and short-wave
cloud.

Figure 14. Scatter plots showing relationships between EffCS and observable metrics that have previously been shown to correlate with
climate sensitivity across multi-model ensembles, in CanESM5.0 and CanESM5.1 and CMIP6 models: (a) the 1970–2014 global mean near-
surface air temperature trend; (b) the sensitivity of marine boundary layer cloud (MBLC) fraction to SST changes in subsiding regions over
oceans between 20 and 40◦ in both hemispheres (Zhai et al., 2015); (c) Brient cloud shallowness (BCS), defined as the ratio of cloud fraction
below 900 hPa to that below 800 hPa over weakly subsiding tropical ocean regions (Brient et al., 2016); and (d) Brient cloud albedo (BCA),
defined as the sensitivity of the deseasonalized short-wave cloud albedo to SST changes over the tropical oceans (Brient and Schneider,
2016). Error bars show ±1 standard deviations across realizations (i.e., initial condition ensembles) for each model. The dashed vertical
lines show the mean observed value, and the red shading shows its ±1 standard deviation, defined as follows: for GSAT in (a), from the
200-member HadCRUT5 ensemble; for MBLC in (b), the estimate of internal variability as described in Zhai et al. (2015); for BCS in (c),
1 seasonal standard deviation as described by Brient et al. (2016); for BCA in (d), an estimate of internal variability obtained by bootstrapping
random samples of varying time series length (Brient and Schneider, 2016). The correlation coefficients (between constraints and EffCS over
all CMIP6 models) and corresponding p values are reported in the lower left corner of each panel. The dashed green lines in each panel
show the 66 % confidence interval of the linear regression model. In all four cases, a two-sample t-means test indicated that metrics were
significantly different between CanESM5.1-p1 and CanESM5.1-p2, at the 0.01 level.
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only a small fraction of the decreased climate sensitivity.
Moreover the changes in these metrics make CanESM5.1-p2
less consistent with observations than CanESM5.1-p1. These
results suggest that tuning future model versions to reduce
the amount by which tropical cloud fraction decreases with
SST warming (i.e., to further increase MBLC and BCA met-
rics) should be avoided.

5.3 Other CanESM5.0 and CanESM5.1 biases and
possible avenues to tackle them

5.3.1 North Atlantic biases

The North Atlantic is characterized by prominent biases in
CanESM5.0, which occur throughout the year, but are largest
toward the end of winter. By March, there is excessive sea ice
covering the Labrador Sea and Denmark Strait (Fig. 15b), a
cold bias in sea surface temperature (SST; Fig. 15d)) and a
fresh bias in sea surface salinity (SSS; Fig. 15f).7 A corre-
sponding bias exists in surface air temperatures, which are
too cold over the North Atlantic in both winter and summer
(Fig. 3). CanESM2 also exhibited some of these biases, but
they were in general far less pronounced (Fig. 15, left col-
umn). Hence the large North Atlantic biases in CanESM5.0
are a version-specific issue. North Atlantic Deep Water for-
mation, one of the primary drivers of the Atlantic Meridional
Overturning Circulation (AMOC), relies on deep convection
within the Labrador and Greenland–Iceland–Nordic (GIN)
seas. The presence of unrealistically high sea-ice coverage
over the Labrador Sea in CanESM5.0 inhibits the sea surface
buoyancy loss that destabilizes the surface layer and leads to
deep mixing (Kostov et al., 2019). Within CanESM5.0, the
AMOC is fairly weak (∼ 13 Sv (sverdrup) in the climatolog-
ical average), and deep convection is confined exclusively to
the shelves of the GIN seas.

The biases in sea ice, SST and SSS in CanESM5.0 are
clearly interconnected, but determining cause and effect in
the coupled CanESM system is far from trivial. During the
development of CanESM5.0, two sensitivity tests with the
coupled model were performed that provided some insights.
The first test involved running piControl runs with alternative
strengths of ocean vertical diffusivity. These showed very
similar biases, suggesting that the biases are not the result
of improperly tuned vertical diffusivity. The second test in-
volved restarting the ocean model from rest after the atmo-
sphere had spun up. In this test run, the sea ice, SST and SSS
biases developed within a few decades, which pointed to at-
mospheric biases as a potential source of the coupled biases.

To learn more about the nature of the coupled biases,
we here present additional sensitivity tests, starting with

7While excessive sea ice is often associated with a high salinity
bias in regions where sea ice forms, the low salinity bias simulated
in the North Atlantic is associated with enhanced stratification, pre-
venting convection and vertical mixing of heat, possibly causing the
excessive sea ice.

Figure 15. North Atlantic biases during March in CanESM2 and
CanESM5.0-p2, relative to observations (named in round brack-
ets). In sea-ice concentration (NSIDC) (a, b), sea surface tem-
perature (Hadley Centre Sea Ice and Sea Surface Temperature,
HadISST; Rayner et al., 2003) (c, d), sea surface salinity (WOA13)
(e, f) and sea level pressure (ERA5) (g, h). In all cases, biases are
shown as colours and were computed from historical experiments in
CanESM, over the period 1981–2010 for the month of March. Black
contours show the March climatologies from the observations.

more constrained, ocean-only experiments. In the CMIP6
Ocean Model Intercomparison Project (OMIP) experiment,
the same ocean model configuration as used in CanESM5.1 is
driven by reanalysis-based atmospheric forcing through bulk
formulae, with runoff from observations and relaxation to-
ward observed SSS (Griffies et al., 2016). Under observed
atmospheric forcing, no such biases in sea ice, SST or SSS
exist (Fig. 16a). This indicates that the ocean and sea-ice
components of CanESM5 are able to simulate a more real-
istic state given realistic surface forcing. Next, we repeat the
standard OMIP experiment, but instead of reanalysis forc-
ing, we provide forcing (including SSS restoring) from a
CanESM5.0 historical simulation. Under CanESM5.0 forc-
ing, the ocean-only model reproduces the biases seen in the
coupled model (Fig. 16b). While it would be tempting to
attribute the ocean and sea-ice biases to CanESM5.0 forc-
ings, it is important to realize that the CanESM5.0 forcings
themselves have an imprint of the ocean surface biases in
CanESM5.0. Therefore, we cannot exclude the possibility
that the ocean surface biases are due to deficiencies in the
ocean model. In conclusion, while these ocean-only experi-
ments are instructive, they lack coupled feedbacks and do not
provide definitive evidence about the cause of the biases or
their solutions.
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Figure 16. North Atlantic sea-ice concentration bias during March,
relative to NSIDC observations in various experiments: (a) the
CMIP6 OMIP experiment, forced by reanalysis; (b) an OMIP-like
experiment, but forced by CanESM5 historical forcing; (c) coupled
historical experiment using variable snow density and conductivity
(experiment 2 settings from Table 3); (d) coupled historical exper-
iment using lower values of fixed snow density and conductivity
(10 % and 35 % lower, respectively; experiment 1 settings from Ta-
ble 3); (e) coupled pre-industrial experiment using observed runoff;
(f) coupled historical experiment, with nudging of atmospheric vor-
ticity and divergence to ERA5, starting in 1980. Black solid con-
tours give the 15 % concentration contour in the experiment, the
dashed black contour is the 15 % contour from the CanESM5 de-
fault historical run, and the cyan contour is the 15 % contour from
the NSIDC observations. See Appendix C for further discussion of
panels (c)–(f).

In Appendix C we explore three hypotheses regarding the
origin of the biases in the coupled modelling system, but
this investigation has not led to the identification of a defini-
tive cause or solution to the CanESM5 North Atlantic bias.
As CanESM moves toward more automated parameter tun-
ing, inline bias correction, a new dynamical core, and new
ocean and atmospheric grids resolutions, we hope to arrive at
versions with smaller circulation biases. Similarly, new ap-
proaches to sea-ice thermodynamics and coupling are being
considered. Finally, while the ocean-only model in the con-
figuration forced by observations does not show these issues,
it is not certain that the ocean configuration does not con-
tribute to the problem in the coupled model. Recent tests sug-
gest that increasing horizontal ocean diffusivity can also help
to reduce the bias by increasing the heat and salt flux into the
Labrador Sea. Such ocean physics tuning will be another el-
ement considered in future investigation of this issue.

5.3.2 Winter cold bias above sea ice

CanESM5.0 exhibits large cold biases in surface air tempera-
ture (SAT) over the region covered by sea ice during the win-
ter season, as described in Swart et al. (2019b) and shown in
Fig. 17c and d. This bias also persists in CanESM5.1 (Fig. 3).
In contrast, there are not large biases in SST over these re-
gions (see Fig. 15 of Swart et al., 2019b). In CanESM5.0 and
CanESM5.1, the surface temperature of sea-ice/snow is com-
puted in CanAM, while the calculation in the sea-ice model,
LIM2, is not used prognostically (Swart et al., 2019b). This
suggests that the surface temperature computation in CanAM
is the source of the issue. This reasoning is supported by
the fact that the previous coupled model version, CanESM2,
which contained the same CanAM ground temperature com-
putation but completely different sea-ice properties (and a
different sea-ice model), also exhibited a similar cold bias
over the winter sea-ice-covered area (Fig. 17a, b). In fact,
as shown in Fig. 7 of Merryfield et al. (2013), a similar
bias existed in CanCM3, two atmospheric model major ver-
sions before CanESM5.0 and CanESM5.1 (note they also
show the bias for CanCM4, which is a physical-only version
of CanESM2). Atmospheric Model Intercomparison Project
(AMIP) runs (with specified SST and ice cover) show the
same winter-hemisphere cold SAT bias over sea ice, demon-
strating that this issue arises in CanAM, as opposed to in
the ocean or sea-ice models (Fig. 17e, f). Given its persis-
tence across model versions and experiment types, this cold
bias above sea ice is model-systemic. While the bias has been
identified in surface air temperature, which is a diagnostic
rather than a prognostic model field, a very similar bias exists
if the comparison with observations is done based on ground
temperature (not shown).

The ground temperature over sea-ice/snow in CanAM
evolves according to

gt(t) = gt(t−1)

+ (fsg+flg− hsens− hlat+ hsea)× delt/cice, (1)

where t is the time step count, gt is the ground temperature
(K), fsg is the net absorbed solar flux, flg is the net long-wave
flux, hsens is the sensible heat flux, hlat is the latent heat flux,
and hsea is the conductive heat flux through ice/snow from
the ocean (all fluxes in W m−2); delt is the time step duration
(s), and cice is the heat capacity of the upper 10 cm of the
solid surface (J m−2 K−1).

Given the winter (and high-latitude) manifestation of this
problem, short-wave radiation contributions are unlikely as
they occur during polar night, and we have focused on other
parts of the surface energy balance. The conduction of heat
through sea ice and snow that features prominently in the
winter energy balance (i.e., the hsea term in Eq. 1) has been
investigated. A series of pre-industrial control experiments
were conducted, systematically altering the ice and snow
conductivities used in CanAM (Table 3).
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Figure 17. Surface air temperature bias over 1981–2010, relative to ERA5, in CanESM2 (a, b), CanESM5.0-p2 (c, d) and CanAM5.0 (e, f),
for the DJF (a, c, e) and JJA (b, d, f) seasons. Note that CanAM5 is an AMIP simulation with no interactive ocean or ice components.

Table 3. Pre-industrial control experiments with altered sea-ice thermodynamics in CanAM. In experiment 2, snow density is a function of
snow thickness, and snow conductivity is a function of snow density (this scheme was used in CanESM2; McFarlane et al., 1992). In other
experiments, snow density and ice/snow conductivities are fixed constants. Experiments 1 and 2 were used as initial conditions (restarts) for
historical experiments with the same parameter modifications.

Experiment Snow density Ice conductivity Snow conductivity
(kg m−3) (W m−1 K−1) (W m−1 K−1)

Default 330 2.25 0.31
1 300 2.25 0.2
2 f (thick) 2.25 f (density)
3 330 2.25 0.15
4 330 2.25 0.46
5 330 2.0 0.31
6 330 2.75 0.31

Of these experiments, the largest effect is seen when de-
creasing the snow conductivity, which leads to some warm-
ing of SATs around the edges of Arctic sea ice in DJF
(Fig. A13). However, the tested thermodynamic changes
only have a small impact relative to the large size of the ex-
isting cold bias, and none of them address the systematic and
widespread nature of the cold bias (i.e., over all sea ice in the
winter hemisphere). Possible alternative explanations for the
cold bias above sea ice are issues in the non-solar radiative or
turbulent fluxes. Future work will focus on examining these
alternative hypotheses.

5.3.3 Stratospheric circulation

In this section, we investigate two atmospheric circulation bi-
ases in the stratosphere that have been shown to be important
for the simulation of boreal winter surface climate variability
and climate change. The first metric of interest is the number
of sudden stratospheric warmings (SSWs). SSWs are rapid
breakdowns of the westerly flow (or polar vortex) in the po-
lar winter stratosphere, which tend to be followed by a per-
sistent anomalous tropospheric circulation pattern and asso-
ciated surface temperature and precipitation patterns that can

last up to 2 months (e.g., Baldwin et al., 2021). It has been
shown that SSWs are a main source of subseasonal to sea-
sonal predictability for surface climate (e.g., Sigmond et al.,
2013). Hence, a realistic simulation of SSWs is important
for maximizing the skill of seasonal forecasts, particularly in
boreal winter and early spring.

Previous multi-model studies have shown that there is a
large spread in the simulated frequency of SSWs between
different climate models. So called “low-top” models, of-
ten defined as those models whose model lid is lower than
0.1 hPa as in Domeisen et al. (2020), tend to underestimate
stratospheric variability (Charlton-Perez et al., 2013) and,
consequently, the number of SSWs, while “high-top” mod-
els tend to simulate a more realistic SSW frequency. The
results of Kim et al. (2017) indicate that CanESM2 (a low-
top model according to previously mentioned criterion) is a
noticeable exception showing an overestimation of the SSW
frequency. By contrast, Ayarzagüena et al. (2020) indicates
that CanESM5.0 underestimates the SSW frequency. How-
ever, it should be noted that the results of both Kim et al.
(2017) and Ayarzagüena et al. (2020) are based only on the
first ensemble member, and that due to the large internal vari-
ability of the coupled stratosphere–troposphere system there
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can be a large spread between individual ensemble mem-
bers (Polvani et al., 2017). We first investigate the robustness
of the Kim et al. (2017) and Ayarzagüena et al. (2020) re-
sults by calculating the SSW frequency in large ensembles
of CanESM2 and CanESM5.0 simulations. Figure 18 shows
that, averaged over a 50-member initial condition ensemble,
CanESM2 simulates about 10 SSWs per decade, confirming
the Kim et al. (2017) conclusion (based on the first ensem-
ble member, plotted by the black dot) that CanESM2 over-
estimates the SSW frequency. Figure 18 also shows that,
averaged over a 25-member ensemble, CanESM5.0 simu-
lates too few SSWs, confirming the results of Ayarzagüena
et al. (2020), which was based on the first ensemble mem-
ber. However it should be noted that there is a large spread
between ensemble members, and that if Ayarzagüena et al.
(2020) had picked a different ensemble member with a SSW
frequency at the upper end of the range, they would not
have identified CanESM5.0 as one of the models with too
few SSWs. Figure 18 also shows that the SSW frequency
in CanESM5.1-p1 is very similar to that in CanESM5.0,
while that in CanESM5.1-p2 is slightly less. This is consis-
tent with the stronger polar vortex shown in Fig. A8c. Hav-
ing established the robustness of these differences in SSW
frequency between CanESM2 and the latest major CanESM
version, underestimated SSW frequency in CanESM5.0 and
CanESM5.1 can be considered a version-specific issue.

It is striking how different the simulated SSW frequency
is in CanESM5.0 compared to CanESM2, given that the
model lid height of both models is the same at 1 hPa. One
notable difference in the atmospheric component between
CanESM2 and CanESM5.0 is in the tuning of the free param-
eters in the orographic gravity wave drag (OGWD) scheme.
The OGWD scheme used in both models is that of Scinocca
and McFarlane (2000), which features two internal parame-
ters that were changed between CanESM2 and CanESM5.0:
(1) G(ν), a multiplicative factor that scales the amount of
gravity wave momentum flux produced by the interaction
of the circulation with the topography, and (2) Frcrit, the in-
verse critical Froude number, which sets the maximum non-
dimensional amplitude that a parameterized wave may attain
at launch, before low-level blocking onsets, and aloft before
wave breaking begins and the wave begins to transfer its mo-
mentum to the background flow. Adjustments to these pa-
rameters were made to correct for the weak bias in the polar
vortex simulated by CanESM2 (see Table 4). The impact of
these OGWD parameter-value changes on the frequency of
SSWs is quantified by an ensemble of five historical simula-
tions with CanESM5.0 in which the values ofG(ν) and Frcrit
were reset back to those used in CanESM2, hereafter referred
to as the CanESM5-G simulations. Figure 18 shows that in
these simulations the SSW frequency is very similar to that
in CanESM2. This implies that the difference in simulated
SSW frequency between CanESM2 and CanESM5.0 can be
attributed to the change in OGWD tuning settings.

Table 4. Settings of the scaling factor, G(ν), and inverse Froude
number, Frcrit, in the orographic gravity wave parameterization for
various CanESM versions.

Model G(ν) Fcrit

CanESM2 0.5 0.71
CanESM5.0/CanAM5 1.0 0.22
CanESM5.0-G 0.5 0.71
CanAM5-G1 0.33 0.71
CanAM5-G2 0.4 0.71
CanAM5-G3 0.26 0.71

Having established the strong sensitivity of the SSW
frequency to OGWD parameter values, we next perform
a series of sensitivity tests in which the values of G(ν)
and Frcrit are adjusted to determine if the low SSW fre-
quency bias in CanESM5.0 could be eliminated. These tests
were performed using multiple five-member ensembles of
atmosphere-only runs. These runs were branched off from
the standard CanAM5 historical runs in 1950. Tuning is per-
formed in atmosphere-only rather than fully coupled mode to
speed up the process. This choice is motivated by the obser-
vation that the frequency of SSWs is very similar in CanAM5
compared to CanESM5.0, as shown by Fig. 18. Our first
combination of OGWD tuning settings are those that have
been found to perform best for a previous high top version
of our model. The model version with these modified set-
tings is labelled “CanAM5-G1”. A second and third set of
tuning runs is performed with slightly higher (CanAM5-G2)
and slightly lower (CanAM5-G3) values of G(ν) (details are
in Table 4). Figure 18 shows that the settings in CanAM5-
G1 yield an overestimation of the number of SSWs. Increas-
ing the OGWD in CanAM5-G2 leads to increased deposi-
tion of orographic gravity waves, decreasing the strength of
the polar vortex and increasing the number of SSWs, further
away from the observed frequency. The decreased OGWD in
CanAM5-G3 compared to CanAM5-G1, by contrast, leads
to decreased deposition of orographic gravity waves, increas-
ing the strength of the polar vortex and decreasing the num-
ber of SSWs and eliminating the high SSW frequency bias
in CanAM5-G1. In summary, by varying tuning parameters
in the OGWD scheme, we have determined a combination
of parameter settings that has eliminated the SSW frequency
bias in CanESM5.0. While this combination of parameters
has not been implemented in CanESM5.1, it is being consid-
ered for future CanESM versions as a way to eliminate SSW
biases and maximize the skill that SSWs provide in seasonal
forecasts.

A second aspect of the stratospheric circulation that is of
interest to the surface climate is the strength of the zonal-
mean zonal winds in the region between the subtropical jet
and the polar vortex (here defined as the wind at averaged
over 40–60◦ N and 100–50 hPa, hereafter referred to as the
“neck region winds”). Sigmond and Scinocca (2010) showed
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Figure 18. The 1950–2014 frequency of SSWs in various CanESM versions (details in text, with the number in parenthesis after the model
name indicating the number of ensemble members) and in the ERA5 reanalysis. The boxes extend from the lower to upper quartile of
the ensembles. The black lines represent the medians, the whiskers represent the 5 %–95 % confidence range determined by bootstrapping
and the numbers on top of the ensemble-mean represent values. The black dots for CanESM2 and CanESM5.0 indicate the first ensemble
members, which were used in Kim et al. (2017) and Ayarzagüena et al. (2020), respectively.

that the response of the Northern Annular Mode (NAM) to
increasing greenhouse gases (which has large impacts on pat-
terns of regional climate change) is sensitive to biases in the
strength of the neck region winds. In particular they found
that overly weak neck region winds result in a barrier to equa-
torward propagation of large-scale atmospheric waves. Cli-
mate models consistently show that increasing greenhouse
gases result in increased vertical wave fluxes, and Sigmond
and Scinocca (2010) showed that in a model version with
overly weak neck region winds these increased wave fluxes
tend to be deposited at high latitudes, leading to a reduction
of the westerly winds and hence a negative NAM response.
The opposite was true for a model version with relatively
strong neck region winds, which resulted in a positive NAM
response to increasing greenhouse gases. This suggests that
for credible projections of future regional climate it is impor-
tant for the neck region winds to be consistent with observa-
tions.

The strength of the neck regions winds in various CanESM
versions is shown in Fig. 19. It shows that while CanESM2’s
neck region winds are close to those observed, CanESM5.0’s
neck region winds are too strong. In response to increas-
ing greenhouse gases Simpson et al. (2018) reported that the
polar vortex response in CanESM2 is close to zero, while
Karpechko et al. (2022) showed that CanESM5.0 has one of
the largest positive polar vortex response among the CMIP6
models. Hence, these findings are consistent with the pos-
itive correlation between neck region winds and the NAM
response to increasing greenhouse gases as identified by Sig-
mond and Scinocca (2010). While the neck region winds are
similar in CanESM5.1-p1 compared to CanESM5.0, they are
even stronger in CanESM5.1-p2. It appears that the change
in OGWD settings between CanESM2 and CanESM5.0 can

explain about 50 % of the difference in neck region winds, as
the neck region wind strength in CanESM5.0-G is between
that of CanESM2 and CanESM5.0 (Fig. 19). The neck re-
gion winds in CanAM5 are slightly weaker than CanESM5.0,
which implies that tuning efforts that target neck region
winds should ideally be done in the fully coupled model. Fi-
nally, the CanAM5 tuning runs show that while the OGWD
combination of CanAM5-G3 led to the most realistic SSW
frequency, the bias in the neck region winds is the largest
of the three considered OGWD setting combinations. This
highlights intrinsic difficulties often encountered in tuning
efforts: the improvement of one aspect of the circulation can
often lead to the deterioration of another, and focussing on
only one aspect of the climate may lead to “overtuning”. This
can indicate the absence, or misrepresentation, of a relevant
process in the model. For the OGWD scheme in CanAM, a
new orographic lift component is being added following the
work of Lott (1999) and Gastineau et al. (2020) to better rep-
resent stationary planetary waves in CanAM. It is anticipated
that improvement of the planetary waves in CanAM will bet-
ter allow for a simultaneous reduction of biases in both the
basic state (including neck region winds) and SSW biases in
future versions of CanESM.

5.3.4 Land surface temperatures and albedo

Both CanESM5.0 and CanESM5.1 suffer from a cold bias
over the Himalayan region that extends into eastern China,
most prominently in December–February (Fig. 3). As a sim-
ilar bias has persisted over more than one major model ver-
sion (see Fig. 17a), it is considered a model-systemic issue.
This bias is likely caused by two factors. First, a positive pre-
cipitation bias in the region leads to more snow and therefore
also a positive land surface albedo bias in the region. Second,
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Figure 19. The 1950–2014 and December to February mean neck region winds in various versions of the Canadian Earth System Model
(details in the main text, with the number in parenthesis after the model name indicating the number of ensemble members). The boxes
extend from the lower to upper quartile of the ensembles. The black lines represent the medians, and the whiskers represent the 5 %–95 %
confidence range determined by bootstrapping and the numbers on top of the ensemble-mean values.

the current snow fraction parameterization in the land com-
ponent of CanESM5.0 and CanESM5.1 does not take into
account the effect of topography. Compared to regions with
flat terrain, the same amount of snow should cover less area
in mountainous regions because snow is not able to accumu-
late on steep terrain (Swenson and Lawrence, 2012). Since
this effect is not yet parameterized in CanESM, snow covers
a larger fraction than it realistically should in mountainous
regions with steep terrain.

Figure 20a shows the bias in simulated annual-mean sur-
face albedo in a CanESM5.0 historical simulation compared
to the observation-based product CERES (Kato et al., 2013)
for the period 2000–2013 for which the CERES data are
available over the southeastern Asian region. The surface
albedo bias is largest over the Himalayan region. Figure 20b
shows the bias in mean annual snow water equivalent from
a historical CanESM5.0 simulation compared to the ECCC
observation-based data (Mudryk, 2020), also for the pe-
riod 2000–2013, and shows the large bias over the Tibetan
Plateau. This large amount of snow builds up over time as
the model is spun up for conditions corresponding to the pre-
industrial state and does not disappear over the historical pe-
riod. The grid cells in dark blue in Fig. 20b over the Tibetan
Plateau region that exceed the 12 cm colour bar scale build
up snow amounts varying from 70 to 310 cm in snow water
equivalent units.

The land component in CanESM5.0 and CanESM5.1 is
represented by the Canadian Land Surface Scheme (CLASS;
Verseghy et al., 1993) and the Canadian Terrestrial Ecosys-
tem Model (CTEM; Arora and Boer, 2005). CLASS and
CTEM simulate physical and biogeochemical processes, re-
spectively, in the family of CanESM models. CLASS and
CTEM will be succeeded in a subsequent CanESM version
by the Canadian Land Surface Scheme including Biogeo-

chemical Cycles (CLASSIC), which couples these two mod-
els in a unified framework (Melton et al., 2020). CLASSIC
includes a very similar version of physical processes, includ-
ing snow-related physical processes, based on CLASS as in
CanESM5.0 and CanESM5.1.

Offline simulations of CLASSIC are routinely performed
with various observation-based meteorological datasets to
evaluate the model’s performance for primary water, en-
ergy and CO2 fluxes in an uncoupled mode where land–
atmosphere feedbacks are absent. These simulations have
also contributed to the Global Carbon Project (Friedlingstein
et al., 2022) since 2016. In these offline simulations, CLAS-
SIC is driven with meteorological data from three different
sources: CanESM5.0, the Climate Research Unit Japanese
Reanalysis (CRU-JRA) and the Global Soil Wetness Project
3 (GSWP3). The CRU-JRA (v2.1.5) meteorological dataset,
which is the Japanese reanalysis (JRA) with monthly val-
ues adjusted to the CRU data, provides 6-hourly values of
seven meteorological variables that are required to drive a
land model such as CLASSIC. These data are provided as
part of the Trends in the land carbon cycle (TRENDY) pro-
tocol for land models that contribute to the Global Carbon
Project (Friedlingstein et al., 2022). Three-hourly meteoro-
logical data from CanESM5.0 for the same seven variables
are also saved to force CLASSIC offline. Finally, the GSWP3
forcing data are based on a dynamical downscaling of the
20th century reanalysis (Compo et al., 2011) using a global
spectral model run at about 50 km resolution and also avail-
able at the 6-hourly temporal resolution.

Figure 20c–h show the bias in these offline simulations
in simulated annual-mean land surface albedo and snow wa-
ter equivalent, averaged over the period 2000–2013, com-
pared to CERES and ECCC data, respectively. Positive bi-
ases in snow albedo and snow water equivalent over the
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Figure 20. Annual-mean bias in simulated surface albedo for short-wave radiation (left column) and snow water equivalent (right column)
compared to the CERES and ECCC observation-based products, respectively, over the southeastern Asian region for the 2000–2013 period.
Panels (a) and (b) show the biases for CanESM5.0. Positive values indicate higher model values compared to the observation-based data.
The remaining rows show the biases when the CLASSIC land model is driven offline by meteorological data from CanESM5.0 (panels c and
d) and from the observation-based datasets CRU-JRA (panels e and f) and GSWP3 (panels g and h). Note that the largest positive biases in
snow water equivalent exceed the colour scale shown (see the main text for details).

Himalayan region are simulated when CLASSIC is driven
with CanESM5.0 and CRU-JRA meteorology (Fig. 20c–f).
The bias is much smaller for snow albedo and of the oppo-
site sign (with a small magnitude) for snow water equivalent
when CLASSIC is driven offline with the GSWP3 meteorol-
ogy. Although other meteorological variables also play some
role, the difference in CRU-JRA and GSWP3 runs is largely
driven by higher precipitation in CRU-JRA dataset compared
to the GSWP3 meteorological dataset over the Himalayan re-
gion (Fig. 21i, j), indicating that differences in precipitation
in the two meteorological datasets are able to lead to differ-
ences in simulated bias in snow albedo.

Figure 21 shows the biases in simulated annual mean tem-
perature and precipitation from CanESM5.0 compared to
the CRU-JRA, GSWP3 and Global Precipitation Climatol-
ogy Project (GPCP) datasets averaged over the 1970–2014
period. Note that the CRU-JRA and GSWP3 are meteoro-

logical datasets that are available only over land (and are
used to drive CLASSIC offline, as described above), while
GPCP is an observation-based precipitation dataset and is
available for the whole globe. CanESM5.0 shows a large cold
bias over the Himalayan region (around −4 to −5 ◦C) com-
pared to both CRU-JRA and GSWP3 datasets (Fig. 21a, b)
as mentioned earlier, and this cold bias extends into eastern
China. Panels (c) through (h) of Fig. 21 show the absolute
and relative bias in simulated CanESM5.0 precipitation com-
pared to the CRU-JRA, GSWP3, and GPCP datasets. Over-
all, the bias in CanESM5.0 precipitation is similar compared
to all observation-based datasets. The relative bias is largest
over India. The coarse T63 spatial resolution (∼ 2.8◦) of
CanESM5.0 implies that topography is not well resolved, and
high mountain peaks are not well represented. This is consis-
tent with higher-than-observed moisture being advected over
the Himalayas by the eastward surface winds in this region
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Figure 21. Bias in CanESM5.0 simulated annual-mean surface air temperature and precipitation compared to the CRU-JRA, GSWP3, and
GPCP datasets over the southeastern Asian region for the 1970–2014 period. Panels (a) and (b) show the bias in CanESM5 simulated near-
surface air temperature compared to the CRU-JRA and GSWP3 datasets, respectively. Panels (c) through (h) show the absolute and relative
bias in CanESM5.0 simulated precipitation compared to the CRU-JRA, GSWP3, and GPCP datasets. Panel (i) and (j) show the absolute and
relative precipitation differences between the CRU-JRA and GSWP3 datasets.

(Fig. 11 of Swart et al., 2019b), leading to too little precipita-
tion over India and too much over eastern China. This leads
to a warm temperature bias over India (Fig. 3) during the JJA
monsoon season. In a similar way, CanESM5.0 precipitation
is biased low over the Amazonian region and biased high
over the Andes mountains (Fig. A5) because higher than ob-
served advected moisture from the Atlantic Ocean makes its
way over the Andes, given the westward surface winds in this
region, and the low precipitation over the Amazonian region
leads to a warm temperature bias there (Fig. 3).

The cold bias over the Himalayan region is not unique to
CanESM5.0 and is seen in other ESMs. Lalande et al. (2021)
analyze temperature and snow biases in CMIP6 models, in-
cluding CanESM5.0, over the same region and find that the
multi-model mean temperature from 26 models is biased cold
by 1.9 ◦C associated with a 12 % overestimation of snow
cover compared to a satellite-based dataset. Lalande et al.
(2021) find that although higher-than-observed precipitation
is the cause of the higher snow amounts and consequently
higher surface albedo in most models in the region, other
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factors including snow fraction parameterization also play
a role. Hence the Himalayan cold bias can be regarded as
a community-systemic issue, although it is relatively large in
CanESM5.0 (∼ 4–5 ◦C; Fig. 21a, b) compared to the Lalande
et al. (2021) CMIP6 multi-model mean Himalayan cold bias
of ∼ 2◦.

In summary, it appears that positive precipitation bias over
the Himalayan region, which is likely caused by the coarsely
resolved topography of the model, combined with the lack
of a snow fraction parameterization that takes into account
the effect of topography, leads to a large accumulation of
snow as the model spins up under pre-industrial forcing. The
higher snow amounts and the resulting increase in surface
albedo lead to a cold temperature bias over the Himalayan
region. The next version of CanESM is expected to have a
nominal spatial resolution of 1◦ for its atmosphere and land
components, and it is expected that biases related to unre-
solved topography will be reduced in magnitude and spatial
extent. Work is also currently underway to evaluate an im-
proved snow fraction parameterization in the CLASSIC land
model.

6 Summary and discussion

In this paper, we have documented efforts within the CC-
Cma, the group leading the development of the Canadian
Earth System Model, to systematically monitor, document
and eventually resolve model biases, through initiation of the
Analysis for Development (A4D) activity. We have reported
results from this activity, which includes two variants (p1 and
p2) of a new CanESM version, CanESM5.1, featuring sev-
eral improvements compared to CanESM5.0. A number of
deep-dive analyses on specific model biases have provided
insights into their sources and potential resolutions in future
CanESM versions.

To aid in the analysis of these biases, three broad cate-
gories of model issues were employed to help identify their
sources: version-specific, model-systemic, and community-
systemic issues (Sect. 2). The majority of biases found
in CanESM5.0 and CanESM5.1 appear to be version-
specific issues (i.e., particular to this latest major model
version). These include the occurrence of spurious spikes
in stratospheric temperature and dust, as well as tropo-
spheric dust storms (Sect. 5.1, an issue that was resolved
in CanESM5.1); degraded ENSO relative to its predecessor
CanESM2/CanCM4 (Sect. 5.2.1, a bias that was reduced in
CanESM5.1-p2); a high EffCS (Sect. 5.2.2, reduced by about
30 % in CanESM5.1-p2); excessive North Atlantic sea ice
during late winter (Sect. 5.3.1); and too few sudden strato-
spheric warmings (Sect. 5.3.3). Model-systemic issues in-
clude the cold winter bias above sea ice (Sect. 5.3.2) and
the Himalayan cold bias (Sect. 5.3.4). Community-systemic
biases – i.e., biases in CanESM that resemble those seen
in multiple CMIP models – include the excessive west-

ward extension of SST anomalies (Sect. 5.2.1) and the Hi-
malayan cold bias (Sect. 5.3.4). Community-systematic er-
rors are important to identify because their potential influ-
ence on multi-model analyses cannot easily be removed by
averaging across a multi-model ensemble (since many mod-
els share these same errors); hence, documenting them is im-
portant for informing users of the output of these models.

In general, the nature of any model bias can be further un-
derstood in terms of it being parametric or structural. Para-
metric issues are dependent on parameter values primarily
associated with physical parameterizations, while structural
ones are dependent on model formulation (essentially, ev-
erything else). For version-specific biases, the question of
whether they are dependent on model tuning is highly rel-
evant. Model-systemic biases suggest structural origins but
parametric explanations might also be relevant if a par-
ticular tuning approach has impacted multiple model ver-
sions. For community-systemic biases, it is almost certainly
the case that their origins are structural. The p2 variant of
CanESM5.1 (Sect. 3.2.1) was an attempt to gain some in-
sight into the parametric nature of biases present in the p1
variant of CanESM5.1 (and in CanESM5.0, given its strong
similarity to CanESM5.1-p1). Ideally, one would span all pa-
rameter values to gauge such sensitivity. At the CCCma, we
have begun using a more objective tuning approach (e.g.,
Hourdin et al., 2017) that uses history matching methods
based on Bayesian statistics to determine suitable values for
CanESM’s free physical parameters in finalizing model ver-
sions (Williamson et al., 2015, 2017). The application of this
approach to parameter tuning spans all possible values of se-
lected free parameters and so should be a valuable tool to
identify the nature of model biases as either parametric or
structural.

As the primary goal of A4D is to better support model de-
velopment and provide a more objective path toward model
versions with improved properties and behaviour, an essen-
tial component of A4D is an ongoing critical review of its
effectiveness in meeting this goal. It is anticipated that the
A4D effort will evolve based on the effectiveness of its ini-
tial implementation and due to the implementation of new
technologies applied to model development (such as model
tuning by history matching methods). While development of
the next major version of CanESM is still at an early stage,
it is expected to include substantial changes compared to
CanESM5.0 and CanESM5.1, including the following: a new
dynamical core; a new version of the ocean model, which in-
cludes a new sea-ice component; and a new ecosystem and
land surface model. Such major changes will almost certainly
alter the nature and sources of CanESM biases, presenting
new and unique challenges to our model development efforts.
By increasing focus on analysis that is specifically tailored
to support model development, we have implemented struc-
tures and tools that will put us on a path to better meet these
challenges.
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Appendix A: Supplemental Figures

Figure A1. Net surface downward heat flux in CanESM5.0 (a) and CanESM5.1 (b) on the native ocean grid, over the vicinity of the Kuroshio
Current. The ESMF conservative2 remapping method used in CanESM5.1 leads to a somewhat smoother field than seen in CanESM5.0,
which uses the ESMF conservative remapping. The blockiness in the fields arises due to the much coarser resolution of the atmospheric grid
(≈ 3◦), where the fluxes are computed, relative to the ocean grid (1◦).

Figure A2. Same as Fig. 3 except for cloud fraction and the bias relative to International Satellite Cloud Climatology Project H series
(ISCCP-H) satellite-based observations (Young et al., 2018) averaged over 1991–2010
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Figure A3. Same as Fig. 3 except for Arctic sea-ice concentration in March (a–c) and September (d–f), as well as sea-ice concentration
from NSIDC as the observations. The ice edge (15 % sea-ice concentration contour) is indicated by green for CanESM5.0 in (a) and (d),
CanESM5.1-p1 in (b) and (e), and CanESM5.1-p2 in (c) and (f). For comparison, the black contour indicates the ice edge for observations
in (a) and (d) and for CanESM5.0 in (b), (c), (e), and (f).

The ice edge (15 sea ice concentration contour) is indi-
cated by green for CanESM5.0 in (a), (d), CanESM5.1-p1 in
(b), (e) and CanESM5.1-p2 in (c), (d). For comparison, the
black contour indicates the ice edge in observations in (a),
(d) and in CanESM5.0 in (b), (c), (e) and (f).

Figure A4. Same as Fig. A3 except for Antarctic sea ice in February (a–c) and September (d–f).
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Figure A5. Same as Fig. 3 except for precipitation using GPCP as the observations.

Figure A6. Same as Fig. 3 except for sea level pressure using ERA5 as the observations.

Figure A7. Same as Fig. 3 except for zonal mean temperature using ERA5 as the observations, with the contours representing the climato-
logical zonal mean temperatures in CanESM5.0 (a, d), CanESM5.1-p1 (b, e) and CanESM5.1-p2 (c, f) (contour interval: 10 ◦C).
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Figure A8. Same as Fig. 3 except for zonal mean zonal wind using ERA5 as the observations. The contours represent the climatological
zonal mean temperatures in CanESM5.0 (a, d), CanESM5.1-p1 (b, e) and CanESM5.1-p2 (c, f). The contour interval is 10 m s−1 with the
thick solid line denoting the 0 m s−1 contour.

Figure A9. Total global coarse mineral dust burden versus unforced global mean lower-stratospheric temperature in (a) the previous month,
(b) the next month, (c) the second month and (d) the third month (for all months and all ensemble members).
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Figure A10. (a) Seasonal distribution and (b) histogram of the duration of the coarse mineral dust spikes with global burden that exceeds
12× 109 kg in CanESM5.0.

Figure A11. Zonal mean temperature anomaly composite of all months in with coarse mineral dust burden exceeding 12× 109 kg in
CanESM5.0.
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Figure A12. Typical variability in dust optical depth in CanESM versions CanESM5.0-p2, CanESM5.1-p1 and CanESM5.1-p2. For each
ensemble member, variability is calculated as the standard deviation in dust optical depth over 2007–2014; maps show the ensemble mean
of this variability. Note the logarithmic colour scale and the reduction in variability from CanESM5.0 to CanESM5.1.
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Figure A13. Surface air temperature anomalies, relative to the control experiment using default CanAM5 values (Table 3, first row), in the
DJF (left column) and JJA (right column) seasons, for the experiments with altered snow conductivity and snow density listed in Table 3:
experiments 4 (a, b), 3 (c, d), 2 (e, f), and 1 (g, h). Experiments 5 and 6 that alter the ice conductivity are not shown here but show even
smaller anomalies than the other experiments.
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Appendix B: Remotely sensed observations of aerosol
optical depth

We here describe the remotely sensed observations of aerosol
optical depth used for model evaluation in Sect. 5.1 and pro-
vide an overview of their strengths and limitations.

We use monthly-mean total AOD retrieved from the Mod-
erate Resolution Imaging Spectroradiometer (MODIS; King
et al., 2013), Multi-angle Spectral Radiometer (MISR; Diner
et al., 1998), and Cloud-Aerosol LIdar with Orthogonal
Polarization (CALIOP; Winker et al., 2009) instruments.
MODIS and MISR are passive instruments, measuring only
during the day, and CALIOP is a lidar sensor which measures
during both day and night. There are two MODIS instru-
ments, carried on the Aqua and Terra satellites, with equa-
torial overpass times of 10:30 and 13:30 LT (local time), re-
spectively; we consider the products from these two sen-
sors separately. MISR and CALIOP are single instruments.
MISR is carried aboard Terra, with one of the MODIS in-
struments. CALIOP is aboard the Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observations (CALIPSO) satel-
lite, which lagged Aqua by 1–2 min during the time period
analyzed here; it has since been relocated to a lower-altitude
orbit.

Generally, AOD retrieved from MODIS is higher than that
from other satellites, while AOD from MISR and CALIPSO
is lower than other satellites, when comparing with other
datasets that are available for shorter periods of time (Vo-
gel et al., 2022a). The spread between MODIS and MIS-
R/CALIPSO can thus be taken as an approximate estimate
of the overall uncertainty in observed AOD. For CALIPSO,
we include results for both daytime, cloud-free conditions
(“CALIPSO CloudFreeDay”) and day-night averaged, all-
sky conditions (“CALIPSO AllSkyDayNight”).

The retrieval of optical depth of dust is more challeng-
ing than total optical depth, because it requires additional
information on particle size and/or shape in order to dis-
tinguish dust optical depth from the contributions of other
aerosol types. MODIS and MISR do not provide dust prod-
ucts. CALIOP optical depths are published for dust and pol-
luted dust categories, but these are separate classifications
(the former refers to clean dust only, and the latter refers to
dust mixed with urban pollution or biomass burning smoke),
and there is no estimate of the total dust optical depth (Omar
et al., 2009). Here we use the dust classification but empha-
size that it is an underestimate of the total contribution from
mineral dust. We augment these observations with dust op-
tical depths from Song et al. (2021) (ACROS-MODIS and
ACROS-CALIPSO, derived from MODIS and CALIPSO
data, respectively), Gkikas et al. (2020) (MIDAS, derived
from MODIS data), and Voss and Evan (2019) (Voss+2019,
derived from MODIS data).

Appendix C: Supplementary material on North Atlantic
biases

In the coupled modelling system, we have explored three hy-
potheses regarding the origin of the biases:

1. Issues in sea-ice thermodynamics or coupling encour-
age excessive ice growth and resulting SSS/SST biases.

2. Runoff bias impacts SSS and enhances stratification, re-
ducing convection and enabling ice growth.

3. Atmospheric circulation bias impacts ocean tracer
transport and surface properties.

As a test of the sensitivity to sea-ice thermodynamics, ex-
periments 1 and 2 from Table 3, which adjust snow den-
sity and thermal conductivity within their uncertainty ranges,
were carried into the historical period (and are otherwise
identical to CanESM5 historical runs). Using a lower specific
density and conductivity for snow (10 % and 35 % lower, re-
spectively; experiment 1 settings from Table 3) does reduce
the sea-ice bias but does not remove it or even recover a state
comparable to CanESM2 (Fig. 16d). Variable snow density
and conductivity (experiment 2 settings from Table 3) lead to
an even smaller improvement (Fig. 16c).

River runoff in CanESM5 is derived from the CLASS land
surface model, wherein the precipitation minus evaporation
(P −E) residual is routed downhill to the coast and input as
runoff where the atmospheric land fraction falls below 50 %
(Swart et al., 2019b). This runoff field is then conservatively
remapped in the coupler from the roughly 3◦ atmospheric
physics grid to the nominally 1◦ ORCA1 tripolar grid. No
further adjustment is undertaken. Due to the resolution dif-
ference between the models, this procedure effectively leads
to runoff being distributed over several ocean grid cells away
from the coast. In addition, the runoff magnitude can be bi-
ased by the P −E field in the atmospheric model. To test
whether the amount or distribution of runoff in CanESM5
lead to the sea-ice biases, we did an experiment where the
CLASS-based runoff was ignored, and the observationally
based runoff from the OMIP experiment was read from file
instead. This ultimately had little impact on the sea-ice bias
(Fig. 16e).

Finally, synoptic-scale atmospheric circulation biases over
the North Atlantic could play a role by influencing the
subpolar ocean gyre. Climatological sea-level pressure in
CanESM5.0 shows an Icelandic Low that is displaced north-
east relative to observations, and an over-expressed gradient
between the Icelandic Low and the Azores High (Fig. 15h).
Similar biases exist in the AMIP mode (not shown), suggest-
ing that this is a feature of the atmospheric model and not of
the coupled climate. The wind stress associated with these
pressure gradients would encourage a geostrophic oceanic
circulation comprising a North Atlantic Current that remains
coherent over the basin and extends the subpolar gyre too far

https://doi.org/10.5194/gmd-16-6553-2023 Geosci. Model Dev., 16, 6553–6591, 2023



6586 M. Sigmond et al.: CanESM5.0 and CanESM5.1

to the east. This would imply that warm, salty tropical waters
that should be delivered to the Labrador Sea instead traverse
a much longer distance, losing heat to the atmosphere and
dissipating within the broader North Atlantic basin. In turn,
this would reduce the heat and salt flux into the Labrador
Sea, thus making it more susceptible to freezing over and
high stratification.

Testing such a hypothesis is a challenge. What we have
done is to run coupled historical experiments where vortic-
ity and divergence in the atmospheric model are spectrally
nudged at synoptic length scales (T21 and coarser) toward
the ERA5 reanalysis. The results from these experiments
show a strong reduction in the Labrador Sea sea-ice bias
early on, but this improvement fades with time since the on-
set of the nudging and leads to only modest improvement
when considered over a 30-year period (Fig. 16f). The chal-
lenge with interpreting these experiments is that the introduc-
tion of nudging perturbs the model climate. Hence the model
is not equilibrated, and over time the wind nudging drives the
overall climate colder, making conditions more favourable to
the return of the sea-ice bias. In future, we plan to derive
stationary bias corrections from these nudging runs and use
these to establish equilibrated climate states to test this hy-
pothesis. Similarly, OMIP-like ocean-only experiments that
systematically change out only the observed wind stress for
the CanESM5 wind stress are not definitive: the specification
of other surface forcing from observations (e.g., surface air
temperature and SSS) carries with it the imprint of observed
sea-ice distributions, and the lack of coupled feedbacks sup-
presses the true effect that wind stress bias would have in the
coupled model.

Code and data availability. The full CanESM5.0 and
CanESM5.1 source codes are publicly available at
https://gitlab.com/cccma/canesm (last access: 3 November
2023). The version of the code that was used to produce all
the CanESM5.0 simulations submitted to CMIP6, described
in this paper, is tagged as v5.0.3 and has the following as-
sociated DOI: https://doi.org/10.5281/zenodo.3251114 (Swart
et al., 2019a). The version of the CanESM5.1 code that was
used to produce all the simulations described in this paper
is tagged as v5.1.6 and has the following associated DOI:
https://doi.org/10.5281/zenodo.7786802 (Swart et al., 2023). All
standard (CMIP-style) CanESM5.0 and CanESM5.1 simulations
described in this paper are publicly available via the Earth System
Grid Federation (ESGF). The source_id metadata parameter
used to search for these models on the ESGF system is CanESM5
for CanESM5.0 and CanESM5-1 for CanESM5.1. The physics
variant labels on ESGF are identical to those given in this paper
(e.g., r1i1p2f1 represents one ensemble member of the p2
variant). The full CLASSIC code can be downloaded from
https://gitlab.com/cccma/classic (last access: 3 November 2023).
The version of CLASSIC code used in this paper is v1.0 and has the
following associated DOI: https://doi.org/10.5281/zenodo.3522407
(Melton et al., 2019). The input data of the CLASSIC sim-
ulations presented here can be downloaded from GSWP3

(https://doi.org/10.48364/ISIMIP.886955, Lange and Büchner,
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