
Supplement of Geosci. Model Dev., 16, 6515–6530, 2023
https://doi.org/10.5194/gmd-16-6515-2023-supplement
© Author(s) 2023. CC BY 4.0 License.

Supplement of

Ocean wave tracing v.1: a numerical solver of the wave ray equations for
ocean waves on variable currents at arbitrary depths
Trygve Halsne et al.

Correspondence to: Trygve Halsne (trygve.halsne@met.no)

The copyright of individual parts of the supplement might differ from the article licence.

S1 Introduction

Here we provide a tutorial on how to use the Python module for solving the wave ray equations for ocean waves at arbitrary
depths in the presence of ambient currents. Focus is put on how to run the model, which includes preparation of the data as
well as showing examples of using the optional arguments. Please note that a number of use examples, which are referred to in
the “main paper”, are given in the GitHub repository https://github.com/hevgyrt/ocean_wave_tracing. A generic use example5
is given in Alg. 1, and in the subsequent sections we will go through the optional options to the generic example in detail.

S2 Wave ray model initialization

In Alg. S1, all the default values in the __init__ method is used, which includes the depth and temporal_evolution.
However, any input current field can be given by editing the velocity fields U,V.

Algorithm 1 Generic workflow code example

import numpy as np
import maplotlib.pyplot as plt
from ocean_wave_tracing import Wave_tracing

Defining some properties of the medium
nx = 100; ny = 100 # number of grid points in x- and y-direction
x = np.linspace(0,2000,nx) # size x-domain [m]
y = np.linspace(0,3500,ny) # size y-domain [m]
T = 250 # simulation time [s]
U=np.zeros((nx,ny))
U[nx//2:,:]=1

Define a wave tracing object
wt = Wave_tracing(U=U,V=np.zeros((ny,nx)),

nx=nx, ny=ny, nt=150,T=T,
dx=x[1]-x[0],dy=y[1]-y[0],
nb_wave_rays=20,
domain_X0=x[0], domain_XN=x[-1],
domain_Y0=y[0], domain_YN=y[-1],
)

Set initial conditions
wt.set_initial_condition(wave_period=10,

theta0=np.pi/8)
Solve
wt.solve()

S2.1 Adding bathymetry10

The generic example in Alg. S1 can be extended by including a bathymetry field like

depth = np.ones((nx,ny)) * 100
wt = Wave_tracing(U=U,V=np.zeros((ny,nx)),

1

https://github.com/hevgyrt/ocean_wave_tracing

nx=nx, ny=ny, nt=150,T=T,
dx=x[1]-x[0],dy=y[1]-y[0],15
nb_wave_rays=20,
domain_X0=x[0], domain_XN=x[-1],
domain_Y0=y[0], domain_YN=y[-1],
d=depth)

The bathymetry must be a 2D numpy array, and must match the domain size. A dedicated method to check that the input field20
follow the bathymetry conventions is initialized automatically.

S2.1 Temporally varying current fields using xarray

In the GitHub repository, a set of idealized current input fields are given in a netCDF file in the folder notebooks. The fields
span multiple time steps, such that a temporal varying current field can be invoked in the ray tracing by setting
temporal_evolution=True like25

import xarray as xa
ncin = xa.open_dataset('idealized_input.nc')
U = ncin.U
V = ncin.V
X = ncin.x.data30
Y = ncin.y.data
nx = len(X)
ny = len(Y)

Define a wave tracing object35
wt = Wave_tracing(U=U,V=V,

nx=nx, ny=ny, nt=150,T=T,
dx=(X[1]-X[0]).values,dy=(Y[1]-Y[0]).values,
nb_wave_rays=20,
domain_X0=X[0].data, domain_XN=X[-1].data,40
domain_Y0=Y[0].data, domain_YN=Y[-1].data,
temporal_evolution=True,
)

The ray model will take into account the current field from the associated model time step depending on the propagation time
of the rays.45

S2.2 Make input data follow the conventions

In the Wave_tracing object, the input fields follow some conventions that are listed in the main paper. Particularly relevant
for the input velocity data is that the the dimensions must be named x and y if the input fields are of type xarray DataArray. For
example, for ocean circulation models, typical dimension names can be called X and Y . This is, however, easy to overcome
by renaming the dimension names at initialization like50

wt = Wave_tracing(U=ncin.U.rename({'X':'x','Y':'y'}),
V=ncin.V.rename({'X':'x','Y':'y'}),
...

Additional examples where the dimensions are reanamed are given in the notebooks folder in the repository.

2

S3 Initial conditions for the solver55

In addition to the mandatory input values in the set_initial_conditions method in Alg. 1, it is possible to further
specify the theta0 as an array with values for each wave ray. For example, a uniform distribution of initial wave propagation
angles in the range [0,π) is given as theta0=np.linspace(0,np.pi,nb_wave_rays). Initial positions for each
wave ray can be given by specifying the “keys and values” (kwargs) arguments ipx and ipy,

wt.set_initial_condition(wave_period=10,60
theta0=np.linspace(0,np.pi,nb_wave_rays),
ipx=np.linspace(10,20,nb_wave_rays),
ipy=np.linspace(1,5,nb_wave_rays)
)

provided that incoming_wave_side is not given since it trumps ipx and ipy.65

S4 Numerical integration

When the equations are to be solved (see solve() in Alg 1), it is possible to choose between the finite-difference schemes
available in the util_solvers.py. In v.1, two schemes are available i.e. a Forward-Euler scheme and a 4th order Runge-
Kutta, where the latter is default.

3

