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Abstract. The nature and severity of climate change im-
pacts vary significantly from region to region. Consequently,
high-resolution climate information is needed for meaning-
ful impact assessments and the design of mitigation strate-
gies. This demand has led to an increase in the application
of empirical-statistical downscaling (ESD) models to gen-
eral circulation model (GCM) simulations of future climate.
In contrast to dynamical downscaling, the perfect progno-
sis ESD (PP-ESD) approach has several benefits, including
low computation costs, the prevention of the propagation of
GCM-specific errors, and high compatibility with different
GCMs. Despite their advantages, the use of ESD models and
the resulting data products is hampered by (1) the lack of
accessible and user-friendly downscaling software packages
that implement the entire downscaling cycle, (2) difficulties
reproducing existing data products and assessing their cred-
ibility, and (3) difficulties reconciling different ESD-based
predictions for the same region. We address these issues
with a new open-source Python PP-ESD modeling frame-
work called pyESD. pyESD implements the entire down-
scaling cycle, i.e., routines for data preparation, predictor se-
lection and construction, model selection and training, eval-
uation, utility tools for relevant statistical tests, visualiza-
tion, and more. The package includes a collection of well-
established machine learning algorithms and allows the user
to choose a variety of estimators, cross-validation schemes,
objective function measures, and hyperparameter optimiza-
tion in relatively few lines of code. The package is well-
documented, highly modular, and flexible. It allows quick
and reproducible downscaling of any climate information,
such as precipitation, temperature, wind speed, or even short-
term glacier length and mass changes. We demonstrate the

use and effectiveness of the new PP-ESD framework by gen-
erating weather-station-based downscaling products for pre-
cipitation and temperature in complex mountainous terrain
in southwestern Germany. The application example covers
all important steps of the downscaling cycle and different
levels of experimental complexity. All scripts and datasets
used in the case study are publicly available to (1) ensure the
reproducibility and replicability of the modeled results and
(2) simplify learning to use the software package.

1 Introduction

The impacts of anthropogenic climate change are far-
reaching and spatially heterogeneous. Consequently,
regional- and local-scale predictions of 21st century climate
evolution are needed to help guide the design of adapta-
tion measures, vulnerability assessments, and resilience
strategies (Field and Barros, 2014; Weaver et al., 2013).
General circulation models (GCMs) are well-established
tools for simulating climate trends in response to different
anthropogenic and natural forcings, such as atmospheric
CO2 concentrations, land cover, and orbital changes. They
are process-driven models based on our understanding of
atmospheric physics. They are commonly used to predict
future trends of climate change by prescribing predicted fu-
ture forcings described by the Representative Concentration
Pathways (RCPs). RCPs are greenhouse gas concentration
scenarios that quantify the radiative forcing of plausible
demographic and technological developments, as well as
anthropogenic activities (Meinshausen et al., 2011; Pachauri
et al., 2014). While GCMs can produce useful estimates of
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many climate system elements on the global and synoptic
scale (such as circulation patterns), mesoscale atmospheric
processes, clouds, and specific climate variables like precip-
itation are still relatively poorly represented (e.g., Steppeler
et al., 2003). Moreover, GCM simulations are affected by
systematic biases on the local and regional scale due to
their coarse resolutions and model parameterization (e.g.,
Errico et al., 2001). These can lead to inaccurate predictions
on the spatial scales that are relevant for regional climate
change impact assessments, such as studies investigating
the impacts on the hydrological cycle (Boé et al., 2009),
mountain glaciers (Mutz et al., 2016; Mutz and Aschauer,
2022), air quality (e.g., Colette et al., 2012), and agriculture
(e.g., Shahhosseini et al., 2020). Therefore, GCM-based
predictions are downscaled by performing dynamical down-
scaling or statistical downscaling, with empirical-statistical
downscaling (ESD) being one type of statistical downscaling
(Murphy, 2000; Schmidli et al., 2007; Wilby and Dawson,
2013).

Dynamical downscaling involves the nesting of regional
climate models (RCMs) into coarse-resolution GCM simula-
tions to produce higher-resolution regional estimates. While
RCMs allow an easy exploration of physical processes lead-
ing to the predicted climate, they are computationally costly.
Furthermore, slight changes in the model domain and bound-
ary conditions require the repetition of the whole process,
thereby limiting their application in many climate impact
studies (e.g., Giorgi and Mearns, 1991; Xu et al., 2019). ESD
is computationally less costly and implicitly considers local
conditions, such as topography and vegetation, without the
need to parameterize them explicitly. It is widely used for cli-
mate change impact studies and relies on establishing empir-
ical transfer functions to relate large-scale atmospheric vari-
ables (predictors) to a local-scale observation (predictand).
ESD models can be directly coupled to GCMs (e.g., Mutz et
al., 2021) or RCMs (e.g., Sunyer et al., 2015; Laflamme et
al., 2016; Jakob Themeßl et al., 2011) in a one-way coupling
or pipeline with no feedback into the climate models. ESD
can be broadly categorized into perfect prognosis (PP) and
model output statistics (MOS) approaches (Maraun and Wid-
mann, 2018; Marzban et al., 2006). MOS uses simulated pre-
dictors from the GCM or RCM to find the transfer function
and generate a predictand time series with bias corrections
(e.g., Sachindra et al., 2014; Wilby et al., 1998). Therefore,
the MOS-ESD transfer functions are specific to a particular
GCM or RCM and not easily transferable to other models. In
contrast, the PP-ESD approach is GCM- and RCM-agnostic:
ESD models are obtained from observational data for both
the predictand and predictors and can therefore be coupled
to any GCM or RCM (e.g., Hertig et al., 2019; Mutz et al.,
2021; Ramon et al., 2021; Tatli et al., 2004). Therefore, this
paper, and the software package presented in it, focuses pri-
marily on the PP-ESD approach.

The PP-ESD modeling framework consists of four critical
steps to establish and evaluate the empirical transfer func-

tions that constitute an ESD model (e.g., Maraun et al., 2010;
Maraun and Widmann, 2018): (1) the first step involves the
selection and construction of predictors. The selection of the
most informative and relevant predictors generally increases
the performance and robustness of PP-ESD models. Prelim-
inary predictor selection should be guided by knowledge of
the atmospheric dynamics that govern a specific regional cli-
mate. This selection may be refined using statistical depen-
dency measures such as correlation analysis (e.g., Wilby et
al., 2002; Wilby and Wigley, 2002), regularization regres-
sion (e.g., Hammami et al., 2012), stepwise multi-linear re-
gression (e.g., Mutz et al., 2021), and decision tree selection
(e.g., Nourani et al., 2019). The selected predictors should
be able to explain most of the predictand’s variability and
must be represented well by the GCMs (Maraun and Wid-
mann, 2018; Wilby et al., 2004). (2) The second step involves
the selection of the learning algorithms (i.e., the learning
model used for training the ESD model). These range from
classical regressions and analog models, including paramet-
ric and nonparametric models (Gutiérrez et al., 2013; Zorita
and Storch, 1999; Lorenz, 1969), to advanced machine learn-
ing (ML) algorithms (e.g., Sachindra et al., 2018; Xu et al.,
2020). The various techniques vary in complexity, scalabil-
ity, interpretability, and underlying assumptions. For exam-
ple, classical regressions and analog models allow better in-
terpretations of the simulated results and are usually simpler
to implement. On the other hand, several ML algorithms have
the ability to capture more complex links between predictors
and predictands and do not require an explicit assumption of
the distribution of observational data during the optimization
process (Jordan and Mitchell, 2015; Raissi and Karniadakis,
2018). The choice of the optimal PP-ESD training technique
depends on the predictand variable (e.g., precipitation and
temperature), length of the observational records, spatiotem-
poral variability, spatial coherence, regional setting, and tem-
poral stationarity of the transfer functions. (3) The third step
involves the actual training and validation of the PP-ESD
models, and (4) the final step is the PP-ESD model evalu-
ation.

The high demand for climate change information on the
regional and local scale has led to the widespread use of
ESD methods and an overwhelming body of research to
sort through in order to select the most suitable technique
for a specific problem. In the past, generalized linear mod-
els (GLMs) (e.g., Fealy and Sweeney, 2007), regularization
models (e.g., Li et al., 2020), Bayesian regression models
(Das et al., 2014; e.g., Zhang and Yan, 2015), support vec-
tor machines (SVMs) (e.g., Chen et al., 2010; Ghosh and
Mujumdar, 2008), artificial neural networks (ANNs) (e.g.,
Sachindra et al., 2018; Vu et al., 2016; Xu et al., 2020),
homogeneous (e.g., random forest) and heterogeneous (e.g.,
stacking) ensemble learning models (e.g., Massaoudi et al.,
2021; Pang et al., 2017; Zhang et al., 2021), and others have
been used to construct PP-ESD models and downscale cli-
mate information. However, there is no universal protocol to
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help choose a robust model for a specific region and climate
variable (Gutiérrez et al., 2019), thus making the selection of
the most suitable learning algorithm challenging. Moreover,
the recent increase in ML algorithms and platforms (e.g.,
programming languages and software) exacerbates the prob-
lem by creating an even wider range of PP-ESD techniques
without well-defined protocols. These have shifted the fo-
cus toward the establishment of standardized user-friendly
tools that would resolve most of the issues related to the
development of PP-ESD models. Such tools exist in vari-
ous forms and tackle a certain aspect of the inherent ESD
modeling complexities to ensure fast and efficient climate-
impact-related studies. For example, the R-package esd, de-
veloped and maintained by the Norwegian Meteorological
Institute (MET Norway), comprises many utility functions
for data retrieval, manipulation and visualization, commonly
used statistical tools, and implementations of GLM and re-
gression techniques for generating ESD models (Benestad et
al., 2015b). Moreover, an interactive web-based downscal-
ing tool developed as part of the EU-funded ENSEMBLES
project (van der Linden and Mitchell, 2009) provides an end-
to-end framework through data access, computing resources,
and ESD model alternatives (Gutiérrez et al., 2012). The de-
cision support tool sdsm (Wilby et al., 2002) provides aux-
iliary downscaling routines like predictor screening, regres-
sion, model evaluation, and visualization for near-surface
weather variables on a daily scale. Most recently, the cli-
mate analysis tool Climate4R has been extended with sta-
tistical downscaling functionalities (downscaleR) that pro-
vide a wide range of MOS and PP techniques (Bedia et
al., 2020). While these tools provide specialist solutions,
there is no single tool or modeling framework that provides
a wide range of contemporary (and commonly used) algo-
rithms and implements all downscaling steps (i.e., predic-
tor selection and construction, learning algorithm selection,
training and validation of ESD models, GCM–ESD model
coupling, model evaluation, visualization, and relevant sta-
tistical tools). Moreover, there is no user-friendly ESD tool
written in a widely used programming language like Python,
which would remove barriers for the use of ESD techniques
in research and teaching. Many of the Python-based tools
currently available are primarily designed for bias correc-
tion in MOS downscaling, and extending these tools to the
PP-ESD framework would diversify the publicly available
downscaling tools (e.g., xclim, Bourgault et al., 2023; ibi-
cus, Spuler et al., 2023; CCdowncaling, Polasky et al., 2023).
A complete, user-friendly, robust, and efficient open-source
downscaling framework would contribute significantly to cli-
mate change impact assessment studies by (a) empowering
researchers through accessible software and easy switches
between alternative methods, (b) allowing for efficient up-
dating of predictions in a consistent modeling framework,
(c) increasing the transparency and reproducibility of results,
and (d) removing barriers in teaching in order to familiarize
future generations of researchers with the ESD approach.

Here, we introduce a new PP-ESD framework that ad-
dresses the gaps highlighted above. It is the thoroughly
tested, heavily documented, efficient, and user-friendly open-
source Python Empirical-Statistical Downscaling (pyESD)
package. pyESD adopts an object-oriented programming
(OOP) style and treats the predictand data archives (e.g.,
the weather station) as objects with many functionalities and
attributes relevant to ESD modeling. It is flexible with re-
gards to the training dataset and predictand variable. For ex-
ample, pyESD’s predecessors were successfully applied for
the prediction of local temperatures (Mutz et al., 2021) and
glacier mass balance (Mutz and Aschauer, 2022) in South
America. Here, we additionally demonstrate its capabilities
in downscaling precipitation in complex terrain in south-
western Germany. pyESD comprises a collection of utilities
and methods for data preparation, predictor selection, data
transformation, predictor construction, model selection and
training, evaluation, statistical testing, and visualization. Un-
like existing packages, pyESD also includes common ma-
chine learning algorithms (i.e., different estimators, cross-
validation schemes, objective function measures, hyperpa-
rameter optimizers, etc.) that can be experimented with in
a few lines of code.

In the first part of this paper (Sect. 2), we provide de-
tailed descriptions of the model structure and the theoretical
background for the implemented methods. In the second part
(Sect. 3), we demonstrate the package’s functionalities with
an illustrative case study for a hydrological subcatchment
in mountainous terrain in southwestern Germany. Here, we
walk the reader through a typical downscaling process with
pyESD. More specifically, we generate station-based down-
scaling products for precipitation and temperature changes in
response to different RCPs. When discussing downscaling-
related tasks, we list the corresponding pyESD routines as
italicized function names. We only use publicly available
data for a set of weather stations to ensure the reproducibility
and replicability of the results (see Sect. 3). Moreover, all the
scripts used for the case study are provided and can be easily
adapted to suit the researcher’s focus. We discuss the appli-
cation example in Sect. 4 and conclude with a summary and
important remarks in Sect. 5.

2 Model structure

The PP-ESD downscaling cycle involves technical and la-
borious steps that must be carefully addressed to ensure the
robustness and accuracy of local-scale climate predictions.
The pyESD package implements all these steps in an efficient
modeling pipeline for an easier workflow. In this section, we
describe this workflow (Fig. 1) along with the main features
of the package.
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Figure 1. The main features and workflow of PP-ESD implemented in the pyESD package (highlighted by the dashed red box). The weather
station and reanalysis datasets are used to select the robust predictors for model training and validation. The trained PP-ESD model is then
coupled to GCM simulations forced with different scenarios to predict the local-scale future estimates that can be used for climate change
impact assessment (not included in the pyESD package).

2.1 Data structure and preprocessing

PP-ESD modeling requires (1) predictand data from weather
stations or other observational systems, (2) reanalysis
datasets for the construction of predictors, and (3) GCM or
RCM output for the construction of simulated predictors if
the PP-ESD models are used for downscaling simulated cli-
mates. To understand the workflow demonstrated in later sec-
tions, the reader needs to be aware of few important package
design choices related to data structure and preprocessing.

– The package adopts the OOP paradigm and treats every
predictand data archive (e.g., weather station or glacier)
as an object. Since the current version of the pack-
age focuses only on station-based downscaling, we will
henceforth describe it only as the weather station ob-
ject. The package accepts the (typical for weather sta-
tions) comma-separated value (CSV) file format. These
files contain the predictand time series, such as a tem-
perature record, as well as weather station attributes
like the weather station’s name, ID, and location. The
read_station_csv from the pyESD.weatherstation mod-
ule initiates each weather station as a separate object us-

ing the StationOperator that features all the other func-
tionalities. The weather station object is associated with
at least one predictand dataset (i.e., the values of at least
one climate variable recorded at that particular station).
Furthermore, the initialized object includes all attributes
and methods required for the complete downscaling cy-
cle. For instance, the package adopts the fit and pre-
dict framework of the scikit-learn Python package (Pe-
dregosa et al., 2011) that can be directly applied to the
weather station object.

– The data needed for predictor construction are read from
files in the network Common Data Form (netCDF) for-
mat with the Xarray toolkit (Hoyer and Hamman, 2017).
Due to the size of these datasets and the computations
required to construct the predictors, the memory de-
mand can be very high, and repeating this step every
time a new model is trained or applied becomes com-
putationally very costly. This problem is circumvented
by storing the constructed predictors for each weather
station in pickle files. At the next runtime, these can
quickly be read (or unpacked) to reduce the computa-
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tional costs and facilitate faster experimentation with
the package.

– Since reanalysis datasets, climate model output, and
weather station data are provided by different data cen-
ters and have varied structures and attributes, it is well
outside the scope of our project to write and include a
unified data processing function for all. Instead, the pre-
processing functions of the current version of pyESD
are written for state-of-the-art, representative, and pub-
licly available datasets. More specifically, they work
with weather station data from the German Weather Ser-
vice (Deutscher Wetterdienst, DWD) and the ERA5 re-
analysis product (Hersbach et al., 2020). These prepro-
cessing functions are provided as part of the package
utilities (pyESD.data_preprocess_utils) and can easily
be adapted to work for researchers’ preferred datasets.
The functions will be expanded in the future to allow
experimentation with other popular datasets and assess
the sensitivity of ESD model performance to the choice
of reanalysis datasets (e.g., Brands et al., 2012).

2.2 Predictor selection and construction

The PP-ESD approach is highly sensitive to the choice of
predictors and learning models (Maraun et al., 2019a; Gutiér-
rez et al., 2019). Moreover, since PP-ESD models are em-
pirical in nature, the predictors serve as proxies for all the
relevant physical processes and must be informative enough
to account for the local predictand variability (Huth, 1999,
2004; Maraun and Widmann, 2018). Therefore, the selection
of potential predictors should be informed by our knowl-
edge of the atmospheric dynamics that control the climate
variability of the study area. For example, synoptic-scale cli-
mate features, such as atmospheric teleconnection patterns,
control much of the regional-scale climate variability. It is
therefore recommended to consider these as potential pre-
dictors. Statistical techniques, such as methods for feature
selection or dimension reduction, may then be applied to re-
duce the list of physically relevant potential predictors to a
smaller selection of predictors that have a robust statistical
relationship with the predictand. These steps contribute to the
performance of the models and also resolve some of the is-
sues related to multicollinearity and overfitting (e.g., Mutz et
al., 2016). The pyESD package adopts three different wrap-
per feature selection techniques that can be explored for dif-
ferent models: (1) recursive feature elimination (Chen and
Jeong, 2007), (2) tree-based feature selection (Zhou et al.,
2021), and (3) sequential feature selection (Ferri et al., 1994).
The methods are included in pyESD.feature_selection as Re-
cursiveFeatureElimination, TreeBasedSelection, and Seque-
tialFeatureSelection, respectively. Furthermore, classical fil-
ter feature selection techniques, such as correlation analyses,
are also included as a method of the weather station object.

Predictors are typically constructed by (1) computing the
regional means of a physically relevant climate variable or
(2) constructing index time series for relevant synoptic-scale
climate phenomena. The package allows the user to consider
a few important aspects for each type of predictor.

1. The area over which the climate variable is averaged
can significantly affect model performance. In complex
terrain with high-frequency topography, for example,
choosing a smaller spatial extent may result in the pre-
dictor having a higher explanatory power. Therefore,
a radius (with a default value of 200 km) around the
weather station may be defined by the user to determine
the size of the area used for the computation of the re-
gional means.

2. Empirical orthogonal function (EOF) analysis is a well-
established tool for capturing atmospheric teleconnec-
tion patterns and reducing high-dimensional climate
datasets to index time series that represent the variabil-
ity of prominent modes of synoptic-scale climate phe-
nomena (Storch and von Zwiers, 2002). The current ver-
sion of pyESD includes functions for the extraction of
EOF-based index time series for dominant extratropi-
cal teleconnection patterns in the Northern Hemisphere
(pyESD.teleconnections). More specifically, it allows
the computation of index values for the North Atlantic
Oscillation (NAO) as well as the East Atlantic (EA),
Scandinavian (SCAN), and East Atlantic–Western Rus-
sian (EAWR) oscillation patterns (e.g., Boateng et al.,
2022). It will be expanded to consider Southern Hemi-
sphere patterns in future versions.

After the selection and construction of predictors, their
raw values can be transformed before model train-
ing. For instance, MonthlyStandardizer implemented in
pyESD.standardizer can be used to remove the seasonal
trends in each predictor by centering and scaling the data.
Such transformation can reduce biases toward high-variance
predictors, ensure generalization, and improve the represen-
tation of predictors constructed from GCM output (e.g., Be-
dia et al., 2020; Benestad et al., 2015a). Principal component
analysis (PCA) is another transformation tool included in the
package (pyESD.standardizer.PCAScaling). It can be applied
to (a) reduce the raw predictor values to information that is
relevant to the predictand and (b) prevent multicollinearity-
related problems during model training (e.g., Mutz et al.,
2016).

2.3 Learning models

The empirical relationship between local predictand and
large-scale predictors is often complicated due to the com-
plex dynamics in the climate system. However, ML algo-
rithms have been demonstrated to perform well in extracting
hidden patterns in climate data that are relevant for build-
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ing more complex transfer functions (e.g., Raissi and Kar-
niadakis, 2018). Specifically, neural networks have been ex-
plored for downscaling climate information due to their abil-
ity to establish a complex and nonlinear relationship between
predictands and predictors (e.g., Nourani et al., 2019; Gard-
ner and Dorling, 1998; Vu et al., 2016). Moreover, support
vector machine (SVM) models have been used to capture
the links between predictors and predictands by mapping the
low-dimensional data into a high-dimensional feature space
with the use of kernel functions (e.g., Anandhi et al., 2008;
Tripathi et al., 2006). Previous studies have also applied
multi-model ensembles due to their ability to reduce model
variance and capture the distribution of the training data (e.g.,
Xu et al., 2020; Massaoudi et al., 2021; Gu et al., 2022).

Selecting the most appropriate model or algorithm for a
specific location or predictand can be challenging because
one needs to consider many case-specific factors like data di-
mensionality, distribution, temporal resolution, and explain-
ability. This problem is exacerbated by the lack of well-
established frameworks for climate information downscaling
(Gutiérrez et al., 2019). The pyESD package addresses this
challenge with the implementation of many ML models that
are different with regard to their theoretical paradigms, as-
sumptions, and model structure. The implementation of com-
monly used models in the same package allows researchers
to experiment with different learning models and to repli-
cate and update their research based on emerging recommen-
dations for specific predictands and geographical locations.
The implementation of statistical and ML models in pyESD
mainly relies on the open-source scientific framework scikit-
learn tool (Pedregosa et al., 2011). In the following subsec-
tions, we briefly explain the principles behind the ML meth-
ods that are included in the pyESD package.

2.3.1 Regularization regressors

Regularization models are penalized regression techniques
that shrink the coefficients of uninformative predictors to im-
prove model accuracy and prediction interpretability (Hastie
et al., 2001; Tibshirani, 1996; Gareth et al., 2013). The co-
efficients of non-robust predictors are set to zero by mini-
mizing the absolute values of regression coefficients or min-
imizing the sum of squares of the coefficients. The former
is referred to as L1 regularization and adopted by the least
absolute shrinkage and selection operator (LASSO) method.
The latter is referred to as L2 regularization and adopted by
the ridge regression method. The regularization term (R) and
the updated cost function for a linear equation of p indepen-
dent variables or predictors, Xi , are defined as

R(β)=

p∑
i=1

|βi | (1)

for L1 regularization and

R(β)=

p∑
i=1

β2
i (2)

for L2 regularization. Therefore, the updated cost function is
defined as

cost=
n∑
j=1

(
yj −

p∑
i=1

Xijβi

)2

+ λR (β), (3)

where λ is the tuning parameter that controls the severity
of the penalty defined in Eqs. (1) and (2), and βi represents
the coefficients. The package features implementations of the
LASSO and ridge regression using a cross-validation (CV)
scheme with random bootstrapping to iteratively optimize λ.
These are included as LassoCV and RidgeCV, respectively.
The optimization of the cost function in Eq. (3) is usually
based on the coordinate descent algorithm to fit the coeffi-
cients (Wu and Lange, 2008). The pyESD package also in-
cludes an implementation of LassoCV that uses a less greedy
version of the optimizer (LassoLarsCV). It is computation-
ally more efficient by using the least angle regression (Efron
et al., 2004) for fitting the coefficients.

2.3.2 Bayesian regression

Bayesian regression employs a type of conditional model-
ing to obtain the posterior probability (p) of the target vari-
able (y), given a combination of predictor variables (X), re-
gression coefficients (w), and random variables (α) estimated
from the data (Bishop and Nasrabadi, 2006; Neal, 2012). In
its simplest form, the normal linear model, the predictand
yi (given the predictors Xj ), follows a Gaussian distribution
N(µ,σ). Therefore, to estimate the full probabilistic model,
yi is assumed to be normally distributed around Xijw:

p(yi |X,w,α)=N
(
yi |Xijw,α

)
. (4)

This approach also permits the use of regularizers in the op-
timization process. The Bayesian ridge regression procedure
(BayesianRidge) estimates the regression coefficients from a
spherical Gaussian and L2 regularization (Eq. 2). The reg-
ularizer parameters (α,λ) are estimated by maximizing the
log marginal likelihood under a Gaussian prior over w with
a precision of λ−1 (Tipping, 2001; MacKay, 1992):

p(w|α)=N
(
w|0,λ−1

|p

)
. (5)

This means that the parameters (α, λ, and w in Eqs. 4 and
5) are estimated jointly in the calibration process. Automatic
relevance determination regression (ARD) is an alternative
model included in the package. It differs from BayesianRidge
in estimating sparse regression coefficients and using cen-
tered elliptic Gaussian priors over the coefficients w (Wipf
and Nagarajan, 2007; Tipping, 2001). Previous studies have
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used sparse Bayesian learning (relevance vector machine –
RVM) for downscaling climate information (e.g., Das et al.,
2014; Ghosh and Mujumdar, 2008).

2.3.3 Artificial neural network

The multilayer perceptron (MLP) is a classical example of
a feed-forward ANN, meaning that the flow of data through
the neural network is unidirectional without recurrent con-
nections between the layers (Gardner and Dorling, 1998; Pal
and Mitra, 1992). MLP is a supervised learning algorithm
that consists of three layers (i.e., an input, hidden, and out-
put layer) connected by transformation coefficients (weights)
using nonlinear activation such as the hyperbolic function.
More specifically, the learning algorithm with one hidden
layer for the training sets (X1,y1), (X2,y2), . . . , (Xn,yn),
where XiεRn and yiε {0,1}, can be defined as

f (X)=W2θ
(
W T

1 X+ b1

)
+ b2, (6)

where θ is the activation function, and b1 and b2 are the
model biases added to the hidden and output layer. The
weights connecting the layers are optimized with the back-
propagation algorithm (Hecht-Nielsen, 1992; Rumelhart et
al., 1986) with a mean squared error loss function. More-
over, the L2 regularization (Eq. 2) method is applied to avoid
overfitting by shrinking the weights with higher magnitudes.
Therefore, the optimized squared error loss function is de-
fined as

Loss
(
ŷ,y,W

)
=

1
2

∥∥ŷ− y∥∥2
2+

α

2
‖W‖22, (7)

where α
2 ‖W‖

2
2 is the L2 penalty that shrinks the model com-

plexity. Often, the derivative of the loss function with respect
to the weights is determined until the residual error of the
model is satisfactory. The stochastic gradient descent algo-
rithm (Bottou, 1991; Kingma and Ba, 2014) is used as a
solver for updating the weights (defined in Eq. 6) in a maxi-
mum number of iterations until a satisfactory loss (Eq. 7) is
achieved. Moreover, the choice of the parameters, such as the
size of hidden layers, activation function, and learning algo-
rithm, is relevant to the performance of the model (Diaz et
al., 2017). The exhaustive search algorithm with CV boot-
strapping is a simple and efficient method for parameter op-
timization (Pontes et al., 2016) and therefore included in the
pyESD package (GridSearchCV).

2.3.4 Support vector machine

Support vector regression (SVR) uses the principles of SVM
as a regression technique. The learning algorithms are based
on Vapnik–Chervonenkis (VC) theory and empirical risk
minimization that is designed to solve linear and nonlin-
ear problems. This is achieved by applying kernel functions
to map low-dimensional data to higher- or even infinite-
dimensional feature space (Vapnik, 2000; Cristianini and

Shawe-Taylor, 2000). In principle, the model creates a hyper-
plane in a vector space containing groups of data points. This
hyperplane is a linear classifier that maximizes the group
margins. Given finite predictor and predictand data points
(X1,y1), (X2,y2), . . . , (Xn,yn), whereXiεRn and yiεR, the
regressor can be defined as

f (X,w)= wT φ (X)+ b, (8)

where the support vectors w and model bias b are the optimal
parameters that minimize the cost function in Eqs. (9):

cost=
1
2
wTw+C

n∑
i=1

(
ξi + ξ̂i

)
, (9)

subject to{
yi − f (Xi,w)≤ ε+ ξ̂i, f (Xi,w)− yi ≤ ε+ ξi,

}
where ξi , ξ̂i ≥ 0, and i = 1. . .n are the slack variables (the
upper and lower training errors) subject to the error tolerance
of ε that prevents overfitting. C represents a regularization
term that determines the balance between minimal loss and
maximal margins. The cost function in Eq. (9) is solved us-
ing Lagrange’s formula (Balasundaram and Tanveer, 2013)
to obtain the optimized function:

f (X)=

n∑
i=1

(
αi − α̂i

)
φ
(
Xi,Xj

)
+ b, (10)

where αi and α̂i are Lagrange multipliers, and φ
(
Xi,Xj

)
is

the kernel function which implicitly maps the training vec-
tors in Eq. (8) into a higher-dimensional space. The SVR
method of the pyESD package includes linear, polynomial,
sigmoid, and Gaussian radial basis function (RBF) kernels
(Hofmann et al., 2008). Moreover, the degree of regulariza-
tion (C) and the coefficient of the kernels (γ ) is given a range
of values so that the hyperparameter optimization algorithm
can determine the best model. Due to the expensive nature
of SVR, the package uses a randomized search algorithm in
a CV setting for the hyperparameter optimization (Bergstra
and Bengio, 2012). However, hyperparameters optimization
algorithms, such as Bayesian and grid search (Snoek et al.,
2012; Pontes et al., 2016; Bergstra et al., 2011) methods, are
also provided as alternatives. Previous downscaling projects
have taken advantage of the SVR method due to its ability to
map data into higher-dimensional space and exclude outliers
from the training process (Ghosh and Mujumdar, 2008; Chen
et al., 2010; Sachindra et al., 2018; Anandhi et al., 2008; Tri-
pathi et al., 2006).

2.3.5 Ensemble machine learning

Each ML technique is associated with challenges that arise
from the method’s limitations and underlying assumptions.
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These have to be considered carefully in the evaluation of the
resulting downscaling product. Some of these challenges can
be overcome by an integration of different ML models for a
specific task (Dietterich, 2000; Zhang and Ma, 2012). Inte-
grated ML models have been suggested to outperform single
ML models in downscaling climate information (e.g., Liu et
al., 2015). Ensemble models typically use different ML algo-
rithms (base learners) to extract information from the training
data, then use a second set of ML algorithms (meta-learners)
that learn from the first and combine the individual predic-
tions into an ensemble. Ensemble models can be categorized
by (a) the selection of base learners and (b) the method of
combining the individual predictions from the base learners.
Here, we summarize the more prominent ensemble models
that are included in the pyESD package.

Bagging

Bagging ensemble models consist of ML algorithms that
generate several instances of base learners using random sub-
sets of the training data and then aggregate the informa-
tion for the final estimates (Breiman, 1996a; Quinlan, 1996).
Such algorithms integrate randomization into the learning
process and thereby often ensure the reduction of the vari-
ance of the individual base learners (e.g., decision trees).
Moreover, bagging techniques constitute a simple way to
improve model performance without the need to adapt the
underlying base algorithm. Since bagging works well with
complex algorithms like decision trees, we also consider tree-
based ensembles for the pyESD package. More specifically,
we include implementations of the random forest (Random-
Forest) and extremely randomized tree (ExtraTree) methods
in addition to classical bagging.

The RandomForest algorithm builds multiple independent
tree-based learners. The trees can be constructed with the full
set of predictors or a random subset. Each tree is constructed
from a random sample of the training data in a bootstrapping
process (Breiman, 2001). The algorithm uses the remaining
training data (i.e., out-of-bag data) to estimate the error rate
and evaluate the model’s robustness. In contrast, the Extra-
Tree algorithm considers the discriminative thresholds from
each predictor rather than the subset of predictors (Geurts et
al., 2006). This usually adds more weight to the variance re-
duction and slightly improves the model bias. Tree-based en-
sembles are particularly suitable for establishing a nonlinear
relationship between predictors and predictands (e.g., Pang
et al., 2017; He et al., 2016).

Boosting

In recent years, boosting models have also been applied
for the downscaling of climate information (e.g., Fan et
al., 2021; Zhang et al., 2021). Boosting models are meta-
estimators that are built sequentially from multiple base
learners with the primary objective of reducing the model

bias and variance. In principle, the method “boosts” weaker
base learners (i.e., estimators that perform only slightly bet-
ter than random guessing) by converting them into strong
ones in an iterative process. The technique assumes that the
base learning model is distribution-free (Schapire, 1999) and
iteratively improves the weaker base learners by applying
weights to the training data through the adjustment of the
input points with prediction errors from the previous predic-
tion (Schapire, 2003; Schapire and Freund, 2013). There are
many boosting algorithms due to the many possible meth-
ods of weighting the training data and tuning the weaker
base learners. In the pyESD package, we include (1) adap-
tive boosting (Adaboost), (2) gradient tree boosting (Gra-
dientBoost) with a gradient boosting algorithm by Fried-
man (2001), and (3) extreme gradient boosting (XGBoost).
A brief summary of each is provided below.

1. The Adaboost algorithm is a well-established model for
improving the accuracy of weak base learners (Freund
and Schapire, 1997). The model is adaptive in the sense
that the training data are sequentially adjusted based
on the previous performance of the weaker model. The
model uses a weighted majority vote (or sum) to com-
bine the individual prediction from the weaker learners
and produce a robust final prediction. The implemented
version uses a decision tree algorithm as the base esti-
mator to develop the boosted ensemble predictions.

2. The GradientBoost algorithm considers the boosting
process to be a numerical optimization problem that
minimizes a loss function in a stage-wise additive model
by adding weaker learners using a gradient descent pro-
cedure. This generalization allows the tuning of an arbi-
trary differentiable loss function which can be selected
based on a specific problem. Specifically, in pyESD,
squared errors are used in the minimization of the loss
function.

3. XGBoost, a recent extension of the GradientBoost al-
gorithm, is designed to reduce computational time and
improve model performance (Chen and Guestrin, 2016).
The model uses regularization terms to penalize the final
weights and prevent overfitting. The algorithm also uses
shrinkage and column subsampling techniques to avoid
overfitting. Moreover, the model can handle sparse data
by using a sparsity-aware split function.

Stacked generalization

The stacked generalization method (or “stacking”) has pre-
viously been used for the downscaling climate information
and has shown improved prediction robustness over singu-
lar models (e.g., Massaoudi et al., 2021; Gu et al., 2022).
It is designed to enhance prediction accuracy and general-
ity by taking advantage of the mutual complementarity of
the base-model predictions. The approach was introduced by
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Wolpert (1992) and demonstrated for regression tasks and
unsupervised learning by Breiman (1996b) and Leblanc and
Tibshirani (1996), respectively. In principle, the following
process is implemented: in the first step, the training data
and base models, referred to as level-0 data and level-0 mod-
els by Wolpert (1992), are used to generate the first set of
predictions. Then a meta-learning model (level-1 general-
izer) is used to optimally combine the previous predictions
(level-1 data) into final estimates. Lastly, the method applies
a cross-validation technique and generates new “stacked”
datasets for a final learning step. Generally, the performance
of stacked generalization is constrained by the attributes used
to generate the level-1 data and the type of algorithm used
for higher-level learning (Ting and Witten, 1999). We con-
sider these limitations by providing a wide range of models
that can be used as the level-0 models and the level-l gener-
alizer. The base learners can be selected from the different
ML models presented in the previous sections. The reader
is advised that previous studies (e.g., Reid and Grudic, 2009)
suggest the use of a more restrictive model like LassoCV and
ExtraTree as the meta-learner to prevent overfitting.

2.4 Model training

The process of training and testing the PP-ESD models is
the most critical stage in the downscaling procedure, since
it determines much of the robustness of the final models, as
well as the accuracy of the predictions they generate. The
process typically involves the following steps: (1) the ob-
servational records are separated into training and testing
datasets. (2) The training datasets are used to establish the
transfer functions that make up the PP-ESD models. (3) The
trained models are then evaluated on the independent test-
ing datasets (Sect. 2.5). In the model training process, hyper-
parameter optimization techniques (e.g., GridSearchCV) are
used to fine-tune the transfer function parameters, such as re-
gression coefficients, to optimize model performance. Cross-
validation (CV) techniques are applied to split the whole
training dataset into smaller training and validation data sec-
tions and allow the assessment and iterative improvement of
the model parameters during training while also preventing
overfitting (Moore, 2001; Santos et al., 2018). In this cate-
gory of techniques, the k-fold framework is the most used
for climate information downscaling models. It partitions the
training data into k equally sized and mutually exclusive sub-
samples, which are also referred to as folds (Stone, 1976;
Markatou et al., 2005). More specifically, for each iteration
step, one fold is used for model validation, and the remain-
ing k−1 folds are used for model training. The leave-one-out
CV technique (Lachenbruch and Mickey, 1968) is an alterna-
tive and has been used for the development of ESD models
(e.g., Gutiérrez et al., 2013). Cross-validation techniques rely
on the fundamental assumption of independent and identi-
cally distributed (i.i.d) data. They, therefore, treat the data
as a result of a generative process that has no memory of

previously generated samples (Arlot and Celisse, 2010). The
assumption of i.i.d might not be valid for time series data
(e.g., Bergmeir and Benítez, 2012) due to seasonal effects,
for example. To circumvent this problem, monthly boot-
strapped resampling and time series splitters are included in
the pyESD package. The pyESD.splitter module contains all
CV frameworks available for model training, including the
k-fold, leave-one-out, and other CV schemes. The validation
metrics used for optimizing the model parameters include the
coefficient of determination (R2) (Eq. 11), root mean squared
error (RMSE) (Eq. 13), mean absolute error (MAE) (Eq. 14),
and others that are summarized in Sect. 2.5. The final values
for the validation metrics, which reflect the model perfor-
mance during training, are arithmetic means of the individual
values for each iteration. In this paper, we refer to them as
CV performance metrics (i.e., CV R2, CV RMSE, and CV
MAE).

2.5 Model evaluation

In the process of downscaling climate information, best prac-
tice involves the use of stringent model evaluation schemes
with independent data outside the training data range (Wilby
et al., 2004). Retaining a section of the data as a testing
dataset (Sect. 2.4) is recommended if longer records (e.g.,
≥ 30 years) are available. It allows (a) a completely inde-
pendent evaluation of the trained model’s performance and
(b) an assessment of the sensitivity of the model to the cho-
sen training dataset. In the case of time series, the latter can
provide insights into the model’s sensitivity to the calibration
period and the temporal stationarity of the model’s transfer
functions. If the records are short (e.g., < 30 years), the CV
metrics (Sect. 2.4) can be used, albeit with caveats, as non-
ideal estimates for the model’s performance (e.g., Mutz et al.,
2021). For the remainder of this section, however, we will as-
sume that longer records and completely independent testing
datasets are available.

The PP-ESD model is evaluated on the basis of the model’s
predictions ŷ and the observed values y. In pyESD, the fol-
lowing performance metrics are implemented.

1. The coefficient of determination (R2) represents the
fraction of the predictand’s observed variance that can
be explained by the predictors. It can be seen as a mea-
sure of how well the model predicts the unseen data
(Wilks, 2011). The R2 for the predicted values ŷi in re-
lation to the observed data yi for i = 1, . . . , n samples
is defined as

R2 (y, ŷ)= 1−

n∑
i=1

(
yi − ŷi

)2
n∑
i=1
(yi − ȳ)

2
, (11)

where ȳ is the mean of the observed data,
n∑
i=1

(
yi − ŷi

)2 is the sum of squared residuals (SSR),
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and
n∑
i=1
(yi − ȳ)

2 is the total sum of squares (SST). R2

can range from −∞ to 1, where 1 is the best possible
score and negative values are indicative of an arbitrary,
worse model. An R2 value of 0 is indicative of a model
that would always predict the ȳ. In this case, the model
represents no improvement over simply using the mean
ȳ as a model.

Pearson’s correlation coefficient (PCC) evaluates the
linear correlation between the model predictions yi and
observed data xi . The PCC of 1 indicates a perfect pos-
itive correlation, −1 indicates a perfect anticorrelation,
and 0 indicates no correlation between the predicted and
observed values. The PCC for n samples is defined as

PCCxy =

n∑
i=1
(xi − x̄) (yi − ȳ)√

n∑
i=1
(xi − x̄)

2

√
n∑
i=1
(yi − ȳ)

2

, (12)

where the x̄ and ȳ are the means of the xi and xi values,
respectively.

The root mean squared error (RMSE) estimates the
mean magnitude of error between the predictions and
observations. The RMSE is given in the physical units
of the observed data and not standardized. Smaller val-
ues indicate better model performance. The RMSE for
predictions ŷi and observations yi of n samples is cal-
culated as

RMSE
(
y, ŷ

)
=

√√√√1
n

n∑
i=1

(
ŷi − yi

)2
. (13)

The mean absolute error (MAE) is a scale-dependent
accuracy measure that also provides information on the
errors between the predictions and observations. The
MAE is estimated as the sum of absolute errors nor-
malized by the sample size (n). The MAE is calculated
as

MAE
(
y, ŷ

)
=

1
n

n∑
i=1

∣∣ŷi − yi∣∣ . (14)

Additional metrics such as the mean squared error (MSE),
mean absolute percentage error (MAPE), maximum error,
adjusted R2 (Miles, 2014), and Nash–Sutcliffe efficiency
(NSE) (Nash and Sutcliffe, 1970) are included in pyESD.
However, the predicted values from the trained model and
their corresponding observed values can be evaluated using
other metrics not included in pyESD. For example, addi-
tional metrics like the model skill score E and the revised R2

(RRS), which combines correlation, bias measure, and the
capacity to capture variability, can be used (Onyutha, 2021).

We highlight that the limitations and assumptions underpin-
ning these metrics should be considered when interpreting
performance metrics. For example, the RMSE is sensitive to
outliers because the squaring of errors assigns more weight
to large errors. This implies that a single outlier can bias
its estimate and lead to a misinterpretation of extreme data
points in the predictand. Although MAE is less sensitive to
outliers compared to RMSE, its treatment of all errors with
equal weight may not adequately account for the impact of
extreme errors on model performance. Consequently, both
metrics should be interpreted with respect to the mean of the
observed values. On the other hand, the Pearson correlation
coefficient (PCC) assumes a linear relationship between the
predicted and observed values and a bivariate normal distri-
bution. However, distance correlation (Székely et al., 2007),
which is more computationally demanding and makes no as-
sumptions about the relationship or distribution, can be con-
sidered. Chaudhuri and Hu (2019) demonstrated a fast algo-
rithm that can be used to compute the distance correlation.

2.6 GCM–ESD coupling and local-scale predictions

The developed and tested PP-ESD model can finally be
coupled to coarse-scale climate information. If the PP-ESD
model was developed with the intention to downscale predic-
tions of future climate change, the next logical step is to cou-
ple it to GCM simulations forced with different greenhouse
gas concentration scenarios. Since PP-ESD is the bias-free
downscaling alternative to MOS-ESD, PP-ESD models may
be coupled to all GCMs, provided that the predictors are ad-
equately represented by the GCMs. This condition may be
alleviated to an extent by standardizing the simulated predic-
tor (Bedia et al., 2020). An analysis of the distribution simi-
larity between the observed and simulated predictors can be
conducted to test the assumption of representation. For ex-
ample, the Kolmogorov–Smirnov (KS) test, which is imple-
mented as part of the pyESD package utilities, is a nonpara-
metric statistical hypothesis test that can be used to evaluate
the null hypothesis (H0) that the observation-based predic-
tors and simulated predictors are of the same theoretical dis-
tribution.

The first step in ESD–GCM coupling is to utilize the GCM
output to recreate the predictors used in the training of the
ESD model. This may involve anything from constructing
simple temperature regional means to reconstructing multi-
variate indices for more complex climate phenomena. In the
case of index-based predictors such as NAO, EA, SCAN, and
others, the simulated indices are reconstructed by projecting
the pressure anomalies of the GCM onto the EOF loading
patterns of the predictors (e.g., Mutz et al., 2016). This en-
sures that the physical meaning of the index values is main-
tained. The ESD model then takes these simulated predictors
as input and generates local-scale predictions according to
the model’s transfer functions. The added value of the re-
sulting downscaling product can be evaluated by comparing
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the downscaled values to the raw outputs of different GCMs
and RCMs. Finally, the high-resolution local-scale predic-
tions can be used to drive climate change impact assessment
models to predict flood frequency (e.g., Padulano et al., 2021;
Hodgkins et al., 2017), agricultural changes (e.g., Mearns et
al., 1996), changes in water resources (e.g., Dau et al., 2021),
and more.

3 Illustrative case study: Neckar catchment

We demonstrate the complete downscaling workflow and
highlight most of the functionalities of the pyESD package
in an illustrative case study. The study uses the PP-ESD ap-
proach and is set in the Neckar catchment, a hydrological
catchment in southwestern Germany that consists of com-
plex mountainous terrain with topographic elevations be-
tween 200 and 1000 m above sea level (Fig. 2). The region
is climatically complex, since local climates are influenced
by atmospheric teleconnection patterns (e.g., NAO, EA, and
SCAND), orographic effects (e.g., Kunstmann et al., 2004),
and the Mediterranean climate (Bárdossy, 2010; Ludwig et
al., 2003). The catchment experiences maximum precipita-
tion (80–120 mm per month) and temperature (15–18 ◦C)
in the summer months (Fig. 3). The catchment serves as a
water supply for drinking and agricultural activities (Selle et
al., 2013). We use this catchment for our case study because
(a) it is a suitable region to test the strengths and limitations
of the pyESD downscaling package, and (b) generating 21st
century climate change estimates can contribute to regional
climate impact assessments and adaptation.

In this case study, we apply pyESD to predict local tem-
perature and precipitation changes for 22 weather stations lo-
cated in the catchment (Table 1) and demonstrate the pack-
age’s flexibility by performing experiments with the differ-
ent modeling alternatives. We show most of the PP-ESD
steps required for generating robust downscaling products.
These steps include (1) predictor selection and construction;
(2) model selection, training, and cross-validation; (3) model
evaluation; and (4) generating future predictions through
ESD–GCM coupling (see Sect. 3.2 for details). We note that
the focus of the case study is more on demonstrating the
pyESD workflow and functionality and less on detailed dis-
cussions of the downscaled results and their implications. In
order to allow readers to reproduce and learn from this ap-
plication example, we only use public and freely available
datasets (see Sect. 3.1 for more details about the data). More-
over, all scripts used in this study (i.e., data preprocessing,
modeling, and visualization scripts) are provided in the code
and data availability section.

3.1 Datasets

3.1.1 Weather station data

Monthly precipitation and temperature station data from the
German Weather Service (Deutscher Wetterdienst, DWD ac-
cessible from https://cdc.dwd.de/portal/, last access: 30 Oc-
tober 2023) served as the predictand time series in this study.
We considered all weather station records that (a) origi-
nated from measurements in the Quelle–Enz subcatchment,
(b) covered the time period of 1958 to 2020, and (c) were
at least 30 years in length. Even though there is no well-
established and universally valid recommendation for the
minimum record length in a PP-ESD approach (e.g., Hewit-
son et al., 2014), we chose a conservative 30-year threshold
to ensure the models can be evaluated with truly independent,
retained data (see Sect. 2.5). The remaining weather stations
are summarized in Table 1. These were loaded into predic-
tand station objects (SOs) as follows.
1 from pyESD.Weatherstation import
read_station_csv
2 variable = "Temperature" #or
'Precipitation'
3 SO = read_station_csv(filename,
variable)

3.1.2 Reanalysis datasets

The ERA5 reanalysis products, produced and managed by
the European Centre for Medium-Range Weather Forecast-
ing (ECMWF), were used to construct the predictors in this
study. ERA5 is based on historical records from various ob-
servational systems (e.g., oceans buoys, aircraft, weather sta-
tions) that are dynamically interpolated with numerical fore-
casting models in a four-dimensional variational (4D-Var)
data assimilation scheme to generate global, homogeneous,
spatially gridded datasets (Bell et al., 2021). It has a spatial
resolution of approximately 31 km (or TL639) and is avail-
able as hourly data, covering 1950 to the present day with a
5 d lag of data availability (Hersbach et al., 2020). For this
study, however, mean monthly values were used in the con-
struction of potential predictors (Table 2). These are publicly
available from the Copernicus Climate Data Store (CDS) (ac-
cessible at https://cds.climate.copernicus.eu, last access: 30
October 2023).

3.1.3 GCM simulation datasets

For the ESD–GCM coupling, the predictors were recon-
structed from an MPI-ESM (Max Planck Institute Earth Sys-
tem Model) GCM simulation that follows the protocols of
the World Climate Research Programme’s (WCRP) Cou-
pled Model Intercomparison Project phase 5 (CMIP5) (Tay-
lor et al., 2012). We highlight that CMIP5 model output was
chosen in this illustrative study to enable consistent com-
parison with previous regional climate models over the re-
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Table 1. IDs (specific to this study), names, coordinates, and elevation (m) for weather stations recording (a) precipitation and (b) tempera-
ture.

(a) ID Name Longitude Latitude Elevation

1 Baltmannsweiler–Hohengehren 9.45 48.76 457
2 Boll Bad 9.62 48.64 423
3 Eschbronn–Mariazell 8.47 48.19 716
4 Fellbach 9.27 48.81 280
5 Goeppingen–Jebenhausen 9.63 48.69 368
6 Haigerloch–Weildorf 8.77 48.37 524
7 Hechingen 8.98 48.38 518
8 Heubach Ostalb 9.94 48.80 450
9 Horb–Betra 8.66 48.41 544
10 Klippeneck 8.75 48.11 973
11 Lorch Kreis Ostalb–Waldhausen 9.64 48.78 296
12 Metzingen 9.27 48.54 354
13 Oberndorf Neckar 8.58 48.29 516
14 Rosenfeld–Bickelsberg 8.69 48.29 676
15 Stoetten 9.86 48.67 734
16 Stuttgart–Echterdingen 9.22 48.69 371
17 Stuttgart (Schnarrenberg) 9.20 48.83 314
18 Winterbach Rems–Murr–Kreis 9.47 48.80 240

(b) ID Name Longitude Latitude Elevation

1 Hechingen 8.98 48.38 518
2 Klippeneck 8.75 48.11 973
3 Lenningen–Schopfloch 9.53 48.54 758
4 Murrhardt 9.57 48.97 344
5 Rottweil 8.64 48.18 588
6 Schwaebisch Gmuend–Strassdorf 9.80 48.78 415
7 Stoetten 9.86 48.67 734
8 Stuttgart–Echterdingen 9.22 48.69 371
9 Stuttgart (Schnarrenberg) 9.20 48.83 314

Table 2. Potential predictors considered for PP-ESD models and the frequency of their selection for (a) precipitation and (b) temperature
stations (based on the final predictor selection method).

Name Description (a) (b)

1 t2m Near-surface temperature 8 8
2 tp Total precipitation 18 9
3 msl Mean sea level pressure 4 6
4 v10 Near-surface meridional wind 7 7
5 u10 Near-surface zonal wind 10 7
6 NAO North Atlantic Oscillation index 9 5
7 EAWR East Atlantic–Western Russian oscillation index 11 3
8 SCAN Scandinavian oscillation patterns 11 5
9 EA East Atlantic patterns 10 4
10 v_plev Meridional wind at pressure levels 250, 500, 700, 850, and 1000 hPa 9, 7, 7, 10, 8 7, 3, 8, 5, 7
11 u_plev Zonal wind at pressure levels 250, 500, 700, 850, and 1000 hPa 4, 9, 7, 6, 11 7, 5, 5, 5, 8
12 r_plev Relative humidity at pressure levels 250, 500, 700, 850, and 1000 hPa 7, 8, 15, 7, 11 7, 4, 5, 5, 6
13 z_plev Geopotential height at pressure levels 250, 500, 700, 850, and 1000 hPa 3, 6, 4, 6, 5 4, 6, 5, 7, 5
14 t_plev Temperature at pressure levels 250, 500, 700, 850, and 1000 hPa 10, 9, 7, 7, 6 5, 5, 6, 8, 9
15 d2m Near-surface dew-point temperature 6 5
16 dtd Dew-point temperature depression at pressure levels 250, 500, 700, 850, and 1000 hPa 7, 6, 13, 7, 11 4, 2, 2, 3, 1
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Figure 2. Weather station locations and elevations in the Neckar catchment. The red circles represent temperature stations (ID corresponds
to Table 1b), and the black circles represent precipitation stations (ID corresponds to Table 1a). The color map shows the elevation and
delineates the extent of the catchment.

gion and any GCM outputs (e.g., CMIP6) can be combined
with pyESD. For the case study, we consider several sim-
ulations (accessible at https://cds.climate.copernicus.eu, last
access: 30 October 2023) forced with different RCP scenar-
ios (Moss et al., 2010) to predict the local-scale response
to the plausible range of forcings. In order to highlight the
added value of the downscaled product, the local-scale fu-
ture estimates are compared to the coarser predictions of sev-
eral GCMs (i.e., MPI-ESM, CESM1-CAM5 of the National
Center for Atmospheric Research – NCAR, Kay et al., 2015,
and HadGE2-ES of the Hadley Centre of the UK Met Office,
Collins et al., 2008) and RCMs (CORDEX-Europe simula-
tion with MPI-CSC-REMO2009 driven with boundary con-
ditions from MPI-ESM).

3.2 Methods

3.2.1 Predictor selection and construction

The considered predictors must be large-scale climate ele-
ments that are both physically and empirically relevant to
predicting the local-scale climate variability in the vicinity
of the weather station. The physical relevance of considered

predictors (Table 2) is established through previous studies
and general climatological merit. We then apply a monthly
standardizer transformer to remove the seasonality trends and
scale the individual predictors. The empirical relationship
with the predictand is then evaluated with PCCs defined in
Eq. (12). Finally, first estimates of their predictive skills are
obtained through the application of the package’s recursive,
sequential, and tree-based algorithms in a CV setting. These
preliminary experiments are conducted to refine the selec-
tion of predictors further. After the predictor selection pro-
cess, each weather station and predictand is associated with
a particular subset of predictors (Table 2) that are later used
to train the final ESD model for the station (Sect. 3.2.2).

The steps above are implemented with pyESD as follows.

1. We create a list (predictors) of all considered pre-
dictors with physical relevance to the predictand. We
then use the set_predictors method of the station ob-
ject (SO) to read the data in the local directory (pre-
dictordir) and construct regional means with a de-
fined radius of 200 km around the station location.
These are regional means of relevant climate variables
and serve as the simplest type of predictor. For the
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Figure 3. Long-term (1958–2020) monthly means of (a) precipitation and (b) temperature, averaged over all stations in the catchment. The
error bars are the standard deviations that represent inter-station variability. The maximum precipitation and temperature in the catchment
are recorded in the summer season (JJA).

construction of indices for atmospheric teleconnection
patterns (i.e., NAO, EA, SCAN, and EAWR), which
serve as further predictors, the package automatically
calls the pyESD.teleconnections module if the pattern’s
acronym is included in the list of predictors.
1 predictors = ["t2m", "tp", "NAO"
,..., "nth predictor"]
2 SO.set_predictors(variable,
predictors, predictordir,
radius=200) # radius in km

2. We apply the monthly standardizer and then use the pre-
dictor_correlation method to estimate the PCC between
the predictand and predictors.
1 SO.set_standardizer(variable,
standardizer = MonthlyStandardizer
(detrending=True, scaling=True))
2 df_corr = SO.predictor_correlation
(variable, predictor_range,
ERA5Data, fit_predictors=True,
fit_predictand=True,
method="pearson")

3. The final refinement of the predictor list is implemented
as part of the fit method. We use the set_model method
to define the ARD regressor, TimeSeriesSplitter CV
setting, and call the fit method in a loop through the
three types of selector methods.
1 SO.set_model(variable,
method="ARD",
cv=TimeSeriesSplit(n_splits=10))
2 selector_methods = ["Recursive",
"TreeBased", "Sequential"]
3 for selector_method in
selector_methods:
4 SO.fit(variable, predictor_range,
ERA5Data, fit_predictors=True,
predictor_selector=True,
selector_method =
selector_method, select_regressor)

3.2.2 Model training and validation

Model training and validation are performed separately for
each predictand and weather station. The models are trained
in a CV setting for the period 1958–2010 and then assessed
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on independent retained data for the period 2011–2020. In
the training process, we use seven different methods before
deciding on an estimator for the final model. These methods
include at least one representative for each of the families of
ML algorithms (see Sect. 2.3) except SVR. We exclude SVR
due to its high computational demands for optimization and
to ensure the easy reproducibility of the illustrative example
on less powerful computers. We perform the initial model
training and validation with the LassoLarsCV, ARD, MLP,
RandomForest, XGBoost, bagging, and stacking regressors
using a KFold(n_splits=10) validation scheme for hyperpa-
rameter optimization. For the stacking regressor, we use all
the other regressors as base estimators (i.e., level-0 learners)
and ExtraTree as the meta-learner. The final ESD model is
then selected based on the CV metrics (i.e., CV R2 and CV
RMSE) of the individual models.

The steps above are implemented with pyESD as follows:
the models are trained with the fit method as described
within Sect. 3.2.2. The cross_validate_and_predict method
is applied to calculate the CV metrics and generate the
predictions for the training period 1958–2010. The predict
method is then used to generate predictions for the 2011–
2020 period from the models trained in the 1958–2010
period. Finally, the evaluate method is used to obtain
the model performance metrics based on the 2011–2020
predictions and retained data. The R2, RMSE, and MAE
(see Sect. 2.5) are used as both CV and evaluation metrics in
this study. The ERA5 reanalysis product is specified as the
predictor dataset for all these methods.
1 cv_score_1958to2010,
predict_1958to2010 =
SO.cross_validate_and_predict(variable,
from1958to2010, ERA5Data)
2 predict_2011to2020 =
SO.predict(variable, from2011to2020,
ERA5Data)
3 scores_2011to2020 =
SO.evaluate(variable, from2011to2020,
ERA5Data)

3.2.3 Future prediction

Future predictions are generated by coupling the final ESD
models to GCM simulations for the 21st century. In the il-
lustrative example, we use MPI-ESM simulations that were
forced with greenhouse gas concentration scenarios RCP2.6,
RCP4.5, and RCP8.5. This coupling is achieved as fol-
lows: the predictors selected during model training are re-
constructed from the GCM output. These simulated predic-
tors are standardized with the MonthlyStandardizer param-
eters obtained from the reanalysis predictors to ensure data
homogenization. Prediction anomalies are calculated using
the training period 1958–2010 as a reference. The result-
ing RCP-specific 21st century prediction anomaly time se-
ries are then used to calculate the annual means (2020–2100),

as well as the seasonal (DJF, MAM, JJA, SON) and annual
30-year climatologies for the mid-century (2040–2070) and
the end of the century (2070–2100). The predicted anomalies
are then back-transformed to their respective absolute values
for all stations and compared to the raw outputs of GCMs
(i.e., CESM1-CAM5, HadGE2-ES, EURO-CORDEX, and
MPI-ESM; see Sect. 3.1.3) using the nearest grid point. In
pyESD, a future prediction can be generated by using the
predict method (Sect. 3.2.2) and specifying the GCM output
as the predictor data source.

The PP-ESD approach relies on the assumption that the
predictors are well-represented by the GCM. We therefore
perform KS tests to evaluate the distribution similarity be-
tween GCM and ERA5 predictors for the datasets’ tempo-
ral overlap. The KS statistic lies within the 0–1 range, with
lower values indicating greater distribution similarity. For
our two-sided tests, we reject the null hypothesis (H0 means
the datasets have identical underlying distributions) in the
case of p values being smaller than 0.05. We perform the
test on the raw monthly time series, monthly anomalies, and
standardized anomalies in order to isolate the distributional
differences of the first and second moments error propaga-
tion (Bedia et al., 2020). The KS_stat function implemented
in the pyESD.utils module is used to test several of the infor-
mative predictors (such as tp, t2m, r850, u850, and v850).

4 Results and discussion

In this section, we present and discuss the results of the illus-
trative case study. The discussion places more emphasis on
the functionalities of the package than the climatological im-
plications. Specifically, we discuss the results of the predictor
selection step (Sect. 4.1), the training and validation of the
model (Sect. 4.2), the final model performance (Sect. 4.3),
and the future predictions generated through the ESD–GCM
coupling (Sect. 4.4).

4.1 Predictor selection

All implemented predictor selection methods demonstrated
merit, and the correlation analyses revealed strong linear
dependencies between the predictand variables and poten-
tial predictors (Figs. A1 and A2). For example, precipita-
tion records are highly correlated (PCC ≥ 0.5) with large-
scale total precipitation (tp), atmospheric relative humidity
(r), and zonal wind velocity (u) up to the mid-tropospheric
level (i.e., 500–1000 hPa) (Fig. A1). The temperature records
are highly correlated (PPC ≥ 0.7) with near-surface tem-
perature (t2m), atmospheric temperature (t on all levels),
and dew-point temperature depression (dtd) up to the mid-
troposphere (Fig. A2). Both predictands also show a good
correlation (PCC≥ 0.25) with the indices of the atmospheric
teleconnection patterns (i.e., NAO, EA, EAWR, and SCAN).
The predictor selection methods (i.e., recursive, tree-based,
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Figure 4. Cross-validation R2 and RMSE for the predictor selection methods (recursive in red, tree-based in green, and sequential in black)
for precipitation (a, c) and temperature (b, d) station records. The individual methods performed similarly well, suggesting that each of the
implemented methods may be used to refine the list of potential predictors.

and sequential) perform similarly for all the precipitation
and temperature stations (Fig. 4). More specifically, the three
methods yield CV R2 values of 0.5 to 0.75 (Fig. 4a), CV
RMSE values of ≤ 25 mm per month (Fig. 4c) for precipita-
tion, CV R2 values of ≥ 0.95 (Fig. 4b), and CV RMSE val-
ues of 0.3 to 0.6 ◦C (Fig. 4d) for temperature stations. Since
the methods did not show a significant difference in perfor-
mance, the recursive method was applied for the refinement
of the set of predictors, since it allows more flexibility and
a stepwise iteration of several combinations of potential pre-
dictors (e.g., Mutz et al., 2021; Hammami et al., 2012; Li
et al., 2020). The frequencies with which specific predictors
were selected using the recursive method are listed in Ta-
ble 2.

The predictors tp and t2m were included for most of the
precipitation and temperature station records, respectively.
This indicates that variations in the larger-scale precipita-
tion and temperature fields already explain much of the local-
scale predictand variability in the vicinity of the weather sta-
tions. Many of the refined predictor sets also included indices
of the NAO (9 of 18 precipitation stations, 5 of 9 temperature
stations), SCAN (11 of 18 precipitation stations, 5 of 9 tem-
perature stations), EA (10 of 18 precipitation stations, 4 of 9

temperature stations), and EAWR (11 of 18 precipitation sta-
tions, 3 of 9 temperature stations). This confirms the strong
manifestation of Northern Hemisphere atmospheric telecon-
nection patterns in the local-scale precipitation and temper-
ature in the catchment (e.g., Bárdossy, 2010; Ludwig et al.,
2003). Their exclusion from the other stations is likely due
to the fact that their variability might already be captured by
zonal and meridional wind speeds and synoptic pressure vari-
ables like geopotential height (z) and mean sea level pressure
(slp) (Hurrell and Van Loon, 1997; Hurrell, 1995; Barnston
and Livezey, 1987; Maraun and Widmann, 2018). Relative
humidity was selected as a predictor for most of the precip-
itation stations. This is consistent with the results of many
other studies (e.g., Gutiérrez et al., 2019; Hammami et al.,
2012) and our physical understanding of it as a measure of
humidity that takes saturation vapor pressure into considera-
tion.

4.2 Performance of individual estimators

We experimented with seven different regressors before de-
ciding on the regressor that would be used to establish the
final ESD models (see Sect.3.2.2). A total of 126 precipita-
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Figure 5. Cross-validation R2 and RMSE box plots comparing the experimental regressors’ performance for all the precipitation (a, c) and
temperature (b, d) stations. The red lines inside the box represent the median, the lower and upper box boundaries indicate the 25th and 75th
percentiles, and the lower and upper error lines show the 10th and 90th percentiles, respectively. The black plus marks show the outliers
outside the range of the 10th and 90th percentile.

tion and 63 temperature experimental models were generated
with the seven regressors. Overall, most of the experimen-
tal models performed reasonably well with a mean CV R2

of ≥ 0.5 for precipitation and ≥ 0.9 for temperature stations
(Fig. 5). The MLP models, on the other hand, performed
relatively poorly with CV R2 values of ≤ 0.4 for precipita-
tion and ≤ 0.9 for temperature. This is due to the fact that
MLP model calibration requires longer records and a more
complex architecture to capture most of the informative pat-
terns in the training data. This study, however, uses a sim-
plified architecture to make the results reproducible without
higher computational requirements. The result can likely be
improved with more data (e.g., by using daily values) and
an increase in hidden layers (Sect. 2.2.3). The overall perfor-
mance of the experimental models underlines the methods’
suitability for downscaling.

Among the better-performing precipitation models, the
LassoLarsCV and ARD methods yielded the best results (CV
R2
= 0.55–0.75, CV RSME= 20–23 mm per month), fol-

lowed by the RandomForest and bagging ensembles (CV
R2
= 0.48–0.70, CV RSME= 21 to 25 mm per month), as

well as the XGBoost ensemble regressor (CV R2
= 0.39–

0.65, CV RMSE= 22–27 mm per month). Stacking all ex-
perimental models into a meta-regressor also yields good
results (CV R2

= 0.45–0.7, CV RMSE= 20–26 mm per
month) despite the poor performance of the MLP regressors.
Based on these results, the LassoLarsCV, ARD, RandomFor-
est, and bagging regressors were selected as the final base
learner for the stacking model. ExtaTree was chosen as the
final meta-learner to prevent overfitting issues by placing an
additional discriminative threshold on all the base regressor’s
predictions (Geurts et al., 2006).

The experimental temperature models showed similar pat-
terns in performance but performed better overall. Lasso-
LarCV and ARD emerge as the best-performing models
(CV R2

= 0.85–0.98, CV RMSE= 0.2–0.6 ◦C), followed by
the RandomForest and bagging regressors (CV R2

= 0.8–
0.96, CV RMSE= 0.3–0.7 ◦C), as well as the XGBoost
and stacking ensemble regressors (CV R2

= 0.75–0.96, CV
RMSE= 0.3–0.8 ◦C). Therefore, we also selected stacking
(with LassoLarsCV, ARD, RandomForest, bagging) for the
final temperature models, too.
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Figure 6. Prediction example for the Hechingen station using the final regressor for precipitation (a, c) and temperature (b, d). The top
panels (a, b) show the linear relationship between the predictions and observed values, as well as the PCC (R value) for the testing data
(blue-colored circles). The bottom panels (c, d) show the 1-year moving average of the observed (green, solid) and ERA5-driven predictions
for the training period (blue, dash-dotted) and the testing period (red, dashed).

4.3 Performance of the final estimator

Following the analysis of the seven experimental models
(Sect. 4.2), the recursive predictor selection method and
stacking learning model (with LassoLarsCV, ARD, Random-
Forest, and bagging) were selected for the generation of the
final ESD models. The models were trained on the 1958–
2010 data in a CV setting and evaluated on the retained
data in the 2011–2020 period. R2, RMSE, and MAE were
used as performance metrics for the CV setting and the fi-
nal evaluation (Tables 3 and 4). The models’ performance
was good overall but varied notably between different sta-
tions. The prediction skill estimates were higher for temper-
ature than for precipitation. For temperature (Table 4), the
explained variance estimates (“Fit R2”) are in the range of

0.81–0.98 (µ= 0.94), and CV R2 values are in the range of
0.84 to 0.98 (µ= 0.93), whereas for precipitation (Table 3),
the explained variance estimates are in the range of 0.58–0.84
(µ= 0.71), and CV R2 values are in the range of 0.54–0.72
(0.65). The accuracy measures display a similar discrepancy
with CV RMSE of 0.3–0.6 ◦C (µ= 0.42 ◦C) and CV MAE
of 0.2–0.50 ◦C (µ= 0.34 ◦C) for temperature, as well as CV
RMSE of 20–24 mm per month (µ= 21 mm per month) and
CV MAE of 14–18 mm per month (µ= 16 mm per month)
for precipitation.

The final model evaluation using independent, retained
data from 2011–2020 yielded R2 values of up to 0.95 as well
as average RMSE and MAE of ∼ 1.0 ◦C for temperature and
R2 values of up to 0.74, average RMSE of 22 mm per month,
and MAE of 17 mm per month for precipitation. The discrep-
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Table 3. Model performance metrics (i.e., R2, RMSE, and MAE) for all the precipitation stations. The final ESD models were trained in a
CV setting on datasets from 1958–2010 and evaluated on independent, retained data from 2011–2020.

ID Name (Fit) R2 CV R2 CV RMSE CV MAE R2 RMSE MAE

1 Baltmannsweiler–Hohengehren 0.71 0.67 20 15 0.63 22 18
2 Boll Bad 0.70 0.69 21 15 0.60 24 19
3 Eschbronn–Mariazell 0.74 0.69 20 16 0.59 23 18
4 Fellbach 0.61 0.57 20 15 0.59 20 15
5 Goeppingen–Jebenhausen 0.71 0.68 21 16 0.62 23 18
6 Haigerloch–Weildorf 0.64 0.62 20 15 0.74 17 13
7 Hechingen 0.63 0.61 20 15 0.74 17 13
8 Heubach Ostalb 0.78 0.65 24 18 0.65 25 21
9 Horb–Betra 0.84 0.72 21 16 0.74 21 16
10 Klippeneck 0.67 0.63 21 16 0.70 21 17
11 Lorch Kreis Ostalb–Waldhausen 0.79 0.72 21 15 0.64 24 20
12 Metzingen 0.79 0.61 20 16 0.64 20 16
13 Oberndorf Neckar 0.75 0.71 23 17 0.66 28 22
14 Rosenfeld–Bickelsberg 0.70 0.69 20 15 0.70 21 16
15 Stoetten 0.75 0.72 23 17 0.68 25 20
16 Stuttgart–Echterdingen 0.61 0.56 20 14 0.68 16 13
17 Stuttgart (Schnarrenberg) 0.58 0.54 20 14 0.50 21 15
18 Winterbach Rems–Murr–Kreis 0.72 0.66 20 15 0.61 23 18

Table 4. Model performance metrics (i.e., R2, RMSE, and MAE) for all the temperature stations. The final ESD models were trained in a
CV setting on datasets from 1958–2010 and evaluated on independent, retained data from 2011–2020.

ID Name Train R2 CV R2 CV RMSE CV MAE R2 RMSE MAE

1 Hechingen 0.96 0.96 0.30 0.30 0.93 1.3 1.2
2 Klippeneck 0.94 0.94 0.40 0.30 0.94 1.3 1.2
3 Lenningen–Schopfloch 0.95 0.93 0.50 0.40 0.91 0.9 0.7
4 Murrhardt 0.81 0.84 0.60 0.50 0.77 1 0.8
5 Rottweil 0.94 0.92 0.50 0.40 0.92 1.1 1
6 Schwaebisch Gmuend–Strassdorf 0.89 0.85 0.60 0.50 0.91 0.5 0.4
7 Stoetten 0.98 0.98 0.30 0.20 0.94 1.4 1.4
8 Stuttgart–Echterdingen 0.98 0.97 0.30 0.20 0.94 1.5 1.4
9 Stuttgart (Schnarrenberg) 0.98 0.96 0.30 0.30 0.95 1.6 1.5

ancy in temperature and precipitation model performance is
unsurprising, since the thermodynamics and atmospheric dy-
namics controlling precipitation variability are more difficult
to represent (e.g., Shepherd, 2014). Regardless, the overall
performance speaks in favor of applying the study’s approach
to downscale midlatitude climate in complex terrain. More-
over, the models’ similar performance during CV and the fi-
nal evaluation indicates that the models were not overfitted
and that the predictand–predictor relationships hold outside
the observed period. Finally, it is worth noting that the stack-
ing regressor performed better than the individual base mod-
els, even when all the potential regressors of the initial exper-
iments (Sect. 4.2) were stacked into a meta-regressor. Such
improvements demonstrate the advantage of the ease of ex-
perimentation through a package like pyESD.

We visualize a prediction example (Fig. 6) to (a) provide a
less abstract presentation of these results and (b) demonstrate

the type of figure generated by the plotting utility functions
in the pyESD.plot module. The figure depicts the predictions
generated by the final ESD model for the Hechingen station,
a station that records precipitation and temperature (station
ID 7 and 1, respectively). The observed and predicted val-
ues for 2011–2020 are highly correlated, with PCCs of 0.85
(Fig. 6a) for precipitation and 0.97 (Fig. 6b) for tempera-
ture. The time series comparisons also demonstrate the mod-
els’ abilities to predict the variability of the observed val-
ues in both the training and testing period (Fig. 6a and b).
Prior to this study, PP-ESD models had not been directly ap-
plied to the weather stations in the catchment. However, our
models are among the best performing for temperature and
precipitation when we compare them to models from other
studies across Europe (e.g., Gutiérrez et al., 2019; Hertig et
al., 2019; Schmidli et al., 2007). For instance, Gutiérrez et
al. (2019) performed an intercomparison of statistical down-
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Figure 7. Predicted regional annual means of precipitation in response to (a) RCP2.6 (black), (b) RCP4.5 (red), and (c) RCP8.5 (blue). The
solid lines represent the values averaged over all stations, and the shaded boundaries indicate the corresponding variability range (1 standard
deviation). The time series are smoothed with a 1-year moving average with a centered mean.

scaling model performance for 86 stations across Europe us-
ing the MOS, PP, and WG methods. The Spearman correla-
tion of the downscaled and observed values yielded R val-
ues in the range of ∼ 0.0–0.7 (with many stations ≤ 0.5) for
precipitation and 0.3–0.95 for temperature. These compar-
isons also underline the suitability of the pyESD methods for
downscaling climate information even in complex mountain-
ous regions.

4.4 Prediction of local responses to 21st century
climate change

The predictions of local precipitation and temperature re-
sponses to 21st century climate change were generated by
coupling the final ESD models to MPI-ESM simulations
forced with greenhouse gas concentration scenarios RCP2.6,
RCP4.5, and RCP8.5 (Sect. 3.2.3). The results are presented
as deviations from the monthly long-term means of the train-
ing period (1958–2010) and referred to as “anomalies” here-
after. The annual mean anomaly time series were computed
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Figure 8. (a) Observed precipitation (1958–2100) as well as seasonal (i.e., spring – MAM, summer – JJA, autumn – SON, and winter – DJF)
and annual end-of-century (30-year) precipitation climatologies as a result of RCP2.6 (b) and RCP8.5 (c) forcing. Brown (green) indicates a
decrease (increase) in precipitation relative to the observed means (1958–2010).

with a 1-year moving average with a centered mean (Figs. 7
and 9).

The precipitation predictions (Fig. 7) for RCP8.5
(RCP4.5) show a strong (weak) positive trend towards the
end of the century. This trend is even more pronounced for
the predicted temperatures (Fig. 9) in the catchment. The pre-
dicted precipitation changes vary greatly between weather
stations. Furthermore, the RCPs change the magnitude but
not the pattern of the predictions for each station. For in-
stance, stations that show an increase (decrease) in precip-
itation for the RCP2.6 predict a greater increase (decrease)
in response to RCP4.5 and RCP8.5. The annual and sea-
sonal 30-year end-of-century climatologies show an over-
all increase in precipitation in response to both RCP2.6 and
RCP4.5 (Fig. 8) for most of the stations. The annual end-of-
century climatologies deviate from the present day (1958–
2010) by ca. −5 to 20 mm per month for RCP8.5 and ca. ≤
5 mm per month for RCP2.6. Overall, the ESD models pre-
dict a precipitation increase of ca. 10 %–20 % until the end of
the century. Furthermore, the seasonal climatologies reveal a

shift of maximum precipitation away from the summer sea-
son for some stations. Such shifts in seasonality and an over-
all decrease in summer precipitation have previously been
predicted (e.g., Gobiet et al., 2014; Paparrizos et al., 2017;
Feldmann et al., 2013). Prior to this study, no ESD–GCM-
based predictions of the 21st century precipitation changes
had been developed for the weather stations of the catch-
ment. However, the models’ predictions of the precipitation
response to higher greenhouse gas concentration scenarios
are comparable to coarser predictions by other studies using
RCMs or ESD models (Feldmann et al., 2013; Kunstmann et
al., 2004; Paparrizos et al., 2017; Lau et al., 2013). The pre-
cipitation predictions generated in this case study can be used
further for climate impact assessments, such as assessments
of the probability of flooding and drought across the hydro-
logical catchment. The projected shifts in seasonality across
the catchment represents potentially valuable information for
agricultural planning.

The predicted temperature anomalies (Fig. 9) reveal a
strong (weak) positive trend for RCP8.5 (RCP4.5). The end-
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Figure 9. Predicted regional annual means of the temperature in response to (a) RCP2.6 (black), (b) RCP4.5 (red), and (c) RCP8.5 (blue). The
solid lines represent the values averaged over all stations, and the shaded boundaries indicate the corresponding variability range (1 standard
deviation). The time series are smoothed with a 1-year moving average with a centered mean.

of-century climatologies reveal only moderate warming of
ca. −0.5 to 1 ◦C for RCP2.6 and significant warming (ca. 2–
4 ◦C) for all seasons in response to RCP8.5 (Fig. 10). More
specifically, the investigated region is predicted to experience
the most warming (≥ 3 ◦C) in the summer season. There are
few differences in predicted warming between the stations of
the catchment. Generally, the estimated magnitude of warm-
ing towards the end of the century is in agreement with the
IPCC report (IPCC, 2021) and other downscaled estimates
(e.g., Kunstmann et al., 2004; Gutiérrez et al., 2019). The

predicted warming would likely implicate societal and eco-
logical systems and stresses the need for efficient adaptation
and mitigation strategies.

The case study highlights the efficiency and robustness
of the downscaling steps implemented in the pyESD pack-
age. However, as noted in previous sections, the accuracy
of the predictions generated by a GCM–ESD model cou-
pling relies on the predictors being adequately represented by
the GCMs. KS tests were performed to evaluate this for the
temporal overlap (1979–2000) between the ERA5 reanalysis
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Figure 10. (a) Observed temperature (1958–2100) as well as sea-
sonal (i.e., spring – MAM, summer – JJA, autumn – SON, and win-
ter – DJF) and annual end-of-century (30-year) temperature clima-
tologies as a result of RCP2.6 (b) and RCP8.5 (c) forcing. Blue
(red) indicates a decrease (increase) in temperature relative to the
observed means (1958–2010).

product and the MPI-ESM GCM output (Sect. 3.2.3). Results
from these tests show significant differences in the distribu-
tion of ERA5 and MPI-ESM when the raw monthly time
series are considered, thus violating the assumptions of the
PP-ESD approach. However, this issue does not persist for
monthly standardized anomalies of precipitation and temper-
ature (Fig. 11). Previous studies yielded similar results when
using seasonal standardizers (Bedia et al., 2020) and princi-
pal component transformations (Benestad et al., 2015a), both
of which are included in the pyESD package.

4.5 Comparison of GCM and ESD-based predictions

A comparison of the ESD-generated annual 20-year clima-
tologies for the mid-century (2040–2060) and the end of
the century (2080–2100) to the model output of GCMs and
RCMs (i.e., EURO-CORDEX) reveals several differences.

The GCMs (MPI-ESM and HadGEM2) predict ∼ 20 mm
per month (∼ 30 %) higher precipitation rates than the ESD
models and RCMs. The ESD-based precipitation predictions
of this study are closest to the RCM estimates but ∼≥ 5 mm
per month higher in magnitude for most of the stations
(Fig. 12). The closeness of the ESD-based and RCM-based
estimates underlines the added value of our ESD approach
for downscaling precipitation. However, there are signifi-
cant (∼ 4 ◦C) differences between the ESD-based and RCM-
based temperature estimates (Fig. 13). The ESD-based tem-
perature predictions were higher than those of the RCM but
lower than those of the GCM. Both the RCM and ESD mod-
els used boundary conditions from the same GCM (MPI-
ESM). The RCM reduced the GCM temperatures by more
(∼ 8 ◦C) than the ESD models (∼ 4 ◦C or less). This may be
a reflection of both (a) the selection of GCM near-surface
temperatures as predictors in the ESD models and (b) the
shrinking of regression coefficients when the ESD transfer
functions are determined.

5 Summary and conclusion

Contemporary climate change and its impacts increase the
demand for high-resolution, regional- and local-scale pre-
dictions. These can be generated in a most cost-effective
way through the application of the PP-ESD (perfect progno-
sis empirical-statistical downscaling) approach. The pyESD
Python package we introduce here is a well-developed tool
and modeling framework for applying and experimenting
with PP-ESD for any climate variable (e.g., precipitation,
wind speed, and temperature). The package complements
existing tools through the following key specialties and
strengths.

1. The package is well-structured and designed in OOP
style that treats the weather stations as objects with
many functionality attributes that cover all the PP-ESD
modeling routines. As a result, all modeling steps can
be executed on the initialized station objects with a few
lines of code.

2. The package is designed in a way that knowing its
API (Application Programming Interface), which is in-
troduced in the package’s extensive documentation, is
sufficient to implement all downscaling steps. In other
words, no advanced knowledge of Python (or program-
ming) is required to use the package for research pur-
poses. On the other hand, the package’s design is modu-
lar and flexible enough to allow advanced users to build
on it or adjust it to their needs.

3. The package implements different predictor selection
techniques (i.e., recursive, tree-based, and sequential)
that can be manually selected and experimented with.
The package allows the user to include a variety of
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Figure 11. The KS two-sided statistical testing score maps the ERA5 reanalysis product and MPI-ESM GCM output for precipitation (a–c)
and temperature (d–f). The KS test was applied to raw values, anomalies (centered with zero means), and standardized anomalies with unit
variance values (columns from left to right, respectively). The grid boxes with black cross stippling represent low p values (p < 0.05),
suggesting statistically significant differences in distribution between the ERA5 and MPI-ESM time series.

Figure 12. Comparison of 20-year annual precipitation climatologies predicted by the ESD models of this study (black), GCMs (i.e., MPI-
ESM in green, CESM5 in red, HadGEM2 in gold), and RCMs (i.e., and CORDEX in purple) for RCP2.6 (a, b) and RCP8.5 (c, d).
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Figure 13. Comparison of 20-year annual temperature climatologies predicted by the ESD models of this study (black), GCMs (i.e., MPI-
ESM in green, CESM5 in red, HadGEM2 in gold), and RCMs (i.e., and CORDEX in purple) for RCP2.6 (a, b) and RCP8.5 (c, d).

predictors, ranging from regional near-surface temper-
atures to synoptic-scale teleconnection patterns. The
package features many transformation techniques such
as MonthlyStandardizer and PCAScalling that can be
used to reduce biases towards specific predictors.

4. The package includes a variety of machine learning
techniques with different underlying principles and the-
orems. The package also features many ensemble mod-
els (Sect. 2.3), cross-validation schemes, and hyperpa-
rameter optimization techniques that can easily be ex-
perimented with in a few lines of code.

5. The package’s core modules are accompanied by utility
functions for data preprocessing, post-processing, and
serialization to save computational resources, as well as
visualization tools and ESD-relevant statistical methods
like EOF analysis, correlation, and distribution similar-
ity tests.

We demonstrated some of the package’s functionalities by
developing and applying ESD models to generate precip-
itation and temperature predictions for a sub-hydrological
catchment in complex mountainous terrain in southwestern
Germany. The models were evaluated with different metrics

and were found to perform well (e.g., R2
≥ 0.7 for precipita-

tion and R2
≥ 0.9 for temperature). In order to ensure the re-

producibility of the results and allow easy practical entry for
potential users, the application example uses publicly avail-
able datasets, and all the scripts used for this study are made
available.

Despite the promising results of the illustrative case study,
the reader is informed of the following important limitations:
generally, the PP-ESD approach to predictions relies on the
assumption that the empirical relationships between predic-
tor and predictand remain valid through time. While statisti-
cal downscaling models have successfully been used for the
past climate of the pre-industrial era (Reichert et al., 1999)
and Last Glacial Maximum (Vrac et al., 2007), the merit of
this assumption must be evaluated on a case-by-case basis.
For example, geographical boundary conditions that affect
the local climate, such as topography or vegetation cover, are
only implicitly considered in the empirical transfer functions.
The empirical relationship between predictors and predic-
tands may break down if these boundary conditions change
significantly (e.g., Mutz and Aschauer, 2022). Furthermore,
the performance of PP-ESD models also depends on the ac-
curacy of the GCMs they are coupled to. In our case study,
the developed ESD models were coupled to a single, albeit
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well-established, GCM (MPI-ESM). However, we generally
recommend the use of GCM ensembles to prevent biases to-
wards a specific GCM.

The current version of the package includes all func-
tions needed to develop, evaluate, and apply station-based
ESD models and generate predictions of local-scale cli-
mate change. Nevertheless, the package remains under ac-
tive development to expand upon its functionality. Planned
improvements include an extension of functions to make
pyESD suitable for downscaling gridded datasets or satel-
lite observations. The grid-based analysis would contribute
to the design of spatial downscaling models (e.g., Chen et
al., 2012; Jia et al., 2011). Moreover, we intend to expand
the selection of machine learning techniques by including
deep learning models that have been proven useful in down-
scaling (e.g., Baño-Medina et al., 2020; Quesada-Chacón et
al., 2022). Finally, we intend to build a graphical, web-based
interface to make the package more accessible and easy to
use for researchers, students, and people outside the scien-
tific community.
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Appendix A: Supplementary results of the illustrative
case study

Figure A1. Correlation between the precipitation predictand and the potential predictors listed in Table 2, expressed as PCCs.

Figure A2. Correlation between the temperature predictand and the potential predictors listed in Table 2, expressed as PCCs.
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Figure A3. (a) Observed precipitation (1958–2010) as well as seasonal (i.e., spring – MAM, summer – JJA, autumn – SON, and winter –
DJF) and annual mid-century (30-year) precipitation climatologies as a result of RCP2.6 (b) and RCP8.5 (c) forcing. Brown (green) indicates
a decrease (increase) in precipitation relative to the observed means (1958–2010).

Figure A4. Observed temperature (1958–2010) as well as seasonal (i.e., spring – MAM, summer – JJA, autumn – SON, and winter – DJF)
and annual mid-century (30-year) temperature climatologies as a result of RCP2.6 (b) and RCP8.5 (c) forcing. Blue (red) indicates a decrease
(increase) in temperature relative to the observed means (1958–2010).
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Figure A5. The KS two-sided statistical testing score maps the ERA5 reanalysis product and MPI-ESM GCM output for relative humidity (a–
c), zonal wind velocity (d–f), and meridional wind velocity (g–i) at 850 hPa. The KS test was applied to raw values, anomalies (centered with
zero means), and standardized anomalies with unit variance values (columns from left to right, respectively). The grid boxes with black cross
stippling represent low p values (p < 0.05), suggesting statistically significant differences in distribution between the ERA5 and MPI-ESM
time series.
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Code and data availability. The study’s illustrative case study
relies on publicly available datasets. More specifically, the
precipitation and temperature datasets are accessible through
the Climate Data Centre of the DWD (Deutscher Wetter-
dienst, version V21.3). The subcatchment datasets used in
this study are interactively available through https://cdc.dwd.
de/portal/shortlink/425267fe-e4fd-4fff-9969-14c7d3aa25de
(Deutscher Wetterdienst, 2023) and https://cdc.dwd.de/portal/
shortlink/da6f555d-d6f6-426a-a8ba-b96683c76ea9 (last access:
30 October 2023) for precipitation and temperature stations,
respectively. The ERA5 reanalysis datasets can also be down-
loaded through the Copernicus Climate Data Store (CDS) at
https://doi.org/10.24381/cds.6860a573 (Hersbach et al., 2023) for
pressure level and https://doi.org/10.24381/cds.68d2bb30 (Muñoz
Sabater, 2019) for surface-level variables. However, the processed
weather stations and the serialized pickle files of the regional
means of the predictors for all the stations are provided as part of
the supporting material (https://doi.org/10.5281/zenodo.7767681,
Boateng and Mutz, 2023). The MPI-ESM GCM datasets
used as simulated predictors can also be downloaded from
the CDS by selecting MPI-ESM-LR as the model for the
AMIP as well as the RCP2.6, 4.5, and 8.5 experiments: see
https://doi.org/10.24381/cds.3b4b5bc9 (Copernicus Climate
Change Service, Climate Data Store, 2018a) for pressure-level
variables and https://doi.org/10.24381/cds.9d44a987 (Copernicus
Climate Change Service, Climate Data Store, 2018b) for surface
variables. Moreover, the station-based downscaling estimates of
future climate scenarios for all the stations are also included in
the supporting material (https://doi.org/10.5281/zenodo.7767681,
Boateng and Mutz, 2023).

The pyESD (version 1.0.1) software, including the documenta-
tion website source files, is available through many platforms, in-
cluding the following.

– GitHub: https://github.com/Dan-Boat/PyESD (last access: 30
October 2023)

– Python package index (PyPI): https://pypi.org/project/PyESD/
(last access: 30 October 2023)

– Zenodo (v1.0.1 release):
https://doi.org/10.5281/zenodo.7767629 (Boateng, 2023)

Developer: Daniel Boateng, University of Tübingen
Hardware requirements: general-purpose computer
Programming language: Python (version 3.7 or later)
The installation of the package and its required dependencies

are highlighted on the documentation website: https://dan-boat.
github.io/PyESD/ (last access: 30 October 2023). The usage of
the package and its functionalities are also presented in the
documentation. The control scripts of the study’s illustrative
case study are also provided as part of the supporting mate-
rial (https://doi.org/10.5281/zenodo.7767681, Boateng and Mutz,
2023) and also presented in the example section of the documen-
tation.
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