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Abstract. Machine learning (ML) is increasing in popularity
in the field of weather and climate modelling. Applications
range from improved solvers and preconditioners, to param-
eterization scheme emulation and replacement, and more re-
cently even to full ML-based weather and climate prediction
models. While ML has been used in this space for more than
25 years, it is only in the last 10 or so years that progress has
accelerated to the point that ML applications are becoming
competitive with numerical knowledge-based alternatives. In
this review, we provide a roughly chronological summary of
the application of ML to aspects of weather and climate mod-
elling from early publications through to the latest progress
at the time of writing. We also provide an overview of key
ML terms, methodologies, and ethical considerations. Fi-
nally, we discuss some potentially beneficial future research
directions. Our aim is to provide a primer for researchers and
model developers to rapidly familiarize and update them-
selves with the world of ML in the context of weather and
climate models.

1 Introduction

Current state-of-the-art weather and climate models use nu-
merical methods to solve equations representing the dynam-
ics of the atmosphere and ocean on meshed grids. The grid-
scale effects of processes that are too small to be resolved
are either represented by parametrization schemes or pre-
scribed. These numerical weather and climate forecasts are
computationally costly and are not easy to implement on
specialized compute resources such as graphics processing

units†1 (GPUs; although there are efforts underway to do
so, for example in LFRic; Adams et al., 2019). One of the
main approaches to improving forecast accuracy is to in-
crease model resolution (reduced time step between model
increments and/or decreased grid spacing), but due to the
high computational cost of this approach, improvements in
model skill are hampered by the finite supercomputer capac-
ity available. An additional pathway to improve skill is to im-
prove the understanding and representation of subgrid-scale
processes; however this is again a potentially computation-
ally costly exercise.

In the remainder of this introduction, we overview the state
of machine learning in weather and climate research without
always providing references; we instead provide relevant ref-
erences in the detailed sections that follow.

Machine learning is an increasingly powerful and pop-
ular tool. It has proven to be computationally efficient, as
well as being an accurate way to model subgrid-scale pro-
cesses. The term “machine learning” (ML) was first coined
by Arthur Samuel in the 1950s to refer to a “field of study that
gives computers the ability to learn without being explicitly
programmed” (http://infolab.stanford.edu/pub/voy/museum/
samuel.html, last access: 7 February 2023). Learning by ex-
ample is the defining characteristic of ML.

The growing potential for ML in weather and cli-
mate modelling is being increasingly recognized by
meteorological agencies and researchers around the
world. The former is evidenced by the development
of strategies and frameworks to better support the de-
velopment of ML research, such as the Data Science
Framework recently published by the Met Office in the

1Henceforth, the first occurrence of each term described in the
glossary is marked with the symbol “†”.
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UK (https://www.metoffice.gov.uk/research/foundation/
informatics-lab/met-office-data-science-framework, last
access: 7 February 2023). The latter is made clear by
the explosion in publications from academia, government
agencies, and private industry in this space, as demonstrated
by the rest of this review. Figure 1 shows the number of
publications cited in this review using different categories of
ML algorithms by year, and it clearly illustrates the increase
in the uptake of ML methods by the research community.

This is not necessarily an unbiased sample of the use of
different architectures in the literature since the selection of
papers cited in this review focuses on telling the story of the
growth of the use of ML in weather and climate modelling
over time rather than being a comprehensive list of all uses
of ML in the literature.

There are established techniques and aspects of the
weather and climate modelling lifecycle that would already
be considered ML by many. For example, linear regression†,
principal component analysis, correlations, and the calcula-
tion of teleconnections can all be considered types of ML.
Data assimilation techniques could also be considered a form
of ML. There are, however, other classes of ML (e.g. neural
networks† and decision trees†) which are much less widely
used within the weather and climate modelling space but
have great potential to be of benefit. There is growing in-
terest in, and increasingly effective application of, these ML
techniques to take the place of more traditional approaches
to modelling. The potential for ML in weather and climate
modelling extends all the way from replacement of individ-
ual sub-components of the model (to improve accuracy and
reduce computational cost) to full replacement of the entire
numerical model.

While ML models are typically computationally costly
during training, they can provide very fast predictions at
inference† time, especially on GPU hardware. They often
also avoid the need to have a full understanding of the pro-
cesses being represented and can learn and infer complex re-
lationships without any need for them to be explicitly en-
coded. These properties make ML an attractive alternative to
traditional parametrization, numerical solver, and modelling
methods.

Neural networks (NNs, explained further in Sect. 2.1) in
particular are an increasingly favoured alternative approach
for representing subgrid-scale processes or replacing numer-
ical models entirely. They consist of several interconnected
layers† of non-linear nodes†, with the number of intermediate
layers depending on the complexity of the system being rep-
resented. These nodes allow for the encoding of an arbitrary
number of interrelationships between arbitrary parameters to
represent the system, removing the need to explicitly encode
these interrelationships into a parameterization or numerical
model.

One challenge that must be overcome before there will be
more widespread acceptance of ML as an alternative to tra-
ditional modelling methods is that ML is seen as lacking in-

terpretability. Most ML models do not explicitly represent
the physical processes they are simulating, although physics-
constrained ML is a new and growing field which goes some
way to addressing this (see Sect. 6). Furthermore, the tech-
niques available to gain insight into the relative importance
and predictive mechanism of each predictor (i.e. the model
outputs) are limited. In contrast, traditional models are usu-
ally driven by some understanding and/or representation of
the physical mechanisms and processes which are occurring.
This makes it possible to more easily gain insight into what
physical drivers could explain a given output. The “black
box” nature of many current ML approaches to parametriza-
tion makes them an unpopular choice for many researchers
(and can be off-putting for decision makers) since, for ex-
ample, explaining what went wrong in a model after a bad
forecast can be more challenging if there are processes in
the model which are not, and cannot, be understood through
the lens of physics. However, increasing attention is being
paid to the interpretability of ML models (e.g. McGovern et
al., 2019; Toms et al., 2020; Samek et al., 2021), and there
are existing methods to provide greater insight into the way
physical information is propagated through them (e.g. atten-
tion maps, which identify the regions in spatial input data
that have the greatest impact on the output field, and abla-
tion studies, which involve comparing reduced data sources
and/or models to the original models that have full access to
available data to gain insight into the models).

As with their traditional counterparts, ML-based
parametrizations and emulators are typically initially
developed in single-column models, aquaplanet configu-
rations, or otherwise simplified models. There are many
examples of ML-based schemes which have been shown to
perform well against benchmark alternatives in this setting,
only to fail to do so in a realistic model setting. A common
theme is that these ML schemes rapidly excite instabilities
in the model as errors in the ML parametrization push key
parameters outside of the domain of the training data as
the overall model is integrated forward in time, leading to
rapidly escalating errors and to the model “blowing up”.
Similarly, many ML-based full-model replacements perform
well for short lead times, only to exhibit model drift and
a rapid loss of skill for longer lead times due to rapidly
growing errors and the model drifting outside its training
envelope.

In recent years, however, progress has been made in de-
veloping ML parametrizations which are stable within real-
istic models (i.e. not toy models, aquaplanets, etc.), as well
as ML-based full models which can run stably and skilfully
to longer lead times. This is usually achieved through train-
ing the model on more comprehensive data, employing ML
architectures which keep the model outputs within physically
real limits or imposing physical constraints or conservation
rules within the ML architecture or training loss functions†.

There are still challenges and possible limitations to an
ML approach to weather and climate modelling. In most
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Figure 1. A stacked bar graph of the number of publications cited in this review using different categories of ML algorithms by per year.
For a description of neural networks and decision trees see Sect. 2.1 and 2.2 respectively. The “other” category is a collection of ML model
types other than decision trees and neural networks, each of which only had one or two examples of use in this review. This included custom
supervised and self-supervised algorithms, support vector machines and relevance vector machine models, regression models, unsupervised
learning models, reservoir computing models, and non-NN Gaussian models. This figure includes all references from this review except for
seminal ML papers that are on new ML methods (e.g. foundational ML papers from outside the domain of weather and climate modelling),
review papers, any paper cited that concerns a topic which is out of scope (e.g. nowcasting), and any other paper which does not present a
new method directly applicable to weather and climate modelling. The full table of citations is provided in Appendix A.

cases, a robust ML model or parameterization scheme should
be able to

– remain stable in a full (i.e. non-idealized) model run

– generalize to cases outside its training envelope

– conserve energy and achieve the required closures.

Additionally, for an ML approach to be worthwhile it must
provide one or more of the following benefits:

– for ML parametrization schemes,

– a speedup of the representation of a subgrid-scale
process vs. when run with a traditional parametriza-
tion scheme, which can make the difference be-
tween the scheme being cost-effective to run or
not – when it is not cost-effective the process usu-
ally needs to be represented with a static forcing or
boundary condition file;

– a speedup of the model vs. when run with tradi-
tional parametrization schemes;

– improved representation of subgrid process(es)
over traditional parameterization schemes, as mea-
sured by metrics appropriate to the situation;

– improved overall accuracy and/or skill of the model
when run with traditional parametrization schemes;

– insight into physical processes not provided by cur-
rent numerical models or theory;

– for full ML models,

– a speedup of the model vs. an appropriate numerical
model control;

– improved overall accuracy and/or skill of the model
vs. an appropriate numerical model control;

– skilful prediction to greater lead times than an ap-
propriate numerical model control;

– insight into physical processes not provided by cur-
rent numerical models or theory.

Furthermore, in some cases of ML approaches to weather
and climate modelling problems (particularly for full-model
replacement) the work is led by data scientists and ML
researchers with limited expertise in weather and climate
model evaluation. This can lead to flawed, misleading, or in-
complete evaluations. Hewamalage et al. (2022) have sought
to rectify this problem by providing a guide to forecast eval-
uation for data scientists.

The scope of this review is deliberately limited to the ap-
plication of ML within numerical weather and climate mod-
els or to their replacement. This is done to keep the length of
this review manageable. ML has enormous utility for other
aspects of the forecast value chain such as observation qual-
ity assurance, data assimilation, model output postprocess-
ing, forecast product generation, downscaling, impact pre-
diction, and decision support tools. A review of the applica-
tion of, and progress in, ML in these areas would be of great
value but is outside the scope of this review and is left to other
work. Molina et al. (2023) have provided a very useful review
of ML for climate variability and extremes which is highly
complementary to this review. They draw similar lines of de-
lineation in the earth system modelling (ESM) value chain to
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those mentioned above; describing them as “initializing the
ESM, running the ESM, and postprocessing ESM output”.
They examine each of these steps in turn, with a focus on the
prediction of climate variability and extremes. Here we take
a different approach, focusing on one part of the value chain
(running the ESM) but looking in more detail at this one part.
Additionally, here we consider climate modelling in the con-
text of multiyear and free-running multidecadal simulations
but exclude the topic of ML for climate change projections,
climate scenarios, and multi-sector dynamics. This is again
in the interests of ensuring the scope of the review is man-
ageable rather than because these topics are not worthy of
review. On the contrary, a review dedicated to the utility of
machine learning in this area would be of enormous value
to the community but cannot be adequately explored here. A
brief introduction to key ML architectures and concepts, in-
cluding suggested foundational reading, is also provided to
aid readers who are unfamiliar with the subject.

The remainder of this review is structured as follows: in
Sect. 2 an introduction to the two ML architectures most
prevalent in the review is provided, followed by a suggested
methodological approach to applying ML to a problem and
finally a brief overview of some of the major ML archi-
tectures and algorithms. With this background in place, the
application of ML in weather and climate modelling is ex-
plored in the following five sections. In Sect. 3, ML use in
subgrid parametrization and emulation, along with tools and
challenges specific to this domain, are covered. Zooming out
from subgrid-scale to processes resolved on the model grid,
in Sect. 4 the application of ML for the partial differential
equations governing fluid flow is reviewed. Expanding the
scope further again to consider the entire system, the use of
ML for full-model replacement or emulation is reviewed in
Sect. 5. In Sect. 6 the growing field of physics-constrained
ML models is introduced, and in Sect. 7 a number of topics
tangential to the main focus of this review are briefly men-
tioned. Setting the work covered in the previous sections in
a broader context, a review of the history of, and progress
in, ML outside of the fields of weather and climate science
is presented in Sect. 8. In Sect. 9 some practical considera-
tions for the integration of ML innovations into operational
and climate models are discussed, followed by a short intro-
duction to some of the ethical considerations associated with
the use of ML in weather and climate modelling in Sect. 10.
In Sect. 11, some future research directions are speculated
on, and some suggestions are made for promising areas for
progression. Finally, a summary is presented in Sect. 12, and
a glossary of terms is provided after the final section to aid
the reader in their understanding of key concepts and words
(Appendix B).

2 A quick introduction to machine learning

While the scope of this paper is a review of ML work directly
applicable to weather and climate modelling, an abridged in-
troduction to some key fundamental ML concepts is provided
here to aid the reader. Suggested starting points for interested
readers, including guidance on the utility of different model
architectures and algorithms, as well as the connections be-
tween different applications and approaches, are as follows:

– Hsieh (2023) provides a thorough textbook on envi-
ronmental data science including statistics and machine
learning.

– Chase et al. (2022a, b) provide an introduction to vari-
ous machine learning algorithms with worked examples
in a tutorial format and an excellent on-ramp to ML for
weather and climate modelling.

– Russell and Norvig (2021) provide a comprehensive
book regarding artificial intelligence in general.

– Goodfellow et al. (2016) provide a well-regarded book
on deep learning theory and modern practise.

– Hastie et al. (2009) provide a book on statistics and ma-
chine learning theory.

This introductory section is a brief exposition of the concepts
most central to this review. Definitions for this section can be
found in the glossary.

The majority of ML methods which have found traction in
weather and climate modelling were first developed in fields
such as computer vision, natural language processing, and
statistical modelling. Few, if any, of the methods mentioned
in this paper could be considered unique to weather and cli-
mate modelling; however they have in many cases been mod-
ified to a greater or lesser extent to suit the characteristics of
the problem. In this review, the term algorithm refers to the
mathematical underpinnings of a machine learning approach.
By this definition, decision trees (DTs), NNs, linear regres-
sion, and Fourier transforms are examples of algorithms. The
two most relevant algorithms for this review are DTs and
NNs. Many ML algorithms can be thought of as optimiz-
ing a non-linear regression, with deep learning utilizing an
extremely high-dimensional model. There is no consensus
on the definition of ML, with the term encompassing rela-
tively large or small topical domains depending on who is
asked. A good rule of thumb, however, is that any iterative
computational process that seeks to minimize a loss function
or optimize an objective function can be considered to be a
form of ML. Some of the chief concerns in machine learn-
ing are generalizability of the models, how to train (optimize
the variables of) the model, and how to ensure robustness.
The inputs and outputs of machine learning models are often
the same as physical models or model components. The term
architecture in machine learning refers to a specific way of
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utilizing an algorithm to achieve a modelling objective reli-
ably. For example, the U-Net† architecture is a specific way
of laying out an NN which has proven effective in many ap-
plications. The extreme gradient boosting decision tree† ar-
chitecture is a specific way of utilizing DTs which has proven
reliable and effective for an extraordinary number of prob-
lems and situations and is an excellent choice as a first tool
to experiment with machine learning.

A major current focus of ML research in the context of
weather and climate modelling is new NN-based architec-
tures and algorithms, as well as improved training regimes.
Many other algorithms have been and continue to be em-
ployed in machine learning more broadly but are not perti-
nent to this review.

A key point for ML researchers to be aware of is the
critical importance of approaching model training carefully.
There are many pitfalls which can result in underperfor-
mance, unexpected bias, or misclassification. For instance,
adversarial examples† can occur “naturally”, and systems
which process data can be subject to adversarial attack†

through the intentional supply of data designed to fool a
trained network.

2.1 Introduction to neural networks

NNs can be regarded as universal function approximators
(Hornik et al., 1989; see also Lu et al., 2019). Further, NN
architectures can theoretically be themselves modelled as a
very wide feed-forward† NN with a single hidden layer†. A
Fourier transform is another example of a function approx-
imator, although it is not universal since not all functions
are periodic. NNs can therefore theoretically be candidates
for the accurate modelling of physical processes, although
in practise they cannot always reliably interpolate beyond
their training envelope and as such may not generalize to new
regimes. ML models are typically introduced in the literature
as being either classification† or regression† models and ei-
ther supervised† or unsupervised†.

The mathematical underpinning of an NN can be consid-
ered distinctly in terms of its evaluation† (i.e. output, or pre-
diction) step and its training update step. The prediction step
can be considered as the evaluation of a many dimensional
arbitrarily complex function.

The simplest NN is a single-input, single node network
with a simple activation† function. A commonly used acti-
vation function for a single neuron is the sigmoid function,
which helpfully compresses the range between 0 and 1 while
allowing a non-linear response. A classification model will
employ a threshold to map the output into the target cate-
gories. A regression model seeks to optimize the output re-
sult against some target value for the function. Larger net-
works make more use of linear activations and may utilize
heterogenous activation function choices at different layers.

Complex NNs are built up from many individual nodes,
which may have heterogenous activation functions and a

complex connectome†. The forward pass†, by which inputs
are fed into the network and evaluated against activation
functions to produce the final prediction, uses computation-
ally efficient processes to quickly produce the result.

The training step for an NN is far more complex. The ear-
liest NNs were designed by hand rather than through automa-
tion. The training step applies a back-propagation† algorithm
to apply adjustment factors to the weights† and biases† of
each node based on the accuracy of the overall prediction
from the network.

Training very large networks was initially impractical.
Both hardware and architecture advances have changed this,
resulting in the significant increase in the application of NNs
to practical problems. Most NN research explores how to uti-
lize different architectures to train more effective networks.
There is little research going into improving the prediction
step as the effectiveness of a network is limited by its ability
to learn rather than its ability to predict. Some research into
computational efficiency is relevant to the predictive step.
NNs can still be technically challenging to work with, and
a lot of skill and knowledge are needed to approach new ap-
plications.

The major classes of NN architectures most likely to be
encountered are

– small, fully connected networks, which are less com-
monly featured in recent publications but are still effec-
tive for many tasks and are still being applied and may
well be encountered in practice;

– convolutional† architectures, first applied to image con-
tent recognition, which match the connectome of the
network to the fine structure of images in hierarchical
fashion to learn to recognize high-level objects in im-
ages;

– recurrent token†-sequence architectures, first applied to
natural language processing, generation, and transla-
tion – applicable to any time-series problem – but now
also applied to image and video applications, as well as
mixed-mode applications such as text-to-image or text-
to-video;

– transformer architectures†, based on the attention
mechanism† to provide a non-recurrent architecture that
can be trained using parallelized training strategies,
which allows larger models to be trained (originally de-
veloped for sequence prediction and extended to images
processed through vision transformer architectures).

2.2 Introduction to decision trees

DTs are a series of decision points, typically represented in
binary fashion based on a simple threshold. A particular DT
of a particular size maps the input conditions into a final
“leaf” node† which represents the outcome of the decisions
up to that point.
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A random forest† (RF) is the composition of a large num-
ber of DTs assembled according to a prescribed generation
scheme, which are used as an ensemble. A gradient-boosted
decision tree (GBDT) is built up sequentially, where each
subsequent decision tree attempts to model the errors in the
stack of trees built up thus far. This approach outperforms
RFs in most cases.

The DT family of ML architectures are very easy to train
and are very efficient. They are well documented in the pub-
lic domain and in published literature. DTs are statistical in
nature and are not capable of effectively generalizing to sit-
uations which are not similar to those seen during training.
This can be an advantage when unbounded outputs would
be problematic; however it can lead to problems where an
ability to produce out-of-training solutions is necessary. Ad-
ditionally, current DT implementations require all nodes (of
all trees in the case of RFs and GBDTs) to be held in memory
at inference time, making them potentially memory heavy.

2.3 Methodologies for machine learning

It is challenging to provide simplified advice for how to ap-
proach problem-solving in ML. There are few strict theoret-
ical reasons to choose any one of the variety of architectures
which are available. The authors would also caution against
assuming that results in the literature are the product of a
detailed comparison of alternative architectures or assuming
that a deep learning approach is going to be easy or straight-
forward. It will often be the case that multiple machine learn-
ing architectures may be similarly effective, and determining
the optimal architecture is likely to involve extensive itera-
tion. Any specific methodology is also likely to reflect the
intuitions (or biases), knowledge, and background of the au-
thors of that methodology.

Nonetheless, there is an appetite from many scientists for
reasonable ways to “get started” and to provide some assis-
tance for practical decision-making, particularly if approach-
ing the utilization of machine learning for the first time or in
a new way. Figure 2 provides a set of suggested steps and de-
cision points to help readers approach a new challenge with
ML.

The flowchart presented in Fig. 2 provides an overview of
methodological steps that can be taken when using ML to
solve a problem; however it does not give much insight into
the pros and cons of the common ML architectures available
and used in the literature. Table 1 provides a brief summary
of the major ML architectures and algorithms used by the
studies cited in this review and gives a short note on some
of their pros and cons. This table is not exhaustive, and read-
ers are strongly encouraged to use it as a starting point for
further exploration rather than a definitive guide. The rela-
tive strengths and weakness of each ML architecture can be
subtle and highly dependent on the use case, their applica-
tion, and their tuning. Establishing a good understanding of
the ML architecture being used is a critical step for any sci-

entist intending to delve into ML modelling. Interested read-
ers should also refer to Chase et al. (2022b), where a similar
table is presented that covers a wider variety of traditional
methods but fewer neural network approaches.

An increasingly diverse array ML architectures are being
applied to an ever-growing variety of challenges. These ar-
chitectures all have sub-variants and ancestor architectures
which may not be represented, all of which may be found
to be of use for weather and climate modelling applications.
Other concerns, such as data normalization†, training strate-
gies, and capturing physicality, become as relevant as the
choice of architecture once a certain level of performance is
achieved.

Figure 3 shows a summary of the ML architectures and
algorithms used by the studies cited in this review, includ-
ing the number of times each architecture is used. It can be
seen from this that the two most frequently used general cate-
gories of architecture are fully connected NNs (FCNNs) and
convolutional NNs (CNNs) of various sub-types.

However some of the most significant recent research find-
ings come from new architectures which by definition cannot
have wide adoption yet (these are grouped under the “mixed/-
custom NN” category in Fig. 3).

In some cases, little justification is given for the ML archi-
tecture used in a study, and readers are therefore cautioned
against using the relative popularity of a particular ML ar-
chitecture in the literature as a guide for its suitability for a
given task.

Furthermore, ML models increasingly use a mix of dif-
ferent algorithms and architectures. For example, a common
combination is fully connected NN layers, convolutional NN
layers, and long short-term memory (LSTM†) layers. For the
purposes of Fig. 3, the authors have endeavoured to catego-
rize the ML architectures used in the studies in this review
as accurately as possible, with complex architectures being
placed in the “mixed/custom NN” category; however where
an architecture was mostly but not entirely aligned with a
single category, it was placed in that category. For example,
an LSTM model with a small number of feed-forward layers
would be categorized as a recurrent neural network† (RNN).
Since many contemporary ML models combine multiple ar-
chitectural elements and algorithms into the one model, it is
somewhat of an oversimplification to consider each of these
in isolation, and while starting with a simple model design
with a limited selection of layer types is advisable to aid in-
terpretability, there is no reason they cannot be combined or
used in conjunction with each other if this improves the per-
formance of the model.

Adapting, optimizing, and debugging issues with machine
learning systems can be very complex (especially so for
large NNs) and is likely to require both machine learning
expertise and domain knowledge (i.e. scientific knowledge).
XGBoost† provides the ability to generate a chart showing
the importance of the features in the model, which can be
very helpful. Shapley additive explanations (Lundberg and
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Figure 2. A methodological flowchart illustrating a suggested approach to applying ML to a research problem.
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Figure 3. A count of the ML architectures and algorithms used by the studies cited in this review. As with Fig. 1, this figure includes all
references from this review except for seminal ML papers that are on new ML methods (e.g. foundational ML papers), review papers, any
paper cited that concerns a topic which is out of scope (e.g. nowcasting), and any other paper which does not present a new method directly
applicable to weather and climate modelling. The full table of citations is provided in Appendix A.

Lee, 2017) can provide insights into feature importance for
any model including NNs.

3 Subgrid parametrization and emulation

Subgrid-scale processes in numerical weather and climate
models are typically represented via a statistical parameteri-
zation of what the macroscopic impacts of the process would
be on resolved processes and parameters. These are com-
monly referred to as parameterization schemes and can be
very complex and relatively computationally costly. For ex-
ample, in the European Centre for Medium-Range Weather
Forecast’s (ECMWF) Integrated Forecasting System (IFS)
model they account for about a third of the total compu-
tational cost of running the model (Chantry et al., 2021b).
They also require some understanding of the underlying un-
resolved physical processes. Examples of subgrid-scale pro-
cesses which are currently typically parameterized in oper-
ational systems include gravity wave drag, convection, ra-
diation, subgrid-scale turbulence, and cloud microphysics.
As additional complexity (for example representation of
aerosols, atmospheric chemistry, and land surface processes)
is added to numerical models, the computational cost will
only increase.

ML presents an alternative approach to representing
subgrid-scale processes, either by emulating the behaviour
of an existing parametrization scheme, by emulating the be-
haviour of sub-components of the scheme, by replacing the
current scheme or sub-component entirely with an ML-based
scheme, or by replacing the aggregate effects of multiple
parametrization schemes with a single ML model.

ML emulation of existing schemes or sub-components has
the advantage of maintaining the status quo within the model;
no or minimal re-tuning of the model should be required
since the ML emulation is trained to replicate the results of
an already-tuned-for scheme. Because of this, the main ben-
efit of this approach is that it reduces the computational cost
of running the parametrization scheme. On the other hand,
the full replacement of an existing parameterization scheme
or sub-component with an ML alternative has the potential
to be both computationally cheaper and also an improvement
over the preceding scheme.

In the following subsections, a review of the literature
on aspects of ML for the parametrization and emulation of
subgrid-scale processes is presented.

3.1 Early work on ML parametrization and ML
emulations

A popular target for applying ML in climate models is radia-
tive transfer since it is one of the more computationally costly
components of the model. As such, many early examples
of the use of ML in subgrid parametrization schemes focus
on aspects of this physical process. Chevallier et al. (1998)
trained NNs to represent the radiative transfer budget from
the top of the atmosphere to the land surface, with a focus on
application in climate studies. They incorporated the infor-
mation from both line-by-line and band models in their train-
ing to achieve competitive results against both benchmarks.
Their NNs achieved accuracies comparable to or better than
benchmark radiative transfer models of the time while also
being much faster computationally.

In contrast to the ML-based scheme developed by Cheval-
lier et al. (1998), which could be considered an entirely new
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Table 1. A summary of major ML architectures and algorithms used by the studies cited in this review. Interested readers should also refer to
Chase et al. (2022b) where a similar table is presented that covers a wider variety of traditional methods but fewer neural network approaches.
See Appendix B for definitions of terms used in this table.

Approach Description Pros Cons

Simple regression tech-
niques

Includes linear regression and logistic
regression. See Chase et al. (2022b) for
more detail.

Explainable and well-understood. Can only capture simple relationships.

Decision tree Consists of a series of branching deci-
sions, culminating in a number of de-
cision “leaves”. The decision points are
trainable.
Provides the basis for understanding
more complex decision tree and regres-
sion tree approaches.

Easily explainable.
Computationally tractable and fast.

Unable to fully model complex prob-
lems.
Cannot make predictions outside the
training envelope.

Random forest (RF) A random forest consists of many de-
cision trees which form an ensemble,
and the average result is taken. The con-
struction of the trees uses randomness.

Versatile and effective.
Computationally tractable and fast.
Allows focus on the input variables
rather than on process or model defini-
tion.

Usually performs slightly less well than
gradient-boosted decision trees.

Gradient-boosted deci-
sion trees (GBDT)

Akin to random forecasts, however each
additional member is used to predict the
residual error in the ensemble so far.
Is often sufficient for a given problem
and should thus be considered as a base-
line for measuring more complex ML
models against.

A highly versatile and reliable ap-
proach.
Computationally tractable and fast.
Allows focus on the input variables
rather than on process or model defini-
tion.
Feature importance plots can guide in-
tuition.

Has practical limitations at scale due to
large memory requirements at inference
time.
Limited ability to simulate complex
systems compared to other ML ap-
proaches such as NNs.
Cannot make predictions outside the
training envelope without customized
leaves.

Vector machines Support vector machines (SVMs) and
relevance vector machines (RVMs) are
supervised models used for regres-
sion and classification. RVMs have the
same functional form as SVMs but are
a probabilistic classification based on
Bayesian inference. Vector machines
seek to define the optimal division be-
tween classes by finding the hyper-
planes which have the largest distance
to the nearest training data point of any
class.

Can be used for similar problems as
GBDTs. Computationally efficient and
often effective.
Mathematically appealing.
Capable of modelling non-linear func-
tions.

Now less used compared to random
forests and GBDTs.

Single neuron See Chase et al. (2022b) for a descrip-
tion of the structure of a perceptron.
Forms the conceptual and structural ba-
sis for all NN architectures.

Unused in practice outside of a larger
NN architecture.

Unable to model most problems in iso-
lation.

Fully connected feed-
forward neural network
(FCNN)

Consists of multiple layers of neurons,
with each neuron being connected to
every neuron in the subsequent layer.
Still quite widely used in weather and
climate modelling in spite of declining
use in other machine learning domains.
Is often sufficient and should be consid-
ered as a baseline for measuring more
complex architectures against.

Effective for applications such as
parametrization scheme emulation and
PDE solver preconditioning.
Relatively simple to work with.
Computationally tractable.

Unable to effectively train beyond a
certain size or depth and thus is in-
creasingly being replaced with more
complex architectures as ML moves to
deeper NNs.

Bayesian networks A system (probabilistic graphical
model) comprised of nodes which
together predict both an expected value
and a likelihood. Each node is asso-
ciated with a probability function that
provides a probability (or distribution)
of the variable represented by the node.

Effective for refining an expert or
knowledge-based model by incorporat-
ing additional observations.
Capable of dealing with both semantic
concepts and physical processes.

Determining an optimal model can be
challenging, and training times are pro-
hibitive for large networks.
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Table 1. Continued.

Approach Description Pros Cons

Deep Bayesian
networks

Deep Bayesian techniques attempt to
capture the model complexity of deep
neural networks while retaining the
ability to predict a distribution of out-
comes, a probabilistic model, and clear
information-theoretical bases.

Used to obtain a more realistic expres-
sion of uncertainty.
Effective in modelling where causal re-
lationships are not understood.

Not as well explored as neural networks
in recent literature.

Convolutional neural
network (CNN)

Involves convolving a (usually 2D im-
age but can also be 1D temporal, for ex-
ample) input field with a filter function
(often a top hat function) to extract fea-
tures on different spatial scales.
Conceptually useful in understanding
how a neural network can build up an
abstract or “big picture” definition of a
process in its hidden layers by assem-
bling fine-scale features.

The go-to network for image-based
problems.
Proven effective on many problems and
is well-covered in the literature.

May require more significant hardware
such as a modern GPU.

Residual neural net-
work (ResNet)

ResNets are a form of CNN including
skip connections, whereby the inputs of
a number of convolutional layers are ap-
pended to the outputs of those layers
to retain information lost through the
weights in the convolutional layers.
These skip connections make it possi-
ble to train much deeper convolutional
networks than would be possible other-
wise.

Allows very deep networks to be effi-
ciently trained.
Allows an iterative build-up of network
size by experimenting with the number
of residual layers.
Could be a good choice to couple with
physically interpretable layers.

Somewhat more computationally costly
than other deep architectures.

U-Net Derives its name from the shape of the
network as it is commonly shown dia-
grammatically (it forms a “U” shape).
Consists of a series of downsampling
convolutional layers, each of which fur-
ther abstracts the information in the in-
puts (forming the first half of the “U”).
These are then upsampled again to the
original resolution of the input data
(forming the second half of the “U”).
Each downsampling step has its out-
put appended to the input of the cor-
responding upsampling step (a form of
skip connection).

Effective for many purposes and widely
used in classification and image seg-
mentation. Has also seen uptake for
nowcasting applications and prediction
of multiyear timescale ocean variables.

No serious drawbacks. Has somewhat
given way to more complex architec-
tures recently.

Deep operator network
(DeepONet)

A NN which is designed to learn the
mappings between inputs and outputs
of the mathematical operators under-
pinning processes rather than directly
predicting the outputs of the processes
themselves. Was developed in the con-
text of fluid dynamics and differential
operators.
An important theoretical component of
the adaptive Fourier neural operator
used in FourCastNet (Pathak et al.,
2022).

Provides a strong theoretical basis for
learning the underlying function space
of a dataset.
Highly effective for fluid dynamics and
idealized systems.
Can retain the properties of the learned
operators. For example, can exhibit
translational and scale invariance where
that property holds for the operator in
question.

Conceptually not straightforward.
Requires strong mathematical and ma-
chine learning expertise to be applied
effectively to new challenges.

Graph neural network
(GNN)

Models data as a set of interconnected
nodes and edges (as opposed to assum-
ing data are on a regular grid).
Underpins Keisler (2022) and Graph-
Cast (Lam et al., 2022).

Does not require data to be on a grid or
distributed in a uniform manner.
Capable of incorporating teleconnec-
tions, non-local relationships, and other
complex variable relationships.

Costly to train.
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Table 1. Continued.

Approach Description Pros Cons

Discriminator A NN is trained to discriminate be-
tween two examples and identify the
“real” one. Is used to estimate whether
a sample is from the observations or the
model. Forms one part of a GAN.

Can be used in place of a manually de-
fined loss function to train without over-
emphasizing any individual metrics or
variables.
Can be used as an effective loss func-
tion when training.
Can be used independently to evaluate
model realism.
Comes closest to human subjective
evaluation of image quality.

Is more likely to require more machine
learning domain knowledge to resolve
issues.

Generative adversarial
network (GAN)

Combines a generator network with a
discriminator and trains them in an
adversarial manner: the discriminator
tries to differentiate the generator from
ground truth, and the generator tries to
trick the discriminator. Eventually the
discriminator cannot differentiate the
generator from ground truth.
May be part of a multi-phase training
strategy in order to improve realism af-
ter initial optimization.

Produce results which prioritize realism
over accuracy (could also be a con).
Is less prone to the blurring that results
from training to simpler loss functions
and thus can be more effective in pro-
ducing sharp images and predicting sta-
tistical extremes.

Increases training costs.
Favours a “good looking” answer over
a correct answer.
Can be difficult to train as the genera-
tor and discriminator must be kept bal-
anced (one can outperform the other
leading to mode collapse – a false min-
imum).

Recurrent neural net-
work (RNN)

Any neural network where the output
of previous predictions are provided to
a sequence-based model. Multiple sub-
types of the RNN exist.

A simple RNN design can model many
problems effectively.
A recurrent architecture allows access
to and inspection of the belief state at
each iteration.

Recurrent approaches can accumulate
errors quickly.
Relationships which act over longer
time frames or distances than the recur-
rence length may not be captured.
Choosing the length of the sequence
may be a challenge.

Long short-term mem-
ory (LSTM) network

Contains modified neurons with a mem-
ory component and the ability to retain
or forget information. Is applied to se-
quence inputs and can learn the sequen-
tial scales in which information is en-
coded (e.g. what timescales in a time se-
ries are pertinent for future prediction).
Has been combined with the ideas un-
derpinning CNNs to create convolu-
tional LSTMs (ConvLSTM), which fit
for both timescales of relevance and
spatial features of relevance.

An effective alternative to a recurrent
network which has proven very good at
modelling time series.
A proven and effective mechanism for
dimensionality reduction to allow the
training of large networks.

May not include spatial relationships
(unless it is a ConvLSTM) and may be
more complex than needed for some
problems.
Less explainable than an attention
mechanism.
Has a bias towards closer points in a se-
quence (e.g. will be biased towards the
recent past over a longer timescale in
time-series prediction).

Attention mechanism Often used in conjunction with other
architectures as a feature extraction or
dimensionality reduction method.
A NN is trained to learn the degree of
importance of each input data point on
another one in a sequence.
Attention mechanism-based NNs
are rapidly overtaking LSTMs as
the method of choice for modelling
sequence-based information.

Unlike LSTMs, attention mechanisms
are not biased towards relationships be-
tween near points in a sequence. Rather,
attention mechanisms treat all points in
an input sequence equally and retain
the learned attention mappings between
each point.
In the context of weather and climate
modelling, the learned attention map-
pings between points can be a useful
tool for assessing the degree to which
an NN has learned physically realistic
teleconnections.

More costly to train than an LSTM
for the same problem because atten-
tion mechanisms have more free param-
eters.
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Table 1. Continued.

Approach Description Pros Cons

Transformer The transformer architecture combines
an attention mechanism with an autore-
gressive approach, whereby each pre-
viously predicted step in a sequence is
an input into the prediction of the next
step. Transformer architectures under-
pin the current generation of language
models such as ChatGPT.
Transformers are now often included as
part of other architectures for input di-
mensionality reduction.

A proven and effective mechanism for
dimensionality reduction to allow the
training of large networks.
While the uptake of transformer archi-
tectures in weather and climate mod-
elling is still small, their impressive per-
formance for sequence prediction sug-
gests they could have great potential for
the field.

Transformers can be difficult to train
due to a tendency to overemphasize
the recurrent component of the network
over new inputs in the early stages of
training.

parametrization scheme, Krasnopolsky et al. (2005) used
NNs to develop an ML-based emulation of the existing at-
mospheric longwave radiation parametrization scheme in the
NCAR Community Atmospheric Model (CAM). The au-
thors demonstrated speedups with the NN emulation of 50–
80 times the original parameterization scheme.

The emulation of existing schemes has since then become
a popular method for achieving significant model speedups.
For example, Gettelman et al. (2021) investigated the differ-
ences between a general circulation model (GCM) with the
warm rain formation process replaced with a bin microphys-
ical model (resulting in a 400 % slowdown) and one with the
standard bulk microphysics parameterization in place. They
then replaced the bin microphysical model with a set of NNs
designed to emulate the differences observed and showed
that this configuration was able to closely reproduce the ef-
fects of including the bin microphysical model, without any
of the corresponding slowdown in the GCM.

3.2 ML for coarse graining

Coarse graining involves using higher-resolution model or
analysis data to map the relationship between smaller-scale
processes and a coarser grid resolution. It can be used to de-
velop parameterization schemes without explicitly represent-
ing the physics of smaller-scale processes.

This has proven to be a popular method for developing
ML-based parametrization schemes. Brenowitz and Brether-
ton (2018) used a near-global aquaplanet simulation run at
4 km grid length to train an NN to represent the apparent
sources of heat and moisture averaged onto 160 km2 grid
boxes. They then tested this scheme in a prognostic single-
column model and showed that it performed better than a
traditional model in matching the behaviour of the aqua-
planet simulation it was trained on. Brenowitz and Brether-
ton (2019) built on this work by training their NN on the
same global aquaplanet 4 km simulation but then embed-
ded this scheme within a coarser-resolution (160 km2) global
aquaplanet GCM. Embedding NNs within GCMs is chal-
lenging because feedbacks between NN and GCM compo-

nents can cause spatially extended simulations to become dy-
namically unstable within a few model days. This is due to
the inherently chaotic nature of the atmosphere in the GCM
responding to inputs from the NN which cause rapidly esca-
lating dynamical instabilities and/or violate physical conser-
vation laws. The authors overcame this by identifying and re-
moving inputs into the NN which were contributing to feed-
backs between the NN and GCM (Brenowitz et al., 2020a)
and by including multiple time steps in the NN training cost
function. This resulted in stable simulations which predicted
the future state more accurately than the coarse-resolution
GCM without any parametrization of subgrid-scale variabil-
ity; however the authors do observe that the mean state of
their NN-coupled GCM would drift, making it unsuitable for
prognostic climate simulations.

Rasp et al. (2018) trained a deep NN† to represent all at-
mospheric subgrid processes in an aquaplanet climate model
by learning from a multiscale model in which convection was
treated explicitly. They then replaced all subgrid parameter-
izations in an aquaplanet GCM with the deep NN and al-
lowed it to freely interact with the resolved dynamics and the
surface-flux scheme. They showed that the resulting system
was stable and able to closely reproduce not only the mean
climate of the cloud-resolving simulation but also key as-
pects of variability in prognostic multiyear simulations. The
authors noted that their decision to use deep NNs was a delib-
erate one because they proved more stable in their prognos-
tic simulations than shallower NNs, and they also observed
that larger networks achieved lower training losses. How-
ever, while Rasp et al. (2018) were able to engineer a sta-
ble model that produced results close to the reference GCM,
small changes in the training dataset or input and output vec-
tors quickly led to the NN producing increasingly unrealistic
outputs, causing model blow-ups (Rasp, 2020). Consistent
with this, Brenowitz and Bretherton (2019) report that they
were unable to achieve the same improvements in stability
with increasing network layers found by Rasp et al. (2018).
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3.3 Overcoming instability in ML emulations and
parametrizations

O’Gorman and Dwyer (2018) tackled the instabilities ob-
served in NN-based approaches to subgrid-scale parameter-
ization by employing an alternative ML method: random
forests (RFs; Breiman, 2001; Hastie et al., 2009). The authors
trained a RF to emulate the outputs of a conventional moist
convection parametrization scheme. They then replaced the
conventional parameterization scheme with this emulation
within a global climate model and showed that it ran stably
and was able to accurately produce climate statistics such
as precipitation extremes without needing to be specially
trained on extreme scenarios. RFs consist of an ensemble of
DTs, with the predictions of the RF being the average of the
predictions of the DTs which in turn exist within the domain
of the training data. RFs thus have the property that their pre-
dictions cannot go outside of the domain for their training
data, which in the case of O’Gorman and Dwyer (2018) en-
sured that conservation of energy and non-negativity of sur-
face precipitation (both critically important features of the
moist convection parametrization scheme) were automati-
cally achieved. A disadvantage of this method, however, is
that it requires considerable memory when the climate model
is being run to store the tree structures and predicted values
which make up the RF.

Yuval and O’Gorman (2020) extended on the ideas in
O’Gorman and Dwyer (2018), switching from emulation of
a single parametrization scheme to emulation of all atmo-
spheric subgrid processes. They trained a RF on a high-
resolution 3D model of a quasi-global atmosphere to produce
outputs for a coarse-grained version of the model and showed
that at coarse resolution the RF can be used to reproduce the
climate of the high-resolution simulation, running stably for
1000 d.

There are some drawbacks to a RF approach compared
to an NN approach, however, namely that NNs may pro-
vide the possibility for greater accuracy than RFs and also
require substantially less memory when implemented. Given
that GCMs are already memory intensive this can be a lim-
iting factor in the practical application of ML parametriza-
tion schemes. Furthermore, there is the potential to imple-
ment reduced precision NNs on GPUs and central processing
units (CPUs) which still achieve sufficient accuracy, leading
to substantial gains in computational efficiency. Motivated by
these considerations, Yuval et al. (2021) trained an NN in a
similar manner to how the RF in Yuval and O’Gorman (2020)
was trained, using a high-resolution aquaplanet model and
aiming to coarse grain the model parameters. They overcame
the model instabilities observed to occur in previous attempts
to use NNs for this process by wherever possible training
to predict fluxes and sources and sinks (as opposed to the
net tendencies predicted by the RF in Yuval and O’Gorman,
2020), thus incorporating physical constraints into the NN
parametrization. The authors also investigated the impact of

reduced precision in the NN and found that it had little im-
pact on the simulated climate.

3.4 From aquaplanets to realistic land–ocean
simulations

All of the studies discussed in this section so far which were
tested in a full GCM have used aquaplanet simulations. Han
et al. (2020) broke away from this trend by developing a
residual NN† (ResNet)-based parametrization scheme which
emulated the moist physics processes in a realistic land–
ocean simulation. Their emulation reproduced the character-
istics of the land–ocean simulation well and was also stable
when embedded in single-column models.

Mooers et al. (2021) represent a subsequent example of
an ML emulation of atmospheric fields with realistic geo-
graphical boundary conditions, where the authors developed
feed-forward NNs to super-parametrize subgrid-scale atmo-
spheric parameters and forced a realistic land surface model
with them. Super-parametrization is distinct from traditional
parameterization in that it relies on solving (usually simpli-
fied) governing equations for subgrid-scale processes rather
than heuristic approximations of these processes. They em-
ployed automated hyperparameter† optimization† to inves-
tigate a range of neural network architectures across ∼ 250
trials and investigated the statistical characteristics of their
emulations. While the authors found that their NNs had a less
good fit in the tropical marine boundary layer, attributable to
the NN struggling to emulate fast stochastic signals in con-
vection, they also reported good skill for signals on diurnal
to synoptic timescales.

Brenowitz et al. (2022) sought to address the challenge of
emulating fast processes. They used FV3GFS (Zhou et al.,
2019; Harris et al., 2021; a compressible atmospheric model
used for operational weather forecasts by the US National
Weather Service) with a simple cloud microphysics scheme
included to generate training data and used this to train a se-
lection of ML models to emulate cloud microphysics pro-
cesses, including fast phase changes. They emulated different
aspects of the microphysics with separate ML models chosen
to be suitable to each task. For example, simple parameters
were trained with single-layer NNs, while parameters which
are more complex spatially were trained with RNNs (e.g. rain
falls downwards and not upwards, so it is sequential in time
steps through the atmosphere – a feature which can be repre-
sented by an RNN). They then embedded their ML emulation
in FV3GFS. They found that their combined ML simulation
performed skilfully according to their chosen metrics but had
excessive cloud over the Antarctic Plateau.

All of these studies, however, did not test their parameter-
izations in prognostic long-term simulations.
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3.5 Testing with prognostic long-term simulations

A barrier to achieving stable runs with minimal model drift
with ML components is the fact that generic ML models are
not designed to conserve quantities which are required to be
conserved by the physics of the atmosphere and ocean. Beu-
cler et al. (2019) proposed and tested two methods for impos-
ing such constraints in an NN model: (1) constraining the loss
function or (2) constraining the architecture of the network it-
self. They found that their control NN with no physical con-
straints imposed performed well but did so by breaking con-
servation laws, bringing into question the trustworthiness of
such a model in a prognostic setting. Their constrained net-
works did, however, generalize better with unforeseen condi-
tions, implying they might perform better under a changing
climate than unconstrained models.

Chantry et al. (2021b) trained an NN to emulate the
non-orographic gravity wave drag parameterization in the
ECMWF IFS model (specifically cycle 45R1; ECMWF,
2018) and were able to run stable, accurate simulations out
to 1 year with this emulation coupled to the IFS. While the
authors note that RFs have been shown to be more stable
(e.g. O’Gorman and Dwyer, 2018, and Yuval and O’Gorman,
2020, as described above, and Brenowitz et al., 2020b), they
chose to focus on NNs since they have lower memory re-
quirements and therefore promise better theoretical perfor-
mance. The authors assessed the performance of their em-
ulation in a realistic GCM by coupling the NN with the
IFS, replacing the existing non-orographic gravity wave drag
scheme, and performed 120 h, 10 d, and 1-year forecasts at
∼ 25 km resolution in a variety of model configurations. The
authors showed that their emulation was able to run stably
when coupled to the IFS for seasonal timescales, including
being able to reproduce the descent of the quasi-biennial
oscillation (QBO). Interestingly, while the authors initially
aimed to ensure momentum conservation in a manner similar
to Beucler et al. (2021), they found that this constraint led to
model instabilities and that a better result was achieved with-
out it. One possible explanation for this is that Beucler et al.
(2021) assessed their NNs in an aquaplanet setting. Nonethe-
less, Chantry et al. (2021b) noted that since their method
was not identical to Beucler et al. (2021), improved stabil-
ity could potentially be achieved by following their method
more precisely. The computational cost of the NN emulation
developed by Chantry et al. (2021b) was found to be similar
to that of the existing parametrization scheme when run on
CPUs but was faster by a factor of 10 when run on GPUs due
to the reduction in data transmission bottlenecks.

The first study to successfully run stable long-term cli-
mate simulations with ML parametrizations was X. Wang et
al. (2022), who extended on the work of Han et al. (2020) by
constructing a ResNet to emulate moist physics processes.
They used the residual connections from Han et al. (2020) to
construct NNs with good non-linear fitting ability and filtered
out unstable NN parametrizations using a trial-and-error

analysis, resulting in the best ResNet set in terms of accuracy
and long-term stability. They implemented this scheme in a
GCM with realistic geographical boundary conditions and
were able to maintain stable simulations for over 10 years
in an Atmospheric Model Intercomparison Project (AMIP)-
style configuration. This was more akin to a hybrid ML–
physics-based model than a traditional GCM with ML-based
parametrization because rather than embedding the ResNet
in the model code, the authors used an NN–GCM coupling
platform through which the NNs and GCMs could interact
through data transmission. This is in contrast to the approach
employed in the Physical-model Integration with Machine
Learning (https://turbo-adventure-f9826cb3.pages.github.io,
last access: 7 February 2023) (PIML) project and Infero
(https://infero.readthedocs.io/en/latest/, last access: 7 Febru-
ary 2023), which are both described in Sect. 3.11. One advan-
tage to this approach noted by the authors is that it allows for
a high degree of flexibility in the application of the ML com-
ponent; however it is likely to be less efficient than a fully
embedded ML model due to the potential for data transmis-
sion bottlenecks.

3.6 Training with observational data

An alternative to using more complex and/or higher-
resolution models for training data is to train using direct ob-
servational data. For example, Ukkonen and Mäkelä (2019)
used reanalysis data from ERA5 and lightning observation
data to train a variety of different types of ML models to pre-
dict thunderstorm occurrence; this was then used as a proxy
to trigger deep convection. ML models assessed were logistic
regression, RFs, GBDTs, and NNs, with the final two show-
ing a significant increase in skill over convective available
potential energy (CAPE; a standard measure of potential con-
vective instability). One of the challenges of accurately re-
producing the large-scale effects of convection is correctly
identifying when deep convection should occur within a grid
cell. The authors proposed that an ML model such as those
they assessed could be used as the “trigger function” which
activates the deep convection scheme within a GCM.

3.7 ML for super-parameterization

Revisiting the topic of super-parametrized subgrid-scale pro-
cesses introduced above, the use of ML for this approach
was investigated in depth by Chattopadhyay et al. (2020).
The authors introduced a framework for an NN-based
super-parametrization and compared the performance of
this method against an NN-based traditional parametriza-
tion (i.e. based on heuristic approximations of subgrid-
scale processes) and direct super-parameterization (i.e. ex-
plicitly solving for the subgrid-scale processes) in a chaotic
Lorenz 96 (Lorenz, 1996) system that had three sets of vari-
ables, each of a different scale. They found that their NN-
based super-parameterization outperformed the direct super-
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parameterization in terms of computational cost and was
more accurate than the NN-based traditional parametrization.
The NN-based super-parameterization showed comparable
accuracy to the direct super-parameterization in reproducing
long-term climate statistics but was not always comparable
for short-term forecasting.

3.8 Stochastic parametrization schemes

A more recent approach to the representation of subgrid-
scale processes is via stochastic parameterization schemes,
which can represent uncertainty within the scheme. There
has been less focus on replacing these schemes with ML
alternatives than with non-stochastic schemes; however
some progress has been made. Krasnopolsky et al. (2013)
used an ensemble of NNs to learn a stochastic convection
parametrization from data from a high-resolution cloud re-
solving model. In this case, the stochastic nature of the
parametrization was captured by the ensemble of NNs.
Gagne et al. (2020b) took a different approach, investigat-
ing the utility of generative adversarial networks† (GANs)
for stochastic parametrization schemes in Lorenz 96 (Lorenz,
1996) models. In this case, the GAN learned to emulate the
noise of the scheme directly rather than implicitly represent-
ing it with an ensemble. They described the effects of dif-
ferent methods to characterize input noise for the GAN and
the performance of the model at both weather and climate
timescales. The authors found that the properties of the noise
influenced the efficacy of training. Too much noise resulted
in impaired model convergence and too little noise resulted
in instabilities within the trained networks.

3.9 ML parametrization and emulation for land,
ocean, and sea ice models

Models of the atmosphere make up one component of the
Earth system; however for timescales beyond a few days,
simulating other components of the Earth system becomes
increasingly important to maintain accuracy. The compo-
nents which are most often included in coupled Earth system
models in addition to the atmosphere are the ocean, sea ice,
and the land surface. Reflective of this, ML approaches to
the parameterization of subgrid-scale processes are not lim-
ited to the atmosphere, and progress has been made in the use
of ML for land, ocean, and sea ice models as well.

On the ocean modelling front, Krasnopolsky et al. (2002)
presented an early application of NN for the approximation
of seawater density, the inversion of the seawater equation of
state, and an NN approximation of the non-linear wave–wave
interaction. More recently, Bolton and Zanna (2019) inves-
tigated the utility of convolutional neural networks (CNNs)
for parametrizing unresolved turbulent ocean processes and
subsurface flow fields. Zanna and Bolton (2020) then inves-
tigated both relevance vector machines† (RVMs) and CNNs
for parameterizing mesoscale ocean eddies. They demon-

strated that because RVMs are interpretable, they can be
used to reveal closed-form equations for eddy parameteriza-
tions with embedded conservation laws. The authors tested
the RVM and CNN parameterizations in an idealized ocean
model and found that both improved the statistics of the
coarse-resolution simulation. While the CNN was found to
be more stable than the RVM, the advantage of the RVM
was the greater interpretability of its outputs. Finally, Ross
et al. (2023) developed a framework for benchmarking ML-
based parametrization schemes for subgrid-scale ocean pro-
cesses. They used CNNs, symbolic regression, and genetic
programming methods to emulate a variety of subgrid-scale
forcings including measures of potential vorticity and ve-
locity, and developed a standard set of metrics to evaluate
these emulations. They found that their CNNs were stable
and performed well when implemented online but general-
ized poorly to new regimes.

Focusing instead on sea ice, Chi and Kim (2017) assessed
the ability of two NN models: a fully connected NN and an
LSTM to predict Antarctic sea ice concentration up to a year
in advance. Their ML models outperformed an autoregres-
sive model comparator and were in good agreement with
observed sea ice extent. Andersson et al. (2021) improved
upon this work with their model IceNet, a U-Net ensem-
ble model which produced probabilistic Arctic sea ice con-
centration predictions to a 6-month lead time. The authors
compared IceNet to the SEAS5 dynamical sea ice model
(Johnson et al., 2019) and showed an improvement in the
accuracy of a binary classification of ice/no ice for all lead
months except the first month. Horvat and Roach (2022) used
ML to emulate a parameterization of wave-induced sea ice
floe fracture they had developed previously, in order to re-
duce the computational cost of the scheme. When embed-
ded in a climate simulation, their ML scheme resulted in an
overall categorical accuracy (accounting for the fact that it
was only called where needed) of 96.5 %. However the au-
thors did note that since their ML scheme was trained on
present-day sea ice conditions, it may have reduced success
under different climate scenarios, and they recommend re-
training using climate model sea ice conditions to account
for this. Rosier et al. (2023) developed MELTNET, an ML
emulation of the ocean-induced ice shelf melt rates in the
NEMO ocean model (Gurvan et al., 2019). MELTNET con-
sisted of a melt rate segmentation task, followed by a de-
noising autoencoder† network which converted the discrete
labelled melt rates to a continuous melt rate. The authors
demonstrated that MELTNET generalized well to ice shelf
geometries outside the training set and outperformed two
intermediate-complexity melt rate parameterizations, even
when parameters in those models were tuned to minimize
any misfit for the geometries used. Given the computational
cost of sea ice parametrizations is relatively high for the
timescales on which sea ice evolution is important (namely,
seasonal to climate timescales) and given the promising re-
sults in emulating these parametrizations demonstrated in the
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literature, ML-based emulation of these schemes is a strong
candidate for inclusion into future dynamical coupled mod-
elling systems.

Finally, considering Earth’s surface, most of the focus of
ML innovations in this context has been on land use classifi-
cation (e.g. Carranza-García et al., 2019; Digra et al., 2022)
and crop modelling (e.g. Virnodkar et al., 2020; Zhang et al.,
2023). The rate of publication of ML applications for land
surface models has been slower; however there has nonethe-
less been steady progress in this space in recent years. Pal
and Sharma (2021) presented a review of the use of ML in
land surface modelling which provides an excellent primer
of the state of the field to that point. They include in their re-
view an overview of land surface modelling components and
processes before reviewing the literature on the use of ML
to represent them. They separate their review into attempts
to predict and parametrize different variables or aspects of
the model, including evapotranspiration (Alemohammad et
al., 2017; Zhao et al., 2019; Pan et al., 2020), soil moisture
(Pelissier et al., 2020), momentum and heat fluxes (Leufen
and Schädler, 2019), and parameter estimation and uncer-
tainty (Chaney et al., 2016; Sawada, 2020; Dagon et al.,
2020). They also provide a useful summary of the ML archi-
tectures that have been used in the publications they discuss.
More recently, He et al. (2022) developed a hybrid approach
to modelling aspects of the land surface, where a traditional
land surface model was used to optimize selected vegetation
characteristics, while a coupled ML model simulated a corre-
sponding three-layer soil moisture field. The estimated evap-
otranspiration from this hybrid model was compared to ob-
servations, and it was found that it performed well in vege-
tated areas but underestimated the evapotranspiration in ex-
treme arid deserts. The ready application of ML to aspects
of land surface modelling and the relative sparsity of pub-
lications in this space suggest that it is a fertile domain for
further research and development.

3.10 ML for representing or correcting a
sub-component of a parametrization scheme

An alternative method to replacing or emulating an entire
parametrization scheme or schemes with ML is to target the
most costly or troublesome sub-components of the scheme,
and either replace those or make corrections to them.

Ukkonen et al. (2020) trained NNs to replace gas op-
tics computations in the RTE-RRTMGP (Radiative Transfer
for Energetics – Rapid Radiative Transfer Model for Gen-
eral Circulation Model Applications – Parallel; Pincus et al.,
2019) scheme. The NNs were faster by a factor of 1–6, de-
pending on the software and hardware platforms used. The
accuracy of the scheme remained similar to that of the origi-
nal scheme.

Meyer et al. (2022) trained an NN to account for the differ-
ences between 1D cloud effects in the ECMWF 1D radiation
scheme ecRad and 3D cloud effects in the ECMWF SPAR-

TACUS (SPeedy Algorithm for Radiative TrAnsfer through
CloUd Sides) solver. The 1D cloud effect solver within
ecRad, Tripleclouds, is favoured over the 3D SPARTACUS
solver because it is 5 times less computationally expensive.
The authors show that their NN can account for differences
between the two schemes with typical errors between 20 %
and 30 % of the 3D signal, resulting in an improvement in
Tripleclouds’ accuracy with an increase in runtime of ap-
proximately 1 %. By accounting for the differences between
SPARTACUS and Tripleclouds rather than emulating all of
SPARTACUS, the authors were able to keep Tripleclouds un-
changed within ecRad for cloud-free areas of the atmosphere
and utilize the NN 3D correction elsewhere.

3.11 Bridging the gap between popular languages for
ML and large numerical models

A common toolset for researchers to develop and experi-
ment with different ML approaches to problems is Python
libraries, such as PyTorch†, scikit-learn†, TensorFlow†, and
Keras†, or other dynamically typed, non-precompiled lan-
guages. In contrast, numerical weather models are almost
universally written in statically typed compiled languages,
predominantly Fortran. To make use of ML emulations or
parameterizations in the models thus requires

1. that they be treated as a separate model periodically
coupled to the main model (as is done between atmo-
sphere and ocean models for example), or

2. that they be manually re-implemented in Fortran, or

3. that the pre-existing libraries used are somehow made
accessible within the model code.

X. Wang et al. (2022; mentioned already above) opted for
method 1, developing what could be considered a hybrid
ML–physics-based model rather than a traditional GCM with
ML-based parametrization. In their study, the authors used
an NN–GCM coupling platform through which the NNs and
GCMs could interact through data transmission. One advan-
tage to this approach noted by the authors is that it allows
for a high degree of flexibility in the application of the ML
component; however it is likely to be less efficient than a
fully embedded ML model due to the potential for data trans-
mission bottlenecks. This framework was then formalized by
Zhong et al. (2023).

There are many examples where method 2 was used, such
as Rasp et al. (2018), Brenowitz and Bretherton (2018), and
Gagne et al. (2019, 2020a). The obvious disadvantage of this
approach is that every change to the ML model being used
requires re-implementation in Fortran, and if the aim is to
test a suite of ML models, this approach becomes untenable.
Furthermore, this approach poses greater technical barriers
for scientists developing ML-based solutions for numerical
model challenges since they must be sufficiently proficient
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in Fortran to re-implement models in it rather than using ex-
isting user-friendly Python toolkits.

A solution lying somewhere between methods 2 and 3 was
developed by Ott et al. (2020), who developed a Fortran–
Keras bridge (FKB) library that facilitated the implementa-
tion of Keras-like NN modules in Fortran, providing a more
modular means to build NNs in Fortran code. This, however,
did not fully overcome the drawbacks posed by method 2 on
its own; implementation of layers in Fortran is still necessary,
and any innovations in the Python modules being used would
need to be mirrored in the Fortran library.

Finally, method 3 is being tackled by the Met Office in
the PIML (https://turbo-adventure-f9826cb3.pages.github.
io/, last access: 7 February 2023) project and by ECMWF
with an application called Infero (https://infero.readthedocs.
io/en/latest/, last access: 7 February 2023). These projects
both seek to develop a framework which can be used by re-
searchers to develop ML solutions to modelling problems
in Python and then integrate them directly into the existing
codebase of the physical model (e.g. the Unified Model at
the UK Met Office). The approach used is to directly expose
the compiled code underpinning the Python modules within
the physical model code.

4 Application of ML for the partial differential
equations governing fluid flow

The representation and solving of the partial differential
equations (PDEs) governing the fluid flow and dynamical
processes in the oceans and atmosphere can be considered
the backbone of weather and climate models. The solvers
used to find solutions to these equations are typically iter-
ative and must solve the dynamics governing equations of
their model on every time step and at every grid point. There
has been growing interest in using ML to facilitate speedups
and computational cost reductions in the preconditioning and
execution of these solvers. Preconditioners are used to reduce
the number of iterations required for a solver to converge on
a solution and usually do so by inverting parts of the lin-
ear problem. Many earlier studies focused on using ML to
select the best preconditioner and/or PDE solver from a set
of possible choices (e.g. Holloway and Chen, 2007; Kuefler
and Chen, 2008; George et al., 2008; Peairs and Chen, 2011;
Huang et al., 2016; and Yamada et al., 2018). Ackmann et
al. (2020) approached the preconditioner part of the system
more directly, using a variety of ML methods to directly pre-
dict the precondition of a linear solver rather than using a
standard preconditioner. Rizzuti et al. (2019) focused on the
solver, using ML to apply corrections to a traditional itera-
tive solver for the Helmholtz equation. Going a step further,
a number of studies have used ML to replace the linear solver
entirely (Ladický et al., 2015; Yang et al., 2016; Tompson et
al., 2017).

The representation of the fluid equations in a gridded
model poses a challenge because of the inability to resolve
fine features in their solution. This leads to the use of coarse-
grained approximations to the actual equations, which aim
to accurately represent longer-wavelength dynamics while
properly accounting for unresolved smaller-scale features.
Bar-Sinai et al. (2019) trained an NN to optimally discretize
the PDEs based on actual solutions to the known underly-
ing equations. They showed that their method is highly accu-
rate, allowing them to integrate in time a collection of non-
linear equations in 1 spatial dimension at resolutions 4× to
8× coarser than was possible with standard finite-difference
methods.

Building on this, Kochkov et al. (2021) developed an ML-
based method to accurately calculate the time evolution of
solutions to non-linear PDEs which used grids an order of
magnitude coarser than is traditionally required to achieve
the same degree of accuracy. They used convolutional NNs to
discover discretized versions of the equations (as in Bar-Sinai
et al., 2019) and applied this method selectively to the com-
ponents of traditional solvers most affected by coarse resolu-
tion, with each NN being equation-specific. They utilized the
property that the dynamics of the PDEs were localized, com-
bined with the convolutional layers of their NN enforcing
translation invariance†, to perform their training simulations
on small but high-resolution domains, making the training set
affordable to produce. An interesting feature of their training
approach, which is growing in popularity, was the inclusion
of the numerical solver in the training loss function: the loss
function was defined as the cumulative pointwise error be-
tween the predicted and ground truth values over the training
period. In this way, the NN model could see its own outputs
as inputs, ensuring an internally consistent training process.
This had the effect of improving the predictive performance
of the model over longer timescales, in terms of both accu-
racy and stability. Finally, the authors demonstrated that their
models produced generalizable properties (i.e. although the
models were trained on small domains, they produced accu-
rate simulations over larger domains with different forcing
and Reynolds number). They showed that this generalization
property arose from consistent physical constraints being en-
forced by their chosen method.

An alternative to using ML to discover discretized versions
of the PDE equations is to instead use NNs to learn the evolu-
tion operator of the underlying unknown PDE, a method of-
ten referred to as a DeepONet†. The evolution operator maps
the solution of a PDE forwards in time and completely char-
acterizes the solution evolution of the underlying unknown
PDE. Because it is operating on the PDE, it is scale invariant†

and so bypasses the restriction of other methods that must be
trained for a specific discretization or grid scale. Interest in,
and the degree of sophistication of, DeepONets has grown
rapidly in recent years (e.g. Lu et al., 2019; Wu and Xiu,
2020; Bhattacharya et al., 2020; Li et al., 2020a, b, c; Nelsen
and Stuart, 2021; Patel et al., 2021; Wang et al., 2021; Lan-
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thaler et al., 2022) to the point where the method is showing
promising speedups: 3× faster than traditional solvers in the
case of Wang et al. (2021).

The application of ML to the solving of PDEs and the pre-
conditioning of PDE solvers has been a fruitful avenue of
research to date. It has led to innovations which have proven
useful even outside of the immediate field (e.g. Pathak et al.,
2022, adapted innovations from DeepONets to use in fully
ML-based weather models – this is discussed further in the
next section). This is likely in part because there are many ar-
eas of engineering and science which are active in progress-
ing relevant research, leading to a greater overall pace of in-
novation. ML-based PDE solvers and preconditioners have
not yet been tested in a physical weather and climate model.
There are few theoretical reasons this could not occur and, if
effective, result in significant computational efficiencies for
traditional physical model architectures. This poses an inter-
esting avenue for further research.

5 Numerical model replacement or emulation

The shift from using ML to emulate or replace parametriza-
tion schemes to using ML to replace the entire GCM has
been made plausible by the increasing volume of training
data available. The focus in this section will be on the chal-
lenge of completely replacing a GCM with an ML model.

There has been a flurry of activity in the use of ML for
nowcasting (e.g. Ravuri et al., 2021); however since the focus
of this review is on weather and climate applications, these
studies will not be elaborated on.

5.1 Early work – 1D deterministic models

Work on the use of ML to predict chaotic time-domain sys-
tems initially focused on 1D problems, including 1D Lorenz
systems (e.g. Karunasinghe and Liong, 2006; Vlachas et al.,
2018). Of particular interest is Vlachas et al. (2018), who
used long short-term memory networks (LSTMs†), which
are well-suited to complex time domain problems. Convolu-
tional LSTMs (ConvLSTMs), which combine convolutional
layers with an LSTM mechanism, were introduced in the me-
teorological domain by Shi et al. (2015) for precipitation
nowcasting. They have since seen wide adoption in other
areas (e.g. Yuan et al., 2018; Moishin et al., 2021; Kelotra
and Pandey, 2020). Their success in other domains suggests
that revisiting their utility for weather and climate modelling
could be worthwhile.

5.2 Moving to spatially extended deterministic
ML-based models

Replacing a GCM entirely with an ML alternative was first
suggested and tested in a spatially resolved global configu-
ration by Dueben and Bauer (2018), although for this study
they only sought to predict a single variable (geopotential

height at 500 hPa) on a 6◦ grid. Scher (2018) trained a CNN
to predict the next model state of a GCM based on the com-
plete state of the model at the previous step (i.e. an emulator
of the GCM). Since this work was intended to be a proof of
concept, the authors used a highly simplified GCM with no
seasonal or diurnal cycle, no ocean, no orography, a reso-
lution of ∼ 625 km in the horizontal, and 10 vertical levels.
Nonetheless, their ML model showed impressive capabili-
ties; it was able to predict the complete model state several
time steps ahead and when run in an iterative way (i.e. by
feeding the model outputs back as new inputs) was able to
produce a stable climate run with the same climate statistics
as the GCM, with no long-term drift (even though no conser-
vation properties were explicitly built into the CNN). Scher
and Messori (2019) then extended on this but continued the
proof-of-concept approach. They investigated the ability of
NNs to make skilful forecasts iteratively a day at a time to a
lead time of a few days for GCMs of varying complexity and
explored a combination of other factors, including number of
training years, the effects of model retuning, and the impact
of a seasonal cycle on NN model accuracy and stability.

Weyn et al. (2019) aimed to predict a limited number of
variables, focusing on the NWP to medium-range time do-
main. They trained a CNN to predict 500 hPa geopotential
height and 300 to 700 hPa geopotential thickness over the
Northern Hemisphere to up to a 14 d lead time, showing
better skill out to 3 d than persistence†, climatology†, and
a dynamics-based barotropic vorticity model but not better
than an operational full-physics weather prediction model.

Weyn et al. (2020) then improved on this significantly,
with a deep U-Net-style CNN trained to predict four vari-
ables (geopotential height at 500 and 1000 hPa, 300 to
700 hPa geopotential thickness, and 2 m temperature) glob-
ally to a 14 d lead time. A major innovation in this study was
their use of a cubed-sphere grid, which minimized distor-
tions for planar convolution algorithms while also providing
closed boundary conditions for the edges of the cube faces.
Additionally, they extended their previous work to include
sequence prediction techniques, making skilful predictions
possible to longer lead times. Their improved model out-
performed persistence and a coarse-resolution comparator (a
T42 spectral resolution version of the ECMWF IFS model,
with 62 vertical levels and ∼ 2.8◦ horizontal resolution) to
the full 14 d lead time but was not as skilful as a higher-
resolution comparator (a T63 spectral resolution version of
the IFS model with 137 vertical levels and ∼ 1.9◦ horizontal
resolution) or the operational sub-seasonal-to-seasonal (S2S)
version of the ECMWF IFS.

Clare et al. (2021) tackled a short fall of many of the ML
weather and climate models developed to this point, namely
that most were deterministic, limiting their potential utility.
To address this, they trained an NN to predict full probabil-
ity density functions of geopotential height at 500 hPa and
temperature at 850 hPa at 3 and 5 d lead times, producing a
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probabilistic forecast which was comparable in accuracy to
Weyn et al. (2020).

Choosing to focus on improved skill rather than the ques-
tion of probabilistic vs. deterministic models, Rasp and
Thuerey (2021) developed a ResNet model trained to pre-
dict geopotential height, temperature, and precipitation to a
5 d lead time and assessed it against the same set of physical
models as Weyn et al. (2020). Their model was close to be-
ing as skilful as the T63 spectral resolution version of the IFS
model, and had better skill to the 5 d lead time than Weyn et
al. (2020).

Keisler (2022) took an ambitious step forward, training
a graph neural network† (GNN) model to predict 6 phys-
ical variables on 13 atmospheric levels on a 1◦ horizontal
grid, which the author claims is ∼ 50–2000 times larger than
the number of physical quantities predicted by the models
in Rasp and Thuerey (2021) and Weyn et al. (2020). Their
model worked by iteratively predicting the state of the six
variables 6 h into the future (i.e. the output of each model
time step was the input into the next time step) to a to-
tal lead time of 6 d. The authors showed that their model
outperformed both Rasp and Thuerey (2021) and Weyn et
al. (2020) in the variables common to all three studies. They
suggested that the gain in skill seen over previous studies
was due to the use of more channels† of information, as well
as the higher spatial and temporal resolution of their model.
Finally, they showed that their model was more skilful than
NOAA’s Global Forecast System (GFS) physical model to
6 d lead time but not as skilful as ECMWF IFS.

Lam et al. (2022) also used GNNs to build their ML-
based weather and climate model, GraphCast. This model
was the most skilful ML-based weather and climate model
at the time of writing this review. While the first ML-based
weather and climate model to claim to exceed the skill of
a numerical model was Pangu-Weather (Bi et al., 2022; de-
scribed in greater detail in the following subsection), Graph-
Cast exceeded the skill of both the ECMWF determinis-
tic operational forecasting system, HRES, and also Pangu-
Weather. Furthermore, Lam et al. (2022) paid particular at-
tention to evaluating their model and HRES against appropri-
ate measures and included existing model assessment score-
cards from ECMWF to evaluate them. GraphCast capitalized
on the ability of GNNs to model arbitrary sparse interac-
tions by adopting a high-resolution multi-scale mesh repre-
sentation of the input and output parameters. It was trained
on the ECMWF ERA5 reanalysis archive to produce predic-
tions of five surface variables and six atmospheric variables,
each at 37 vertical pressure levels, on a 0.25◦ grid. It made
predictions on a 6-hourly time step and was run autoregres-
sively to produce predictions to a 10 d lead time. The authors
demonstrated that GraphCast was more accurate than HRES
on 90.0 % of the 2760 variable and lead time combinations
they evaluated.

5.3 Ensemble generation with ML-based models

A common criticism of ML approaches to weather and cli-
mate prediction is the difficulty of representing uncertainty
and/or the tails of the distribution of predicted parameters.
One common method to represent the range of possible out-
comes (including extremes) under different sources of uncer-
tainty is through a well-calibrated ensemble of predictions.
There are a growing number of examples where ensemble
generation is considered, many of which fall into the cate-
gory of full-model replacement.

Weyn et al. (2021) explored probabilistic ML predictions
using an ensemble of NNs similar to the single-member NN
described in Weyn et al. (2020). The authors expanded the
number of variables predicted from four to six and produced
forecasts to a 6-week lead time – considerably longer than
any comparable work at the time of writing this review. They
considered a variety of initial-condition perturbation strate-
gies and explored the impact of model error by varying the
initial values of the model weights during training to cre-
ate a multi-model ensemble. They used a combination of
the multi-model ensemble generation approach and initial-
condition perturbations to generate a “grand ensemble” of
320 members. They used established metrics for ensemble
performance such as RMSE spread plots and found that the
320-member grand ensemble combining the multi-model en-
semble with initial-condition perturbations performed only
slightly better than the multi-model ensemble alone at 14 d
lead times. The skill of the ensemble mean of the system, a
control member, and the full ensemble were assessed against
the same metrics from the ECMWF sub-seasonal to seasonal
(S2S) prediction system. Their grand ensemble had lower
skill than the S2S system at shorter lead times but was com-
parable in skill at longer lead times. Their skill assessment
used standard probabilistic skill measures such as continu-
ous ranked probability score and the ranked probability skill
score, which are not present in the other studies discussed
in this section. The next major ML model to be tested in
an ensemble mode was FourCastNet, presented by Pathak et
al. (2022), who leveraged the work on DeepONets described
in Sect. 4. In particular, the authors used a type of Deep-
ONet called a Fourier neural operator (FNO). FourCastNet
produced predictions of 20 variables (including challenging-
to-predict variables such as surface winds and precipitation)
on five vertical levels with 0.25◦ horizontal resolution and
had competitive skill against the ECMWF IFS for a 1-week
lead time. The high horizontal resolution of their model en-
abled it to resolve extreme events such as tropical cyclones
and atmospheric rivers, and the speed of the model facilitated
the generation of large ensembles (up to thousands of mem-
bers).

The authors explored the potential of their ensemble fore-
casts by generating a 100-member ensemble from initial con-
ditions perturbed with Gaussian random noise. They showed
that the FourCastNet ensemble mean had lower RMSE and
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a higher anomaly correlation coefficient than a single-value
prediction at longer lead times (beyond ∼ 3–4 d), although
the ensemble mean performed slightly worse than the single-
value forecast at shorter lead times. The authors attributed
this relative decrease in performance at shorter lead times to
the ensemble mean smoothing out fine-scale features. Unfor-
tunately, the authors did not examine the spread of the ensem-
ble with lead time or evaluate the model using probabilistic
skill metrics (in contrast to Weyn et al., 2021), and while they
did consider the capacity of FourCastNet to predict extremes,
they did not do so in an ensemble context.

Hu et al. (2023) improved on the relatively simple ensem-
ble perturbation approach employed by Pathak et al. (2022)
in their model, a sliding window (Swin) transformer-based
variational recurrent neural network (SwinVRNN). This
model combined a Swin transformer recurrent neural net-
work (SwinRNN) predictor with a variational autoencoder
perturbation module. The perturbation module learned the
multivariate Gaussian distributions of a time-variant stochas-
tic latent variable from the training data. The SwinRNN pre-
dictor was deterministic but could be used to generate en-
semble predictions by perturbing model features using noise
sampled from the distribution learned by the perturbation
module. Unlike the approach used by Pathak et al. (2022),
this strategy ensured that the perturbations applied at each
spatial location in ensemble generation were appropriate for
the location and variable in question. Furthermore, the train-
ing strategy employed by Hu et al. (2023) accounted for
both the error in the deterministic predictions and the error
in the learned perturbation distribution, effectively optimiz-
ing forecast accuracy and ensemble spread at the same time.
The authors assessed both the ensemble spread and ensemble
mean accuracy of their model and found that it had a better
ensemble spread than simpler alternative ensemble genera-
tion strategies. They also found that it had lower latitude-
weighted RMSE than the ECMWF IFS to a 5 d lead time for
2 m temperatures and total precipitation. ECMWF data be-
yond 5 d were not shown, but the SwinVRNN models had
latitude-weighted RMSE values lower than a weekly clima-
tology baseline for three of the four variables shown to a 14 d
lead time. Bi et al. (2022) achieved a significant milestone
with their model Pangu-Weather, the first ML-based model
to perform better than the ECMWF IFS to a lead time of 7 d
based on RMSE and anomaly correlation coefficient (ACC)
across several variables including geopotential height and
temperature at 500 hPa. While they did explore the utility of
Pangu-Weather for ensemble generation, their approach was
more simplistic than that demonstrated by Hu et al. (2023).
Pangu-Weather featured two major innovations over previous
contributions to this space:

1. It used 3D (latitude, longitude, and height) input grids
trained against 3D output grids. This enabled different
levels of the atmosphere to share information, which
was not possible in FourCastNet in spite of predicting

variables on multiple atmospheric levels because the
levels were treated independently. In contrast, Pangu-
Weather adopted a 3D convolutional method that the au-
thors name the 3D Earth-specific transformer (3DEST),
which enabled the flow of information both horizontally
and vertically.

2. It was made up of a series of models trained with dif-
ferent prediction time gaps. The motivation for this was
that, as noted by the authors, when the goal is to produce
forecasts to 5 d (for example) but the time step of the
basic forecast model is relatively short (e.g. 6 h), many
iterative executions of the model are required, with the
errors in each iteration feeding into the next. A shorter
model time step results in greater overall errors (due to
more iterations being required to reach the final forecast
lead time), and a longer model time step reduces this
error. Motivated by this, the authors trained several ver-
sions of their model to predict different time steps on
a single iteration. The overall forecast to a given lead
time was then constructed using the longest possible
time steps. For example, for a 7 d forecast, a 24 h fore-
cast is iterated seven times, whereas for a 23 h forecast,
a 6 h forecast is iterated three times, followed by a 3 h
forecast one time, and 1 h forecast two times. The au-
thors noted that this strategy was not effective for multi-
week or longer timescales; they reported that training
the model with a 28 d time step was difficult, for exam-
ple, and suggested that more powerful or complex ML
methods would be required to achieve this.

As well as the relatively broad measures of RMSE and ACC,
the authors assessed the ability of their system to repre-
sent the intensity and track of selected tropical cyclones.
They found that Pangu-Weather predicted the tracks of the
cyclones considered with a high degree of accuracy com-
pared to the ECMWF IFS; however it underestimated cy-
clone intensity. The authors attributed this to the training
data they used (ERA5) also underestimating cyclone inten-
sity. As noted above, the authors also explored the potential
for producing useful ensemble forecasts. To assess ensem-
ble predictions, they perturbed the initial state of the sys-
tem with Perlin noise vectors to produce a 100-member en-
semble of forecasts and calculated the RMSE and ACC of
the ensemble mean for selected variables. As in Weyn et
al. (2021), the authors noted that the ensemble mean fore-
casts performed worse than a single deterministic forecast for
shorter lead times (e.g. 1 d) but better for longer lead times.
Unfortunately, as with Pathak et al. (2022), Bi et al. (2022)
did not investigate the properties of the spread of the ensem-
ble or assess its skill using standard probabilistic skill met-
rics, and their approach to ensemble generation was much
simpler than that of Hu et al. (2023).

As already mentioned above, the skill of Pangu-Weather
was exceeded by GraphCast, although Lam et al. (2022)
only assessed GraphCast in a deterministic setting. Nonethe-

Geosci. Model Dev., 16, 6433–6477, 2023 https://doi.org/10.5194/gmd-16-6433-2023



C. O. de Burgh-Day and T. Leeuwenburg: Machine learning for numerical weather and climate 6453

less, there is nothing stopping GraphCast from being used to
generate ensemble forecasts in a manner similar to Pangu-
Weather. The authors of this review look forward to a more
in-depth inter-comparison of the pure ML models in the lit-
erature, including an assessment of their performance for en-
semble predictions.

Although the ensemble systems presented in Weyn et
al. (2021) and Hu et al. (2023) had lower overall accuracy
than the other models discussed in this section, they still rep-
resented the most comprehensive analysis of the behaviour
and performance of ensemble ML models (in terms of con-
sidering optimal ensemble perturbation strategies and quan-
tifying the ensemble behaviour) at the time of writing this re-
view. Further investigation into the best methods to generate
and evaluate pure ML model ensembles would be a highly
beneficial contribution to the field.

5.4 Moving to more extensible models

As the effectiveness of ML approaches are increasingly
demonstrated in the literature, additional factors become
clear in considering these models for both research and ap-
plication. In a research setting, the ability to readily per-
form transfer learning† to new problems and reduce training
costs will be significant in supporting adoption by other re-
searchers.

This need for greater flexibility in both the input data
sources and predictive outputs of ML weather and climate
models was recognized by Nguyen et al. (2023), who de-
veloped a transformer-architecture-based ML model called
ClimaX. This model was designed as a foundational model,
trained initially on datasets derived from the CMIP6 (Eyring
et al., 2016) dataset, and able to be readily retrained to spe-
cific tasks using transfer learning. The authors demonstrated
the skill of ClimaX against simpler ML models, and in some
cases a numerical model (ECMWF IFS), for a variety of
tasks including weather prediction, sub-seasonal prediction,
climate scenario prediction, and climate downscaling. The
authors showed that ClimaX was able to make skilful predic-
tions in scenarios unseen during the initial CMIP6 training
phase. Furthermore, ClimaX used novel encoding and aggre-
gation blocks in its architecture to enable greater flexibility in
the types of variables used for training and to reduce training
costs when a large number of different input variables were
used.

5.5 Benchmark datasets for ML weather models

Providing open benchmark data for machine learning chal-
lenges has been as transformational for the machine learning
field as improved algorithms, the publication of papers, or
improvements in hardware.

As the interest and activity in the use of ML as a po-
tential alternative to knowledge-based numerical GCMs has
grown, the need for consistent benchmarks for the inter-

comparison of ML-based models has become increasingly
clear. Rasp et al. (2020) addressed this need with the intro-
duction of WeatherBench. On this platform, the authors pro-
vided data derived from the ERA5 archive that have been
simplified and streamlined for common ML use cases and
use by a broad audience. They also proposed a set of evalua-
tion metrics which facilitate direct comparison between dif-
ferent ML approaches and provided baseline scores in these
metrics for simple techniques such as linear regression, some
deep learning models, and some GCMs. Since the publica-
tion of WeatherBench, more benchmark datasets tailored to
other domains have been created, including RainBench (de
Witt et al., 2020), WeatherBench Probability (Garg et al.,
2022), and ClimateBench (Watson-Parris et al., 2022). Weyn
et al. (2020) chose datasets and assessment metrics consistent
with WeatherBench to facilitate the inter-comparison of re-
sults. Rasp and Thuerey (2021) directly used the benchmarks
provided by WeatherBench in their assessment. They demon-
strated that their model outperformed previous submissions
to WeatherBench, highlighting its value as a tool to allow
inter-comparability of ML-based weather models. Other ex-
amples of studies using WeatherBench data and analysis
methods are Clare et al. (2021) and Weyn et al. (2021). The
parameters of a good benchmark dataset were further eluci-
dated by Dueben et al. (2022), who provided an overview of
the current status of benchmark datasets for ML in weather
and climate in use in the research community and provided
a set of guidelines for how researchers could build their own
benchmark datasets.

At the time of writing this review, assessments of ML-
based models had chiefly (but not exclusively) focused on
simple statistics like globally averaged RMSE and are not
reported in detail to the degree to which they accurately cap-
tured specific processes such as cyclone formation, climate
drivers such as the El Niño–Southern Oscillation (ENSO), or
large-scale structures such as the jet streams. A useful con-
tribution from the scientific community would be to better
quantify and articulate a suite of tests and statistics that could
form a “report card” to provide better insight into the value
of new ML models.

It should also be noted that all of the major milestones
and high-profile ML models described in this section so far
have relied to some degree or another on reanalysis datasets
produced by physics-based models. The provision of higher-
resolution and higher-quality open datasets has the potential
to drive progress in this area as much as, if not more than,
improvements and further research into ML algorithms.

5.6 A hybrid approach

Arcomano et al. (2022) present an approach which strad-
dles the theme of this section and that of the following sec-
tion (physics-constrained ML models). Following Wikner et
al. (2020), they used a numerical atmospheric GCM and a
computationally efficient ML method called reservoir com-
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puting in a hybrid configuration called combined hybrid-
parallel prediction (CHyPP). Their hybrid model is more
accurate than the GCM alone for most state variables to a
lead time of 7–8 d. They also demonstrate the utility of their
hybrid model for climate predictions with a 10-year-long
climate simulation, for which they showed that the hybrid
model had smaller systematic errors and more realistic vari-
ability than the GCM alone.

5.7 ML for predicting ocean variables

More recently, greater attention has been paid to the appli-
cation of ML to the ocean, particularly for seasonal to mul-
tiyear predictions. Initial work in this space focused on di-
rectly predicting key indices such as the NINO3.4 index. For
example, Ham et al. (2019) trained a CNN to produce skil-
ful ENSO forecasts with a lead time of up to 1.5 years. A
limiting factor for the application of ML to ocean variables
is the lack of availability of observational data for training.
To overcome this, the authors used transfer learning to train
their model first on historical simulations and then on a re-
analysis from 1871 to 1973. Data from 1984 to 2017 were
reserved for validation. Ham et al. (2021) improved on this
by including information about the current season in the net-
work inputs as one-hot vectors†. Including this seasonality
information led to an overall increase in skill relative to the
model in Ham et al. (2019), in particular for forecasts initi-
ated in boreal spring, a season which is particularly difficult
to predict beyond.

Kim et al. (2022) improved on the performance of the
2D CNNs used in Ham et al. (2019, 2021) for predicting
ENSO by instead using a convolutional LSTM network with
a global receptive field†. The move to a larger (global) recep-
tive field for the convolutional layers enabled the network to
learn the large-scale drivers and precursors of ENSO vari-
ability, and the use of a recurrent† architecture (in this case
LSTM) facilitated the encoding of long-term sequential fea-
tures with visual attention†. This led to a 5.8 % improvement
in the correlation coefficient for NINO3.4 index prediction
and 13 % improvement in corresponding temporal classifica-
tion with a 12-month lead time compared to a 2D CNN.

Taylor and Feng (2022) moved from the prediction of
indices to spatial outputs, training a U-Net LSTM model
on ECMWF ERA5 monthly mean sea surface temperature
(SST) and 2 m air temperature data from 1950–2021 to pre-
dict global 2D SSTs up to a 24-month lead time. The au-
thors found that their model was skilful in predicting the
2019–2020 El Niño and the 2016–2017 and 2017–2018 La
Niñas but not for the 2015–2016 extreme El Niño. Since they
did not include any subsurface information in their training
data (in contrast to Ham et al., 2019, 2021, who included
ocean heat content), they concluded that subsurface informa-
tion may have been relevant for the evolution of that event.

It is clear from the small number of (but rapidly evolving)
studies in this space that there is great promise for the use

of ML for the seasonal and multiyear prediction of ocean
variables, with many avenues to pursue to achieve potential
skill gains.

5.8 ML for climate prediction

The literature on the use of ML for prediction on seasonal
to climate timescales is still relatively sparse compared to
its use for nowcasting and weather prediction. Some exam-
ples have been covered in previous sections, such as Weyn
et al. (2021) on sub-seasonal to seasonal timescales in the at-
mosphere and Ham et al. (2019, 2021), Kim et al. (2022), and
Taylor and Feng (2022) on seasonal to multiyear timescales
in the ocean. A major cause for this sparsity is that deep
learning typically requires large training datasets, and the
available observation period for the earth system is too short
to provide appropriate training data for seasonal to climate
timescales in most applications. On the sub-seasonal to sea-
sonal end, this may be overcome by including more slowly
varying fields in the training (e.g. ocean variables), by de-
signing models to learn the underlying dynamics which drive
long-term variability, and by including more physical con-
straints on the models. On the climate end these same meth-
ods could be beneficial, as well as transfer learning, as is
done in Ham et al. (2019), and data augmentation† tech-
niques. Additionally, interest is increasing in the use of ML to
predict weather regimes and large-scale circulation patterns,
which may prove beneficial in informing seasonal and cli-
mate predictions (Nielsen et al., 2022). Watson-Parris (2021)
argued that the differences between NWP to multiyear pre-
diction and climate modelling mean that the ML approaches
best suited to each can be very different. This may also
help to explain why the rapid pace of advances in ML-based
weather models has not translated into a similar trend in cli-
mate modelling.

Despite this, with the growing maturity of the field of ML
for weather and climate prediction, there is every reason to
believe the challenges of prediction on seasonal to climate
timescales can be overcome.

6 Physics-constrained ML models

As has been briefly touched on in previous sections, a
promising and increasingly popular method for improving
the performance of ML applications in weather and climate
modelling is to include physics-based constraints in the ML
model design (e.g. Karpatne et al., 2017; De Bézenac et al.,
2017; Beucler et al., 2019; Yuval et al., 2021; Beucler et al.,
2021; Harder et al., 2022). This can be done through the over-
all design and formulation of the model and through the use
of custom loss functions which impose physically motivated
conservations and constraints.

An excellent review of the possible methods for incorpo-
rating physics constraints into ML models for weather and
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climate modelling, along with 10 case studies of notewor-
thy applications of these methods, is presented in Kashinath
et al. (2021). The scope of Kashinath et al. (2021) is broad
and includes studies not applied directly in the context of
weather and climate modelling but that are applicable to it.
Rather than repeat the total of this summary here, the reader
is directed to this review.

A class of physics-leveraged ML which has grown rapidly
in popularity is physics-informed neural networks† (PINNs).
These are discussed in Kashinath et al. (2021) and have also
become a very active area of research since the publication
of that review. A more up-to-date review of this class of NNs
is presented by Cuomo et al. (2022), along with a review of
other related physics-guided ML architectures.

While PINNs are an exciting and promising new NN ar-
chitecture, they still face some challenges. For example, they
have had little success simulating dynamical systems whose
solution exhibits multi-scale, chaotic, or turbulent behaviour.
S. Wang et al. (2022) attributed this to the inability of PINNs
to represent physical causality and developed a solution by
re-formulating the loss function of a PINN to explicitly ac-
count for physical causality during model training. They
demonstrated that this modified PINN was able to success-
fully simulate chaotic systems such as a Lorenz system and
the Navier–Stokes equations in the turbulent regime, some-
thing which traditional PINNs were unable to do.

Nonetheless, recent work with PINNs has led to some in-
teresting results for weather and climate simulation: Bihlo
and Popovych (2022) used PINNs to solve the shallow-water
equations on a rotating sphere, as a demonstration of their
utility in a meteorological context, and Fuhg et al. (2022) de-
veloped a modified PINN to solve interval and fuzzy partial
differential equations, enabling the solving of PDEs includ-
ing uncertain parameter fields.

7 Other applications of ML and considerations for the
use of ML in weather and climate models

Aside from the most active areas of development in the use of
ML in weather and climate models discussed in the sections
above, there are a few areas of the literature worth mention-
ing that are adjacent to the main focus of this review. These
topics are covered in the following subsections.

7.1 Nudging

Rather than replacing a component or components of a GCM
with an ML alternative to gain skill improvements, Watt-
Meyer et al. (2021) focused on using corrective nudging
to reduce model biases and the errors they can introduce
through feedbacks. The authors used RFs to learn bias-
correcting tendencies from a hindcast nudged towards obser-
vations. They then coupled this RF to a prognostic simula-
tion and attempted to correct the model drift with the learned

nudging tendencies. While this simulation ran stably over
the year-long test period and showed improvements in some
variables, the errors in others were observed to increase. So
far studies in this space seem to be limited to Watt-Meyer et
al. (2021); however this method seems promising, so hope-
fully interest in developing this approach further will grow in
the future.

7.2 Uncertainty quantification

A common criticism of some ML models such as NNs is
that it is difficult to represent the uncertainty of their outputs.
Some examples of studies that have sought to overcome this
have already been mentioned in Sect. 3.8, and there are other
examples in the literature (e.g. Grigo and Koutsourelakis,
2019; Atkinson, 2020; Yeo et al., 2021; O’Leary et al., 2022);
however it is nonetheless still a relatively underexplored as-
pect of ML models for physical systems. Psaros et al. (2022)
suggest that this may be because they are also under-utilized
within the broader deep learning community, and it is thus a
developing field that is not universally trusted and understood
yet. They also point out that the physical considerations in-
herent to ML applied to physical systems often make them
more complicated and computationally expensive than stan-
dard ML applications, further disincentivizing the inclusion
of uncertainty quantification in an already complex problem.

Only recently has attention to this aspect of ML become
sufficient to motivate the collection of methods into a consis-
tent framework, a good example of which is the aforemen-
tioned Psaros et al. (2022), who presented a comprehensive
review of the methods for quantifying uncertainty in NNs and
provided a framework for applying these methods.

A related topic which is facing similar challenges is the
question of explainability of ML approaches; often there is
value in understanding the relative roles and importance of
predictors in an ML model or the relative significance of dif-
ferent regions of the predictor data. Flora et al. (2022) pro-
vide a good overview of approaches to this and compare their
relative drawbacks and benefits.

7.3 Capturing extremes

While there is now an abundance of examples of ML be-
ing used for model parameterization schemes, full-model re-
placement, downscaling, and PDE solvers (much of which
is covered in this review), there are relatively few examples
which address the question of how well ML approaches can
reproduce extreme events and statistics, both in terms of the
distribution of values predicted in a single-member (i.e. non-
ensemble and non-probabilistic) ML model and in terms of
the distribution of predicted outcomes in a probabilistic or
ensemble ML model.

Both Pathak et al. (2022) and Bi et al. (2022), introduced in
Sect. 5.2, investigated the ability of their models to correctly
represent extremes, using a similar approach. They divided
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their test dataset into 50 percentile bins (distributed logarith-
mically by Pathak et al., 2022, and linearly by Bi et al., 2022)
between the 90th and 99.99th percentiles and computed the
relative quantile error between their forecast and ground-
truth as a function of lead time. Pathak et al. (2022) note that
they set their highest percentile bin at 99.99 % because of
the small sample of data points beyond this percentile mak-
ing a statistically significant analysis difficult. Both Pathak et
al. (2022) and Bi et al. (2022) found that their models con-
sistently under-forecast extremes to a greater degree than the
ECMWF IFS.

Watson (2022) presents a strong argument for the need for
a greater focus on the ability of ML weather and climate
models to be able to predict extremes in order for them to
meet the needs of users. They present a summary of some
examples of ML models which have sought to predict ex-
treme events according to certain return period definitions.
The example most relevant for this review is Lopez-Gomez et
al. (2023), who used an NN with a custom loss function that
preferentially weighted extremes to predict global extreme
heat. They found that their custom loss function led to im-
proved representation of the tails of the distribution (i.e. pre-
dictions of extreme heat) and, interestingly, did not result in
any major loss of performance for the middle of the distribu-
tion.

The under-prediction of extremes seen in Pathak et
al. (2022) and Bi et al. (2022) is consistent with the find-
ings of Lopez-Gomez et al. (2023), given that they were op-
timized for predicting extremes. These findings all point to
the idea that in order for ML weather and climate models
to be able to skilfully predict extreme events, model train-
ing regimes, loss functions, and architectures will need to be
employed which take into consideration ways to optimize for
these regimes.

7.4 Object identification within models

An alternative to achieving greater model accuracy and skill
for predicting extremes through increasing the resolution of
the entire model grid is to develop techniques to identify crit-
ical systems and physical phenomena within the model and
to embed higher-resolution temporary subgrids or special-
ized models within the larger GCM to more accurately sim-
ulate those processes. A challenge to overcome to achieve
this is automatically identifying key model features since it
typically requires a labelled dataset. This requirement can,
however, be avoided, and a variety of both supervised and
unsupervised machine learning approaches to object detec-
tion have been demonstrated in the literature.

Mudigonda et al. (2017) were a relatively early example
of the application of ML to this challenge. They investigated
the feasibility of using a variety of NN architectures to iden-
tify storms, tropical cyclones, and atmospheric rivers within
model data with promising results. Prabhat et al. (2021) pro-
vided a valuable resource to the community with their devel-

opment of ClimateNet, a labelled open dataset and ML model
for the segmentation and identification of tropical cyclones
and atmospheric rivers. This was used by Kapp-Schwoerer
et al. (2020) to train an NN to identify and track these ex-
treme events in Community Atmosphere Model 5 (CAM5;
Conley et al., 2012) data. O’Brien et al. (2020) considered
the need for uncertainty quantification in object identifica-
tion, using a Bayesian approach to build an atmospheric
river detection framework. Finally, Rupe et al. (2023) took a
physics-informed approach to object detection, defining “lo-
cal causal states” using speed-of-light causality arguments to
identify regions of organized coherent flow and bypassing
the requirement for labelled datasets. They demonstrated the
utility of their approach for the unsupervised identification
and tracking of hurricanes and other examples of extreme
weather events.

While there are unsupervised learning approaches which
have shown value for object detection in weather and climate
data (e.g. Rupe et al., 2023), a major limitation of this area
of research is the shortage of labelled datasets for supervised
learning methods, with ClimateNet being an isolated exam-
ple.

7.5 GPUs and specialized compute resources

GPUs and tensor processing units (TPUs)† are specialized
hardware which are well suited to highly parallelizable ma-
trix operations, ideal for solving neural network operations.
TPUs have been developed specifically for deep learning ap-
plications. Both GPUs and TPUs are likely to be available
on many of the next generation of supercomputers, but much
of the current Fortran-based numerical weather and climate
model infrastructure cannot be run on them in their current
state. Data bottlenecks also exist between the GPUs (which
have their own on-board memory) and the main memory ac-
cessible to the CPU. While efforts are underway to make nu-
merical and climate models better suited to GPUs, for ex-
ample with the development of LFRic (Adams et al., 2019),
the new weather and climate modelling system being devel-
oped by the UK Met Office to replace the existing Unified
Model (Walters et al., 2017), there is still a long way to go
before entire weather and climate models can be reliably run
on GPUs or other specialized compute architectures. At the
same time, some neural network designs are aimed squarely
at the partial differential equation solving at the core of nu-
merical methods. Since neural network evaluation utilizes
simpler mathematical operations than current PDE solvers,
they offer the prospect of significant computational advan-
tages on non-specialized (i.e. CPU) hardware.
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8 Perspectives on machine learning from computer
science

This section provides a brief perspective on weather and cli-
mate modelling from the computer science domain and aims
to provide the earth system scientist with a short list of the
main relevant innovations in computer science. As was noted
in Sect. 1, ML models are often regarded as black boxes,
largely because of the design of many prominent ML sys-
tems. In principle, it is not quite right to refer to the trained
model as “a machine learning model”, in the sense that the
process of training the model is “machine learning”; once the
model is trained it is definable by a set of mathematical equa-
tions and coefficients, much like any physical, statistical, or
theoretical model. Thus the machine learning refers to the
training process, not the model itself. The essence of ML is
the level of automation involved. Even in typical ML models
such as large NNs, the model architecture is typically spec-
ified manually by the data scientist or physical scientist in-
volved. The automated derivation of model architecture and
composition is not yet mature for large models, although it
is explored through evolutionary programming techniques,
whereby the learning of architecture as well as parameteriza-
tion is automated.

The complex nature of the Earth system means that ML
models which seek to emulate it (or sub-components of it)
will likely also need to be quite complex and will contain a
mixture of ML architectures and algorithms. This is borne
out by the increasing degree of complexity and variety seen
in the ML models in the literature reviewed in previous sec-
tions.

A large degree of the current research focus is on very
large or deep NNs which rely both on the universal approx-
imation theorem and practical experimentation to capture a
prediction function without needing to explicitly represent
the processes being modelled. In a conceptually similar fash-
ion to how a Fourier decomposition can represent any wave-
like function, the universal approximation theorem estab-
lishes that an NN may approximate any function, subject to
its size and the required degree of accuracy (Hornik et al.,
1989). Deep learning has been highly effective in approach-
ing many problems, but many limitations are acknowledged,
as evidenced by the current widespread focus on trustwor-
thy computing and efforts towards explainable ML systems.
Some ML models take a direct approach to modelling the
uncertainty of the system being simulated by representing
the model state variables as a probability distribution or de-
gree of confidence. Many contemporary weather and climate
models derive their probabilistic outputs from an ensemble
of perturbed members; however an alternative approach is to
represent each part of the belief state† of the model as a distri-
bution or likelihood, built up either empirically or by fitting a
Gaussian or other known distribution (e.g. Clare et al., 2021).

A timeline of some key innovations in ML is presented in
Fig. 4. The scale of the timeline is broken between 1956 and

1974, and taking that gap in progress into account, it is clear
from this visualization that the rate of innovation in ML has
increased significantly over the last 35 or so years. This is
likely driven by a range of factors including the increasing
availability of compute resources suited to ML applications
and the explosion of available data for training.

This history shows the degree and rate of research into
processing images, text, and other sequences based on the
semantic understanding of content but does not demonstrate
capturing physical processes as a core element. Advances
in the weather and climate modelling domain have a more
explicit goal of properly portraying real physical processes.
Bringing these concepts together promises to uplift capabil-
ity in both fields.

9 Practical perspectives on machine learning for
weather and climate models

A major driver of research into, and improvement in, weather
and climate models is increasing the skill of operational fore-
cast systems and increasing the accuracy and trustworthiness
of climate projections. Therefore, an important consideration
for ML in the context of weather and climate models is the
need for it to ultimately be integrated into a complete pre-
dictive system with practical applications for forecasting or
climate projections.

However the research findings covered in this review, in
spite of being compelling, are yet to make major changes
to operational modelling systems or standard climate projec-
tions.

We have identified three major challenges facing the tran-
sition of ML-based innovations into operational settings.
Similar challenges are faced in the context of climate pro-
jections; however since these are out of the scope for this re-
view, we do not discuss them directly and instead leave them
as a topic for other publications.

The first challenge is the need to assess when a research
finding is sufficiently compelling and robust to justify inte-
gration into established operational systems. Since the major
function of operational meteorological services is to inform
us of future conditions, largely for managing risk or optimiz-
ing benefits, a conservative approach is taken to changing
these systems. The utmost premium is put on accuracy, re-
silience, reliability, and solid scientific foundation, and many
novel research findings require extensive further evaluation
and development before they can be considered ready for in-
clusion into operational systems. Understanding when to in-
vest this degree of effort in bringing a research innovation
into a major model or scientific configuration upgrade can be
difficult.

The second major challenge is establishing the right bal-
ance between potentially unwieldy monolithic ML models
which predict all variables of interest and many smaller
limited-scope models which each focus on predicting one or
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Figure 4. A timeline of key breakthroughs in ML.
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a small number of variables well. The former option is more
similar to current dynamical systems, while the latter option
is potentially more easily achievable using an ML approach
but risks becoming difficult to manage due to the prolifer-
ation of small, separate systems. The early effectiveness of
limited-purpose ML models provides the ability to augment
existing services without disruption; however aside from the
logistical complexity of many small systems, a risk associ-
ated with this approach is that inconsistencies between pre-
dictions may arise from their independent forecasts, leading
to confusion from users and an erosion of trust.

Finally, the third major challenge is how to best moni-
tor and maintain the skill of ML-based systems in a real-
time operational context. Explainability of ML systems is an
emerging field and is not yet sufficiently mature for applica-
tion to real-time operational monitoring. Until this changes,
the ongoing trustworthiness of operational ML systems will
be difficult to demonstrate. Similarly, online learning in ML
weather and climate models is not yet a well-explored re-
search area. The use of online learning is likely to be im-
portant for operational ML models to be able to develop re-
siliency and maintain good skill over time, so more work will
be needed in this area before these models can see greater up-
take in operational systems.

In addition to these major challenges, agencies looking to
incorporate ML components into their operational systems
must consider

– the explainability of ML model errors in the case of poor
forecasts that may come under scrutiny,

– that the robustness of ML models to real-time data is-
sues such as data dropouts or input data degradation
must be established, and

– that the lack of infrastructure in these agencies to sup-
port ML models in an operational setting will need to be
addressed.

Operational development is typically quite incremental, and
it is likely that progress will be made in small achiev-
able steps along the evolving technical frontier. However
promising and fascinating as a research direction, full-model
replacement with ML alternatives is currently not mature
enough for an operational setting. Instead, the authors pre-
dict that the first types of ML systems to be seen in operations
will include parameterization scheme replacements and emu-
lators, solver replacements, super resolution, new approaches
to data assimilation of novel observation sources, and both
pre- and postprocessing applications (although of course not
all of these have been covered in this review).

It is expected that the research into, and application of,
ML methods will represent a growing proportion of weather
and climate model research, with increasingly sophisticated
and skilful model components finding their way into major
model releases over the coming years. These components are

appealing for both computational and model skill reasons and
are expected to be highly promising avenues of research.

10 Ethical considerations for machine learning for
weather and climate models

Not all papers in this review included a discussion of the eth-
ical considerations associated with using machine learning
nor necessarily touched on what constitutes a sufficiently rig-
orous verification methodology for machine learning mod-
els. There is a clear relationship between ethical considera-
tions, the explainability of models, and the rigour of verifica-
tion applied to ensure that models behave as expected under
a variety of conditions (and do not include unexpected be-
haviours).

While this review paper does not provide an introduction
to AI and ML ethics in general, a brief overview of some
of the important considerations for the application of ML in
the context of weather and climate modelling is provided in
this section. Ethical frameworks vary in different cultural and
geographical contexts, and for a more general introduction to
the ethical considerations surrounding AI and ML, the reader
is directed to the paper Recommendations on the Ethics of Ar-
tificial Intelligence (United Nations Educational, Scientific
and Cultural Organization (UNESCO), 2020).

For ML applied to weather and climate modelling, some
considerations to ensure sufficient robustness and reliability
include whether

– testing, training, and validation datasets are sufficiently
representative of the data in general;

– potential causal correlations between testing, training,
and validation data have been treated correctly;

– trained models have been tested for reliability against
adversarial examples;

– data augmentation (e.g. noise addition) has been utilized
to enhance model robustness;

– an evaluation of the potential for model drift has been
performed;

– the training data are biased in a way which results in eth-
ical unfairness (for example, remote communities may
not receive equal-skill predictions due to a lack of ob-
servational training data in remote areas);

– the machine learning method is compared to a suitable
alternative, such as a known physical model in addition
to any comparisons to machine learning models or the
provision of aggregate statistics;

– the data that have been used have been gathered eth-
ically, and any personal information has been treated
properly (such as when processing weather reports from
individuals);
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– the authors have identified any caveats regarding ethics,
reliability, robustness, or explainability;

– the authors have investigated the physical realism of the
predictions from ML models.

This list is not comprehensive, however. A thorough
overview of the explainability, reliability, ethics, and verifi-
cation of ML models in weather and climate has not been
covered in the prior literature, and the field will benefit from
further work in this area.

11 Future research directions

The already-demonstrated and potential future applications
for ML in weather and climate modelling are significant in
number, and identifying the most fruitful avenues for future
research can seem overwhelming. A good understanding of
the current state of the weather and climate modelling field,
along with knowledge of the key developments in ML re-
search, are required to assess the potential benefits of a given
research direction.

As can be seen from the timeline of machine learning pre-
sented in Fig. 4, older techniques can prove to be relevant
many years later, and there are many techniques from com-
puter science which may become relevant for contemporary
weather and climate modelling problems and research.

Furthermore, due to the general applicability of many ML
approaches, research progresses in one subdomain may have
implications and benefits for another. For example, Deep-
ONets were developed for, and shown to be successful for,
solving PDEs but were adopted by Pathak et al. (2022) for
their pure ML model FourCastNet with great success.

To help the reader navigate the myriad research areas
where ML for weather and climate modelling could be pro-
gressed, five categories of future research directions are pre-
sented in Fig. 5, along with some specific areas of research
and benefits that could arise from them.

These categories are not mutually exclusive – indeed there
is overlap between the research areas and benefits high-
lighted in each category (for example, some research foci in
Categories 2 and 3 are also applicable to Category 5). The
groupings are instead intended to help guide the focus of re-
searchers and to provide a quick overview of the key top-
ics where the community would most benefit from research
progress.

Many of the research areas presented are complementary
to each other; for example progress in making ML models
more affordable to train (Category 1) will increase the utility
of ML solutions to a wider community of researchers, and
will likely accelerate the rate of progress in the other cate-
gories. Progress in the use of physically informed approaches
(e.g. Category2, area a., or Category 3, area c.) could also
lower the training cost of models by reducing the degree of
redundancy in the model. On the other hand, approaches such

as Category 3, area f., leading to an outcome such as bene-
fit vi. would potentially reduce the demand for more cheaply
trainable models since they could be readily turned to a va-
riety of tasks, saving researchers the need to train their own
model from scratch.

The research areas and ideas presented here are by no
means a comprehensive list. Rather they are intended to be
used as a source of inspiration, and the authors of this re-
view are excited to see where the community chooses to fo-
cus their efforts in the coming years.

12 Conclusions

In this review we have presented a comprehensive survey of
the literature on the use of ML in weather and climate mod-
elling.

We have found that the ML models being most often ex-
plored include RFs and NNs, with a high prevalence of FC-
NNs and CNNs. We have also identified some recent innova-
tions which have proven to be highly effective in the weather
and climate modelling space, including DeepONets and vari-
ants thereof, Graph NNs, and PINNs.

This review has demonstrated that ML is being success-
fully applied to many aspects of weather and climate mod-
elling. We have presented examples from the literature of its
application in (1) the emulation and replacement of subgrid-
scale parametrizations and super-parametrizations, (2) pre-
conditioning and solving of resolved equations, (3) full-
model replacement, and (4) a selection of other adjacent ar-
eas.

Nonetheless, there are still many research challenges to
overcome, including

– addressing the instabilities excited in physical models
due to the inclusion of ML components;

– increasing the ease of technical integration (in particu-
lar, Fortran compatibility);

– memory and computational concerns;

– representing a sufficient number of physical parame-
ters and increasing physical and temporal resolution in
ML-based weather and climate model implementations
(which currently feature reduced fields and levels com-
pared to physics-based numerical models);

– moving from a focus on individual parts of the earth
system (i.e. the atmosphere, the ocean, the land surface
etc.) to tackling the challenges associated with coupled
models (i.e. where models of individual components of
the earth system are coupled together; increasingly, op-
erational weather and climate models are coupled land–
atmosphere–ocean–sea-ice models in order to more ac-
curately represent the relevant timescales and processes
in the earth system, and ML modelling efforts need to
reflect this);
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Figure 5.
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Figure 5.
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Figure 5. Five categories for future ML research, including suggested research focusses for the community in each category and potential
benefits which could be realized by research and development progress.

– more thorough evaluation of the physical realism of
ML-based predictions, at various length-scales, across
parameters, and looking at the 3D structures;

– exploring the use of generalized discriminators† to aug-
ment traditional loss functions in model training (to
achieve a multivariate generalized objective function);

– the need for more good quality training data; and

– the practical challenges of integrating ML components
or models into an operational setting.

This list, together with Sect. 11, provides a set of focus areas
for future research efforts.

If the current trend in skill gains in full ML weather and
climate models continues, it is possible they will eventu-
ally be considered viable alternatives to traditional numerical
models. However in the meantime it is likely that ML com-
ponents will replace an increasing number of physics-based
model components, with models in the near-term future be-
ing hybrid ML–physical models. A likely future scenario is
one where the best weather and climate models are a blend of
ML and physics-based components, deriving skill from both
data-driven and physical methodologies.

Some possible avenues through which increases in ML-
based weather and climate model skill might be achieved is
by operating at higher resolutions, by resolving more pro-
cesses which are implicit in the training data, or by undertak-
ing experiments on synthetic data to address the paucity of
real-world data.

Another benefit of ML approaches to weather and climate
modelling is the relative computational cheapness of ML al-

ternatives to current physics-based modelling systems. This
has the potential to open the door to experiments that would
not be feasible otherwise. For example, experiments requir-
ing a very large ensemble would be more feasible with a
computationally cheap ML approach.

The literature reviewed here indicates that “out-of-the-
box” ML approaches and architectures are not effective when
used in a weather and climate modelling context. Rather, ML
architectures must be adapted to satisfy conservation of en-
ergy, represent physically realistic predictions and processes,
and maintain good model stability. At the same time, compu-
tational and memory tractability must be maintained.

Advances in the sophistication, complexity and efficiency
of ML architectures are being heavily invested in for many
use cases in other disciplines and in the private sector
(e.g. condition–action pose estimation, text to video gener-
ation, stable diffusion, text to image, chatbots, facial recog-
nition, and semantic image decomposition). In order to cap-
ture the full benefits of ML for the weather and climate mod-
elling domain, academic and operational agencies will need
to continue to support research in this space. This includes
contributing to the research effort through foci such as those
highlighted in Sect. 11 and in this section, as well as through
addressing the particular challenges facing agencies inter-
ested in the operational and/or real-time deployment of ML-
based models as the basis for services or the provision of
advice (discussed in Sect. 9).

Interest and progress in the application of ML to weather
and climate modelling has been present for close to 30 years
and has begun to accelerate rapidly in the last few years.
There is good reason to believe that ML as a tool will have
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transformational benefits and offer great potential for further
application in weather and climate modelling.

Appendix A: Table summary of model architectures
cited in this paper

This table includes all references from this review except for
seminal ML papers that are on new ML methods (e.g. foun-
dational ML papers), review papers, any paper cited that con-
cerns a topic which is out of scope (e.g. nowcasting), and any
other paper which does not present a new method directly ap-
plicable to weather and climate modelling.

Table A1. Details of the papers cited in this review which contributed to the analysis presented in Figs. 1 and 3.

Author(s) Year Category Approach

Ackmann et al. 2020 Fully connected NN Preconditioner
Alemohammad et al. 2017 Fully connected NN Variable estimation
Andersson et al. 2021 Convolutional NN Prediction
Arcomano et al. 2022 Reservoir computing Alongside-model bias corrector
Atkinson 2020 Bayesian type NN PDE solver
Bar-Sinai 2019 Convolutional NN PDE solver
Battaglia et al. 2018 Graph NN Method paper
Beucler et al. 2019 Physics-informed NN Convective parametrization
Beucler et al. 2021 Physics-informed NN Convective parametrization
Bhattacharya et al. 2021 Fully connected NN PDE solver
Bi et al. 2022 Mixed/custom NN Pure ML atmospheric model
Bihlo and Popovych 2022 Physics-informed NN PDE solver
Bolton and Zanna 2019 Convolutional NN Parametrization
Brenowitz and Bretherton 2018 Fully connected NN Parametrization
Brenowitz and Bretherton 2019 Fully connected NN Parametrization
Brenowitz et al. 2020a Fully connected NN Parametrization
Brenowitz et al. 2020b Decision-tree-based, fully connected NN ML model inter-comparison
Brenowitz et al. 2022 Recurrent NN Parametrization
Chaney et al. 2016 Decision-tree-based Interpolation
Chantry et al. 2021 Fully connected NN Parametrization
Chattopadhyay et al. 2020 Fully connected NN, recurrent NN Super-parametrization
Chevallier et al. 1998 Fully connected NN Parametrization
Chi and Kim 2017 Fully connected NN, recurrent NN Prediction
Clare et al. 2021 ResNet Emulation (probabilistic)
Dagon et al. 2020 Fully connected NN Emulation
de Bézenac et al. 2017 GAN Prediction, model evaluation
Deuben and Bauer 2018 Fully connected NN Replacement
Flora et al. 2022 Decision-tree-based, logistic regression Assessment of explainability tech-

niques
Fuhg et al. 2022 Physics-informed NN PDE solver
Gagne et al. 2019 Decision-tree-based Parametrization
Gagne et al. 2020a GAN, fully connected NN Parametrization
Gagne et al. 2020b GAN Parametrization (probabilistic)
George et al. 2008 Mixed/custom non-NN Preconditioner
Gettelman et al. 2021 Fully connected NN Emulation
Ham et al. 2019 Convolutional NN Prediction
Ham et al. 2021 Convolutional NN Prediction
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Table A1. Continued.

Author(s) Year Category Approach

Han et al. 2020 ResNet Parametrization
Harder et al. 2022 Fully connected NN Emulation
He et al. 2022 Decision-tree-based Parametrization
Holloway and Chen 2007 Fully connected NN Preconditioner and PDE solver selection
Horvat and Roach 2022 Fully connected NN Parametrization
Hu et al. 2023 Mixed/custom NN Pure ML atmospheric model
Huang et al. 2016 SVM Preconditioner
Kapp-Schwoerer et al. 2020 Convolutional NN Semantic segmentation
Karunasinghe and Liong 2006 Fully connected NN Chaotic time-series prediction
Keisler 2022 Graph NN Replacement
Kim et al. 2022 Mixed/custom NN Prediction
Kochkov et al. 2021 Convolutional NN PDE solver
Krasnopolsky et al. 2002 Fully connected NN Emulation
Krasnopolsky et al. 2005 Fully connected NN Emulation
Krasnopolsky 2013 Fully connected NN Parametrization (probabilistic)
Kuefler and Chen 2008 Mixed/custom non-NN Linear system solver
Ladický et al. 2015 Decision-tree-based PDE solver
Lam et al. 2022 Mixed/custom NN Pure ML atmospheric model
Lanthaler et al. 2022 Neural operator PDE solver
Leufen and Schadler 2019 Fully connected NN Parametrization
Li et al. 2020a Graph NN PDE solver
Li et al. 2020b Neural operator PDE solver
Li et al. 2020c Neural operator PDE solver
Lopez-Gomez et al. 2023 Convolutional NN Prediction
Lu et al. 2020 Neural operator PDE solver
Meyer et al. 2022 Fully connected NN Emulation
Moishin et al. 2021 Convolutional recurrent NN Prediction
Mooers et al. 2021 Fully connected NN Emulation
Mudigonda et al. 2017 Mixed/custom NN Object detection
Nelsen and Stuart 2021 Random feature model PDE solver
Nguyen et al. 2023 Mixed/custom NN Pure ML atmospheric model
O’Brien et al. 2020 Bayesian model Object detection
O’Gorman and Dwyer 2018 Decision-tree-based Emulation
O’Leary et al. 2022 Fully connected NN PDE solver
Ott et al. 2020 Fully connected NN Emulation
Pan et al. 2020 Decision-tree-based Parametrization
Patel et al. 2021 Neural operator PDE solver
Pathak et al. 2022 Mixed/custom NN Pure ML atmospheric model
Peairs and Chen 2011 Mixed/custom non-NN PDE solver
Pelissier et al. 2020 Mixed/custom non-NN Hybrid model corrector
Prabhat et al. 2021 Convolutional NN Object detection
Psaros et al. 2023 Neural operator, physics-informed NN PDE solver
Rasp 2020 Fully connected NN Emulation
Rasp et al. 2018 Fully connected NN Emulation
Rasp et al. 2020 Fully connected NN, linear regression Pure ML atmospheric model
Rasp and Thuerey 2021 ResNet Pure ML atmospheric model
Rizzuti et al. 2019 Convolutional NN NN-based corrector step in PDE solver
Rosier et al. 2023 Mixed/custom NN Prediction
Ross et al. 2023 Genetic programming, linear regression, convo-

lutional NN
Inter-comparison of methods to learn
parametrizations from data

Rupe et al. 2023 Mixed/custom non-NN Object detection
Sawada 2020 Regression Emulation
Scher 2018 Convolutional NN Emulation
Scher and Messori 2019 Convolutional NN Emulation
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Table A1. Continued.

Author(s) Year Category Approach

Taylor and Feng 2022 Convolutional NN Prediction
Tompson et al. 2017 Convolutional NN PDE solver
Toms et al. 2020 Fully connected NN NN interpretability
Ukkonen and Mäkelä 2019 Decision-tree-based, logistic regression, fully

connected NN
Parametrization

Ukkonen et al. 2020 Fully connected NN Emulation
Vlachas et al. 2018 Recurrent NN Pure ML baseline model
Wang et al. 2021 Neural operator PDE solver
X. Wang et al. 2022 ResNet Parametrization
S. Wang et al. 2022 Physics-informed NN PDE solver
Watt-Meyer et al. 2021 Decision-tree-based Nudging
Watson-Parris et al. 2022 Gaussian process, decision-tree-based, mixed/-

custom NN
Pure ML baseline model

Weyn et al. 2019 Convolutional NN Pure ML atmospheric model
Weyn et al. 2020 Convolutional NN Pure ML atmospheric model
Weyn et al. 2021 Convolutional NN Pure ML atmospheric model
Wikner et al. 2020 Reservoir computing Alongside-model bias corrector
Wu and Xiu 2020 ResNet Learning PDE operators
Yamada et al. 2018 Convolutional NN Preconditioner
Yang et al. 2016 Fully connected NN PDE solver
Yeo et al. 2021 Recurrent NN Dynamical system simulation
Yuval and O’Gorman 2020 Decision-tree-based Emulation
Yuval et al. 2021 Fully connected NN Emulation
Zanna and Bolton 2020 Convolutional NN, relevance vector machine Parametrization and equation discovery
Zhao et al. 2019 Fully connected NN Parametrization
Zhao et al. 2019 Physics-informed NN Parametrization
Zhong et al. 2023 Fully connected NN, recurrent NN Emulation

Appendix B: Machine learning glossary of terms

This glossary includes terms which the reader will come
across frequently in machine learning literature for the
weather and climate, as well as in machine learning litera-
ture generally. Most of these terms are used in this paper,
while others require further reading.

Activation Function. The function which produces a neu-
ron’s outputs given its inputs. Commonly, this includes a
learned bias term which is added to the data inputs before
evaluation with a single function to produce the output value.
Examples of the functions used include linear, sigmoid, and
tanh.

Adversarial attack. The deliberate use of malicious data
input in a real-world setting intended to cause a misclassifi-
cation, underperformance, or unexpected behaviours. Exam-
ples include emails designed to avoid spam filters, or images
that have been modified to avoid recognition.

Adversarial example. A specialized input which results in a
misclassification or underperformance of a predictive model.
An example of this concept is an image which has had subtle
noise added to it resulting in a copy of that image which is vi-
sually indistinguishable from the original but which nonethe-
less causes a misclassification. The term “adversarial” is used
to refer to the way the example fools the model and is not
necessarily intended to convey the sense of malicious intent,
although the term is often applied in that fashion. Adversar-
ial examples demonstrate that machine learning models may
be more brittle than expected based on ordinary training data
alone. To increase model robustness, adversarial examples
may be generated and added to the training set. Data augmen-
tation techniques such as flipping, warping, and adding noise
(any many other techniques) are also used to generate addi-
tional training data to increase robustness and performance.

Attention mechanism. A mechanism to allow sequence
prediction models to increase the importance of key terms
within that sequence which may be non-local and modified
in meaning according to the other terms of the sequence.

API (application programming interface). A set of pro-
gramming functions, methods, or protocols by which to build
and integrate applications. APIs may be “web” APIs or im-
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ported from software packages, in which case they are more
often referred to as libraries.

Autoencoder. A neural network architecture which learns
to produce a “code” for an input sequence from which the
original data can be retrieved. The code is shorter than the
original input sequence. Applications include data compres-
sion and denoising data.

Back propagation. A process of utilizing the errors from a
prediction to update the weights and biases of a neural net-
work.

Batch. See training batch.
Batch normalization. Data normalization which aligns the

means and variances of input data to a model. For computa-
tional reasons, this is performed separately for each training
batch.

Belief state. The current state of the world which is be-
lieved to be true according to a model. This is a common
architecture in real-time applications whereby a belief state
is updated according to an update function on the basis of
new observations.

Channel. An additional dimension to data which is usually
not a spatial dimension. Examples include the red, green, and
blue intensity images which comprise a colour image. An-
other example could be to represent both temperature and
wind speed as channels.

Classification. A model which attempts to diagnose or pre-
dict the category, label, class, or type that an example falls
within.

Climatology. Refers to the usual past conditions for a lo-
cation at a time of year. It is usually calculated by temporal
mean across years of a dataset for a given time interval within
those years (e.g. for a dataset of monthly mean values span-
ning all months of all years from 1990 to 2020, the monthly
mean climatology would be obtained by averaging across all
the Januaries from each year, all the Februaries, etc., to ob-
tain an “average January”, an “average February”, etc.). Cli-
matologies are often used in the same manner as persistence
as a baseline prediction against which to measure a predictive
model. For example, a model predicting a value for January
could be compared to the climatological monthly mean value
for January. This helps answer the question “is my model a
better source of information than using the average past con-
ditions from this time of year?”.

Connectome. The connections between nodes in a neural
network. Examples include fully connected, partially con-
nected, skip-layer connections, recurrent connections, and
others. It is the “wiring diagram” for the network.

Convolutional neural network. A neural network architec-
ture commonly applied to images which utilizes a convolu-
tional (spatially connected) kernel applied in a sliding win-
dow fashion with a narrow receptive field to encourage the
network to generalize from fine-scale structure to higher lev-
els of abstraction.

Data augmentation. The practice of modifying input data
in supervised learning to produce additional examples. This

can make networks more robust to new inputs and address
issues of brittleness to adversarial examples. An example of
data augmentation is using rotated or reflected versions of the
same image as independent training samples.

Data driven. A generalized term used to indicate a pri-
mary reliance or dependence on the collection or analysis of
data. Used in contrast to process-driven or theory-driven ap-
proaches.

Decision tree. A tree-like, or flowchart-like, branching
model representing a series of decisions and their possible
consequences. Each internal node represents a “test” (i.e. de-
cision threshold), and each leaf node represents a class label
or collection of possible outcomes.

Deep NN. A neural network with many layers. Deeper,
thinner networks have generally been more popular in recent
times than wider, shallower ones, but this is not always the
case (see e.g. Zagoruyko and Komodakis, 2016).

DeepONet. A neural network architecture relying on uni-
versal approximation theorem to train a neural network to
represent a mathematical operation (the operator), such as a
partial differential equation or dynamic system.

Discriminator model. A model which distinguishes or dis-
criminates between synthetic data and real-world observa-
tions. Often used in conjunction with a generator. In this case,
the overall goal is to produce a generator which is capable of
fooling the discriminator, producing highly realistic images.
This process is used in generative adversarial networks.

Dropout layer. A neural network layer which is only par-
tially connected, often with a stochastic dropout chance. This
has been shown experimentally to improve neural network
robustness in many architectures by reducing overfitting.

Epoch. A single complete training pass through all avail-
able training data, e.g. learning from all samples or learn-
ing from all mini-batches, according to the training strategy.
Multiple training epochs will typically be utilized, although
alternative strategies do exist.

Feed-forward network. A neural network composed of dis-
tinct “layers”, where the outputs of one layer never feed
back into earlier layers. This avoids the need for any itera-
tive solver approaches and results in a very computationally
efficient “forward pass”.

Generative adversarial network. A two-part neural net-
work architecture comprising a generator and a discrimina-
tor, which are co-trained to produce realistic outputs that are
hard to distinguish from real-world data. The discriminator
replaces the traditional loss function.

Generator model. A model which produces a synthetic ex-
ample of a particular class, such as a synthetic image or syn-
thetic language. Examples include language or image gener-
ation. These are used as part of generative adversarial net-
works among other applications.

Global receptive field. Where every part of the input region
can influence or stimulate a response in a model (e.g. a fully
connected neural network).
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GPU (graphical processing unit). A hardware device spe-
cialized for fast matrix operations, originally created to sup-
port computer graphics, particularly for games.

Gradient-boosted decision tree. Also referred to as ex-
treme gradient boosting, a random forest architecture which
combines gradient boosting with decision tree ensembles.

Gradient boosting. An approach to model training where
each additional ensemble member attempts to predict the cu-
mulative errors in previously trained members.

Graph neural network. A class of neural networks de-
signed to process data, which is described by a graph, tree, or
network data structure. See Scarselli et al. (2008), Kipf and
Welling (2016), and Battaglia et al. (2018) for more informa-
tion and examples.

Hidden layer. A layer which is intermediate between the
input layer and the output layer of a network or tree struc-
ture. Hidden layers may be used to encode “hidden variables”
which are latent to a problem but not able to be directly ob-
served.

Hierarchical temporal aggregation. A mechanism of com-
posing neural networks which are trained for different lead
times to produce an optimal prediction at all time horizons.

Hierarchical temporal memory. Fundamentally different
from hierarchical temporal aggregation, a complex deep
learning architecture which uses time-adjacency pooling.

Hyperparameter. A parameter which is not derived via
training. Examples include the learning rate and the model
topology.

Hyperparameter search (or hyperparameter optimiza-
tion). The process of determining optimal hyperparameters.
This term may also be used to encompass the model selection
problem. This process is automated in some cases.

Input layer. A layer which is composed of input nodes.
Typically machine learning models will have one input layer
at depth zero (i.e. with no preceding layers) and no input
nodes at greater depths.

Input node. A node which represents an input or observed
value.

K-fold cross-validation. A process of changing the vali-
dation and test data partitions during different iterations of
training. This allows more of the training and validation data
to be used while minimizing overfitting. Some definitions in-
clude test data in this process, but that is not ideal as the final
test is no longer statistically independent.

Keras. A streamlined API for creating neural networks,
integrated with TensorFlow, originally built on the Theano
framework for general mathematical evaluation. PyTensor
and Aesara are related packages.

Kernel trick. For datasets which are not linearly separa-
ble, first multiplying the data by a non-linear function in a
higher dimension can result in a linearly separable higher-
dimensional dataset with which a simpler method can be
used to model the data.

Knowledge-based systems. A broad term from artificial in-
telligence meaning a system that uses reasoning and a knowl-

edge base to support decision making. Knowledge is repre-
sented explicitly, and a reasoning or inference engine is used
to arrive at new knowledge.

Layer. In tree or feed-forward network structures (e.g. de-
cision trees and feed-forward neural networks), a layer refers
to the set of nodes at the same depth within a network.

Leaf node (also known as the output node). A node which
does not have any child nodes.

Long short-term memory network. A recurrent neural net-
work architecture which processes sequences of tokens uti-
lizing a “memory” component which can store information
from tokens early in a sequence for use in the prediction
of tokens much later in a sequence. Typical applications in-
clude language prediction and time-series prediction of many
kinds.

Loss function (also known as target function, training
function, objective function, penalty score, error function,
heuristic function, and minimization function). A differen-
tiable function which is well-behaved, such that smaller val-
ues represent better model performance and larger values
represent worse performance. An example would be the root-
mean-squared error in a prediction compared to the truth or
target value.

Mini batch. A subset or “mini batch” of the training data,
utilized for multiple reasons, including computational effi-
ciency and to reduce overfitting. Aggregate error over a mini-
batch is be learned rather than per-sample errors. This is the
typical contemporary approach. See also training batch for
in-depth discussion.

Neural network. A composition of “input nodes”, “con-
nections”, “nodes”, “layers”, “output layers”, and “activation
functions” which are capable of complex modelling tasks. It
was originally designed to simulate human neural function-
ing and subsequently applied to a range of applications.

Node or vertex. A small data structure in a network, tree,
or graph structure which is connected by edges. A node may
represent a real-world value (such as a location), an abstract
value (such as in a neural network), or a decision threshold
(such as in a decision tree).

Normalization. A technique applied in many areas of
mathematics, science, and statistics which is also very im-
portant to machine learning and neural networks. In a gen-
eral sense, this refers to expressing values within a standard
range. Very often, the range of expected values is mapped
onto the range 0 to 1 to allow physical variables with dif-
ferent measurement units to be compared on equal scale.
Such normalization may be linear or non-linear, according
to a simple or more complex function, and either drawn from
known physical limits or from the variation observed in the
data themselves.

One-hot vector. A vector of 1s and 0s, in which only one
bit is set to 1, typically produced during the first step in ma-
chine learning for language processing to create a word or
feature embedding in a process called tokenization or encod-
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ing. The length of the vector is commonly equal to the num-
ber of categories or symbols.

Output layer. A layer which comprises the leaf nodes or
output nodes of a tree or network.

Perceptron. A single-layer neural network architecture for
supervised learning of binary classification, originally built
as an electronic hardware device encoding weights with po-
tentiometers and learning with motors. A multi-layer percep-
tron is the same thing as an ordinary neural network.

Persistence. Refers to the practice of treating some past
observation or reanalysis (usually immediately prior to the
starting point of the prediction period) as the future predic-
tion and “persisting” this one state forward to every predic-
tion lead time. The predictive model is then compared to this
persistence prediction, essentially assessing the performance
of the model against a steady state prediction. This, along
with climatology, is often used as a baseline or bare mini-
mum prediction to beat (i.e. a prediction better than persis-
tence could be considered skilful vs. persistence). This an-
swers the question “is my model a better source of informa-
tion than using what happened just before now?”.

Physically informed machine learning (also known as
physics-informed machine learning). Machine learning is
considered physically informed when some aspect of physics
is included in any way. Examples include adding a physical
component to the loss function (e.g. to enforce conservation
of physical properties) or using an activation function with
physically realistic properties.

Predictive step, forward pass, evaluation. The process of
calculating a model prediction from a set of input conditions.
It is distinct from the training phase or back-propagation step.

PyTorch. A widely adopted framework for neural networks
in Python.

Random forest. An architecture based on decision tree
ensembles where each decision tree is initialized semi-
randomly and an average of all models is used for prediction.
This is typically more accurate than a single decision tree
but less accurate than a gradient-boosted decision tree and so
is now less used. The term random forest is still commonly
used when in fact the implementation is a gradient-boosted
decision tree.

Receptive field. The size or extent of a region in the in-
put which can influence or stimulate a response in a model,
e.g. the size of a convolutional kernel and the size of a sliding
window.

Rectified linear unit (ReLU). An activation function com-
monly used in NNs. Defined as max(0, X), this function is
used as it is computationally cheap and avoids problems of
vanishing gradients.

Recurrent network. A neural network which does pass the
output from nodes of the network back into the input of oth-
ers. Infinite recurrence is avoided by setting a specific num-
ber of iterations for the recurrence. These are often depicted
in diagrams as separate layers, but the implementation is
through internal recurrent connections.

Regression. A model which attempts to diagnose or predict
an exact value by statistically relating example input values
to desired values.

Relevance vector machine. A sparse Bayesian model uti-
lizing the kernel trick in similar fashion to a support vector
machine.

Representation error. Error which is introduced due to the
inexactness of representing the real world in the model belief
state. Examples may include topography smoothing, point-
to-grid translations, model grid distortions near the poles, or
the exclusion of physical characteristics which are not pri-
mary to the model.

Residual neural network (ResNet). A very influential and
innovative convolutional NN architecture which uses a simi-
lar concept to gradient boosting. Each layer of the deep net-
work is taken to predict the residual error from the previous
layers, with skip connections from earlier layers allowing the
training to occur without the issue of vanishing gradients.

Sample. A single training example (e.g. a row of data).
Scale invariance. A feature of a system, problem, or

model, which means the results and behaviour are the same
at any scale (e.g. the behaviour does not change if the inputs
are multiplied by a common factor).

Scikit-learn. A popular Python library for machine learn-
ing which extends the SciPy framework.

Sharding. Refers to dividing the training of a neural net-
work across multiple GPUs or nodes. This can be done using
data sharding, whereby each GPU or node trains on a subset
of the data to allow training parallelism or model sharding
where a single model is partitioned across multiple GPUs
to allow a larger neural network than could be allocated in
memory on a single GPU. One example could be assigning a
small number of neural network layers to each GPU, which
could then work in sequence to operate on a very large net-
work.

(Stochastic) gradient descent. An algorithm by which a
neural network is trained using increasingly fine-scale ad-
justments to optimize the accuracy of network prediction,
utilized to find the local minimum of a differentiable func-
tion.

Supervised learning. Machine learning is considered “su-
pervised” when the data are labelled according to a category
or target value. Classification data have an explicit labelled
category. Regression data have an explicit value which is be-
ing predicted for.

Support vector machine. A classification model based on
finding a hyperplane to separate data utilizing the kernel
trick.

Tensor. Can be considered as a dense, multi-dimensional
array or matrix.

TensorFlow. A widely adopted framework for neural net-
works in Python.

Test/train/validate split. Available data are split into three
portions. The training data are evaluated and used to update
model weights. Validation data are evaluated during training
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and may be used for hyper-parameter search or to guide the
researcher. Test data are independent (typically well-curated)
data used for gold standard evaluation. In reality, validation
data are sometimes used as test data, but this is not good
practice. There are many considerations for test/train/vali-
date splitting, such as statistical independence, representa-
tion of all classes, and bias. It is important to consider what
the model is generalizing “from” and “to” and ensuring ap-
propriate examples are present in the training data and appro-
priate examples are reserved for validation and test.

Token. Tokenization the process of mapping a symbolic or
categorical sequence to a numerical representation which is
suited to a sequence-based machine learning model. Com-
monly, a vector representation will be utilized for the token
form. In language processing, either characters or words may
be represented as tokens depending on the approach.

Top hat function. A filter or function which has a rectan-
gular shape resembling the cross-section of a top hat. One
of the simplest functions used for convolutional operations,
it can be defined as one constant value in a given bounded
range, and another smaller constant value outside that range.

TPU (tensor processing unit.) A hardware device special-
ized for artificial intelligence and machine learning applica-
tions, in particular neural network operations.

Training batch (or simply batch). Multiple definitions ap-
ply and the use the term has evolved over time, originally
used in the context of learning from offline or saved histori-
cal data as opposed to online or real-time novel data. In this
definition, the training batch is the saved data and refers to
the whole training set. For example, a robot exploring a new
environment in real-time must use an online learning tech-
nique and can not utilize batch training to map the unseen
terrain. In more recent use, particularly in the areas of neu-
ral network learning, the offline saved data may be split into
one or more batches (subsets). If one batch (the batch is the
entire training set) is used, the aggregate errors for the entire
training set are used to update the model weights and biases,
and the learning algorithm is called batch gradient descent.
If each example is presented individually, this is called on-
line training (even when historical saved data are being used),
the weights and biases are updated for from each individual
example, and the algorithm used is stochastic gradient de-
scent. If the data are divided into multiple batches, this is
often referred to equivalently as mini batches. The weights
and biases are aggregated over each mini batch. This is the
most common contemporary approach, as it reduces overfit-
ting and is a good balance of training accuracy, avoiding local
minima, and computational efficiency.

Transfer learning. The process of training a model first on
a related problem and then conducting further training on a
more specific problem. Examples could be training a model
first in one geographical region and then in another or train-
ing first at a low resolution and then subsequently at a high
resolution. This is frequently done to reduce training com-
putation cost for similar problems by re-using the trained

weights from a well-performing source model or to over-
come a problem of limited data availability by using multiple
data sources.

Transformer network. A token-sequence architecture
which is capable of handling long-range dependencies. Ini-
tially applied to language processing, it has found effective
application in image processing as an alternative to convolu-
tional architectures.

Translation invariance. A feature of a system, problem,
or model, which means the results and behaviour are the
same after any spatial translation (i.e. the behaviour does not
change if the inputs are shifted spatially to a new location).

U-Net. A type of convolutional neural network developed
for biomedical image segmentation which has found broad
application. In the contracting part of the network spatial in-
formation is reduced, while feature information is increased.
In the expanding part of the network, feature information is
used to inform us of high-resolution segmentation. The name
derives from the diagrammatic shape of the network forming
a “U”.

Unsupervised learning. Machine learning is considered
“unsupervised” when data are unlabelled. Examples include
clustering, association, and dimensionality reduction.

Vanishing gradient. At the extremes, non-linear functions
used to calculate gradients can result in gradient values which
are effectively zero. These small or zero values, once present
in the weights and biases of a neural network, can entirely
suppress information, which would in fact be useful, and re-
sult in a local minima from which training cannot recover.
This is particularly relevant to long token series when long-
distance connections are relevant. A variety of techniques in-
cluding alternative activation functions, training weight de-
cay, skip connections, and attention mechanisms may each
or all be utilized to ameliorate this issue.

Weights and biases. The parameter values for each neuron
which represent the weighting factors to apply to the input
values, as well as an overall bias value for the node.

XGBoost. A popular Python library for gradient-boosted
decision trees.
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