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Abstract. The adjoint of the GEOS-Chem (Goddard Earth
Observing System with Chemistry) model has been widely
used to constrain the sources of atmospheric compositions.
Here, we designed a new framework to facilitate emission
inventory updates in the adjoint of the GEOS-Chem model.
The major advantage of this new framework is good readabil-
ity and extensibility, which allows us to support Harmonized
Emissions Component (HEMCO) emission inventories con-
veniently and to easily add more emission inventories follow-
ing future updates in GEOS-Chem forward simulations. Fur-
thermore, we developed new modules to support MERRA-2
(Modern-Era Retrospective Analysis for Research and Ap-
plications, version 2) meteorological data, which allows us
to perform long-term analyses with consistent meteorologi-
cal data for the period 1979–present. The performances of
the developed capabilities were evaluated with the follow-
ing steps: (1) diagnostic outputs of carbon monoxide (CO)
sources and sinks to ensure the correct reading and use of
emission inventories, (2) forward simulations to compare the
modeled surface and column CO concentrations among var-
ious model versions, (3) backward simulations to compare
adjoint gradients of global CO concentrations to CO emis-
sions with finite-difference gradients, and (4) observing sys-
tem simulation experiments (OSSEs) to evaluate the model
performance in 4D variational (4D-Var) assimilations. Fi-
nally, an example application of 4D-Var assimilation was
presented to constrain anthropogenic CO emissions in 2015
by assimilating Measurement of Pollution in the Troposphere
(MOPITT) CO observations. The capabilities developed in
this work are important for better applications of the adjoint
of the GEOS-Chem model in the future. These capabilities
will be submitted to the standard GEOS-Chem adjoint code

base for better development of the community of the adjoint
of the GEOS-Chem model.

1 Introduction

The Goddard Earth Observing System with Chemistry
(GEOS-Chem) model is a global 3D chemical transport
model (CTM) and has been widely used to analyze the
sources and variabilities of atmospheric compositions (Wha-
ley et al., 2015; Li et al., 2019; Hammer et al., 2020; Jiang et
al., 2022). The GEOS-Chem model is driven by meteorolog-
ical reanalysis data from the Goddard Earth Observing Sys-
tem (GEOS) of the Global Modeling and Assimilation Office
(GMAO). Emissions in the GEOS-Chem model are calcu-
lated with state-of-the-art inventories such as CEDS (Com-
munity Emissions Data System) (Hoesly et al., 2018), MIX
(Li et al., 2017) and NEI2011 (National Emissions Inven-
tory). Based on the GEOS-Chem forward simulation, the ad-
joint of the GEOS-Chem model (Henze et al., 2007) further
provides the capability for backward simulation of physical
and chemical processes within the 4D variational (4D-Var)
framework. The major advantage of the adjoint model is ob-
taining the sensitivity of atmospheric concentrations to mul-
tiple model variables within a single backward simulation.
The major applications of the adjoint of the GEOS-Chem
model include inverse analyses of atmospheric composition
emissions by minimizing the difference between simulations
and observations (Jiang et al., 2015a; Zhang et al., 2018; Qu
et al., 2022), as well as sensitivity analyses to analyze the
sources of atmospheric compositions (Jiang et al., 2015b;
Zhao et al., 2019; Dedoussi et al., 2020).
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The algorithm of the 4D-Var framework requires identi-
cal model processes in the forward and backward simula-
tions. Ideally, the code for the adjoint model should be up-
dated following the GEOS-Chem forward codes to take ad-
vantage of the new features in GEOS-Chem forward simula-
tions. However, the updates in the adjoint model are difficult
and usually delayed. For example, the MERRA-2 (Modern-
Era Retrospective Analysis for Research and Applications,
version 2) meteorological reanalysis data with temporal cov-
erage of 1979–present were supported in the GEOS-Chem
forward simulations in v11-01. The adjoint of the GEOS-
Chem model does not support MERRA-2, and thus, long-
term analysis must combine different meteorological reanal-
ysis data, such as GEOS-4 (1985–2007), GEOS-5 (2004–
2012) and GEOS-FP (2012–present). For instance, Jiang et
al. (2017) constrained global carbon monoxide (CO) emis-
sions in 2001–2015, while the derived trends in CO emis-
sions in Jiang et al. (2017) could be affected by the disconti-
nuity among various versions of the meteorological data (i.e.,
GEOS-4 in 2001–2003, GEOS-5 in 2004–2012 and GEOS-
FP in 2013–2015) and the lack of consistency in the model
physics of GEOS-5.

Emission inventories play a key role in the simulation
of atmospheric compositions. The Harmonized Emissions
Component (HEMCO) (Keller et al., 2014; Lin et al., 2021)
was included in the GEOS-Chem forward simulations in
v10-01. HEMCO is responsible for inputs of meteorological
and emission data with default support for emission invento-
ries such as CEDS, MIX and NEI2011. New emission inven-
tories can be added readily within the HEMCO framework.
There are noticeable differences between HEMCO and the
adjoint of the GEOS-Chem model. First, meteorological and
emission data are read with individual modules in the adjoint
of the GEOS-Chem model. Second, the inputs of emission
inventories are undertaken by different modules that were
developed individually with significant discrepancies in the
source code. In addition, the file format (e.g., binary punch in
the adjoint of GEOS-Chem that is the format of older GEOS-
Chem versions in contrast to netCDF in HEMCO), the emis-
sion variables and the usage methods of emission variables
(e.g., emission hierarchy, scaling factors and time slice) are
inconsistent. These differences have posed a barrier to the
application of new emission inventories in the adjoint of the
GEOS-Chem model.

The lack of support to the updated emission inventories
can affect the applications of the adjoint of the GEOS-Chem
model. First, adjoint-based sensitivity analyses are obtained
by the backward simulations of atmospheric compositions
(i.e., adjoint tracers) and the combination of adjoint tracers
with emissions. Out-of-date emission inventories can thus re-
sult in inaccurate estimation of the adjoint sensitivities. Sec-
ond, while inverse analyses are constrained by atmospheric
observations, the updated emission inventories are still criti-
cal because they are helpful for better convergence of 4D-Var
assimilations by setting a more reasonable a priori penalty in

the cost function. For instance, the a priori biomass burn-
ing CO emissions (GFED3, van der Werf et al., 2010) in
Jiang et al. (2017) lack interannual variabilities later than
2011. In order to obtain reasonable convergence of biomass
burning emissions, the a priori biomass burning emissions
in September–November 2006 were applied to September–
November 2015 over Indonesia in Jiang et al. (2017).

Ideally, people should consider porting the complete
HEMCO to the adjoint of the GEOS-Chem model to match
the new features in GEOS-Chem forward simulations. How-
ever, a complete port of HEMCO implies replacing the input
framework of the adjoint of the GEOS-Chem model, as well
as a restructuring of HEMCO and the adjoint of the GEOS-
Chem model to address the compatibility issues, which is
very challenging and may not be necessary because the me-
teorological modules still work well in the adjoint of the
GEOS-Chem model. Consequently, a major objective of this
work is to design a new framework to facilitate emission in-
ventory updates in the adjoint of the GEOS-Chem model. For
this objective, this new framework must have good readabil-
ity and extensibility to allow us to support HEMCO emis-
sion inventories conveniently and to add more emissions in-
ventories following future updates in GEOS-Chem forward
simulations easily. Furthermore, we developed new modules
to support MERRA-2 meteorological data within the cur-
rent framework of the adjoint of the GEOS-Chem model as
reusing existing frameworks can save much work.

CO is one of the most important atmospheric pollutants
and plays a key role in tropospheric chemistry. Sources of at-
mospheric CO include fossil fuel combustion, biomass burn-
ing and oxidation of hydrocarbons. The major sink of atmo-
spheric CO is hydroxyl radical (OH). The simple chemical
sink of atmospheric CO allows us to simulate atmospheric
CO with linearized chemistry; for example, the tagged-CO
mode of the GEOS-Chem model can reduce the calculation
cost by 98 % with respect to the full chemistry mode by read-
ing archived monthly OH fields. The tagged-CO mode of the
GEOS-Chem model has been widely used to investigate the
sources and variabilities of atmospheric CO in recent decades
(Heald et al., 2004; Kopacz et al., 2009; Jiang et al., 2017).
The capabilities developed in this work are thus based on the
tagged-CO mode as it can effectively accelerate the model
development process. More efforts are needed in the future
to extend these capabilities to support emissions inventories
associated with full chemistry simulations.

The results presented in this paper show the development,
integration, evaluation and application of these new capabil-
ities, which is important for better applications of the ad-
joint of the GEOS-Chem model in the future. The capabil-
ities developed in this work will be submitted to the standard
GEOS-Chem adjoint code base (Henze et al., 2007) for better
development of the community of the adjoint of the GEOS-
Chem model. This paper is organized as follows: in Sect. 2,
we describe the adjoint of the GEOS-Chem model, the de-
velopment of these new capabilities and the Measurement

Geosci. Model Dev., 16, 6377–6392, 2023 https://doi.org/10.5194/gmd-16-6377-2023



Z. Tang et al.: An extension of the adjoint of GEOS-Chem model 6379

of Pollution in the Troposphere (MOPITT) CO observations
used in this work. In Sect. 3, we evaluate the performances of
the developed capabilities in forward and backward simula-
tions together with observing system simulation experiments
(OSSEs) to evaluate the model performance in 4D-Var as-
similations. An example application of 4D-Var assimilation
to constrain anthropogenic CO emissions in 2015 by assim-
ilating MOPITT CO observations was also presented. Our
conclusions follow in Sect. 4.

2 Methodology and data

2.1 Adjoint of the GEOS-Chem model

We use version v35n of the adjoint of the GEOS-Chem
model. Our analysis is conducted at a horizontal resolution of
4◦×5◦ with 47 vertical levels and employs the CO-only sim-
ulation (tagged-CO mode). The global default anthropogenic
emission inventory in the standard version of the adjoint of
the GEOS-Chem model (hereafter referred to as GC-Adjoint-
STD) is the Global Emissions InitiAtive (GEIA), but this
is replaced by the following regional emission inventories:
NEI2008 in North America, the Criteria Air Contaminants
(CAC) inventory for Canada, the Big Bend Regional Aerosol
and Visibility Observational (BRAVO) Study Emissions In-
ventory for Mexico (Kuhns et al., 2003), the Cooperative
Program for Monitoring and Evaluation of the Long-range
Transmission of Air Pollutants in Europe (EMEP) inven-
tory for Europe in 2000 (Vestreng and Klein, 2002) and the
INTEX-B Asia emissions inventory for 2006 (Zhang et al.,
2009). Biomass burning emissions are based on the GFED3
(van der Werf et al., 2010).

The objective of the 4D-Var approach is to minimize the
difference between simulations and observations described
by the cost function (Henze et al., 2007):

J (x)=
∑N

i=1
(Fi(x)− zi)

T S−1
6 (Fi(x)− zi)

+ γ (x− xa)
T S−1

a (x− xa), (1)

where x is the state vector of CO emissions, N is the number
of observations that are distributed in time over the assim-
ilation period, zi is a given measurement, and F(x) is the
forward model. The error estimates are assumed to be Gaus-
sian and are given by S6 , the observational error covariance
matrix, and Sa, the a priori error covariance matrix. The cost
function is minimized through minimizing the adjoint gradi-
ents by adjusting the CO emissions iteratively:

∇xJ (x)=
∑N

k=1

[
2S−1
6 (Fi(x)− zi)

∂Fi
∂x

]
+ 2γS−1

a (x− xa). (2)

We assume a uniform observation error of 20 %. The com-
bustion CO sources (fossil fuel, biofuel and biomass burning)

and the oxidation source from biogenic volatile organic com-
pounds (VOCs) are combined, assuming a 50 % uniform a
priori error. We optimize the source of CO from the oxidation
of methane (CH4) separately as an aggregated global source,
assuming an a priori uncertainty of 25 %. The CO emission
estimates are optimized with monthly temporal resolution.
Following Jiang et al. (2017), we performed 40 iterations
(forward + backward simulations) for each month, which
usually produced six to eight accepted iterations (i.e., suc-
cessful line searches in the large-scale bound constrained op-
timization (L-BFGS-B, Zhu et al., 1997)) to reduce the cost
functions and adjoint gradients. The a posteriori CO emis-
sion estimates were calculated based on the last accepted it-
eration, which usually corresponded to the iteration with the
lowest cost function.

2.2 New framework to read emission inventories

A major objective of this work is to design a new framework
to facilitate emission inventory updates in the adjoint of the
GEOS-Chem model. As shown in Fig. 1, we first initialize
the array in [INITIAL] and batch read the emission data in
[READ_DATA], which were interpolated offline with 1◦×1◦

resolution by considering the mass conservation. Here, the
data include the emission inventory data listed in Table S1
in the Supplement, the corresponding scaling factor data
and the mask map files of domain definitions. The data are
scaled in [SCALE_DATA] by multiplying the correspond-
ing annual, seasonal, monthly, weekly and 24 h emission fac-
tors and are then interpolated online to the current resolu-
tion (4◦×5◦ in this work) of the model by [RGRID_DATA],
which was followed by the application of region masks in
[MASK].

The emission variable of CO obtained in this part is
written to the model memory in emission.f and emis-
sion_adj.f by calling DO_EMISSIONS to ensure consis-
tent emissions in both forward and backward simulations.
The GET_[TRACER] subroutines are used to obtain the CO
emission variable, which participates in the calculation of
physicochemical processes in the model, to interact with
other modules. Finally, the variable is cleaned from the mem-
ory by the [CLEANUP] module. It should be noted that
a two-step interpolation is employed in this work (here-
after referred to as GC-Adjoint-HEMCO) following GC-
Adjoint-STD, for example, 0.1◦× 0.1◦ to 1◦× 1◦ and then
to 4◦×5◦ for the NEI2011 inventory, which is different from
the one-step interpolation in the GEOS-Chem forward model
(v12-08-01, hereafter referred to as GC-v12), for example,
0.1◦×0.1◦ to 4◦×5◦ directly for the NEI2011 inventory. The
different interpolation methods can lead to differences in the
interpolated emission data.
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Figure 1. Framework to read the updated emission inventories in GC-Adjoint-HEMCO.

Table 1. CO emissions for each inventory in 2015 (in Tg yr−1).

Inventories (Tg) GC-v12 GC-Adjoint-HEMCO Inventories (Tg) GC-Adjoint-STD

CEDS 613.57 613.85 GEIA 445.88
MIX 321.18 321.71 INTEX-B 353.03
NEI2011 35.83 37.70 NEI2008 52.87
DICE_AF + AF_EDGAR43 83.42 83.02 – –
APEI 6.10 6.17 CAC 10.20
GFED4 437.13 435.89 GFED3 382.04

2.3 Updates in emission inventories

In addition to baseline emission data, there are critical factors
that affect the usage of emission data in the models. Reading
the emission data correctly thus does not necessarily mean
using emission data correctly. For example, the emission hi-
erarchy is used to prioritize emission fields within the same
emission category. Emissions of a higher hierarchy overwrite
lower-hierarchy data. Regional emission inventories usually
have a higher hierarchy within their mask boundaries. Scal-
ing factors are used to adjust the baseline emissions with
annual, seasonal, monthly, weekly and 24 h temporal scales.
The time slice selection is used to define the usage methods
of the emission data outside the original temporal range; for
instance, data can be interpreted as climatology and recycled
once the end of the last time slice is reached, or they can be
considered only as long as the simulation time is within the
time range. Consequently, we must validate the integrated
emissions carefully to ensure that the abovementioned fac-
tors have been correctly applied and to ensure that the calcu-
lated emissions are reasonable for individual inventories and
the combination of all inventories.

To take advantage of this new framework, six HEMCO
emission inventories have been added to this work. To val-
idate the emissions, we performed actual simulations with
GC-v12, GC-Adjoint-HEMCO and GC-Adjoint-STD, and
the emissions were calculated in the model simulations and
then output to the Log file. As shown in Table S1, the
CEDS emission inventory (0.5◦× 0.5◦) is adopted in GC-
Adjoint-HEMCO to provide global default emissions for
1750–2019. The diurnal scale factors are applied to obtain
CO emissions at different moments of the day. Figure S1
(see the Supplement) shows CEDS CO emissions in 2015
in GC-v12 and GC-Adjoint-HEMCO and GEIA CO emis-
sions in GC-Adjoint-STD, and we find noticeable differ-
ences in CO emissions between CEDS and GEIA. As shown
in Table 1, the CEDS CO emissions in 2015 were 613.57
and 613.85 Tg yr−1 in GC-v12 and GC-Adjoint-HEMCO, re-
spectively, with a relative difference of 0.05 % between GC-
v12 and GC-Adjoint-HEMCO. The GEIA CO emissions in
2015 were 445.88 Tg yr−1 in GC-Adjoint-STD.

The default CEDS inventory is replaced by the follow-
ing regional emission inventories in GC-Adjoint-HEMCO:
MIX in Asia (0.25◦× 0.25◦), NEI2011 in the United States
(0.1◦× 0.1◦), DICE_AFRICA and EDGARV43 in Africa
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(0.1◦× 0.1◦), and APEI in Canada (0.1◦× 0.1◦). As shown
in Fig. S2, the MIX inventory provides Asian emissions
in 2008–2010, accompanied by diurnal scale factors to de-
scribe daily emission variations. The 1◦× 1◦ scale factors
in the AnuualScalar.geos.1x1.nc file further provide the an-
nual variation in 1985–2010. As shown in Table 1, the
MIX CO emissions in 2015 were 321.18 and 321.71 Tg yr−1

in GC-v12 and GC-Adjoint-HEMCO, respectively, with a
relative difference of 0.17 % between GC-v12 and GC-
Adjoint-HEMCO. The INTEX-B CO emissions in 2015
were 353.03 Tg yr−1 in GC-Adjoint-STD.

The NEI2011 inventory (Fig. S3) provides anthropogenic
emissions for the United States in 2011 with annual scalar
factors from 2006 to 2013. The weekday and weekend fac-
tors are read from the NEI99.dow.geos.1x1.nc file from 1999
with CO factors of 1.0 on weekdays and between 0.990 and
0.997 on Saturdays and Sundays. The NEI2011 CO emis-
sions in 2015 were 35.83 and 37.70 Tg yr−1 in GC-v12 and
GC-Adjoint-HEMCO, respectively, with a relative difference
of 5.22 % between GC-v12 and GC-Adjoint-HEMCO. The
NEI2008 CO emissions in 2015 were 52.87 Tg yr−1 in GC-
Adjoint-STD. APEI (Fig. S4) is the primary source of anthro-
pogenic emissions in the Canadian domain. The APEI CO
emissions in 2015 were 6.10 and 6.17 Tg yr−1 in GC-v12 and
GC-Adjoint-HEMCO, respectively, with a relative difference
of 1.14 % between GC-v12 and GC-Adjoint-HEMCO. The
CAC CO emissions in 2015 were 10.20 Tg yr−1 in GC-
Adjoint-STD. Following GC-v12, the CO emissions in APEI
are enhanced by 19 % to account for co-emitted VOCs in the
tagged-CO simulation.

Emissions for the African domain are provided by the
combination of DICE_AFRICA and EDGARV43 (Fig. S5).
Here, DICE_AFRICA includes anthropogenic and biofuel
emissions in 2013. We read the DICE_AFRICA emissions
data into the model in two types according to the guide-
lines of the inventory. Emissions from sectors such as
automobiles and motorcycles are aggregated into anthro-
pogenic sources, and household-generated emissions such as
charcoal and agricultural waste are aggregated into biofuel
sources. Efficient combustion emissions from EDGAR v4.3
in 1970–2010 then compensate for the lacking sources in
DICE_AFRICA. Daily variation factors for CO are also used
here for emissions across the African region. The 2010 CO
seasonal-scale factors are used in EDGAR v4.3 for sectoral
emission sources. The DICE_AFRICA and EDGARV43
CO emissions in 2015 were 83.42 and 83.02 Tg yr−1 in
GC-v12 and GC-Adjoint-HEMCO, respectively, with a rel-
ative difference of −0.48% between GC-v12 and GC-
Adjoint-HEMCO. Following GC-v12, the CO emissions in
DICE_AFRICA and EDGARV43 are enhanced by 19 % to
account for co-emitted VOCs in the tagged-CO simulation.

The biomass burning emission inventory in GC-Adjoint-
HEMCO is GFED4 (Fig. S6), which includes dry-matter
emissions from a total of seven sectors in 1997–2019. The
same GFED_emission_factors.H header file as in the GC-

Figure 2. Total combustion CO emissions in 2015 from (a) GC-
v12, (b) GC-Adjoint-HEMCO and (c) GC-Adjoint-STD (in
molec. cm2 s−1).

v12 version is read in the GC-Adjoint-HEMCO. This file
contains the ratio factors of atmospheric pollutants, and we
multiply the ratio factors one by one according to the ID of
each species to ensure that the species in the model have
biomass burning sources. The GFED4 CO emissions in 2015
were 437.13 and 435.89 Tg yr−1 in GC-v12 and GC-Adjoint-
HEMCO, respectively, with a relative difference of −0.28%
between GC-v12 and GC-Adjoint-HEMCO. The GFED3 CO
emissions in 2015 were 382.04 Tg yr−1 in GC-Adjoint-STD.
Following GC-v12, the combustion CO sources in biomass
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Table 2. Regional combustion CO emissions, VOC-generated CO (PCO_NMVOC), CH4-generated CO (PCO_CH4), CO sinks (CO_OH,
calculated as CO_OH = KRATE × CO × OH), and simulated surface and column CO concentrations in 2015. The region definitions are
shown in Fig. 2a.

Emission (Tg yr−1) PCO_CH4 (kg s−1) PCO_NMVOC (kg s−1)

Version GC-v12 GC-Adjoint- GC- GC-v12 GC-Adjoint- GC- GC-v12 GC-Adjoint- GC-
HEMCO Adjoint- HEMCO Adjoint- HEMCO Adjoint-

STD STD STD

Region

Asia 320.66 320.38 331.65 14.21 14.40 10.67 15.49 15.52 22.37
North America 73.96 66.93 60.65 7.45 7.66 5.23 7.05 6.83 14.75
Africa 199.51 193.29 179.22 19.57 19.85 16.18 34.57 33.92 52.38
South America 79.04 78.91 75.82 17.14 17.42 14.08 44.15 42.55 74.64
Europe 31.58 30.96 48.48 7.13 7.41 4.58 4.20 4.14 10.17
Australia 12.24 11.99 22.87 13.88 14.62 10.67 21.23 20.68 48.89

CO_OH (kg s−1) CO (surface ppbv) CO (column Xco)

Version GC-v12 GC-Adjoint- GC- GC-v12 GC-Adjoint- GC- GC-v12 GC-Adjoint- GC-
HEMCO Adjoint- HEMCO Adjoint- HEMCO Adjoint-

STD STD STD

Region

Asia 52.26 51.34 40.87 179.56 184.29 187.90 90.23 88.16 89.58
North America 23.02 22.57 16.20 120.38 113.49 108.27 79.16 76.27 71.35
Africa 63.78 61.84 51.03 133.56 127.38 141.97 84.26 81.52 86.36
South America 49.06 48.85 41.25 107.98 106.16 132.24 72.93 70.67 78.75
Europe 20.65 20.92 14.27 112.88 111.33 120.09 74.83 72.34 70.45
Australia 31.42 31.98 25.27 67.45 65.00 84.80 56.35 54.02 61.15

burning are enhanced by 5 % to consider the CO generated
by VOCs in the tagged-CO simulation.

Figure 2 shows the total combustion CO emissions in
2015 from GC-v12, GC-Adjoint-HEMCO and GC-Adjoint-
STD. As shown in Table 2, the regional combustion CO
emissions are 320.66 and 320.38 Tg yr−1 (Asia), 73.96 and
66.93 Tg yr−1 (North America), 199.51 and 193.29 Tg yr−1

(Africa), 79.04 and 78.91 Tg yr−1 (South America), 31.58
and 30.96 Tg yr−1 (Europe), and 12.24 and 11.99 Tg yr−1

(Australia) in GC-v12 and GC-Adjoint-HEMCO, respec-
tively. Figure 3 further shows the monthly combustion CO
emissions in 2015 from GC-v12, GC-Adjoint-HEMCO and
GC-Adjoint-STD, and there are good agreements in the
monthly variation of CO emissions between GC-v12 and
GC-Adjoint-HEMCO. The CO emissions in GC-Adjoint-
STD are similar to those in GC-v12 and GC-Adjoint-
HEMCO in winter and spring but with large differences in
summer and autumn. This seasonal difference may reflect the
influence of different emission inventories on biomass burn-
ing.

2.4 Updates in CO chemical sources and sinks

The biogenic emissions in GC-Adjoint-STD are from the
Model of Emissions of Gases and Aerosols from Na-

Figure 3. Monthly variation in combustion CO emissions in 2015
from GC-v12, GC-Adjoint-HEMCO and GC-Adjoint-STD.

ture, version 2.0 (MEGANv2.0, Guenther et al., 2006) in
the full chemistry simulation but are from GEIA in the
tagged-CO simulation (Fig. S7). Fisher et al. (2017) demon-
strated improvement in modeled CO concentrations in the
tagged-CO simulation by reading archived VOC- and CH4-
generated CO fields provided by the full chemistry simu-
lation. The archived VOC- and CH4-generated CO fields
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in 2013 (PCO_3Dglobal.geosfp.4x5.nc) were set as the de-
fault CO chemical sources in the tagged-CO simulation in
GC-v12 and were supported in GC-Adjoint-HEMCO. As
shown in Table 2, the CO chemical sources (columns) ob-
tained by reading the archived VOC- and CH4-generated
CO fields demonstrate good agreement between GC-v12 and
GC-Adjoint-HEMCO. However, they are 30 %–60 % lower
than those in GEIA in GC-Adjoint-STD, and this difference
could be partially associated with the inconsistency between
the archived VOC-generated CO fields in 2013 and the actual
meteorological data in 2015 in the simulation.

The default CH4-generated CO emissions in GC-Adjoint-
STD (Fig. S8) are calculated based on averaged CH4 con-
centrations in four latitudinal bands (90–30◦ S, 30–00◦ S,
00–30◦ N, 30–90◦ N), which are based on Climate Moni-
toring and Diagnostics Laboratory (CMDL) surface obser-
vations and Intergovernmental Panel on Climate Change
(IPCC) future scenarios. As shown in Table 2, there
are good agreements in the CH4-generated CO emissions
between GC-v12 and GC-Adjoint-HEMCO when read-
ing PCO_3Dglobal.geosfp.4x5.nc, and they are 20 %–60 %
lower than those in CMDL/IPCC in GC-Adjoint-STD. Fur-
thermore, the default archived monthly OH fields were up-
dated following GC-v12 with updated calculations for the de-
cay rate (KRATE, from JPL 03 to JPL 2006) in GC-Adjoint-
HEMCO. The subsequent CO sinks (Fig. S9) in GC-v12 and
GC-Adjoint-HEMCO are 20 %–40 % higher than those in
GC-Adjoint-STD.

2.5 Updates in meteorological data

The MERRA-2 meteorological data (1979–present) are sup-
ported in GC-Adjoint-HEMCO to ensure long-term consis-
tency in the meteorological data in the analyses. The code
porting to support MERRA-2 follows the current frame-
work of the adjoint of the GEOS-Chem model, particu-
larly because the meteorological variables and vertical res-
olutions of MERRA-2 are the same as those of GEOS-
FP (2012–present), while GEOS-FP is already supported by
GC-Adjoint-STD. Figure 4a–b show the averages of sur-
face CO concentrations in 2015 from GC-Adjoint-HEMCO
driven by MERRA-2 and GEOS-FP, respectively. Our re-
sults demonstrate lower surface CO concentrations driven
by MERRA-2 (Fig. 4c), although there is good agreement
in the spatial distributions of CO concentrations. Similarly,
Fig. 4d–f show the averages of CO columns in 2015 from
GC-Adjoint-HEMCO driven by MERRA-2 and GEOS-FP
and their differences. Despite the noticeable differences in
surface CO concentrations (Fig. 4c), the differences in CO
columns (Fig. 4f) are much smaller, and the modeled CO
columns driven by MERRA-2 are higher than those driven by
GEOS-FP over the Indian Ocean. The discrepancy between
surface and column CO in Fig. 4 may reflect the impacts of
different convective transports on the modeled CO concen-
trations.

2.6 MOPITT CO measurements

The MOPITT data used here were obtained from the joint
retrieval (V7J) of CO from thermal infrared (TIR, 4.7 µm)
and near-infrared (NIR, 2.3 µm) radiances using an opti-
mal estimation approach (Worden et al., 2010; Deeter et al.,
2017). The retrieved volume mixing ratios (VMRs) are re-
ported as layer averages of 10 pressure levels with a foot-
print of 22 km×22 km. Following Jiang et al. (2017), we
reject MOPITT data with CO column amounts less than
5×1017 molec. cm−2 and with low cloud observations. Since
the NIR channel measures reflected solar radiation, only day-
time data are considered.

3 Model evaluation and application

3.1 Model performances in forward and backward
simulations

The reasonable emissions in the diagnostic outputs in Sect. 2
do not necessarily mean the correct integration of emis-
sions in the assimilations. Consequently, here, we evaluate
the performance of GC-Adjoint-HEMCO in forward simula-
tions. Figure 5 shows the averages of surface and column CO
concentrations in 2015 from GC-v12, GC-Adjoint-HEMCO
and GC-Adjoint-STD. As shown in Table 2, the regional
differences between GC-v12 and GC-Adjoint-HEMCO are
2.6 %, −5.7%, −4.6%, −1.7%, −1.4% and −3.6% in
surface CO concentrations and −2.3%, −3.6%, −3.3%,
−3.1%, −3.3% and −4.1% in CO columns over Asia,
North America, Africa, South America, Europe and Aus-
tralia, respectively. There are larger regional differences in
CO concentrations between GC-v12 and GC-Adjoint-STD:
4.6 %, −10.1%, 6.3 %, 22.5 %, 6.4 % and 25.7 % in sur-
face CO concentrations and −0.7%, −9.9%, 2.5 %, 8.0 %,
−5.8% and 8.5 % in CO columns over Asia, North Amer-
ica, Africa, South America, Europe and Australia, respec-
tively. The agreement between GC-v12 and GC-Adjoint-
HEMCO confirms the reliability of GC-Adjoint-HEMCO in
forward simulations, while the small differences in CO con-
centrations between GC-v12 and GC-Adjoint-HEMCO are
expected in view of the comparable differences in regional
emissions, chemical sources and sinks, as shown in Table 2.

In addition to forward simulations, the reliability of 4D-
Var assimilation also relies on the accuracy of the adjoint-
based sensitivities, which are obtained by the backward sim-
ulations of adjoint tracers and the combination of adjoint
tracers with emissions. As mentioned in Sect. 2.2, we have
made corresponding modifications to both forward and back-
ward modules. Consequently, here, we further evaluate the
performance of GC-Adjoint-HEMCO in backward simula-
tions. Here, the adjoint gradients are simplified as follows:

∇xJ (x)=
∂FN
∂x

. (3)
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Figure 4. Averages of surface CO concentrations (unit: ppbv) in 2015 from (a) GC-Adjoint-HEMCO driven by MERRA-2, (b) GC-Adjoint-
HEMCO driven by GEOS-FP and (c) their difference; (d–f) same as panels (a–c) but for CO columns (column-averaged dry-air mole
fractions, Xco).

The adjoint gradients (Eq. 3) represent the sensitivities of
modeled atmospheric compositions at the final time step (i.e.,
i =N ) to emissions, which were then compared with the
finite-difference gradients calculated with

3=
J (x+ δx)− J (x− δx)

2δx
. (4)

Here, the finite-difference gradients represent the response
of modeled atmospheric compositions at the final time step
to finite perturbations in emissions provided by the forward
simulations (δx = 10% in this work).

Figure 6a–c show the comparison of adjoint and finite-
difference gradients of global surface CO concentrations to
CO emissions with a 24 h assimilation window by turning on
the convection, planetary boundary layer mixing and advec-
tion processes individually. We find good consistency in the

gradients with respect to convection and planetary boundary
layer (PBL) mixing. The larger deviation with respect to ad-
vection is caused by the discrete advection algorithm in for-
ward simulations and the continuous advection algorithm in
backward simulations (Henze et al., 2007). Figure 6d–f fur-
ther exhibit the effects of combined model processes (turning
off advection as suggested by Henze et al., 2007). We find
good agreement between the adjoint and finite-difference
gradients with different assimilation windows (24 h, 7 d and 1
month). Moreover, Figs. S10 and S11 demonstrate the com-
parisons of sensitivities at higher model levels within the
PBL and free troposphere by showing consistent results in re-
lation to Fig. 6. This confirms the consistency in the impacts
of emissions on modeled atmospheric compositions between
the forward and backward simulations, which is the prereq-
uisite for more detailed evaluations in the following sections.
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Figure 5. Averages of surface CO concentrations (unit: ppbv) in 2015 from (a) GC-v12, (b) GC-Adjoint-HEMCO and (c) GC-Adjoint-STD;
(d–f) same as panels (a–c) but for CO columns (column-averaged dry-air mole fractions, Xco).

3.2 Observing system simulation experiments with
pseudo-CO observations

Here, we further evaluate the performance of GC-Adjoint-
HEMCO in 4D-Var assimilations. OSSE is a useful method
and has been widely used to evaluate the performance of vari-
ous data assimilation systems (Jones et al., 2003; Barré et al.,
2015; Shu et al., 2022). In contrast to assimilations by assim-
ilating actual atmospheric observations, pseudo-observations
are usually generated by model simulations and then assim-
ilated in OSSE. The true atmospheric states are known in
OSSEs as they are used to produce the pseudo-observations,
and consequently, the difference between assimilated and
true atmospheric states describes the capability of the assim-
ilation systems to converge to the true atmospheric states in
assimilations when assimilating actual observations.

The pseudo-observations in this work are produced by
archiving CO concentrations from GC-Adjoint-HEMCO for-
ward simulations with the CO emissions unchanged (i.e.,
the default CO emission inventory such as CEDS, MIX and
NEI2011). According to the usage of pseudo-observations,
two types of OSSEs are performed in this work: (1) full
modeled CO fields are assimilated as pseudo-observations
so that we have pseudo-CO observations at every grid, level
and time step (hereafter referred to as OSSE-FullOBS). This
experiment is designed to evaluate the performance of the
assimilation system under ideal conditions with full cover-
age of observations. (2) The modeled CO fields are sampled
at the locations and times of MOPITT CO observations and
smoothed with MOPITT a priori concentrations and aver-
aging kernels to produce MOPITT-like pseudo-CO observa-
tions (hereafter referred to as OSSE-MOPITT). This experi-
ment is designed to evaluate the performance of the assimi-
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Figure 6. Comparison of sensitivities of global CO concentrations (LFD_GLOB and model level 1) to CO emission scaling factors calculated
using the adjoint method vs. the finite-difference method. (a–c) The effects of convection, PBL mixing and advection with 24 h assimilation
window. (d–f) The combined effects (the advection process is turned off) with increased assimilation windows.

lation system under actual conditions with limited coverage
of observations.

In the inverse analysis with the pseudo-CO observations,
we reduce the anthropogenic CO emissions by 50 % so that
the objective of the OSSE is to produce scaling factors that
can return the source estimate to the default emissions (i.e.,
scaling factors of 1.0). Figure 7a shows the annual scaling
factors in 2015 in OSSE-FullOBS. After 40 iterations, the
a posteriori anthropogenic CO emission estimates converge
to the true states in all major emission regions. As shown in
Table 3, the regional scaling factors of OSSE-FullOBS are
1.00, 0.97, 0.97, 1.00, 0.98 and 0.94 for anthropogenic CO
emissions over Asia, North America, Africa, South America,
Europe and Australia, respectively.

Furthermore, Fig. 7d shows the annual scaling factors in
OSSE-MOPITT, which are noticeably worse than those in
Fig. 7a. The regional scaling factors of OSSE-MOPITT are
1.04, 0.88, 1.01, 1.02, 0.84 and 0.81 for anthropogenic CO
emissions over Asia, North America, Africa, South America,
Europe and Australia, respectively. With respect to OSSE-
FullOBS, the limited coverage of observations in OSSE-
MOPITT has resulted in approximately 15 % underestima-
tions in the a posteriori CO emission estimates over North
America and Europe. In addition, Fig. 7b–c and e–f show the
a priori and a posteriori biases in the modeled CO columns.
We find dramatic improvements in the modeled CO columns,

Table 3. Annual scaling factors of anthropogenic CO emissions in
OSSEs. The scaling factors represent the ratio of the estimated to
true emissions. The ratio for the first guess is 0.5. The actual value
is 1.0. The pseudo-observations are produced by the GC-Adjoint-
HEMCO forward simulation. The full modeled CO fields are used
in OSSE-FullOBS as pseudo-CO observations. The modeled CO
fields are smoothed with MOPITT averaging kernels to produce
MOPITT-like pseudo-CO observations in OSSE-MOPITT.

Scaling factors Scaling factors
OSSE-FullOBS OSSE-MOPITT

Asia 1.00 1.04
North America 0.97 0.88
Africa 0.97 1.01
South America 1.00 1.02
Europe 0.98 0.84
Australia 0.94 0.81

which confirms the reliability of the 4D-Var assimilation sys-
tem. The difference between Figs. 7b and 6e reflects the
influence of the application of MOPITT averaging kernels,
which lead to larger negative biases in the a priori simula-
tion. It should be noted that we cannot expect comparable
improvement in the actual assimilations because of the po-
tential effects of model and observation errors.
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Figure 7. (a) Annual scaling factors in OSSE-FullOBS. The scaling factors represent the ratio of the estimated to true emissions. The ratio
for the first guess is 0.5. The actual value is 1.0. (b–c) The a priori and a posteriori biases calculated by (model–observation)/observation in
OSSE-Full. (d–f) Same as panels (a–c) but for OSSE-MOPITT.

3.3 Anthropogenic CO emissions constrained with
MOPITT CO observations

As an example of the application of GC-Adjoint-HEMCO,
here, we constrain anthropogenic CO emissions in 2015 by
assimilating MOPITT CO observations. Figure 8a shows
the relative differences between modeled and MOPITT CO
columns at the beginning of each month in 2015 (i.e., bi-
ases in monthly initial CO conditions) in the original GEOS-
Chem simulations. We find dramatic underestimations in the
modeled CO columns of approximately 30 %–40 %. As indi-
cated by previous studies (Jiang et al., 2013, 2017), the biases
in monthly initial CO conditions are caused by model biases
in CO concentrations accumulated in previous months. Con-
sidering that the lifetime of CO is approximately 2–3 months,
the negative biases in the initial conditions can result in neg-

ative biases in the modeled CO concentration in the fol-
lowing month. A lack of consideration of these biases, as
shown in Fig. 8a, can thus result in overestimations in the
derived monthly CO emission estimates because the assimi-
lation system will tend to adjust emissions to reduce the ini-
tial condition-induced biases.

Following Jiang et al. (2017), a sub-optimal sequential
Kalman filter (Todling and Cohn, 1994; Tang et al., 2022)
was employed in this work to optimize the modeled CO
concentrations with an hourly resolution by combining GC-
Adjoint-HEMCO forward simulations and MOPITT CO ob-
servations. The CO concentrations provided by the Kalman
filter assimilations were archived at the beginning of each
month and were used as the optimized monthly initial CO
conditions in the inverse analysis. As shown in Fig. 8b, the
biases in the modeled CO columns in the optimized initial
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Table 4. Regional anthropogenic CO emissions (in Tg yr−1) and annual scaling factors in 2015 in this work and Jiang et al. (2017).

Asia North America Africa South America Europe Australia

This work
A priori CO emissions (Tg) 243.53 34.42 23.24 30.39 25.94 2.02
A posteriori CO emissions (Tg) 283.20 50.47 35.34 42.92 41.62 2.79
Scaling factors 1.16 1.47 1.52 1.41 1.60 1.38

Jiang et al. (2017)
A priori CO emissions (Tg) 270.50 43.70 29.39 17.47 44.45 0.83
A posteriori CO emissions (Tg) 205.40 47.06 35.04 16.67 53.58 0.82
Scaling factors 0.76 1.08 1.19 0.95 1.21 0.99

Figure 8. (a) Biases in monthly initial CO conditions in 2015
in the original GEOS-Chem simulation. (b) Same as panel (a)
but with optimized initial CO conditions provided by sub-optimal
sequential Kalman filter. The biases are calculated by (model–
MOPITT)/MOPITT.

CO conditions are pronouncedly lower than those in the orig-
inal simulation (Fig. 8a). The optimization of the initial CO
conditions is essential for our inverse analysis as it can en-
sure that the adjustments in CO emissions are dominated by
the differences between simulations and observations in the
current month instead of the 30 %–40 % underestimations in
CO columns accumulated in previous months.

Figure 9a shows the distribution of a priori anthropogenic
CO emissions in 2015. The regional a priori anthropogenic
CO emissions (as shown in Table 4) are 243.53, 34.42, 23.24,
30.39, 25.94 and 2.02 Tg yr−1 over Asia, North America,

Africa, South America, Europe and Australia, respectively.
As shown in Fig. 9b, our inverse analysis suggests a wide
distribution of underestimations in the a priori anthropogenic
CO emissions in 2015 except in China. The regional scaling
factors (Table 4) are 1.16, 1.47, 1.52, 1.41, 1.60 and 1.38,
and the a posteriori anthropogenic CO emissions are 283.20,
50.47, 35.34, 42.92, 41.62 and 2.79 Tg yr−1 over Asia, North
America, Africa, South America, Europe and Australia, re-
spectively. As shown in Fig. 9c, we find noticeable underes-
timations in the modeled CO columns in the a priori simu-
lations despite the negative biases being much weaker than
those in Fig. 8a due to the optimization of the initial CO con-
ditions. The negative biases are effectively reduced in the a
posteriori simulation driven by the a posteriori CO emission
estimates (Fig. 9d).

Finally, we compare the a posteriori CO emission esti-
mates in this work with those of Jiang et al. (2017), who
constrained CO emissions in 2001–2015 with GC-Adjoint-
STD by assimilating the same MOPITT CO observations. As
shown in Table 4, the a posteriori anthropogenic CO emis-
sion estimates in this work match well with those of Jiang
et al. (2017) in North America and Africa but are 38 %,
157 % and 228 % higher than those in Jiang et al. (2017)
in Asia, South America and Australia, respectively. A ma-
jor discrepancy between this work and Jiang et al. (2017) is
the treatment of ocean grids. Jiang et al. (2017) defined ocean
grids as continental boundary conditions, which were rewrit-
ten hourly using the optimized CO concentrations archived
from the sub-optimal sequential Kalman filter by assimi-
lating MOPITT CO observations. Only MOPITT data over
land were assimilated in the 4D-Var assimilations in Jiang
et al. (2017) without any change in CO distribution over the
ocean. In addition, the large differences in chemical sources
and sinks between GC-Adjoint-HEMCO and GC-Adjoint-
STD – for example, 40 %–60 % lower VOC-generated CO
emissions and 20 %–40 % higher CO sinks in GC-Adjoint-
HEMCO, as shown in Table 2 – may also contribute to the
discrepancy in the derived a posteriori CO emission esti-
mates.

As shown in Fig. 9d, the a posteriori simulation demon-
strates positive biases in CO columns over China and south-
east Asia, which is a signal of overestimated local CO emis-
sions; meanwhile, the negative biases over the northern Pa-
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Figure 9. (a) A priori anthropogenic CO emissions in 2015 (in molec. cm2 s−1). (b) Annual scaling factors for CO emissions in 2015.
The scaling factors represent the ratio of the estimated to true emissions. (c–d) The a priori and a posteriori biases calculated by (model–
MOPITT)/MOPITT.

cific Ocean are reduced in the a posteriori simulation. The
negative biases over the remote ocean are more affected by
CO chemical sources and sinks; however, biases in chem-
ical sources cannot be effectively adjusted because of the
global uniform scaling factor for CH4-generated CO emis-
sions; biases in chemical sinks cannot be adjusted because
of the fixed OH fields in the tagged-CO simulation. Jiang et
al. (2017) tried to address this problem by defining continen-
tal boundary conditions so that the inverse analysis is domi-
nated by local MOPITT observations to avoid the influence
of model biases accumulated within the long-range transport.
Conversely, CO emissions over China and southeast Asia are
overestimated in this work to offset the negative biases over
the northern Pacific Ocean. We expect similar overestima-
tions in the a posteriori CO emission estimates over South
America, southern Africa and Australia in this work because
it is the effective pathway to reduce the negative bias over the
ocean in the Southern Hemisphere.

4 Conclusions

This work demonstrates our efforts in the development of a
new framework to facilitate emission inventory updates in
the adjoint of the GEOS-Chem model. The major advantage

of this new framework is good readability and extensibility,
which allows us to conveniently support HEMCO emission
inventories, including CEDS, MIX, NEI2011, DICE_AF,
AF_EDGAR43, APEI and GFED4. The updated emission
inventories are critical for reliable sensitivity analyses, as
well as better convergence of assimilations by setting a more
reasonable a priori penalty in the cost function. Second, we
developed new modules to support MERRA-2 meteorologi-
cal data, which allows us to perform long-term inverse analy-
ses with consistent meteorological data for the period 1979–
present. We evaluated the performances of the developed ca-
pabilities by validating the diagnostic outputs of CO emis-
sions, modeled surface and column CO concentrations in for-
ward simulations, and adjoint gradients of global CO concen-
trations to CO emissions with respect to the finite-difference
gradients.

Two types of OSSEs were conducted to evaluate the model
performance in 4D-Var assimilations. The a posteriori CO
emissions converged to the true states in all major emission
regions with fully covered pseudo-CO observations; the lim-
ited coverage of observations from sampling the pseudo-CO
observations at the locations and times of MOPITT CO ob-
servations and smoothing with MOPITT averaging kernels
resulted in underestimations of approximately 15 % in the
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a posteriori CO emissions over North America and Europe.
Furthermore, as an example application of the developed ca-
pabilities, we constrain anthropogenic CO emissions in 2015
by assimilating MOPITT CO observations. The a posteriori
anthropogenic CO emission estimates derived in this work
match well with those of Jiang et al. (2017) in North Amer-
ica and Africa but are overestimated in Asia, South Amer-
ica and Australia, which could be associated with the differ-
ent treatment of MOPITT CO observations over ocean grids
and the large differences in CO chemical sources and sinks.
The capabilities developed in this work are a useful exten-
sion for the adjoint of the GEOS-Chem model. More efforts
are needed to support emissions inventories associated with
full chemistry simulations, as well as for integration of these
capabilities with the standard GEOS-Chem adjoint code base
for better development of the community of the adjoint of the
GEOS-Chem model.
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