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Abstract. A single ozone (O3) tracer mode was developed
in this work to build the capability of the Goddard Earth
Observing System model with Chemistry (GEOS-Chem) for
rapid O3 simulation. The single O3 tracer simulation demon-
strates consistency with the GEOS-Chem full chemistry sim-
ulation, with dramatic reductions in computational costs of
approximately 91 %–94 %. The single O3 tracer simulation
was combined with surface and Ozone Monitoring Instru-
ment (OMI) O3 observations to investigate the changes in
tropospheric O3 over eastern China in 2015–2020. The as-
similated O3 concentrations demonstrate good agreement
with O3 observations because surface O3 concentrations are
43.2, 41.8, and 42.1 ppb and tropospheric O3 columns are
37.1, 37.9, and 38.0 DU in the simulations, assimilations, and
observations, respectively. The assimilations indicate rapid
rises in surface O3 concentrations by 1.60 (spring), 1.16
(summer), 1.47 (autumn), and 0.80 ppb yr−1 (winter) over
eastern China in 2015–2020, and the increasing trends are
underestimated by the a priori simulations. More attention
is suggested to the rapid increases in the O3 pollution in
spring and autumn. We find stronger rises in tropospheric O3
columns over highly polluted areas due to larger local con-
tributions, for example, 0.12 DU yr−1 (North China Plain)
in contrast to −0.29 (Sichuan Basin) and −0.25 DU yr−1

(southern China). Furthermore, our analysis demonstrated
noticeable contributions of the interannual variability in
background O3 to the trends in surface O3 (particularly in the
summer) and tropospheric O3 columns over eastern China
in 2015–2020. This work highlights the importance of rapid
simulations and assimilations to extend and interpret atmo-
spheric O3 observations.

1 Introduction

Tropospheric ozone (O3) is produced when volatile organic
compounds (VOCs) and carbon monoxide (CO) are pho-
tochemically oxidized in the presence of nitrogen oxides
(NOx). Tropospheric O3 has important influences on the cli-
mate (Mickley, 2004; Iglesias-Suarez et al., 2018), atmo-
spheric oxidation capacity (Thompson, 1992; Prinn, 2003),
human health, and crop growth (Zhang et al., 2021; Li et al.,
2022). The important role of O3 in the atmosphere has led to
many efforts focusing on O3 observations that have improved
our understanding of atmospheric O3 (Logan et al., 2012;
Oetjen et al., 2016; Parrish et al., 2021). The limited spatial
coverage of O3 observations promotes the efforts of spatial
extensions of O3 observations (Chang et al., 2015; Peng et
al., 2016). Recent advances in machine learning techniques
further provide a new method to extend O3 observations by
fusing satellite and surface observations (Li et al., 2020; Liu
et al., 2022; Wei et al., 2022).

Chemical transport models (CTMs), as powerful tools,
have been widely used to simulate and interpret observed
O3 variabilities (Parrington et al., 2012; Jiang et al., 2016;
K. Li et al., 2019). Despite the advances in CTMs, an accu-
rate simulation of observed O3 is still challenging because
of uncertainties in physical and chemical processes (Peng
et al., 2021; Chen et al., 2022), emission inventories (El-
guindi et al., 2020; Jiang et al., 2022), and coarse model res-
olutions (Schaap et al., 2015; Benavides et al., 2021). Fur-
thermore, the high computational cost is a bottleneck for
rapid simulations, which poses a possible barrier to better un-
derstanding tropospheric O3. Alternatively, researchers may
consider simulations of atmospheric O3 with the archived
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O3 product and loss rates. For example, the tagged-Ox mode
of the Goddard Earth Observing System model with Chem-
istry (GEOS-Chem) has been used to analyze the sources
and transport of tropospheric O3 (Zhang et al., 2008; Zhu
et al., 2017; Han et al., 2018). However, it may not be an
ideal choice to perform O3 simulations based on the tagged-
Ox mode because Ox is the combination of multiple species
(Ox = O3+NO2+2NO3+3N2O5+HNO3+HNO4+PANs)
and thus cannot be accurately compared with O3 observa-
tions.

In this study, we developed the single O3 tracer mode
(tagged-O3) of the GEOS-Chem model, driven by archived
O3 product and loss rates provided by GEOS-Chem full-
chemistry simulations, to build the capability of the GEOS-
Chem model for rapid simulations of tropospheric O3 (rather
than Ox). Data assimilations, by combining modeled and ob-
served O3 concentrations, can take advantage of both simu-
lations and observations to produce more accurate O3 con-
centrations (Parrington et al., 2008; Ma et al., 2019; Hui-
jnen et al., 2020). The single O3 tracer simulations were
thus further combined with the Ozone Monitoring Instru-
ment (OMI) and China Ministry of Ecology and Environ-
ment (MEE) monitoring network O3 observations (in this
paper) and United States (U.S.) Air Quality System (AQS)
and European AirBase network O3 observations (in the com-
panion paper, Part 2; see Zhu et al., 2023) via a sequential
Kalman filter (KF) assimilation system (Tang et al., 2022;
Han et al., 2022) to perform a comparative analysis to in-
vestigate the changes in tropospheric O3 in eastern China in
2015–2020 (in this paper) and the USA and Europe in 2005–
2020 (Zhu et al., 2023).

Satellite instruments provide globally covered O3 obser-
vations that are sensitive to O3 concentrations in the free tro-
posphere. The OMI-based assimilations can thus reflect the
optimized adjustments in both global background and local
O3 concentrations. On the other hand, surface observations
are sensitive to local O3 concentrations. Surface-observation-
based assimilations can reflect the optimized adjustments in
local contributions, and the information of local contribu-
tions can be transported into the free troposphere via vertical
convection in the assimilation processes, which is different
from the fusion of satellite and surface observations (Li et
al., 2020; Liu et al., 2022; Wei et al., 2022). Consequently,
a comparative analysis by assimilating satellite and surface
O3 observations is useful for better characterization of O3
changes in the surface and free troposphere. Furthermore, the
low computational costs of the single O3 tracer simulations
allow us to design and perform different experiments much
more efficiently. Multiple simulation and assimilation exper-
iments (see details in Table 1) were thus conducted in this
work to analyze the impacts of background O3 (particularly,
the interannual and seasonal variabilities in the background
O3 and optimization in the background O3) and local O3 for-
mation on the changes in surface and free-tropospheric O3
over eastern China.

Figure 1. (a) Anthropogenic NOx emissions over eastern China
in 2015. (b) Region definitions for the North China Plain (no. 1),
Yangtze River Delta (no. 2), central China (no. 3), the Sichuan Basin
(no. 4), and southern China (no. 5). The different colors (red, gray,
and green) represent grids with high (highest 15 %), medium (15 %–
50 %), and low (lowest 50 %) anthropogenic NOx emissions. Re-
gions no. 1 and no. 2 are defined as highly polluted (HP) regions,
by excluding grids with low and medium anthropogenic NOx emis-
sions.

This paper is organized as follows: in Sect. 2, we pro-
vide descriptions of the MEE and OMI O3 observations,
the GEOS-Chem model, and the single O3 tracer simula-
tion and assimilation system used in this work. Tropospheric
O3 changes in eastern China in 2015–2020 are then demon-
strated in Sect. 3 by assimilating MEE and OMI O3 observa-
tions. As shown in Fig. 1, five regions (i.e., North China Plain
(no. 1), Yangtze River Delta (no. 2), central China (no. 3), the
Sichuan Basin (no. 4) and southern China (no. 5)) are defined
within the eastern China domain. Regions no. 1 and no. 2 are
defined as highly polluted (HP) regions by excluding grids
with low and medium anthropogenic NOx emissions. Tropo-
spheric O3 changes over these regions are discussed to in-
vestigate the possible regional discrepancies in surface and
free-tropospheric O3 associated with different local pollution
levels. Our conclusions follow in Sect. 4.

2 Data and methods

2.1 Surface O3 measurements

We use MEE surface in situ O3 concentration data (https:
//quotsoft.net/air/, last access: 2 November 2023) for the pe-
riod 2015–2020. These real-time monitoring stations report
hourly concentrations of criteria pollutants from 1691 sites
in 2020. All stations (1441 urban sites and 250 urban back-
ground sites) are assimilated in our analysis. Concentrations
were reported by the MEE (in µgm−3) under standard tem-
perature (273 K) until 31 August 2018. This reference state
was changed on 1 September 2018 to 298 K. We converted
the O3 concentrations to parts per billion (ppb) and rescaled
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Table 1. Single O3 tracer simulation and assimilation experiments (Exp.) conducted in this work. Exp. no. 1: the main a priori simulation;
Exp. no. 2: the O3 boundary conditions and stratospheric O3 concentrations are fixed in 2015; Exp. no. 3: the O3 boundary conditions and
stratospheric O3 concentrations are fixed in the spring; Exp. no. 4: the O3 formation rates within the North China Plain (NCP) planetary
boundary layer (PBL) are set to zero; Exp. no. 5: the main assimilation by assimilating MEE surface O3 observations with γ = 0.8; Exp. no. 6:
only the surface O3 concentrations are adjusted (γ = 0); Exp. no. 7: the full mixing of O3 biases within the PBL (γ = 1.0); Exp. no. 8: the
main assimilation by assimilating OMI O3 observations; Exp. no. 9: the O3 boundary conditions are not optimized; Exp. no. 10: assimilating
OMI O3 observations at across-track positions 4–27.

Experiments Observations O3 boundary conditions Other settings

A priori simulations No. 1 (main) n/a Original (2015–2020)
No. 2 n/a Original (2015; fixed)
No. 3 n/a Original (2015–2020; fixed in spring)
No. 4 n/a Original (2015–2020) PO3 = 0 (NCP)

Kalman filter assimilations No. 5 (main) MEE Original (2015–2020) γ = 0.8
No. 6 MEE Original (2015–2020) γ = 0.0
No. 7 MEE Original (2015–2020) γ = 1.0
No. 8 (main) OMI Optimized (2015–2020) Positions 4–11
No. 9 OMI Original (2015–2020) Positions 4–11
No. 10 OMI Optimized (2015–2020) Positions 4–27

n/a is for not applicable.

the post-August 2018 concentrations to the standard temper-
ature (273 K) to maintain consistency in the trend analysis.
It should be noted that the assimilation of O3 observations
from urban and urban background sites may result in pos-
sible overestimation of surface O3 concentrations over rural
areas.

2.2 OMI PROFOZ product

The OMI instrument was launched in July 2004 on the
Aura spacecraft, with a spatial resolution of 13× 24 km
(nadir view). It provides globally covered measurements with
backscattered sunlight in the ultraviolet visible range from
270 to 500 nm (UV1 270–310 nm; UV2 310–365 nm; visi-
ble 350–500 nm). In this study, we use the OMI O3 profile
retrieval product (PROFOZ v0.9.3, level 2; Liu et al., 2010;
Huang et al., 2017) from the Smithsonian Astrophysical Ob-
servatory (SAO). The retrieval uses the vector-linearized dis-
crete ordinate radiative transfer model (VLIDORT; Spurr,
2006) and Bayesian optimal estimation. Profiles of partial
O3 columns (units in DU) are retrieved in the spectral region
of 270–330 nm, with 24 vertical layers and approximately
2.5 km for each layer from the surface to approximately
60 km. The following filters are applied in our analysis, fol-
lowing Huang et al. (2017): (1) nearly clear-sky scenes,
with effective cloud fraction < 0.3; (2) solar zenith angles
(SZAs)< 75◦; and (3) fitting root mean square (rms; ratio of
fitting residuals to assumed measurement error) < 2.0.

Starting in 2009, anomalies were found in the OMI data
and diagnosed as attenuated measured radiances in certain
cross-track positions. This instrument degradation has been
referred to as the “row anomaly”. To enhance the quality and
stability of the data, only across-track positions between 4–

11 (within 30 positions in the UV1 channels) are assimilated
in our main assimilation experiment (Exp. no. 8). This treat-
ment is similar to the production of row-isolated data by us-
ing across-track positions between 3–18 (within 60 positions
in the UV2 channels) in the OMI/Microwave Limb Sounder
(MLS) O3 data (Ziemke et al., 2019; X. Wang et al., 2022).
The effects of the usage of row-isolated data will be evalu-
ated by comparing the main assimilation experiment with the
sensitivity assimilation experiment (Exp. no. 10) by assimi-
lating OMI O3 observations at across-track positions 4–27.

The modeled tropospheric O3 profiles in the assimilation
processes and subsequent analyses are convolved by using
the OMI retrieval averaging kernels and a priori O3 profile,
based on the following equation (Liu et al., 2010; Huang et
al., 2017):

x̂ = xa+A(x− xa) , (1)

where x̂ is the modeled O3 profile convolved by the retrieval
averaging kernels, xa is the OMI a priori O3 profile, x is the
modeled O3 profile, and A is the OMI averaging kernel ma-
trix. Here A(i,j)= ∂x̂j

∂xi
, representing the sensitivity of the

retrieved partial O3 column (DU) at layer j to the change
in O3 (DU) at layer i. The unit for averaging kernels in this
OMI product is DU/DU (where DU represents Dobson unit)
because the conversion from Dobson units to parts per billion
varies with altitude.

2.3 GEOS-Chem model configuration

The GEOS-Chem chemical transport model (http://www.
geos-chem.org, last access: 2 November 2023, version 12-
8-1) is driven by assimilated meteorological data from the
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Modern-Era Retrospective analysis for Research and Ap-
plications, version 2 (MERRA-2). The GEOS-Chem full
chemistry simulation includes fully coupled O3–NOx–VOC–
halogen–aerosol chemistry. Our analysis is conducted at
a horizontal resolution of nested 0.5◦× 0.625◦ over east-
ern China, with chemical boundary conditions archived every
3 h from global simulations with 4◦× 5◦ resolution. Emis-
sions are computed by the Harmonized Emissions Com-
ponent (HEMCO). Global default anthropogenic emissions
are from the CEDS (Community Emissions Data System;
Hoesly et al., 2018). Regional emissions are replaced by
MEIC (Multi-resolution Emission Inventory for China) in
China and MIX in other regions of Asia (Li et al., 2017). The
reference year for the CEDS inventory is 2010, with annual
scaling factors in 2005–2014, and the reference year for the
MEIC/MIX inventory is 2010, with annual scaling factors in
2008–2010 in the GEOS-Chem model. Open fire emissions
are from the Global Fire Emissions Database (GFED4; van
der Werf et al., 2010).

Following Jiang et al. (2022), the total anthropogenic NOx
and VOC emissions in the GEOS-Chem model are scaled,
based on Zheng et al. (2018) and M. Li et al. (2019), so that
the modeled surface nitrogen dioxide (NO2) and O3 concen-
trations in the a priori simulations are identical to Jiang et
al. (2022) in 2005–2018. The total anthropogenic NOx and
VOC emissions in 2019–2020 are further scaled, based on
linear projections. The total anthropogenic NOx emissions in
the a priori simulations declined by 19 % in China in 2015–
2020. The total anthropogenic VOC emissions in the a pri-
ori simulations increased by 1 % in China in 2015–2020. We
refer the reader to Jiang et al. (2022) for the details of the
model configuration and performance, particularly the mod-
eled trends of surface and tropospheric column NO2 in 2005–
2018.

2.4 Single O3 tracer simulation

A new chemical mechanism was developed in this work to
allow the running of the single O3 tracer mode (tagged-O3).
As shown in Fig. S1 (see the Supplement), the package of
the Kinetic PreProcessor (KPP) module was modified to de-
fine the production (PO3) and loss (LO3) of O3. The GEOS-
Chem full chemistry simulations with the updated KPP mod-
ule were then performed to produce PO3 (unit kg cm−3 s−1)
and relative LO3 (i.e., LO3 / [O3], with units in cm−3 s−1)
every 20 min. Here, the 20 min are selected to be the same
as the chemical time step in the GEOS-Chem full chemistry
mode to ensure consistency between the single O3 tracer and
full chemistry simulations. The single O3 tracer simulation
(tagged_o3_mod.F90) was then performed by reading the
archived PO3 and relative LO3. Because we are interested
in tropospheric chemistry, we archived O3 concentrations in-
stead of O3 production and loss rates in the stratosphere in
the full chemistry simulations. The archived stratospheric O3
concentrations were read in the single O3 tracer simulation

process as being boundary conditions to ensure a reasonable
stratospheric–tropospheric O3 exchange.

The major advantage of the single O3 tracer simulation is
dramatic reductions in computational costs by approximately
91 %–94 %; for example, the computational costs (hours of
wall time for 1-year simulation) are 57.5 and 5.2 h at the
global scale (4◦× 5◦) and 80.2 and 4.5 h within the nested
China domain (0.5◦× 0.625◦) by full chemistry and single
O3 tracer simulations, respectively. Consequently, once PO3
and LO3 are produced, the computational costs of perform-
ing additional single O3 tracer simulations are almost neg-
ligible. The low computational costs of the single O3 tracer
simulation allow us to design and perform different simu-
lation and assimilation experiments much more efficiently.
As shown in Table 1, there are 10 different simulation and
assimilation experiments performed in this work, which re-
quires 4812 h (wall time) with the full chemistry simulation
but only 270 h (wall time) with the single O3 tracer simula-
tion.

Here we evaluate the consistency in modeled O3 concen-
trations between single O3 tracer and full chemistry simula-
tions. Figure 2a1–a5 show the annual and seasonal averages
of the surface maximum daily 8 h average (MDA8) O3 over
eastern China in 2015–2020 from the full chemistry simula-
tion. The modeled surface MDA8 O3 concentrations are as
high as 60–70 ppb in the summer and as low as 10–20 ppb
in the winter over northern China. The simulation with the
single O3 tracer mode (Fig. 2b1–b5) demonstrates spatial
consistency with the full chemistry simulation (Fig. 2a1–
a5) and temporal consistency at both the daily (Fig. 3a)
and monthly (Fig. 3b) scales in 2015–2020. In contrast, the
tagged-Ox mode of the GEOS-Chem model is driven by the
archived production and loss of Ox , which is the combination
of multiple species, including O3. There are large discrep-
ancies between full chemistry (Fig. 2a1–a5) and tagged-Ox
(Fig. 2c1–c5) simulations. As shown in Fig. 3, the Ox con-
centrations are higher than the O3 concentrations by approx-
imately 6 ppb, and the relative difference can reach 40 % in
the winter. Our analysis thus indicates the reliability of the
single O3 tracer simulations developed in this work.

2.5 Data assimilation method

We employ the sequential KF to assimilate O3 observations,
which has been used in recent studies to optimize tropo-
spheric CO concentrations (Tang et al., 2022; Han et al.,
2022). As a brief description of the assimilation algorithm,
the forward model (M) predicts the O3 concentration (xat) at
time t :

xat =Mtxt−1. (2)

The optimized O3 concentrations can be expressed as

xt = xat+Gt (yt −Ktxat) , (3)
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Figure 2. Surface MDA8 O3 in 2015–2020 (annual and seasonal averages) simulated by GEOS-Chem model with (a1–a5) full chemistry
mode. (b1–b5) Single O3 tracer (tagged-O3) mode and (c1–c5) tagged-Ox mode. The 8 h range of surface Ox is selected according to the
time range of MDA8 O3.

Figure 3. (a) Daily averages of surface MDA8 O3 over east-
ern China in 2015–2020 from GEOS-Chem full chemistry (black),
single O3 tracer (tagged-O3; blue) and tagged-Ox (red) simulations.
(b) Monthly averages of MDA8 O3. The dashed lines in panel (b)
are annual averages.

where yt is the observation and Kt represents the opera-
tion operator that projects O3 concentrations from the model
space to the observation space. Gt is the KF gain matrix,
which can be described as

Gt = SatKT
t (KtSatKT

t +Sε)−1, (4)

where Sat and Sε are the model and observation covari-
ances, respectively. The optimized O3 concentrations pro-
vided by Eq. (3) are then forwarded (hourly) to Eq. (2). The
model errors are assumed to be 50 % because the objective
of our assimilations is to provide dynamic extensions of at-
mospheric O3 observations. The a posteriori O3 concentra-
tions with the assumption of 50 % model errors are expected
to match better with atmospheric O3 observations. The mea-
surement errors are calculated as ε0 = ermax+0.0075 ·50,
where “ermax” is the base error (1.5 µgm−3), and 50 rep-
resents the observed O3 concentrations (µgm−3). The rep-
resentation errors are calculated as εr = γ ε0

√
1l/L, where

γ is a scaling factor (0.5), 1l is the model resolution (∼
56 km in this study), and L represents the range that the
observation can reflect, which depends on the station type
(2 km for urban; 4 km for suburban). The total observa-

tion error is then defined as εt =

√
ε2

0 + ε
2
r . Furthermore, the

“super-observation” method was applied in this work to fur-
ther reduce the influence of representative error as follows
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(Miyazaki et al., 2017; Tang et al., 2022):

ωj = 1/ε2
j (5)

ys =

k∑
j=1

ωjyj/

k∑
j=1

ωj (6)

1/ε2
s =

k∑
j=1

1/ε2
j , (7)

where yj is O3 observation of the j th station, ωj represents
the weighting factor of the j th station, and ys and εs are the
grid-based O3 observations and errors (super-observation),
respectively.

3 Results and discussion

3.1 Surface O3 by assimilating MEE O3 observations

We first investigate the effects of surface O3 observations
on single O3 tracer assimilations. O3 at the surface level is
formed by precursors mixed in the planetary boundary layer
(PBL). Thus, it may not be accurate to assume that the differ-
ences between simulated and observed surface O3 concentra-
tions are completely caused by biased O3 production and loss
at the surface level. Here we adjust O3 concentrations above
the surface level within the PBL when assimilating surface
O3 observations:

1O3
n
=1O3

1
× γ n−1, (8)

where 1O3
1 is the adjustment at the surface level calcu-

lated with Eq. (3). 1O3
n is the adjustment at model level n,

which is based on 1O3
1, but decays exponentially with the

increase in the model level. The decay speed is adjusted by
the γ parameter. As shown in Table 1, the following three as-
similation experiments (Exp. no. 5–no. 7) were conducted to
evaluate the effects of the decay speed: (1) γ = 0, by assum-
ing that the biased surface O3 concentrations are completely
caused by biased O3 production and loss at the surface level;
(2) γ = 1, by assuming full mixing of O3 biases within the
PBL; and (3) γ = 0.8, by assuming partial mixing of O3 bi-
ases within the PBL. That is, the adjustment at the 4th model
level is approximately 50 % of 1O3

1, and the adjustment at
the 10th model level (close to the top of the PBL) is approx-
imately 10 % of 1O3

1.
As shown in Fig. S2a, the assimilated surface MDA8 O3

concentrations show good agreement by using different γ pa-
rameters, namely 42.3, 41.8, and 42.0 ppb (γ = 0, 0.8, and
1.0) in 2015–2020. There are noticeable discrepancies in the
trends of assimilated surface O3 concentrations, namely 0.80,
1.24, and 1.50 ppb yr−1 (γ = 0, 0.8, and 1.0) in 2015–2020
(Fig. S2b), and the trends obtained by considering the mix-
ing of O3 biases (γ = 0.8 and 1.0) match better with MEE O3
observations (1.77 ppb yr−1). Figure S3 further demonstrates

tropospheric O3 columns by assimilating MEE O3 observa-
tions in 2015–2020. We find good agreement in the assimi-
lated tropospheric O3 columns by using different γ parame-
ters; i.e., the mean tropospheric O3 columns are 38.1, 37.9,
and 37.9 DU, and the trends of tropospheric O3 columns are
0.11, 0.17, and 0.21 ppb yr−1 (γ = 0, 0.8, and 1.0). Consider-
ing the better agreement in the trends of assimilated surface
O3 concentrations (γ = 0.8 and 1.0) with observations, we
finally decide to set γ = 0.8 as our main assimilation setting,
by assuming partial mixing of O3 biases within the PBL.

Figure 4a1–a5 show the annual and seasonal averages
of surface MDA8 O3 observations from MEE stations in
2015–2020. Figure 4c1–c5 show the annual and seasonal av-
erages of the a posteriori O3 concentrations by assimilat-
ing the MEE O3 observations. As shown in Fig. 5, the as-
similated O3 concentrations (blue lines) show good agree-
ment with MEE O3 observations (red lines). The mean sur-
face MDA8 O3 values in 2015–2020 are 43.2, 41.8, and
42.1 ppb (eastern China); 42.4, 45.6, and 47.6 ppb (North
China Plain); 44.6, 45.0, and 44.9 ppb (Yangtze River Delta);
45.1, 43.1, and 43.5 ppb (central China); 45.7, 37.5, and
36.9 ppb (Sichuan Basin); and 43.2, 39.2, and 38.3 ppb
(southern China) in the a priori simulations, a posteriori sim-
ulations, and MEE observations, respectively. It should be
noted that Fig. 5a exhibits broadly good agreement between
the a priori and a posteriori O3 concentrations over east-
ern China, except for a larger difference in the summer. How-
ever, as shown in Fig. 4d1–d5, the good agreement between
the a priori and a posteriori O3 concentrations are caused by
the counterbalance of positive biases (i.e., overestimated sur-
face O3 in the a priori simulations over southern China) and
negative biases (i.e., underestimated surface O3 in the a pri-
ori simulations over northern China). The good agreement in
Fig. 5a thus cannot represent good performance in the simu-
lations of surface O3 concentrations.

The assimilations exhibit noticeable declines in surface
O3 concentrations over region nos. 2–5 in June–July, and
the declines are underestimated by the a priori simulations
(Fig. 5c–f). The inaccurate simulation in June–July thus re-
sults in overestimated surface O3 concentrations in the sum-
mer. There is dramatic seasonality in surface O3 concentra-
tions (Fig. 5), namely maximum in June in the North China
Plain; May and August in the Yangtze River Delta, central
China, and the Sichuan Basin; and September–October in
southern China. Figure 4e1–e5 exhibit the effects of sea-
sonal variabilities in background O3 (Exp. no. 3) by fixing
background O3 in the spring in the simulations. The fixed
background O3 has limited influences on surface O3 con-
centrations, and consequently, the seasonality in surface O3
concentrations is dominated by local contributions. As ex-
pected, MDA8 O3 concentrations are higher over areas with
higher anthropogenic NOx emissions, for example, 45.6 and
45.0 ppb in the North China Plain and Yangtze River Delta,
respectively, which is in contrast to 43.1, 37.5, and 39.2 ppb
in central China, the Sichuan Basin, and southern China.
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Figure 4. Surface MDA8 O3 in 2015–2020 (annual and seasonal averages) from (a1–a5) MEE stations. (b1–b5) GEOS-Chem a priori
simulation (Exp. no. 1). (c1–c5) GEOS-Chem a posteriori simulation, by assimilating MEE O3 observations (Exp. no. 5). (d1–d5) Bias
in the a priori simulations (Exp. no. 1 minus no. 5). (e1–e5) Effects of seasonal variabilities in background O3 (Exp. no. 3 minus no. 1).
(f1–f5) Effects of O3 formation within the North China Plain PBL (Exp. no. 1 minus no. 4).

The influences of regional transport on surface O3 concentra-
tions are limited; for example, O3 values generated within the
North China Plain PBL by setting O3 formation rates within
the North China Plain PBL to zero (Exp. no. 4) are mainly
contained within the North China Plain (Fig. 4f1–f5).

3.2 Rapid increasing trends in surface O3
concentrations

Here we investigate the changes in surface O3 concentrations
from observations and assimilations. As shown in Fig. 6b1–
b5, the a priori simulation suggests slightly increasing trends
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Figure 5. (a–f) Daily averages of surface MDA8 O3 in 2015–2020 from MEE stations (red) and GEOS-Chem a priori (black; Exp. no. 1)
and a posteriori (blue; Exp. no. 5) simulations by assimilating MEE O3 observations. (g–l) Monthly averages of MDA8 O3. The dashed lines
in panels (g)–(l) are annual averages. The domain definition of eastern China is shown in Fig. 1a.

of MDA8 O3 in 2015–2020, with 0.31 (spring),−0.12 (sum-
mer), 0.45 (autumn), and 0.40 ppb yr−1 (winter), and the rel-
ative increasing trends are 0.7 (spring), −0.2 (summer), 1.1
(autumn), and 1.4 % yr−1 (winter). The a priori simulation
suggests increasing trends of surface O3 concentrations in
the summer over areas with higher local pollution levels
(for example, 0.68 and 0.63 ppb yr−1 over the North China
Plain and Yangtze River Delta, respectively) and decreasing

trends of surface O3 concentrations in the summer over ar-
eas with lower local pollution levels (for example, −0.83
and −1.01 ppb yr−1 over the Sichuan Basin and southern
China, respectively). The decreasing trends over areas with
lower local pollution levels in the simulations are not sur-
prising, given the decreases in anthropogenic NOx emissions
(Zheng et al., 2018; Jiang et al., 2022) and the reported NOx-
limited O3 nonlinear chemical regimes in model simulations
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Figure 6. Trends of surface MDA8 O3 in 2015–2020 (annual and seasonal averages) from (a1–a5) MEE stations. (b1–b5) GEOS-Chem
a priori simulation (Exp. no. 1). (c1–c5) GEOS-Chem a posteriori simulation by assimilating MEE O3 observations (Exp. no. 5). (d1–
d5) Effects of interannual variabilities in background O3 (Exp. no. 1 minus no. 2).

(Chen et al., 2021; Liu et al., 2021). Furthermore, as shown
in Fig. 6d1–d5, the interannual variabilities in background
O3 (Exp. no. 2) are suggested to result in increases in sur-
face O3 concentrations in the a priori simulations in 2015–
2020 by 0.02 (spring), 0.05 (summer), 0.02 (autumn), and
0.00 ppb yr−1 (winter), and the relative contribution is par-
ticularly pronounced in the summer.

In contrast, the increasing trends in surface O3 are much
stronger in the assimilations. As shown in Table 2, our assim-
ilation suggests 1.60 (spring), 1.16 (summer), 1.47 (autumn),
and 0.80 ppb yr−1 (winter) increases in surface O3 over east-
ern China in 2015–2020, and the relative increasing trends
are 3.4 (spring), 2.2 (summer), 3.7 (autumn), and 2.7 % yr−1

(winter). The annual increasing trend (1.24 ppb yr−1) in the
assimilated surface O3 concentrations is more consistent
with the MEE O3 observations (1.77 ppb yr−1), which are
comparable with the reported recent trends in surface O3 con-
centrations in China of 1.25–2.0 ppb yr−1 (Mousavinezhad
et al., 2021; Wei et al., 2022; W. Wang et al., 2022). The
increasing trends are weaker when the modeled surface O3
concentrations are averaged over eastern China (Table 2) in-

stead of sampling at the locations and times of MEE observa-
tions, with 0.71 (spring), 0.36 (summer), 0.69 (autumn), and
0.54 ppb yr−1 (winter), because most MEE stations are urban
sites. Our analysis thus indicates a noticeable underestima-
tion in the increasing trends of surface O3 concentrations in
China in the a priori simulations, particularly in the summer,
despite the anthropogenic NOx and VOC emissions having
been scaled in the simulations, following Jiang et al. (2022).

The changes in surface O3 concentrations have signifi-
cant regional and seasonal discrepancies. As shown in Ta-
bles S1–S5 in the Supplement, our assimilations demon-
strate strong increasing trends in surface O3 concentra-
tions in 2015–2020 in spring (1.94 ppb yr−1 or 3.8 % yr−1)
and summer (2.52 ppb yr−1 or 4.0 % yr−1) over the North
China Plain; in spring (2.21 ppb yr−1 or 4.4 % yr−1) and au-
tumn (1.84 ppb yr−1 or 4.1 % yr−1) over the Yangtze River
Delta; in spring (2.07 ppb yr−1 or 4.3 % yr−1) and autumn
(2.09 ppb yr−1 or 4.7 % yr−1) over central China; in spring
(1.69 ppb yr−1 or 3.8 % yr−1) over the Sichuan Basin; and in
autumn (2.21 ppb yr−1 or 4.9 % yr−1) over southern China.
While surface O3 concentrations are higher over areas with
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Table 2. Averages (with units in ppb or DU) and trends (with units ppb yr−1 or DU yr−1) of surface and tropospheric column O3 concen-
trations in 2015–2020 over eastern China from observations (MEE and OMI) and a priori (Exp. no. 1) and a posteriori (KF) simulations
(Exp. no. 5 and no. 8). The domain definition of eastern China is shown by Fig. 1a. T2.1: the modeled surface O3 is sampled at the locations
and times of MEE surface O3 observations; T2.2: the modeled surface O3 is averaged over eastern China (land only); T2.3: the output O3
profiles from the a priori and a posteriori simulations are convolved with OMI O3 averaging kernels; T2.4: the output O3 profiles are not
convolved with OMI O3 averaging kernels. The uncertainties in the averages are calculated using the bootstrapping method. The trends and
uncertainties in the trends are calculated using the linear fitting of averages by using the least squares method (see details in the Supplement).

Eastern China (2015–2020) Annual Spring Summer Autumn Winter

Mean Trend Mean Trend Mean Trend Mean Trend Mean Trend

T2.1 surface MEE 42.1± 0.3 1.77± 0.38 48.4± 0.4 2.25± 0.46 51.7± 0.6 1.70± 0.64 39.8± 0.4 2.01± 0.60 29.6± 0.2 1.14± 0.49
(sampled) A priori 43.2± 0.2 0.21± 0.13 48.0± 0.2 0.31± 0.15 56.3± 0.5 −0.12± 0.38 40.1± 0.3 0.45± 0.19 28.5± 0.3 0.40± 0.17

KF–MEE 41.8± 0.2 1.24± 0.28 47.2± 0.3 1.60± 0.34 51.7± 0.5 1.16± 0.55 39.5± 0.3 1.47± 0.47 29.5± 0.2 0.80± 0.37

T2.2 A priori 42.6± 0.1 0.10± 0.11 47.7± 0.1 0.16± 0.11 53.1± 0.2 −0.19± 0.29 39.1± 0.1 0.25± 0.19 30.8± 0.2 0.35± 0.13
surface KF–MEE 41.3± 0.1 0.55± 0.17 46.7± 0.1 0.71± 0.17 49.8± 0.2 0.36± 0.36 38.0± 0.1 0.69± 0.31 31.0± 0.2 0.54± 0.19

T2.3 trop. column OMI 38.0± 0.2 −0.30± 0.19 40.9± 0.2 0.12± 0.20 45.9± 0.2 −0.66± 0.44 34.6± 0.2 −0.41± 0.30 30.4± 0.2 −0.48± 0.40
(convolved) A priori 37.1± 0.1 0.02± 0.14 41.0± 0.2 0.17± 0.24 43.2± 0.2 −0.19± 0.16 32.6± 0.1 0.15± 0.19 31.3± 0.2 −0.06± 0.18

KF–OMI 37.9± 0.1 −0.17± 0.15 41.1± 0.2 0.08± 0.07 45.5± 0.2 −0.51± 0.37 34.2± 0.1 −0.17± 0.24 30.7± 0.1 −0.17± 0.23

T2.4 trop. A priori 38.3± 0.1 0.07± 0.14 42.8± 0.2 −0.02± 0.46 42.5± 0.2 0.02± 0.16 33.3± 0.1 0.29± 0.11 34.8± 0.2 0.09± 0.32
column KF–MEE 37.9± 0.1 0.17± 0.16 42.6± 0.2 0.09± 0.47 41.8± 0.2 0.17± 0.15 33.0± 0.1 0.38± 0.12 34.7± 0.2 0.12± 0.32

KF–OMI 38.8± 0.1 −0.10± 0.25 42.9± 0.2 −0.17± 0.57 44.1± 0.2 −0.22± 0.26 34.4± 0.1 0.04± 0.12 34.2± 0.2 −0.02± 0.30

higher anthropogenic NOx emissions, the increasing trends
in surface O3 concentrations over central China and southern
China are comparable with those in the North China Plain
and Yangtze River Delta. Our analysis advises more attention
to O3 pollution in spring and autumn over areas with lower
anthropogenic NOx emissions because of the rapid increases
in surface O3 concentrations.

3.3 Tropospheric O3 columns by assimilating OMI O3
observations

Figure 7a1–a5 show the annual and seasonal averages of tro-
pospheric OMI O3 columns in 2015–2020. OMI is sensitive
to O3 at different vertical levels (Huang et al., 2017; Fu et al.,
2018), and thus, the standard KF algorithm (Eq. 3) was em-
ployed to adjust tropospheric O3 vertical profiles with the ap-
plication of OMI O3 averaging kernels. Figure 7c1–c5 show
the annual and seasonal averages of the a posteriori tropo-
spheric O3 columns by assimilating OMI O3 observations.
The assimilated tropospheric O3 columns show good agree-
ment with OMI O3 observations because the mean tropo-
spheric O3 columns in 2015–2020 (Table 2) are 37.1 DU in
the a priori simulations and 37.9 and 38.0 DU in the a pos-
teriori simulation and OMI observations, respectively. The
discrepancies between the a priori and a posteriori simula-
tions in tropospheric O3 columns (Fig. 7) are smaller than
those in surface O3 concentrations (Fig. 4). A better simu-
lation capability in tropospheric column O3 is expected be-
cause model simulation with 0.5◦× 0.625◦ horizontal reso-
lution may not be enough to accurately resolve O3 nonlinear
chemical regimes over urban surface stations.

The above assimilated tropospheric O3 columns
(Exp. no. 8) are driven by optimized O3 background
conditions provided by global assimilations of OMI O3

and row-isolated OMI data by using across-track positions
between 4–11. Figure 7e1–e5 exhibit the effects of opti-
mization on regional O3 background conditions. The mean
assimilated tropospheric O3 column driven by the original
O3 background conditions is 37.6 DU (Exp. no. 9), which
is slightly lower than the 37.9 DU in the main assimila-
tion (Exp. no. 8). The usage of original O3 background
conditions can result in overestimations over southern
China in the spring and winter and underestimations over
northern China in the spring and summer (Fig. 7e1–e5).
Figure 7f1–f5 further exhibits the effects of the usage of
row-isolated data. The mean assimilated tropospheric O3
column by assimilating OMI O3 observations at across-track
positions 4–27 is 37.7 DU (Exp. no. 10), which is slightly
lower than the 37.9 DU in the main assimilation (Exp. no. 8).
The underestimations in the assimilated tropospheric O3
columns are particularly significant in the spring and summer
(Fig. 7f2–f3).

As shown in Fig. 8, the trends of tropospheric O3 columns
in 2015–2020 (Table 2) are 0.02 DU yr−1 in the a priori simu-
lations and−0.17 and−0.30 DU yr−1 in the a posteriori sim-
ulation and OMI observations, respectively. In contrast to the
wide distributions of increasing trends of O3 at the surface
level (Fig. 6), both OMI O3 observations (−0.30 DU yr−1)
and the OMI-based assimilations (−0.17 DU yr−1) suggest
decreasing trends in tropospheric O3 columns over east-
ern Asia in 2015–2020 (Fig. 8). The decreasing trends are
stronger in the summer and weaker in the spring. Further-
more, the usage of original O3 background conditions can
result in overestimated trend by approximately 0.08 DU yr−1

(Fig. 8d1); and the assimilation of OMI O3 observations
at across-track positions 4–27 can result in a similar over-
estimated trend by approximately 0.08 DU yr−1 (Fig. 8e1).
These discrepancies demonstrate the importance of opti-
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Figure 7. Tropospheric O3 columns in 2015–2020 (annual and seasonal averages) from (a1–a5) OMI observations. (b1–b5) GEOS-Chem a
priori simulation (Exp. no. 1). (c1–c5) GEOS-Chem a posteriori simulation by assimilating OMI O3 observations (Exp. no. 8). (d1–d5) Bias
in the a priori simulations (Exp. no. 1 minus no. 8). (e1–e5) Effects of optimization on regional O3 background conditions (Exp. no. 9 minus
no. 8); (f1–f5) Effects of the usage of row-isolated data (Exp. no. 10 minus no. 8). The output O3 profiles are convolved with OMI averaging
kernels.

mized usages of regional O3 background conditions and OMI
O3 observations in the assimilations.

3.4 Changes in tropospheric O3 columns

The trends shown in Fig. 8 may not represent the actual tro-
pospheric O3 changes well because the convolution of OMI
O3 averaging kernels on the output O3 profiles can affect
the weights of the derived tropospheric columns to O3 at
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Figure 8. Trends of tropospheric O3 columns in 2015–2020 (annual and seasonal averages) from (a1–a5) OMI observations. (b1–b5) GEOS-
Chem a priori simulation (Exp. no. 1). (c1–c5) GEOS-Chem a posteriori simulation by assimilating OMI O3 observations (Exp. no. 8).
(d1–d5) Effects of optimization on regional O3 background conditions (Exp. no. 9 minus no. 8). (e1–e5) Effects of the usage of row-isolated
data (Exp. no. 10 minus no. 8). The output O3 profiles are convolved with OMI averaging kernels.

different vertical levels. Consequently, Fig. 9 shows the an-
nual and seasonal averages of tropospheric O3 columns in
which the output O3 profiles are not convolved with OMI
retrieval averaging kernels so that they can better represent
the actual atmospheric O3 state. The assimilated tropospheric
O3 columns are 37.9 and 38.8 DU (eastern China), 42.9 and
43.7 DU (North China Plain), 47.5 and 48.1 DU (Yangtze
River Delta), 47.4 and 48.1 DU (central China), 43.8 and
44.6 DU (Sichuan Basin), and 39.6 and 40.6 DU (southern
China) in 2015–2020, by assimilating MEE and OMI O3 ob-
servations, respectively.

In contrast to the higher surface MDA8 O3 concentrations
over areas with higher anthropogenic NOx emissions, tropo-
spheric O3 columns over central China and the Sichuan Basin

are even higher than those over the highly polluted North
China Plain. In addition, tropospheric O3 columns obtained
by assimilating MEE surface O3 observations are lower than
those obtained by assimilating OMI O3 observations, and
their difference is larger in the summer and smaller in the
winter. As shown in Fig. S4, the impacts of different sur-
face and satellite O3 observations on the assimilated O3 ver-
tical profiles are limited. The assimilation of MEE surface O3
observations leads to decreases in O3 concentrations in the
lower troposphere from the surface to 600 hPa levels over the
Sichuan Basin and southern China; the assimilation of OMI
O3 observations leads to an enhancement in O3 concentra-
tions in the middle and upper troposphere over the highly
polluted North China Plain.
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Figure 9. Tropospheric O3 columns in 2015–2020 (annual and seasonal averages) from (a1–a5) GEOS-Chem a priori simulation (Exp. no. 1).
(b1–b5) Assimilations of MEE surface O3 observations (Exp. no. 5). (c1–c5) Assimilations of OMI O3 observations (Exp. no. 8). (d1–
d5) Difference in tropospheric O3 columns calculated by OMI-based assimilations minus MEE-based assimilations (Exp. no. 8 minus no. 5).
(e1–e5) Effects of seasonal variabilities in background O3 (Exp. no. 3 minus no. 1). (f1–f5) Effects of O3 formation within the North China
Plain PBL (Exp. no. 1 minus no. 4). The output O3 profiles are not convolved with OMI averaging kernels.

The assimilated tropospheric O3 columns are maximum
in June–July over the highly polluted North China Plain and
March–May over other less polluted regions (Fig. S5). Fig-
ure 9e1–e5 exhibit the effects of seasonal variabilities in
background O3 (Exp. no. 3). The fixed background O3 in
the spring can result in dramatic increases in tropospheric

O3 columns by 14.3 (summer), 15.1 (autumn), and 4.8 DU
(winter) over eastern China. Figure 9f1–f5 further exhibit
the effects of O3 formation within the North China Plain
PBL (Exp. no. 4) on tropospheric O3 columns, which are 5.4
(spring), 8.1 (summer), 3.6 (autumn), and 1.3 DU (winter)
over the North China Plain. In addition, as shown in Fig. S6,
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there is a larger enhancement in O3 production rate in the
free troposphere (600–300 hPa) over the North China Plain
in the summer than in other lower polluted regions. Con-
sequently, the spring maximum in tropospheric O3 columns
over lower polluted regions is caused by the enhanced back-
ground O3 (Fig. 9e1–e5), and the summer maximum in tro-
pospheric O3 columns over the highly polluted North China
Plain is caused by the local contributions from enhanced O3
formation within the North China Plain PBL (Fig. 9f1–f5)
and free troposphere (Fig. S6).

As shown in Fig. 10a1–a5, the trends of tropospheric O3
columns in the a priori simulations in 2015–2020 are −0.02
(spring), 0.02 (summer), 0.29 (autumn), and 0.09 DU yr−1

(winter) over eastern China. The interannual variability in
background O3 (Fig. 10d1–d5; Exp. no. 2) is suggested to
have important contributions to the trends of tropospheric
O3 columns by 0.09 (spring), −0.11 (summer), −0.10 (au-
tumn), and −0.08 DU yr−1 (winter). The trends of assimi-
lated tropospheric O3 columns are 0.17 and −0.10 DU yr−1

(eastern China), which are comparable with the reported re-
cent trend in free-tropospheric O3 concentrations over China
by −0.14 DU yr−1 (Dufour et al., 2021) and are 0.47 and
0.12 DU yr−1 (North China Plain), 0.45 and 0.13 DU yr−1

(Yangtze River Delta), 0.32 and −0.06 DU yr−1 (central
China), 0.03 and −0.29 DU yr−1 (Sichuan Basin), and 0.06
and −0.25 DU yr−1 (southern China), by assimilating MEE
and OMI O3 observations, respectively.

The stronger increasing trends in tropospheric O3 columns
over the highly polluted North China Plain (Fig. 10a1)
are suggested to be caused by larger local contributions
because of relatively uniform influences from interannual
variability in background O3 (Fig. 10d1). Higher posi-
tive trends by assimilating MEE observations are expected,
given the increasing trends in surface O3 concentrations
(1.77 ppb yr−1) and decreasing trends in OMI O3 concen-
trations (−0.30 DU yr−1) over eastern China. Furthermore,
it should be noted that while the Yangtze River Delta is de-
fined as a highly polluted region in our analysis, its area is
much smaller than that of the North China Plain (Fig. 1);
thus, the impact of local contributions on tropospheric O3
columns over the Yangtze River Delta is not as strong as that
over the North China Plain.

4 Conclusion

A single O3 tracer (tagged-O3) mode was developed in this
work to build the capability of the GEOS-Chem model for
rapid simulations of tropospheric O3. The single O3 tracer
simulation demonstrates consistency with the GEOS-Chem
full chemistry simulation. In contrast, the Ox concentrations
provided by the tagged-Ox mode are higher than the O3 con-
centrations by approximately 6 ppb, and the relative differ-
ence can reach 40 % in the winter, which is thus not suitable
for direct comparison with observed O3. The computational

costs of the single O3 tracer mode are reduced by approxi-
mately 91 %–94 %, with respect to the full chemistry mode.
For example, the computational costs (hours of wall time
per simulation year) are 57.5 and 5.2 h at the global scale
(4◦× 5◦) and 80.2 and 4.5 h within the nested China domain
(0.5◦× 0.625◦) by full chemistry and single O3 tracer sim-
ulations, respectively. The low computational costs allow us
to design and perform different experiments much more ef-
ficiently. As shown in Table 1, 10 different simulation and
assimilation experiments are performed in this work to an-
alyze the impacts of background and local contributions to
surface and free-tropospheric O3 changes over eastern China
in 2015–2020, which requires 4812 h (wall time) with the
full chemistry simulation but only 270 h (wall time) with the
single O3 tracer simulation.

As an application of the single O3 tracer mode, the assimi-
lated surface O3 concentrations demonstrate good agreement
with surface O3 observations, with 43.2, 41.8, and 42.1 ppb
over eastern China in a priori and a posteriori simulations
and observations, respectively. We find noticeable biases in
modeled surface O3 concentrations; for example, there is
overestimated surface O3 over southern China and underes-
timated surface O3 over northern China. The assimilations
indicate rapidly increasing trends in surface O3 concentra-
tions by 1.60 (spring), 1.16 (summer), 1.47 (autumn), and
0.80 ppb yr−1 (winter) over eastern China in 2015–2020, and
the increasing trends are underestimated by the a priori sim-
ulations. While surface O3 concentrations are higher over ar-
eas with higher anthropogenic NOx emissions, the increas-
ing trends in surface O3 concentrations over central China
and southern China are comparable with those in the North
China Plain and Yangtze River Delta. Our analysis thus ad-
vises more attention to O3 pollution in spring and autumn
over areas with lower anthropogenic NOx emissions in China
because of the rapid increases in surface O3 concentrations.

Similarly, the assimilated tropospheric O3 columns
demonstrate good agreement with OMI observations, with
37.1, 37.9, and 38.0 DU over eastern China in a priori and a
posteriori simulations (convolved with OMI retrieval averag-
ing kernels) and OMI observations, respectively. The trends
of assimilated tropospheric O3 columns in 2015–2020 over
eastern China are 0.09 and −0.17 (spring), 0.17 and −0.22
(summer), 0.38 and 0.04 (autumn), and 0.12 and−0.02 (win-
ter), by assimilating MEE and OMI O3 observations, respec-
tively. We find stronger increasing trends in tropospheric O3
columns over highly polluted areas due to the larger local
contributions, for example, 0.47 and 0.12 DU yr−1 (North
China Plain) in contrast to 0.03 and−0.29 DU yr−1 (Sichuan
Basin) and 0.06 and−0.25 DU yr−1 (southern China), by as-
similating MEE and OMI O3 observations, respectively. The
large discrepancy by assimilating surface and satellite ob-
servations indicates the possible uncertainties in the derived
free-tropospheric O3 changes. The usage of optimized O3
background conditions and row-isolated OMI data is impor-
tant to produce more reliable results; for example, the usage
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Figure 10. Trends of tropospheric O3 columns in 2015–2020 (annual and seasonal averages) from (a1–a5) GEOS-Chem a priori sim-
ulation (Exp. no. 1). (b1–b5) Assimilations of MEE surface O3 observations (Exp. no. 5). (c1–c5) Assimilations of OMI O3 observations
(Exp. no. 8). (d1–d5) Effects of interannual variabilities in background O3 (Exp. no. 1 minus no. 2). The output O3 profiles are not convolved
with OMI averaging kernels.

of original O3 background conditions can result in an overes-
timated trend by approximately 0.08 DU yr−1 in 2015–2020.

Our analysis demonstrates noticeable contributions of the
interannual variability in background O3 to the trends in tro-
pospheric O3 over eastern China. The seasonality in surface
O3 concentrations is dominated by local contributions; how-
ever, the interannual variabilities in background O3 have no-
ticeable contributions to the increasing trends in surface O3,
particularly in the summer in the a priori simulations. More-
over, the spring maximum in tropospheric O3 columns over
lower polluted regions is caused by the enhanced background
O3, and the summer maximum in tropospheric O3 columns
over the highly polluted North China Plain is caused by en-
hanced local O3 formation. The interannual variabilities in
background O3 have important contributions to the trends in
tropospheric O3 columns; for example, the trends of tropo-
spheric O3 columns in 2015–2020 are −0.02 (spring), 0.02
(summer), 0.29 (autumn), and 0.09 DU yr−1 (winter) over
eastern China, and the contributions from interannual vari-
ability in background O3 are 0.09 (spring), −0.11 (summer),
−0.10 (autumn), and −0.08 DU yr−1 (winter) in the a pri-

ori simulations. Our analysis thus suggests more attention to
the impact of background O3 to tropospheric O3 changes in
China, particularly in the free troposphere.

The capability of rapid O3 simulation developed in this
work is a useful tool for interpreting atmospheric O3 obser-
vations. Assimilations of surface and satellite observations,
as shown in this work, can provide useful information to bet-
ter describe the changes in surface and free-tropospheric O3.
Despite these advantages, it should be noted that the linear
chemistry assumption by reading the archived PO3 and LO3
implies that the single O3 tracer mode is good for represent-
ing near-current O3 chemical conditions, particularly for sci-
entific issues associated with the sources and transport of tro-
pospheric O3, as well as assimilations in this work and the
companion paper (Zhu et al., 2023). More cautious applica-
tions are suggested under substantially different O3 chemical
conditions, as the linear chemistry assumption could not be
satisfied.

Code and data availability. The MEE O3 data can be down-
loaded from https://quotsoft.net/air/ (MEE, 2023). The OMI

https://doi.org/10.5194/gmd-16-6337-2023 Geosci. Model Dev., 16, 6337–6354, 2023
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PROFOZ product can be acquired at https://avdc.gsfc.nasa.gov/
pub/data/satellite/Aura/OMI/V03/L2/OMPROFOZ/ (Yang et al.,
2023). The GEOS-Chem model (version 12.8.1) can be down-
loaded from https://doi.org/10.5281/zenodo.3837666 (The In-
ternational GEOS-Chem User Community, 2020). The KPP
module for tagged-O3 simulations can be downloaded from
https://doi.org/10.5281/zenodo.7545944 (Jiang, 2023).
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