
Geosci. Model Dev., 16, 6285–6308, 2023
https://doi.org/10.5194/gmd-16-6285-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

CIOFC1.0: a common parallel input/output framework
based on C-Coupler2.0
Xinzhu Yu1, Li Liu1,2, Chao Sun1, Qingu Jiang1,3, Biao Zhao4,1, Zhiyuan Zhang5, Hao Yu1, and Bin Wang1,2,6

1Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science,
Tsinghua University, Beijing, China
2Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
3CMA Earth System Modeling and Prediction Centre (CEMC), Beijing, China
4First Institute of Oceanography, and Key Laboratory of Marine Science and Numerical Modeling,
Ministry of Natural Resources, Qingdao, China
5Unit No. 91001 of PLA, Beijing, China
6State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Correspondence: Li Liu (liuli-cess@tsinghua.edu.cn)

Received: 12 March 2022 – Discussion started: 4 May 2022
Revised: 17 February 2023 – Accepted: 27 September 2023 – Published: 7 November 2023

Abstract. As earth system modeling develops ever finer grid
resolutions, the inputting and outputting (I/O) of the in-
creasingly large data fields becomes a processing bottleneck.
Many models developed in China, as well as the commu-
nity coupler (C-Coupler), do not fully benefit from existing
parallel I/O supports. This paper reports the design and im-
plementation of a common parallel input/output framework
(CIOFC1.0) based on C-Coupler2.0. The CIOFC1.0 frame-
work can accelerate the I/O of large data fields by paralleliz-
ing data read/write operations among processes. The frame-
work also allows convenient specification by users of the I/O
settings, e.g., the data fields for I/O, the time series of the
data files for I/O, and the data grids in the files. The frame-
work can also adaptively input data fields from a time series
dataset during model integration, automatically interpolate
data when necessary, and output fields either periodically or
irregularly. CIOFC1.0 demonstrates the cooperative develop-
ment of an I/O framework and coupler, and thus enables con-
venient and simultaneous use of a coupler and an I/O frame-
work.

1 Introduction

Earth system models generally integrate component models
of the atmosphere, ocean, land surface, and sea ice to sup-
port climate change studies and provide seamless numerical
predictions (Brunet et al., 2015). A coupler is a significant
component or library in an earth system model that effec-
tively handles coupling among the component models. The
various families of coupler include MCT (Model Coupling
Toolkit) (Larson et al., 2005), OASIS (Ocean Atmosphere
Sea Ice Soil) (Redler et al., 2010; Valcke, 2013; Craig et al.,
2017), CPL (CESM coupler) (Craig et al., 2005, 2012), YAC
(Yet Another Coupler) (Hanke et al., 2016), and C-Coupler
(community coupler) (Liu et al., 2014, 2018). There are also
model frameworks with coupler capabilities, such as ESMF
(Earth System Modeling Framework) (Valcke et al., 2012)
and FMS (Flexible Modeling System) (Balaji et al., 2006).
This paper focuses on C-Coupler, a coupler family developed
in, and widely used in, China (Li et al., 2020b; Lin et al.,
2020; Shi et al., 2022; Ren et al., 2021; Wang et al., 2018;
Zhao et al., 2017).

As models are using finer grid resolutions, both they and
the associated couplers are required to input and output (I/O)
increasingly large data files, and I/O becomes a bottleneck in
model simulations. Besides the fundamental supports, such

Published by Copernicus Publications on behalf of the European Geosciences Union.



6286 X. Yu et al.: CIOFC1.0

as MPI-IO (Message Passing Interface-IO) and PnetCDF
(Parallel Network Common Data Format; Li et al., 2003),
a set of parallel I/O libraries and frameworks have been de-
veloped for models, e.g., the PIO (parallel I/O) library (Den-
nis et al., 2011) used by CESM and other climate models,
the SCORPIO (Software for Caching Output and Reads for
Parallel I/O) library (Krishna et al., 2020) used by the E3SM
climate model, a parallel I/O library used in a global cloud re-
solving model (Palmer et al., 2011), the ADIOS (Adaptable
Input Output System) library (Godoy et al., 2020) used by
the GRAPES (Global/Regional Assimilation and Prediction
System; Zou et al., 2014) model, the I/O library used by the
ESMF framework, and the CFIO (Climate Fast Input/Out-
put) library (Huang et al., 2014). XIOS (XML Input/Output
Server) (Yepes-Arbós et al., 2018) can be viewed as a com-
mon I/O framework that provides XML configuration files,
has parallel and asynchronous I/O capability, and can auto-
matically handle data interpolation between different grids
when required. It has been used in the IFS (integrated fore-
casting system) CY43R3.

However, many models developed in China do not fully
benefit from parallel I/O supports, and instead use sequen-
tial I/O for high-resolution model output, e.g., the GAMIL
(grid-point atmospheric model of IAP LASG) atmosphere
model (L. Li et al., 2013a, b, 2020a) and C-Coupler. To as-
sist in model development in China, this paper reports the
design and development of the common parallel I/O frame-
work based on C-Coupler2.0 (CIOFC1.0). The framework
can benefit not only C-Coupler but also various component
models. The remainder of this paper is organized as follows:
Sects. 2 and 3 introduce the overall design and the imple-
mentation of CIOFC1.0, respectively. The framework is eval-
uated in Sect. 4, and a discussion and the conclusions are
provided in Sect. 5.

2 Overall design of CIOFC1.0

With the aim of aiding model development, we considered
the following main requirements when designing the new I/O
framework:

1. The framework can obviously accelerate data input and
output by employing parallel I/O supports, especially
under a fine resolution.

2. The framework should adaptively input time series data
fields from a set of data files and automatically conduct
time interpolation when required.

3. The framework should facilitate outputting of data ei-
ther periodically or irregularly. Periodic output is a
traditional requirement, but atmospheric models such
as GRAPES (Zhang and Shen, 2008), which is now
used for national operational weather forecasting in
China, does not use a uniform period for data output:

it generally outputs data for 3 h intervals in the first
5 model days and then for 6 h intervals in the remaining
model days. The atmospheric chemistry model GEOS-
Chem (Long et al., 2015) enables users to specify a set
of specific model dates for outputting model data.

4. The framework should automatically conduct spatial in-
terpolation in parallel when a data field is on different
grids in the model and in the data files. Users generally
expect fields in data files to be on regular grids (partic-
ularly longitude–latitude grids), while models increas-
ingly employ irregular grids. For example, the atmo-
spheric model of FV3 (Finite Volume Cubed Sphere)
(Putman and Lin, 2007) and MCV (Multimoment Con-
strained Finite-Volume Model) (X. Li et al., 2013; Chen
et al., 2014; Tang et al., 2021) use cubed-sphere grids,
the atmospheric model MPAS-A (Heinzeller et al.,
2016) generally uses unstructured grids generated by
triangulation (Jacobsen et al., 2013; Yang et al., 2019),
and many ocean models (e.g., POP (Parallel Ocean Pro-
gram) (Smith et al., 2010), LICOM (LASG/IAP climate
system ocean model) (Lin et al., 2016; Liu et al., 2012),
and MOM (Modular Ocean Model) (Griffies, 2012)) use
tripolar grids. Spatial interpolation therefore becomes
necessary when inputting and outputting data fields for
models.

5. The framework should facilitate flexible and convenient
specification of the I/O settings, e.g., the data fields to
be input or output, the time series of the input data files
or of the output data, and the data grids in files (called
“file grids” hereafter).

We designed the main architecture of CIOFC1.0 considering
the above requirements. Figure 1 shows that it comprises the
following set of modules: input time series manager, output
time series manager, spatial data interpolation manager, par-
allel I/O operation, output driving procedure, input driving
procedure, and I/O configuration manager. These modules
enable convenient use of CIOFC1.0 via a set of application
programming interfaces (APIs) and XML configuration files
in the following manner:

1. The input time series manager handles time series in-
formation of data fields in a set of input data files. It
enables users to flexibly specify rules for time mapping
between data files and models. Given a model time, it
determines whether to conduct time interpolation and
whether to input the field values at a corresponding time
point in a corresponding data file.

2. The output time series manager enables a component
model to output model data periodically or irregularly.
It determines whether a component model should output
model data at the current model time.

Geosci. Model Dev., 16, 6285–6308, 2023 https://doi.org/10.5194/gmd-16-6285-2023



X. Yu et al.: CIOFC1.0 6287

Figure 1. Architecture of CIOFC1.0.

3. The spatial data interpolation manager manages the
model grid and the file grid for each field. It automat-
ically conducts parallel spatial data interpolation when
the model grid and file grid of a field are different.

4. The parallel I/O operation employs parallel I/O supports
to write each field into a specific data file and read in
data values from a specific data file in parallel.

5. The I/O configuration manager enables users to flexibly
specify I/O configurations for a component model via
XML formatted configuration files, e.g., configurations
for the input/output time series, file grids, and each in-
put/output field.

6. The input driving procedure and output driving proce-
dure organize the procedure for inputting and outputting
field values, respectively, based on other modules.

3 Implementation of CIOFC1.0

This section introduces details of each module of CIOFC1.0.

3.1 Implementation of the I/O configuration manager

The I/O configuration manager formats a set of XML files for
the configuration of the file grids, input/output time series,
and each input/output field.

3.1.1 Configuration of file grids

Models generally input forcing fields and output model fields
in time integration. Data interpolation is required when a file
grid is different from the corresponding model grid. Many
models have internal codes of data interpolation for better
flexibility of field input and output, especially when unstruc-
tured model grids are used. Existing works such as XIOS
show the benefit of combining data interpolation and field in-
put/output together in the same framework that can be shared
by various models. A challenge arising from such a question
is how to specify file grids. The specification via model codes
can be inconvenient because users generally must modify and
then recompile the model codes when changing file grids in
different simulations. XIOS has tried a better solution where
a horizontal file grid can be specified via an XML configura-
tion file. We also implemented the I/O configuration manager
with XML configurations for file grids.

A challenge here is making the configurations as widely
compatible as possible for various grids. C-Coupler can han-
dle various kinds of horizontal grid, support several kinds of
vertical coordinates, and represent a 3-D grid in a “2-D+ 1-
D” or “1-D+ 2-D” manner. We therefore design configura-
tions for horizontal grids, vertical coordinates, and 3-D grids.

Configurations for horizontal grids

Considering that file grids are usually regular longitude–
latitude grids, we simplify the specification of a regular
longitude–latitude grid into several parameters in the XML
configuration file (e.g., lines 2–8 in Fig. 2): the parameters

https://doi.org/10.5194/gmd-16-6285-2023 Geosci. Model Dev., 16, 6285–6308, 2023



6288 X. Yu et al.: CIOFC1.0

Figure 2. An example of specifying horizontal file grids in an XML configuration file.

Figure 3. An example of C-Coupler’s default NetCDF file format for a horizontal grid.

“min_lon”, “max_lon”, “min_lat”, and “max_lat” specify the
domain of the grid, while the parameters “num_lons” and
“num_lats” specify the grid size. Thus, the 2-D coordinate
values of a longitude–latitude grid can be calculated auto-
matically by CIOFC1.0.

As it is difficult for CIOFC1.0 to automatically calculate
coordinate values for an irregular grid, a specification rule is
designed to instruct CIOFC1.0 to read in coordinate values
from a file (e.g., lines 9–17 in Fig. 2), where the XML at-
tribute “file_name” specifies the file and the attributes “cen-
ter_lon” and “center_lat” specify the fields of the center co-
ordinate values in the file. The file fields for vertex coordinate
values, mask, and area of each grid cell can be further speci-
fied via the XML configuration file (not shown in Fig. 2).

The specification of a file grid can be further simplified
into a unique file name (e.g., lines 18–22 in Fig. 2) when it
corresponds to a NetCDF file that matches C-Coupler’s de-
fault grid data file format (e.g., Fig. 3).

In an XML configuration file, users can specify several
horizontal grids that are identified by different grid names.

Configurations for vertical coordinates

C-Coupler currently supports three kinds of vertical coordi-
nates: Z, SIGMA (Phillips, 1957), and HYBRID (Simmons
and Burridge, 1981) coordinates. We therefore design a spec-
ification for each type. (Lines 2–7, 8–13, and 14–21 in Fig. 4
give examples of each of the three types, respectively.) Val-
ues of the vertical coordinate can be obtained from fields of
a file (lines 14–21 in Fig. 4), specified by an explicit array of
values (lines 2 and 7 in Fig. 4), or generated automatically
according to the specified boundaries under a descending or
ascending order (lines 8–13 in Fig. 4).

In the XML configuration file, users can also specify mul-
tiple vertical coordinates that are identified by different grid
names.

Configurations for 3-D grids

In response to the “2-D+ 1-D” and “1-D+ 2-D” represen-
tations of a 3-D grid in C-Coupler, CIOFC1.0 enables users

Geosci. Model Dev., 16, 6285–6308, 2023 https://doi.org/10.5194/gmd-16-6285-2023



X. Yu et al.: CIOFC1.0 6289

Figure 4. An example of specifying vertical coordinates in an XML configuration file.

Figure 5. An example of specifying 3-D grids in an XML configuration file. The horizontal subgrids “H2D_grid1” and “H2D_grid2” and
the vertical subgrids “V1D_grid1” and “V1D_grid2” have already been specified in the same configuration file (Figs. 2 and 4).

to specify the horizontal and vertical subgrids of a 3-D grid
in the XML configuration file (e.g., lines 2–8 and 9–12 in
Fig. 5). Given a 3-D grid with a vertical subgrid of SIGMA
or HYBRID coordinate, information about the surface field
should be specified. A surface field can be specified as a
field read from a data file (lines 17–26 in Fig. 5); it can
alternatively be specified as a field from the model, mean-

ing that values of the surface field originate from the com-
ponent model when outputting a field. In a possible special
case, users may want a file grid to use the same horizon-
tal or vertical subgrid as the model. A special horizontal grid
name “handler_output_H2D_grid” (lines 9–12 in Fig. 5) and
a special vertical subgrid name “handler_output_V1D_grid”
(lines 13–16 in Fig. 5) are employed for such a case.

https://doi.org/10.5194/gmd-16-6285-2023 Geosci. Model Dev., 16, 6285–6308, 2023



6290 X. Yu et al.: CIOFC1.0

Figure 6. An example of configurations for outputting fields in an XML configuration file. The “V3D_grid1” grid has already been specified
in line 3 of Fig. 5.

3.1.2 Configurations for outputting fields

Considering that users may want to output different fields
with different settings (e.g., different time series, different
file grids, and different data types), CIOFC1.0 enables users
to specify a specific configuration for a group of fields (e.g.,
lines 8–12 and 18–20 in Fig. 6). For a field group, users can
specify common output settings (line 2 in Fig. 6), e.g., fre-
quency of creating a new file (corresponding to the XML at-
tributes “file_freq_count” and “file_freq_unit”), default data
types, output time series (“. . . ” in line 5, which will be further
discussed in Sect. 3.4), time format in data files, outputting
instantaneous values or time-averaged values, and file grids.
A field in a group can also have its own specific settings
(line 9 in Fig. 6). Users can make a field use the same name
in both the model and data files (line 11 in Fig. 6) or make
data files use a new field name (the corresponding XML at-
tribute “name_in_file” is specified; lines 9 and 10 in Fig. 6).
As a result, a model can output its fields into multiple files
through dividing these fields into multiple field groups.

How to specify the output time series will be further dis-
cussed in Sect. 3.2.

3.1.3 Configurations for inputting time series data
fields

Considering that the time series fields in data files can be
shared by different component models and different simula-
tion settings, the configurations for inputting time series data
fields are divided into two parts: information about a time

series dataset, and how to bridge a dataset and a component
model.

For specifying the data files included in a dataset,
CIOFC1.0 enables a dataset to have a unique data file (e.g.,
line 2 in Fig. 7a) or consist of a group of data files whose
names are different only in terms of time (line 2 in Fig. 7b,
where the unique character “*” in the common file name
will be automatically replaced by the time string under the
specified time format when determining the name of each
input data file). The time points in a time series can be ob-
tained from the name of the data files (e.g., corresponding to
the character “*” in line 2 in Fig. 7b) or from a set of time
fields in the data files (lines 3–6 in Fig. 7a) with a specified
type of time points (i.e., “start”, “middle”, or “end”; line 3
in Fig. 7b). For example, given a time format “MMDDHH”
(representing month, day, and hour), “start”, “middle”, and
“end” means the 0th, 1800th, and 3600th second in each
hour. The fields provided by a group of data files, as well as
the grid of each field, should be listed explicitly (lines 19–21
in Fig. 7a). Each configuration file contains only one dataset
with a unique dataset name as the keyword (e.g., the dataset
named “dataset1” corresponding to line 1 in Fig. 7a).

A component model can call the corresponding API
(Sect. 3.7) to input fields from a time series dataset based
on an input instance with a unique name. As the same field
may have different names in a dataset and a component
model, specification of name mapping for each field is en-
abled (lines 7–10 in Fig. 8). The time range of a dataset
is generally fixed, while users may want flexible use of a
dataset in different simulations. For example, a pre-industrial

Geosci. Model Dev., 16, 6285–6308, 2023 https://doi.org/10.5194/gmd-16-6285-2023



X. Yu et al.: CIOFC1.0 6291

Figure 7. Examples of configurations for time series information of input data files: specifying time points through (a) the names of data
files and (b) the time fields in data files.

Figure 8. An example of configuring an input instance. The dataset “dataset2” corresponds to that specified in Fig. 7b.

https://doi.org/10.5194/gmd-16-6285-2023 Geosci. Model Dev., 16, 6285–6308, 2023



6292 X. Yu et al.: CIOFC1.0

control simulation of a coupled model corresponding to the
coupled model intercomparison projects always uses forcing
data for the year 1850. Scientists may want to use differ-
ent time ranges for atmosphere forcing data with the same
time range as emissions forcing data in atmospheric chem-
istry simulations, to study the impact of climate variation on
air pollution. We therefore enable users to specify mapping
rules between the dataset time and model time (lines 3–6 in
Fig. 8), i.e., uses can set a fixed offset between the model
time and data time, a fixed period for periodically using time
series data, or even a hybrid combination of the two.

To further improve the commonality in specifying the in-
put time series manager, as well as in the whole CIOFC1.0
system, various time formats, including calendar time for-
mats and simulation time length units (Tables 1 and 2), are
supported.

3.2 Implementation of the spatial data interpolation
manager

When a field has a file grid different from its model grid,
spatial data interpolation for this field is required. As C-
Coupler2.0 already implements horizontal (2-D) interpola-
tion and 3-D interpolation in a “2-D+ 1-D” manner, the spa-
tial data interpolation manager directly employs this func-
tionality. (For further details of this functionality, see Liu
et al., 2018.) Regarding 2-D interpolation, C-Coupler2.0 can
generate online remapping weights based on internal remap-
ping algorithms (i.e., bilinear, first-order conservative, and
nearest-neighbor algorithms), or use an off-line remapping
weight file generated by other software. Specifically, the spa-
tial data interpolation manager will generate the file grid of
each field according to the specifications in the XML con-
figuration file and then determine the remapping weights and
conduct data interpolation as required. Different fields with
the same model grid and the same file grid can share the same
remapping weights.

With such an implementation, CIOFC1.0 enables a model
with an unstructured horizontal grid (e.g., a cubed-sphere
grid, a non-quadrilateral grid, or even a grid generated by
triangulation; Yang et al., 2019) to output fields to a regu-
lar longitude–latitude grid in data files. CIOFC1.0 also en-
ables a model with SIGMA or HYBRID vertical coordinates
to output fields to Z vertical coordinates in data files, as C-
Coupler2.0 supports the dynamic interpolation between two
3-D grids, either of which can calculate variable vertical co-
ordinate values following the change of the corresponding
surface field in time integration.

We identified a limitation of C-Coupler2.0 when apply-
ing CIOFC1.0 to the atmosphere model MCV that outputs
3-D fields to regular longitude–latitude grids and baromet-
ric surfaces in data files. Although C-Coupler2.0 can han-
dle data interpolation between a regular longitude–latitude
grid and the cubed-sphere grid used by MCV, it cannot
handle vertical interpolation to barometric surfaces, because

Figure 9. An example of two kinds of parallel decomposition:
(a) regular 2-D decomposition, with each process associated with
one subdomain; and (b) round-robin-based decomposition, which
associates each process with multiple subdomains.

MCV uses SIGMA vertical coordinates of height but not
barometric pressure. We therefore developed a new API
CCPL_set_3D_grid_3D_vertical_coord_field and the corre-
sponding functionalities to dynamically use 3-D barometric
pressure values diagnostically calculated by MCV during the
vertical interpolation to barometric surfaces.

3.3 Implementation of parallel I/O

Considering that models for earth system modeling gener-
ally access data files in NetCDF format and that C-Coupler
implements NetCDF as the default data file format, we use
PnetCDF to develop the parallel I/O operation. PnetCDF
enables a group of processes to cooperatively output/input
multi-dimensional values of a field to/from a data file, where
calling the corresponding PnetCDF APIs enables a process
to output/input the field values in a subdomain or a subspace
specified via the API argument arrays “starts” and “counts”.
The subdomains or subspaces associated with each process
are generally determined by the parallel decomposition. For
example, as determined by the regular 2-D decomposition in
Fig. 9a, each process is associated with one subdomain, while
the round-robin-based decomposition in Fig. 9b determines
that each process is associated with multiple subdomains. To
enable a process to output/input the values in multiple sub-
domains or subspaces, a straightforward implementation is to
call the asynchronous PnetCDF APIs (e.g., ncmpi_iput_var*
and ncmpi_iget_var*) multiple times before the calling the
API ncmpi_wait_all.

Although PnetCDF can rearrange data values in subdo-
mains or subspaces among processes to improve parallel I/O
performance (Thakur et al., 1999), existing works such as the
PIO library (Dennis et al., 2011) show that model data rear-
rangement and grouping to fewer I/O processes before using
PnetCDF can further improve the I/O performance and intro-
duce low additional maintenance cost. We also prefer such
an approach that can further benefit from C-Coupler2.0, es-
pecially the functionality of data rearrangement. Specifically,
C-Coupler2.0 takes two main steps for data rearrangement:
generating a routing network among processes at the initial-

Geosci. Model Dev., 16, 6285–6308, 2023 https://doi.org/10.5194/gmd-16-6285-2023



X. Yu et al.: CIOFC1.0 6293

Table 1. Examples of the calendar time formats supported in CIOFC1.0.

Time formats Description

SSSSS The time of day in seconds (1 d has 86 400 s)

MMDD, MM-DD A calendar date given as month and day

YYYY The calendar year of a date

YYYYMMDD, YYYY-MM-DD The calendar year (YYYY), month (MM), and day (DD) of a date

HHMMSS, HH-MM-SS, HH:MM:SS The time of day giving the hour (HH), minute (MM), and second (SS)

MMDD-HHMM, MM-DD.HH-MM,
MM-DD-HH-MM, MMDDHHMM

A calendar date given as month, day, hour, and minute

MMDDHH, MMDD.HH, MMDD-HH,
MM-DD.HH, MM-DD-HH

A calendar date and hour of day combined

YYYYMMDD.SSSSS, YYYY-MM-
DD.SSSSS, YYYYMMDD-SSSSS,
YYYY-MM-DD-SSSSS, YYYYM-
MDDSSSSS

A calendar date with the time of day (in seconds) combined

Table 2. Examples of the simulation time length units supported in CIOFC1.0.

nyears, years, nyear, year The number of simulation years from the start
nmonths, months, nmonth, month The number of simulation months from the start
ndays, days, nday, day The number of simulation days from the start
nhours, hours, nhour, hour The number of simulation hours from the start
nminutes, minutes, nminute, minute The number of simulation minutes from the start
nseconds, seconds, second, nsecond The number of simulation seconds from the start
nsteps, steps, nstep, step The number of simulation steps from the start

ization stage, and MPI communications following the rout-
ing network at each time of data rearrangement. Optimiza-
tions of these two steps have been investigated (Yu et al.,
2020; Zhang et al., 2016). In the detailed implementation, a
group of I/O processes that are a subset of model processes
call PnetCDF APIs, and a regular parallel decomposition on
all I/O processes (called “I/O decomposition” hereafter) is
generated. Such an implementation makes each I/O process
associated with a unique subdomain (or subspace) with an
averaged number of grid points, and enables C-Coupler2.0
to work for the data rearrangement between model processes
and I/O processes.

A parallel I/O operation implements the following steps to
output a field:

1. When the I/O decomposition of this field has not been
generated, generate the I/O decomposition and the cor-
responding routing network between model processes
and I/O processes.

2. Rearrange the field values from model processes to I/O
processes.

3. Call PnetCDF APIs to write field values into a file in
parallel.

A parallel I/O operation implements the following steps to
input a field:

1. Generate the I/O decomposition and the corresponding
routing network when required (the same as the first
step for outputting a field).

2. Call PnetCDF APIs to read in field values from a file in
parallel.

3. Rearrange the field values from I/O processes to model
processes.

The number of I/O processes can affect the efficiency of
parallel I/O operation. It is difficult to automatically deter-
mine an optimal number of I/O processes, because it de-
pends greatly on the number of model processes and the
hardware/system supports in a high-performance computer.
Currently, we enable users to specify an upper bound num-
ber of I/O processes via a configuration file (the parameter
“max_num_pio_proc” in Fig. 10). The actual number of I/O
processes of a component model is the lower value between
the upper bound number and the number of model processes.

https://doi.org/10.5194/gmd-16-6285-2023 Geosci. Model Dev., 16, 6285–6308, 2023



6294 X. Yu et al.: CIOFC1.0

Figure 10. An example of specifying the global number of I/O pro-
cesses in C-Coupler’s experiment setup configuration file via the
parameter “max_num_pio_proc”.

3.4 Implementation of the output time series manager

C-Coupler2.0 can simply describe the timing of a periodic
time series using the period unit and period count. Given a
restart timer with unit month and count 5, the model simula-
tion outputs a restart data file every 5 model months. How-
ever, time series with irregular patterns have been used in
real models but have not previously been supported by C-
Coupler2.0. For example, the atmospheric chemistry model
GEOS-Chem provides a configuration table (e.g., Fig. 12),
which enables users to specify dates in calendar years for
outputting model data and to specify independent outputting
periods on each date, whereas the weather forecasting model
GRAPES mentioned in Sect. 2 generally uses two periods for
outputting: every 3 h for the first five model days and every
6 h for the remaining model days.

A straightforward solution to describe an irregular time se-
ries is to enumerate all time points in the series. We do not
recommend this, because it will be inconvenient for long sim-
ulations with many time points. A better solution relies on ir-
regular time series generally consisting of several parts with
regular periods. The output time series manager should there-
fore enable users to specify a time series with multiple non-
overlapping time slots, most of which have a uniform period.
Any time slot with no uniform period should be handled by
the output time series manager, enabling users to enumerate
all the time points in that slot.

To support various kinds of time series in a convenient
manner, the output time series manager employs the terms
of period, time slot, and time point, supports flexible combi-
nation among them, and enables users to specify an output
time series via the XML configuration file. Time slots can
be nested in a period, so a period can contain multiple time

slots. A period can also be nested in a time slot, which means
that a time slot can contain a periodic time series. A period
or a time slot can contain multiple time points.

In the example XML specification in Fig. 11a (lines 3–
12), the outermost level is a period of every day (line 4). Two
groups of time slots are nested in this period (lines 5–10).
The time slots of the 1st to 2nd, 9th to 10th, and 17th to 18th
hour in the first group nest the same period of every hour
(line 5 in Fig. 11a). The time slots of the 5th to 6th, 13th to
14th, and 21st to 22nd hour in the second group nest the same
period of every 2 h (line 8 in Fig. 11a). The period in each
time slot group further includes time points (lines 6 and 9).
This example specification determines a complex irregular
time series. (All time points in 1 d are shown in Fig. 11b.)

Figure 13 shows the XML specification corresponding to
the specific output settings of GEOS-Chem in Fig. 12. The
outermost level is the period of every year (line 2 in Fig. 13).
There are three groups of time slots nested in this yearly pe-
riod (lines 3–9). The first group (lines 3–5) means that the
model outputs data every 3 h in the first day of each month
from January to May and from August to December. The sec-
ond group (line 6) means that the model outputs data every
3 h in every day of June. The third group (lines 7–9) means
that the model outputs data every 3 h in the first and second
days of July. Similarly, the output time series of GRAPES
mentioned above can be easily specified, as shown in Fig. 14
(lines 1–4), where the XML attribute value “ndays” means
the number of model days since the start of the simulation.

The output time series manager extends the timer func-
tionality of C-Coupler2.0 – which is only compatible with
periodic time series – with a tree of timers to keep the nesting
relationship among periods, time slots, and time points. The
timer tree of an output time series is initialized when load-
ing the corresponding specifications from the XML configu-
ration file, where the correctness of the nesting relationship
will be checked. For example, the specifications in Fig. 15
are incorrect, because the minimum time unit of the period
at the outermost level (line 2) is hour, while the minimum
time unit of the second level (line 3) is day, which is longer
than hour. When the model attempts to output a set of fields,
it checks whether the corresponding timer tree is on at the
current model time.

Each node in a timer tree corresponds to the timer of a
period, a set of time slots, or a set of time points; a node
may have multiple children. A recursive procedure is imple-
mented to handle the tree structure. Given a tree node, the
procedure first checks whether the corresponding timer is on
and then checks each child of the tree node recursively. A
tree node is on at the current model time only when its corre-
sponding timer is on, and it has no child or at least one child
node is on. A timer of time slots/points is on when the current
model time matches one time slot/point.

For example, Fig. 16 shows the timer tree corresponding
to the output time series specified in Fig. 11a. The root tree
node (“node1”) corresponds to the outermost periodic timer.

Geosci. Model Dev., 16, 6285–6308, 2023 https://doi.org/10.5194/gmd-16-6285-2023



X. Yu et al.: CIOFC1.0 6295

Figure 11. An example of specifying an output time series (a) and the corresponding time points in a day (b).

Figure 12. An example of output setting of GEOS-Chem. A number “3” means that GEOS-Chem outputs fields every 3 h on the corre-
sponding date of every year, while a number “0” means that GEOS-Chem does not output any field on the corresponding date of every
year.

Given a model time of date 20060101 and second 33 600, it
matches the period of every day in “node1”, the time slot 9–
10 h in “node2”, the period of every hour in “node4”, and the
time point of 1200 s in “node6”. So, the timer tree is on at
this model time. Given a model time of date 20060101 and
second 19 800, it matches the period of every day in “node1”,
the time slot 5–6 h in “node3”, and the period of every 2 h
in “node7”, but it does not match the time points of 2400
and 4800 s in “node8”. (The time point corresponding to the
given model time is 1800 s.) As a result, the timer tree is not
on at this model time.

3.5 Implementation of the output driving procedure

The output driving procedure is designed to output model
fields with various configurations. Similar to the correspond-
ing implementations in other frameworks, such XIOS, it
should combine the attributes (including the field name,
data arrays, model grid, and parallel decomposition) of each
model field and the corresponding configuration together,
so as to conduct data rearrangement and data interpola-
tion. In C-Coupler2.0, a pair of an export interface and an
import interface can automatically handle data rearrange-
ment and data interpolation for a set of model fields. To
make use of this functionality, the output driving proce-

https://doi.org/10.5194/gmd-16-6285-2023 Geosci. Model Dev., 16, 6285–6308, 2023



6296 X. Yu et al.: CIOFC1.0

Figure 13. An example of the specification of the output time series for GEOS-Chem in CIOFC1.0 corresponding to the specification in
Fig. 12.

Figure 14. An example of the specification of the output time series of GRAPES in CIOFC1.0.

dure enables a model to apply multiple output handlers
each of which corresponds to a set of model fields. Specif-
ically, the API CCPL_register_configurable_output_handler
is designed for applying an output handler with complex
configurations specified in the XML file, while the API
CCPL_register_normal_output_handler is also designed for
use with an output handler with simple configurations spec-
ified in the argument list but not in the XML file. An output
handler can be executed implicitly when the model is advanc-
ing model time or executed explicitly through calling the API
CCPL_handle_normal_explicit_output.

The implementation of the output driving procedure will
be further examined for each API.

3.5.1 Implementation corresponding to the API
CCPL_register_configurable_output_handler

The API CCPL_register_configurable_output_handler pro-
vides an argument list for flexibility (Fig. 17). Each out-
put handler has a unique name (corresponding to the argu-
ment “handler_name”) and works for a set of field instances
(corresponding to the arguments “num_field_instances” and
“field_instance_ids”) of the same component model that has
already been registered to C-Coupler2.0. Based on the ID of
a field instance, the name, data arrays, model grid, and par-
allel decomposition of the corresponding model field can be
obtained. The XML configuration file corresponding to an
output handler can be specified via the argument “config-
uration_name”. Such an implementation enables a compo-
nent model to use different configurations to output the same
group of fields or use the same configuration to output differ-
ent groups of fields. The execution of an output handler can
be either implicit or explicit (corresponding to the argument
“implicit_or_explicit”). Users can specify a default file grid
(corresponding to the optional argument “output_grid_id”)
that has already been registered to C-Coupler2.0, and thus

the default file grid will be used for a field when the
file grid of this field is not specified in the configura-
tion file. The arguments “handler_output_H2D_grid_id”
and “handler_output_V1D_grid_id” correspond to the spe-
cial subgrids of “handler_output_H2D_grid” and “han-
dler_output_V1D_grid” for configuring 3-D grids in a con-
figuration file (see Sect. 3.1.3). An output handler can
be executed at every model time step or under a speci-
fied periodic timer (corresponding to the optional argument
“sampling_timer_id”). For example, given that a component
model with a time step of 60 s outputs time-averaged values
of a group of fields every 3 model hours, and that users spec-
ify a periodic timer of every hour, the values outputted at the
third model hour are averaged from the first 3 model hours,
but not from every model step.

The API CCPL_register_configurable_output_handler
implements the following main steps to initialize an output
handler:

1. Employ the I/O configuration manager to load output
configurations from the corresponding XML file. Users
will be notified if any error in the XML file is detected.

2. Employ the spatial data interpolation manager to gen-
erate all file grids determined by the output configura-
tions.

3. Employ the output time series manager to generate the
timer tree of each output time series (called “output
timer” hereafter) determined by the output configura-
tions, and generate the periodic timer for creating new
data files (called “file timer” hereafter).

4. Determine the output configuration corresponding to
each field (e.g., file grid, output time series, file data
type, and outputting time-averaged values or instanta-
neous values).

Geosci. Model Dev., 16, 6285–6308, 2023 https://doi.org/10.5194/gmd-16-6285-2023



X. Yu et al.: CIOFC1.0 6297

Figure 15. An example of an incorrect output time series setting. The frequency unit in the outer level of the specification should be no
smaller than that in the inner level.

Figure 16. A visualization of the timer tree corresponding to the configuration in Fig. 11.

5. For each file grid, generate a parallel I/O operation as
well as the corresponding I/O decomposition, and then
allocate the corresponding I/O field instance.

6. Employ the coupling generator of C-Coupler2.0 to gen-
erate the coupling procedure from a model field to the
corresponding I/O field instance. A coupling procedure
can include a group of operations such as data trans-
fer, data interpolation, data type transformation, and
data averaging (for further details, see Liu et al., 2018),
while the spatial data interpolation manager will gener-
ate remapping weights for the data interpolation when
necessary. Multiple fields that share the same model
grid and the same file grid can share the same I/O field
instance and the same coupling procedure, to save mem-
ory consumption.

3.5.2 Implementation corresponding to the API
CCPL_register_normal_output_handler

Using the argument list shown in Fig. 18, the API
CCPL_register_normal_output_handler works similarly to
the API CCPL_register_configurable_output_handler but
does not rely on the configurations in the XML file. It can
output a group of fields to the same file grid (correspond-

ing to the optional argument “output_grid_id”) that has been
previously registered to C-Coupler2.0. Users can specify a
periodic timer for outputting fields (corresponding to the op-
tional argument “output_timer_id”) and a periodic timer for
generating new data files (corresponding to the optional argu-
ment “file_timer_id”). Users can also specify to output time-
averaged or instantaneous values of all fields (correspond-
ing to the optional arguments “inst_or_aver”) and specify the
data types of fields in data files (corresponding to the optional
arguments “float_datatype” and “integer_datatype”).

The API CCPL_register_normal_output_handler
uses a flowchart similar to that of the API
CCPL_register_configurable_output_handler but with-
out the first and second main steps in Sect. 3.5.1.

3.5.3 Implementation corresponding to the API
CCPL_handle_normal_explicit_output

The API CCPL_handle_normal_explicit_output explicitly
executes an output handler that has been applied by call-
ing the API CCPL_register_configurable_output_handler
or CCPL_register_normal_output_handler. It is generally
called at each model step but actually runs when the sam-
pling timer of the output handler (corresponding to the ar-
gument “sampling_timer_id”) is not specified or when the

https://doi.org/10.5194/gmd-16-6285-2023 Geosci. Model Dev., 16, 6285–6308, 2023



6298 X. Yu et al.: CIOFC1.0

Figure 17. The argument list of the API CCPL_register_configurable_output_handler.

Figure 18. The argument list of the API CCPL_register_normal_output_handler.

sampling timer is on at the current model time. The cur-
rent model time is obtained from C-Coupler2.0 implicitly,
while C-Coupler2.0 provides APIs for achieving the current
model time consistent with the model. When it does run, it
first generates a new data file when required and then iter-
ates on each field. For a field, it conducts time averaging if
required, conducts data interpolation if required, rearranges
the field values on model processes to the I/O processes,
and finally outputs the field values on the I/O processes to
the data file when the output timer of the field is on. The
API CCPL_handle_normal_explicit_output enables users to
specify a special argument of “bypass_timer” to disable all
timers, which means that the instantaneous values of each
field will be outputted to a newly created data file.

The implicit execution of an output handler works simi-
larly to the API CCPL_handle_normal_explicit_output.

3.6 Implementation of the input time series manager

The input time series manager manages the time series in-
formation of each input dataset. All time points of an input
dataset, as well as the data file and time index corresponding
to each time point, are recorded after parsing the correspond-
ing XML configuration file.

Given the current model time, the input time series man-
ager follows the specified mapping rules between the dataset
time and the model time, and looks up the corresponding
time points of an input dataset, i.e., one time point that

matches the current model time or two adjacent time points
where the current model time is in the interval between them.

Corresponding to the configuration of a daily input dataset
in Fig. 20 (lines 2–5), Table 3a shows the time fields in each
of four data files. After parsing this configuration, all daily
time points are loaded from these four data files and then ex-
tended with a second number (i.e., second 43 200) according
to the specified type of the time points (“middle” in Fig. 20),
as shown in Table 3b. Lines 3–6 in Fig. 21 specify a time
mapping rule hybrid with a period of 20 d and an offset of 5 d.
Such a rule determines that the first model day corresponds to
the sixth day in the period. Given a simulation starting from
a model time of date 20211101 and second 43 200, only one
time point (i.e., 2005010643200) in the input dataset corre-
sponds to the start time, while there are two time points (i.e.,
2005012043200 and 2005010143200) corresponding to the
model time of date 20211115 and second 46 800.

3.7 Implementation of the input driving procedure

To enable a model to iteratively input a group of fields from
time series datasets in time integration, the input driving
procedure provides an API CCPL_register_input_handler
for applying an input handler and provides an API
CCPL_execute_input_handler for iteratively executing the
input handler. Considering that the initial fields of
a model are not generally time series data, an API
CCPL_readin_field_from_dataFile reads in values of a field
from a specific data file.

Geosci. Model Dev., 16, 6285–6308, 2023 https://doi.org/10.5194/gmd-16-6285-2023



X. Yu et al.: CIOFC1.0 6299

Figure 19. The argument list of the API CCPL_handle_normal_explicit_output.

Figure 20. An example configuration of a daily input dataset, where the time series is specified via the corresponding time field. The type of
time points is set as “middle”, meaning that the time point represents the 43 200th second of a day.

Implementation of the input driving procedure is further
explored in the following discussion on each API.

3.7.1 Implementation corresponding to the API
CCPL_register_input_handler

The API CCPL_register_input_handler provides an argu-
ment list like that shown in Fig. 22. Similar to the output
handler (Sect. 3.5), each input handler also has a unique
name (corresponding to the argument “handler_name”) and
works for a group of fields (corresponding to the argu-
ments “num_field_instances” and “field_instance_ids”) of
the same component model that has already been regis-
tered to C-Coupler2.0. The configurations for inputting field
values from time series datasets (called “input configu-
rations” hereafter) should be specified (via the argument
“config_input_instance_name”). The input handler can also
be executed under a specified periodic timer (correspond-
ing to the optional argument “input_timer_id”). Consider-
ing that users may require flexibility to change the source
of each boundary field of a component model (i.e., the
source of a boundary field can be either another component
model or a time series dataset) in different simulations of
a coupled model, two optional arguments “necessity” and
“field_connected_status” are provided. The array “necessity”
enables users to specify each field as either necessary or op-
tional (i.e., a necessary field must be input from a dataset
and users must specify the input configurations of each nec-
essary field, whereas users can disable the source of an op-
tional field from a dataset through not specifying the input
configurations of the field), whereas an element in the array
“field_connected_status” notifies whether the input configu-
rations of the corresponding field have been specified. Thus,
users can flexibly enable or disable the source of an optional
field from a dataset through modifying the corresponding
XML configuration file without modifying the model codes.

The API CCPL_register_input_handler implements the
following steps to initialize an input handler:

1. Employ the I/O configuration manager to load input
configurations from the corresponding XML file. Users
will be notified if any error in the XML file is detected.

2. Employ the spatial data interpolation manager to gen-
erate all file grids determined by the output configura-
tions.

3. Determine the input configuration corresponding to
each field, file grid, data set, data type, etc.

4. For each file grid, generate a parallel I/O operation as
well as the corresponding I/O decomposition, and then
allocate the corresponding I/O field instance.

5. Employ the input time series manager to manage the
time series information of each field and the time map-
ping rule.

6. Generate the coupling procedure from an I/O
field instance to the corresponding model field.
This step is similar to the last step of the
CCPL_register_configurable_output_handler.

3.7.2 Implementation corresponding to the API
CCPL_execute_input_handler

The API CCPL_execute_input_handler executes an in-
put handler that has been applied via an API call of
CCPL_register_input_handler. It can be called at any model
time and can actually run when the input timer of the input
handler is specified and is on at the current model time. When
it actually runs, it iterates on each field that can be input from
the datasets. For a field, it employs the input time series man-
ager to determine the dataset time points corresponding to the
current model time, employs the corresponding parallel I/O

https://doi.org/10.5194/gmd-16-6285-2023 Geosci. Model Dev., 16, 6285–6308, 2023



6300 X. Yu et al.: CIOFC1.0

Figure 21. An example configuration of the time mapping rule corresponding to the configurations in Fig. 20 and Table 3.

Figure 22. The argument list of the API CCPL_register_input_handler.

operation to read in field values from the dataset correspond-
ing to each time point, rearranges the field values on the I/O
processes to model processes, conducts spatial data interpo-
lation operations if required, and finally conducts time inter-
polation if required.

Here we consider an example with the input config-
urations in Figs. 20 and 21. When inputting the model
field “tskin_in” at the model time of date 20211101 and
second 43 200, there is only one dataset time point (i.e.,
2005010643200) corresponding to this model time, and
thus the field values corresponding to the first time point
in the file “file_name.20050106.nc” will be input, and no
time interpolation will be conducted. When inputting the
model field “tskin_in” at the model time of date 20211101
and second 46 800, there are two dataset time points
(i.e., 2005010643200 and 2005010743200) corresponding
to this model time, and thus the field values correspond-
ing to the first and second time points in the file “file_
name.20050106.nc” will be inputted, and time interpolation
will be conducted.

To reduce I/O overhead, the input driving procedure will
cache the field values that have been recently input from
datasets. For example, the field values corresponding to the
dataset time point 2005010643200 are cached and will not
be input again at the model time of date 20211101 and sec-
ond 46 800.

3.7.3 Implementation corresponding to the API
CCPL_readin_field_from_dataFile

The API CCPL_readin_field_from_dataFile works for
only one model field (corresponding to the argument

“field_instance_id” in Fig. 24) and reads in the values of
this field from a specific data file (corresponding to the
argument “data_file_name”). It enables a field to have a
different name (which can be specified via the argument
“field_name_in_file”) or a different grid (which can be spec-
ified via the argument “grid_id_in_file”) in the data file.
Users can further set maximum and minimum boundaries
(corresponding to the arguments “value_max_bound” and
“value_min_bound”) to prevent input of abnormal values.

The functionality of the API
CCPL_readin_field_from_dataFile can be
achieved through combining the functionalities
of the APIs CCPL_register_input_handler and
CCPL_execute_input_handler together for a special case;
i.e., only one field to be input without time information.

4 Evaluations of CIOFC1.0

This section evaluates CIOFC1.0 empirically in terms of
functionality and performance. The framework was inte-
grated into real models (GAMIL and MCV); we further de-
veloped a test model to enable evaluation of the framework
through systematic adjustment of the settings.

All test cases were run on the high-performance comput-
ing system (HPCS) of the earth system numerical simulator
(http://earthlab.iap.ac.cn/en/, last access: 27 October 2023).
The HPCS has approximately 100 000 CPU cores (X86; run-
ning at 2.0 GHz) and 80 PB of parallel storage capacity. The
HPCS uses a Parastor parallel file system, providing 3–4096
elastic and symmetrical (also supporting asymmetrical ar-
chitecture) storage nodes. Each computing node includes 64

Geosci. Model Dev., 16, 6285–6308, 2023 https://doi.org/10.5194/gmd-16-6285-2023

http://earthlab.iap.ac.cn/en/


X. Yu et al.: CIOFC1.0 6301

Table 3. An example of managing time points in an input dataset with four data files corresponding to the configuration in Fig. 20. Panel (a)
displays time fields in each data file. Panel (b) displays the information of time points recorded by CIOFC1.0.

(a)

File name file_name.20050101.nc file_name.20050106.nc file_name.20050111.nc file_name.20050116.nc
Time field 20050101, 20050102,

20050103, 20050104,
20050105

20050106, 20050107,
20050108, 20050109,
20050110

20050111, 20050112,
20050113, 20050114,
20050115

20050116, 20050117,
20050118, 20050119,
20050120

(b)

Time points File name Time index Time points File name Time index

20050101-43200 file_name.20050101.nc 0 20050111-43200 file_name.20050111.nc 0
20050102-43200 file_name.20050101.nc 1 20050112-43200 file_name.20050111.nc 1
20050103-43200 file_name.20050101.nc 2 20050113-43200 file_name.20050111.nc 2
20050104-43200 file_name.20050101.nc 3 20050114-43200 file_name.20050111.nc 3
20050105-43200 file_name.20050101.nc 4 20050115-43200 file_name.20050111.nc 4
20050106-43200 file_name.20050106.nc 0 20050116-43200 file_name.20050116.nc 0
20050107-43200 file_name.20050106.nc 1 20050117-43200 file_name.20050116.nc 1
20050108-43200 file_name.20050106.nc 2 20050118-43200 file_name.20050116.nc 2
20050109-43200 file_name.20050106.nc 3 20050119-43200 file_name.20050116.nc 3
20050110-43200 file_name.20050106.nc 4 20050120-43200 file_name.20050116.nc 4

Figure 23. The argument list of the API CCPL_execute_input_handler.

CPU cores and 256 GB memory, and all of the nodes are con-
nected by a network system with a maximum communication
bandwidth of 100 Gbps. All codes are compiled by an Intel
Fortran and C++ compiler (version 17.0.5) at the O2 opti-
mization level using an OpenMPI library.

4.1 Test model

Our development of the test model for evaluating CIOFC1.0
focused only on the capabilities for I/O fields, and numerical
calculations in real models were neglected. The test model is
capable of I/O of 2-D and 3-D fields based on CIOFC1.0 and
offers two kinds of horizontal grid (i.e., longitude–latitude
and cubed-sphere) and two types of parallel decomposition
(i.e., regular 2-D, sequential, and round-robin) for selection.
The test model further enables flexible setting of the num-
ber of fields, the size of the horizontal grid, the number of
vertical levels (the z coordinate is used), and the number of
model processes. It also allows to advance integration with a
specified time step.

4.2 Functionality of CIOFC1.0

Functionality evaluation considered three categories: correct-
ness of the I/O functionalities, correctness of spatial interpo-
lation, and correctness of I/O time management.

4.2.1 Correctness of the input and output
functionalities

We combined the data input and output functionalities when
evaluating their correctness, i.e., the test model inputs a set of
fields from an existing data file and then outputs these fields
into a new data file. We made the test model, the existing
data file, and the new data file use the same grids to avoid
any spatial data interpolation and associated interpolation er-
ror. Therefore, the existing data file and the new data file
should be the same when the input and output functionalities
are correct. Specifically, we prepared four input data files on
cubed-sphere grids under different resolutions and four more
on longitude–latitude grids, and finally obtained 16 test cases
based on each input data file undergoing the two types of par-
allel decomposition supported by the test model. The results
for each case show the correctness of the I/O functionalities.

CIOFC1.0 enables flexible user-specified setting of the
number of I/O processes. A change of the number of I/O pro-

https://doi.org/10.5194/gmd-16-6285-2023 Geosci. Model Dev., 16, 6285–6308, 2023



6302 X. Yu et al.: CIOFC1.0

Figure 24. The argument list of the API CCPL_readin_field_from_dataFile.

cesses should not introduce any change to the fields’ input or
the output data file. Therefore, we further checked the cor-
rectness of the I/O functionalities by changing the number of
I/O processes. Specifically, we used the 16 test cases above
and used three different numbers of I/O processes to run each
test case. The results show that CIOFC1.0 produces the same
results under different numbers of I/O processes.

4.2.2 Correctness of spatial interpolation

Spatial interpolation is an existing functionality of C-
Coupler2.0. As its correctness has already been evaluated
(cf. Figs. 11 and 12 in Liu et al., 2018), here we only con-
firm that it works correctly for CIOFC1.0 if the file grid is
different from the model grid in data input or output. Specif-
ically, we reproduced the coupling of the field temperature
and zonal wind speed from GAMIL to GEOS-Chem in Liu et
al. (2018) and, additionally, made GAMIL output these fields
to the grid of GEOS-Chem based on CIOFC1.0. As the fields
in the output file were the same as those obtained by GEOS-
Chem through coupling, spatial interpolation by CIOFC1.0
was shown to work correctly.

Dynamic 3-D interpolation is a capability that has
been further advanced for CIOFC1.0: the new API
CCPL_set_3D_grid_3D_vertical_coord_field and the cor-
responding functionalities enable the 3-D interpolation to
use vertical coordinate values dynamically calculated by a
model. We further evaluated the correctness of this new en-
hancement based on MCV – which has an internal code for
remapping fields to a regular 3-D grid (consisting of a reg-
ular longitude–latitude grid and barometric surfaces) – be-
fore outputting the fields. Specifically, we made MCV use
CIOFC1.0 to output fields to the same regular 3-D grid. The
data files output by MCV internal code and CIOFC1.0 were
consistent, demonstrating that the new advancement of dy-
namic 3-D interpolation has been implemented correctly for
CIOFC1.0.

4.2.3 Correctness of I/O time management

Using the test model, we evaluated the correctness of I/O
time management for data input and output, respectively.
Specifically, we designed a set of different aperiodic output
time series. We specified each output time series via the con-

figuration file, ran the test model to get a set of output data
files, and then checked whether the time series in these out-
put data files was correct. Next, we made the test model in-
put the aperiodic dataset from each set of output data files
and then checked whether time interpolation was conducted
correctly (i.e., given each model time, whether CIOFC1.0
used the correct time points in the input time series for time
interpolation). The I/O time management functionality was
demonstrated to work correctly in all test cases.

4.3 Performance of CIOFC1.0

This subsection evaluates the performance of CIOFC1.0
when inputting and outputting fields based on the test model.
A fine-resolution (5 000 000 horizontal grid points and 80
vertical levels) and a coarse-resolution (50 000 grid points
and 30 vertical levels) field was used for testing the perfor-
mance. The data values of each model field are distributed
among processes of the test model under a round-robin par-
allel decomposition. Around 10 000 processor cores ran the
test model at fine resolution, and around 500 cores were used
for the coarse resolution. Each value in the data files is a
single-precision floating point (4 bytes for each value). Each
test case was run three times; average performance data are
shown here. As the test model is simple and does not do cal-
culation of model fields, we can make the test model output
at every time step.

We first evaluated the framework output performance. Fig-
ure 25a shows the I/O throughput when outputting a 3-D
field (1.6 GB) at the fine resolution as the number of I/O pro-
cesses increased from 1 to 8192. The whole output through-
put took account of the cost of file opening, data rearrang-
ing, filesystem writing, and file closing. It did not include
the cost of file creation and definition of an I/O decomposi-
tion. This is because multiple fields can be written out to the
same file, sharing the file creation time and the I/O decom-
position time. Both the filesystem writing throughput and the
whole output throughput increased quickly as the number of
I/O processes increased to 512, with the maximum of 5389
and 4926 MB s−1, respectively. The whole output throughput
was over 2500 MB s−1 for 32–4096 I/O processes. The data
rearranging was much faster than the filesystem writing in
most cases, especially for a large number of I/O processes.
This is because the data rearranging is achieved by the data

Geosci. Model Dev., 16, 6285–6308, 2023 https://doi.org/10.5194/gmd-16-6285-2023



X. Yu et al.: CIOFC1.0 6303

Figure 25. Throughput of data rearranging, filesystem writing, and the whole output in (a) a 3-D field and (b) a 2-D field at fine resolution. A
total of 10 048 processes were used to run the test model. There is no cost for data interpolation, as fields are on the same longitude–latitude
horizontal grid in both the model and data files.

transfer functionality of C-Coupler2.0 that is performed by
MPI communications among processes.

Figure 25b shows the throughput for outputting a 2-D
field (20 MB) at the fine resolution. The maximum output
throughput was achieved when using 4–64 I/O processes but
was smaller than 400 MB s−1. Figure 26a shows the through-
put for outputting a 3-D field (6 MB) at the coarse resolution
for increasing the number of I/O processes from 1 to 512; the
maximum output throughput was achieved when using 8–32
I/O processes but was smaller than 200 MB s−1. The data re-
arranging also got much slower but was still faster than the
filesystem writing in most cases. Figure 26b shows the max-
imum output throughput for outputting a 2-D field (200 KB)
when using no more than two I/O processes.

We next evaluated the performance for data input. Fig-
ure 27a shows the throughput for inputting a 3-D field at the
fine resolution; the maximum throughput was achieved when
using 32–1024 I/O processes, with the maximum throughput
of 13 946 and 9029 MB s−1 for filesystem read and the whole
input at 128 I/O processes. According to Fig. 27b, the max-
imum input throughput was achieved with 4–32 processes
when inputting a 2-D field but was lower than 500 MB s−1.
The throughput for inputting a 2-D or 3-D field at the coarse
resolution was relatively low especially when using more
than 128 I/O processes (Fig. 28). This is because the data
size at each CPU core was small and too many I/O system
calls take up too much of the total input time.

The above results show that although a small field does
not benefit from parallel I/O, CIOFC1.0 can accelerate I/O
data when the field size in data files is large. For example,
compared with serial I/O (corresponding to using one I/O
process in Figs. 25–28), throughput can be increased by be-
tween 29 and 64 times, respectively, when outputting and in-
putting a 3-D field at the fine resolution. A model may output
a number of fields into the same file. Figure 29 shows the av-
erage throughput (cost of file creation was considered) for
outputting 100 3-D fields at fine resolution at a time step.
It indicates that the performance of outputting one field is

applicable to the case of outputting multiple fields continu-
ously.

The output/input throughout from Figs. 25 to 29 does not
include cost of data interpolation because fields are on the
same longitude–latitude horizontal grid in both the model
and data files. With regard to outputting a 3-D field under fine
resolution, Fig. 30 shows throughput of post-processing with
data interpolation and throughput of data rearranging under
different parallel decompositions of the field in the model. It
is revealed that cost of data rearranging depends on the par-
allel decomposition, and post-processing with data interpola-
tion introduces higher cost than data rearranging. However,
data rearranging and post-processing are much faster than the
filesystem writing in most cases.

CIOFC1.0 has already been used in a real atmosphere
model (i.e., MCV) for accelerating field output. Data in-
terpolation will be performed in field output as the model
grid (i.e., a 3-D grid consisting of a cubed-sphere grid and
SIGMA-Z vertical coordinate) and the file grid (i.e., a 3-D
grid consisting of a longitude–latitude grid and barometric
surfaces) are different. Figure 31 shows the average through-
put of outputting more than 20 3-D fields into a file under
a fine resolution (e.g., 0.125◦ for both the model grid and
file grid, 129 vertical levels in the model, and 60 barometric
surfaces). Specifically, the maximum throughput is achieved
at 512 I/O processes (5281 MB s−1 for filesystem writing
and 3550 MB s−1 for whole output). The results indicate that
CIOFC1.0 can significantly improve the output for a real
model.

Figure 32 shows the comparison of throughput between
XIOS2.0 and CIOFC1.0. The client mode (synchronous par-
allel I/O) of XIOS2.0 was used for this comparison. The
results show that CIOFC1.0 can achieve higher throughput
than XIOS2.0. A possible reason is that CIOFC1.0 enables
use of fewer I/O processes than model processes, while all
model processes are also I/O processes in XIOS2.0.

https://doi.org/10.5194/gmd-16-6285-2023 Geosci. Model Dev., 16, 6285–6308, 2023



6304 X. Yu et al.: CIOFC1.0

Figure 26. As in Fig. 25, but for coarse resolution. A total of 512 processes were used to run the test model.

Figure 27. As in Fig. 25, but for inputting a field.

5 Conclusions and discussion

In this paper we propose a new common, flexible, and effi-
cient parallel I/O framework for earth system modeling based
on C-Coupler2.0. CIOFC1.0 can handle data I/O in parallel
and provides a configuration file format that enables users to
conveniently change the I/O configurations (e.g., the fields
to be output or input, the file grid, and the time series of the
data in files). It can automatically interpolate data when re-
quired, i.e., it can perform spatial data interpolation when
the file grid is different from the model grid, and also time
interpolation in data input. It enables a model to output data
with an aperiodic time series that can be conveniently spec-
ified via the configuration file. Empirical evaluation showed
that CIOFC1.0 can accelerate data I/O when the field size is
large.

Integration of CIOFC1.0 into a component model gen-
erally includes development of the code and configuration
files for registering and using the model grids, parallel de-
compositions, fields, and input/output handlers. A significant
advancement achieved by CIOFC1.0 is the cooperative de-
velopment of an I/O framework and a coupler. CIOFC1.0
benefits greatly from the spatial data interpolation function-
ality of C-Coupler2.0 and thus can input/output fields with
structured or unstructured grids. It needs few new APIs, be-
cause it can utilize the existing APIs of C-Coupler2.0 for
registering model fields, grids, and parallel decompositions
to C-Coupler2.0. As a result, a C-Coupler2.0 user can easily

learn how to use CIOFC1.0 or conveniently use a coupler and
an I/O framework simultaneously. Conversely, C-Coupler2.0
benefits from CIOFC1.0 to write and read restart data files
in parallel. Driven by CIOFC1.0, the dynamic 3-D interpola-
tion of C-Coupler2.0 was further improved. The output time
series manager of CIOFC1.0 can help the future develop-
ment of aperiodic model coupling functionality if required.
When CIOFC1.0 output model fields, coordinate fields (e.g.,
longitude, latitude, vertical levels, and surface field of a 3-
D grid) of the corresponding grids will be output. Attributes
(e.g., field name, units, and long name) of each field will also
be written into an output file. Field attributes can be con-
veniently specified in the corresponding XML configuration
files of CIOFC1.0 and C-Coupler2.0 for different purposes.
CIOFC1.0 only supports the classic NetCDF file format (e.g.,
serial I/O with NetCDF and parallel I/O with PnetCDF) cur-
rently. More data file formats such as NetCDF4 and GRIB
will be supported in the near future.

CIOFC1.0 is ready for usage by models. Specifically, the
atmosphere model MCV, which is under development led
by the China Meteorological Administration for the next-
generation operational weather forecasting in China, benefits
from CIOFC1.0 in several terms, e.g., data interpolation of 3-
D fields from the irregular 2-D/3-D model grid to a regular 2-
D/3-D file grid, data read/write in parallel, and adaptive input
and time interpolation for the time series forcing fields (such
as sea surface temperature) during integration. Although the
timer tree has not been used at the current development stage

Geosci. Model Dev., 16, 6285–6308, 2023 https://doi.org/10.5194/gmd-16-6285-2023



X. Yu et al.: CIOFC1.0 6305

Figure 28. As in Fig. 26, but for inputting a field.

Figure 29. The average throughput for outputting 100 3-D fields at
fine resolution. A total of 10 048 processes were used to run the test
model.

Figure 30. The data rearranging throughput when CIOFC1.0 out-
puts a 3-D field at fine resolution with round-robin decomposition
on a regular grid (blue line), with sequential decomposition on a
regular grid (orange line), and the post-processing throughput to
output a 3-D field at fine resolution on a cubed-sphere model grid
to a regular file grid (gray line).

of MCV (i.e., MCV currently outputs fields periodically), it
will enable MCV to conveniently achieve multiple time seg-
ments with different output periods in the future operational
applications. We believe that more newly developed models
can benefit from CIOFC1.0.

The empirical results in Sect. 4.3 revealed that the number
of I/O processes for fastest data I/O highly depends on the

Figure 31. The average throughput of post-processing, filesystem
writing, and the whole output when outputting 3-D fields for the
MCV model under a fine resolution. (The size of a 3-D field in the
files is about 1 GB.)

Figure 32. The whole throughput of XIOS2.0 and CIOFC1.0 when
outputting a 3-D field at fine resolution. Between 64 and 1024 pro-
cesses were used to run the test model. When running CIOFC1.0,
64, 128, 128, 256, and 256 I/O processes were used, respectively,
for the cases with 64, 128, 256, 512, and 1024 model processes.

field size. A component model generally inputs and outputs
2-D and 3-D fields in simulation, whereas there may be no
number of I/O processes that achieves the fastest data input
and output for 3-D and 2-D fields simultaneously. For exam-
ple, at the fine resolution, 512 and 15 I/O processes achieved

https://doi.org/10.5194/gmd-16-6285-2023 Geosci. Model Dev., 16, 6285–6308, 2023



6306 X. Yu et al.: CIOFC1.0

the fastest data output for 3-D and 2-D fields but did not
achieve the fastest input of a 3-D field. As a coupled model
can include different component models at different reso-
lutions, and thus different field sizes, different component
models may require different settings for the numbers of I/O
processes. CIOFC1.0 will become a part of the next genera-
tion of C-Coupler, C-Coupler3.0, which will allow users to
specify the I/O process numbers (e.g., for data input and out-
put of 2-D and 3-D fields, respectively) separately for each
component model. The optimal number of I/O processes may
be case dependent in terms of data size of a field, hardware
and file system of a parallel storage, structure and perfor-
mance of the network, usage of a high-performance com-
puter by multiple applications, and so forth. To find a near
optimal number of I/O processes, a straightforward solution
is to conduct profiling with a number of short simulations un-
der different numbers of I/O processes. Currently, a simple
strategy is used in CIOFC1.0 for evenly picking out I/O pro-
cesses from model processes according to the model process
IDs (for example, when picking out 100 I/O processes from
1000 model processes, the model process whose ID is an in-
tegral multiple of 10 will become an I/O process). Such a
strategy tries to make I/O processes evenly distributed among
computing nodes. More strategies may be required in the fu-
ture when taking into consideration different machine archi-
tectures.

Related works have already shown the effectiveness of
asynchronous I/O in further reducing the I/O overhead for
model simulations (Godoy et al., 2020; Yepes-Arbós et al.,
2022; Huang et al., 2014). Currently, CIOFC1.0 does not im-
plement asynchronous I/O. Our future work will seek to in-
corporate asynchronous I/O in C-Coupler3.0. We will also
consider how the various component models in a coupled
model cooperatively use the asynchronous I/O functionality.

Code and data availability. The source code of CIOFC1.0 can
be viewed and run with C-Coupler2.0 and the test model via
https://doi.org/10.5281/zenodo.7648563 (Yu et al., 2023). (Please
contact us for authorization before using CIOFC1.0 for developing
a system.)

Author contributions. XY contributed to the software design, was
responsible for code development, software testing, and experimen-
tal evaluation of CIOFC1.0, and co-led the writing of the paper.
LL initiated this research, was responsible for the motivation and
design of CIOFC1.0, supervised XY, and co-led the writing of the
paper. CS, ZZ, QJ, BZ, and HY contributed to code development,
software testing, and evaluation. BW contributed to the motivation
and evaluation. All authors contributed to the improvement of the
concepts and content of this work.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. This work was jointly supported in part
by both, the National Key Research Project of China (grant
nos. 2019YFA0606604 and 2017YFC1501903) and the Natural
Science Foundation of China (grant no. 42075157).

Financial support. This research has been jointly supported by
both, the National Key Research Project of China (grant nos.
2019YFA0606604 and 2017YFC1501903) and the Natural Science
Foundation of China (grant no. 42075157).

Review statement. This paper was edited by Richard Mills and re-
viewed by two anonymous referees.

References

Balaji, V., Anderson, J., Held, I., Winton, M., Durachta, J., Maly-
shev, S., and Stouffer, R. J.: The Exchange Grid: a mechanism
for data exchange between Earth System components on inde-
pendent grids, in: Lect. Notes. Comput. Sc, Elsevier, 179–186,
https://doi.org/10.1016/B978-044452206-1/50021-5, 2006.

Brunet, G., Jones, S., and Ruti, P. M.: Seamless prediction of the
Earth System: from minutes to months, Tech. Rep. WWOSC-
2014, World Meteorological Organization, 2015.

Chen, C., Li, X., Shen, X., and Xiao, F.: Global shallow water mod-
els based on multi-moment constrained finite volume method and
three quasi-uniform spherical grids, J. Comput. Phys., 271, 191–
223, https://doi.org/10.1016/j.jcp.2013.10.026, 2014.

Craig, A., Valcke, S., and Coquart, L.: Development and
performance of a new version of the OASIS coupler,
OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308,
https://doi.org/10.5194/gmd-10-3297-2017, 2017.

Craig, A. P., Jacob, R., Kauffman, B., Bettge, T., Larson, J.,
Ong, E., Ding, C., and He, Y.: CPL6: The new extensible,
high performance parallel coupler for the Community Cli-
mate System Model, Int. J. High. Perform. C., 19, 309–327,
https://doi.org/10.1177/1094342005056117, 2005.

Craig, A. P., Vertenstein, M., and Jacob, R.: A new flex-
ible coupler for earth system modeling developed for
CCSM4 and CESM1, Int. J. High. Perform. C., 26, 31–42,
https://doi.org/10.1177/1094342011428141, 2012.

Dennis, J., Edwards, J., Loy, R., Jacob, R., Mirin, A., Craig, A.,
and Vertenstein, M.: An application-level parallel I/O library for
Earth system models, Int. J. High Perform. Comput. Appl., 26,
43–53, 2011.

Godoy, W. F., Podhorszki, N., Wang, R., Atkins, C., Eisenhauer,
G., Gu, J., Davis, P., Choi, J., Germaschewski, K., and Huck,
K.: Adios 2: The adaptable input output system. a framework

Geosci. Model Dev., 16, 6285–6308, 2023 https://doi.org/10.5194/gmd-16-6285-2023

https://doi.org/10.5281/zenodo.7648563
https://doi.org/10.1016/B978-044452206-1/50021-5
https://doi.org/10.1016/j.jcp.2013.10.026
https://doi.org/10.5194/gmd-10-3297-2017
https://doi.org/10.1177/1094342005056117
https://doi.org/10.1177/1094342011428141


X. Yu et al.: CIOFC1.0 6307

for high-performance data management, SoftwareX, 12, 100561,
https://doi.org/10.1016/j.softx.2020.100561, 2020.

Griffies, S. M.: Elements of the modular ocean model (MOM),
GFDL Ocean Group Tech. Rep, 7, 47, 2012.

Hanke, M., Redler, R., Holfeld, T., and Yastremsky, M.: YAC 1.2.0:
new aspects for coupling software in Earth system modelling,
Geosci. Model Dev., 9, 2755–2769, https://doi.org/10.5194/gmd-
9-2755-2016, 2016.

Heinzeller, D., Duda, M. G., and Kunstmann, H.: Towards
convection-resolving, global atmospheric simulations with the
Model for Prediction Across Scales (MPAS) v3.1: an ex-
treme scaling experiment, Geosci. Model Dev., 9, 77–110,
https://doi.org/10.5194/gmd-9-77-2016, 2016.

Huang, X. M., Wang, W. C., Fu, H. H., Yang, G. W., Wang,
B., and Zhang, C.: A fast input/output library for high-
resolution climate models, Geosci. Model Dev., 7, 93–103,
https://doi.org/10.5194/gmd-7-93-2014, 2014.

Jacobsen, D. W., Gunzburger, M., Ringler, T., Burkardt, J.,
and Peterson, J.: Parallel algorithms for planar and spheri-
cal Delaunay construction with an application to centroidal
Voronoi tessellations, Geosci. Model Dev., 6, 1353–1365,
https://doi.org/10.5194/gmd-6-1353-2013, 2013.

Krishna, J., Wu, D., Kurc, T., Edwards, J., and Hartnett, E.: SCOR-
PIO, GitHub [software], https://github.com/E3SM-Project/
scorpio (last access: 30 November 2022), 2020.

Larson, J., Jacob, R., and Ong, E.: The model coupling toolkit:
A new Fortran90 toolkit for building multiphysics paral-
lel coupled models, Int. J. High. Perform. C., 19, 277–292,
https://doi.org/10.1177/1094342005056115, 2005.

Li, J., Liao, W.-k., Choudhary, A., Ross, R., Thakur, R., Gropp, W.,
Latham, R., Siegel, A., Gallagher, B., and Zingale, M.: Paral-
lel netCDF: A high-performance scientific I/O interface, SC’03:
Proceedings of the 2003 ACM/IEEE Conference on Supercom-
puting, 39–39, https://doi.org/10.1109/SC.2003.10053, 2003.

Li, L., Lin, P., Yu, Y., Wang, B., Zhou, T., Liu, L., Liu, J., Bao, Q.,
Xu, S., and Huang, W.: The flexible global ocean-atmosphere-
land system model, Grid-point Version 2: FGOALS-g2, Adv.
Atmos. Sci., 30, 543–560, https://doi.org/10.1007/s00376-012-
2140-6, 2013a.

Li, L., Wang, B., Dong, L., Liu, L., Shen, S., Hu, N., Sun, W., Wang,
Y., Huang, W., and Shi, X.: Evaluation of grid-point atmospheric
model of IAP LASG version 2 (GAMIL2), Adv. Atmos. Sci., 30,
855–867, https://doi.org/10.1007/s00376-013-2157-5, 2013b.

Li, L., Dong, L., Xie, J., Tang, Y., Xie, F., Guo, Z., Liu, H.,
Feng, T., Wang, L., and Pu, Y.: The GAMIL3: Model description
and evaluation, J. Geophys. Res.-Atmos., 125, e2020JD032574,
https://doi.org/10.1029/2020JD032574, 2020a.

Li, L., Yu, Y., Tang, Y., Lin, P., Xie, J., Song, M., Dong, L., Zhou,
T., Liu, L., and Wang, L.: The flexible global ocean-atmosphere-
land system model grid-point version 3 (fgoals-g3): description
and evaluation, J. Adv. Model. Earth. Sy., 12, e2019MS002012,
https://doi.org/10.1029/2019MS002012, 2020b.

Li, X., Chen, C., Shen, X., and Xiao, F. A Multimoment Constrained
Finite-Volume Model for Nonhydrostatic Atmospheric Dynam-
ics, Mon. Weather Rev., 141, 1216–1240, 2013.

Lin, P., Liu, H., Xue, W., Li, H., Jiang, J., Song, M., Song, Y., Wang,
F., and Zhang, M.: A coupled experiment with LICOM2 as the
ocean component of CESM1, J. Meteorol. Res-prc., 30, 76–92,
https://doi.org/10.1007/s13351-015-5045-3, 2016.

Lin, Y., Huang, X., Liang, Y., Qin, Y., Xu, S., Huang, W.,
Xu, F., Liu, L., Wang, Y., and Peng, Y.: Community Inte-
grated Earth System Model (CIESM): Description and Eval-
uation, J. Adv. Model. Earth. Sy, 12, e2019MS002036,
https://doi.org/10.1029/2019MS002036, 2020.

Liu, H., Lin, P., Yu, Y., and Zhang, X.: The baseline eval-
uation of LASG/IAP climate system ocean model (LI-
COM) version 2, Acta. Meteorol. Sin., 26, 318–329,
https://doi.org/10.1007/s13351-012-0305-y, 2012.

Liu, L., Yang, G., Wang, B., Zhang, C., Li, R., Zhang, Z., Ji,
Y., and Wang, L.: C-Coupler1: a Chinese community coupler
for Earth system modeling, Geosci. Model Dev., 7, 2281–2302,
https://doi.org/10.5194/gmd-7-2281-2014, 2014.

Liu, L., Zhang, C., Li, R., Wang, B., and Yang, G.: C-Coupler2:
a flexible and user-friendly community coupler for model
coupling and nesting, Geosci. Model Dev., 11, 3557–3586,
https://doi.org/10.5194/gmd-11-3557-2018, 2018.

Long, M. S., Yantosca, R., Nielsen, J. E., Keller, C. A., da
Silva, A., Sulprizio, M. P., Pawson, S., and Jacob, D. J.:
Development of a grid-independent GEOS-Chem chemical
transport model (v9-02) as an atmospheric chemistry module
for Earth system models, Geosci. Model Dev., 8, 595–602,
https://doi.org/10.5194/gmd-8-595-2015, 2015.

Palmer, B., Koontz, A., Schuchardt, K., Heikes, R., and Ran-
dall, D.: Efficient data IO for a parallel global cloud re-
solving model, Environ. Modell. Softw., 26, 1725–1735,
https://doi.org/10.1016/j.envsoft.2011.08.007, 2011.

Phillips, N. A.: A coordinate system having some special advan-
tages for numerical forecasting, J. Meteor., 14, 184–185, 1957.

Putman, W. M. and Lin, S.-J.: Finite-volume transport on
various cubed-sphere grids, J. Comput. Phys., 227, 55–78,
https://doi.org/10.1016/j.jcp.2007.07.022, 2007.

Redler, R., Valcke, S., and Ritzdorf, H.: OASIS4 – a coupling soft-
ware for next generation earth system modelling, Geosci. Model
Dev., 3, 87–104, https://doi.org/10.5194/gmd-3-87-2010, 2010.

Ren, S., Liang, X., Sun, Q., Yu, H., Tremblay, L. B., Lin, B.,
Mai, X., Zhao, F., Li, M., Liu, N., Chen, Z., and Zhang,
Y.: A fully coupled Arctic sea-ice–ocean–atmosphere model
(ArcIOAM v1.0) based on C-Coupler2: model description
and preliminary results, Geosci. Model Dev., 14, 1101–1124,
https://doi.org/10.5194/gmd-14-1101-2021, 2021.

Shi, R., Xu, F., Liu, L., Fan, Z., Yu, H., Li, H., Li, X.,
and Zhang, Y.: The effects of ocean surface waves on
global intraseasonal prediction: case studies with a coupled
CFSv2.0–WW3 system, Geosci. Model Dev., 15, 2345–2363,
https://doi.org/10.5194/gmd-15-2345-2022, 2022.

Simmons, A. J. and Burridge, D. M..: An Energy and Angular Mo-
mentum Conserving Finite-difference Scheme and Hybrid Verti-
cal Coordinates, Mon. Weather Rev., 1–9, 758–766, 1981.

Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Den-
nis, J., Dukowicz, J., Eden, C., Fox-Kemper, B., and Gent, P.: The
parallel ocean program (POP) reference manual ocean compo-
nent of the community climate system model (CCSM) and com-
munity earth system model (CESM), LAUR-01853, 141, 1–140,
2010.

Tang, J., Chen, C., Shen, X., Xiao, F., and Li, X.: A positivity-
preserving conservative Semi-Lagrangian Multi-moment Global
Transport Model on the Cubed Sphere, Adv. Atmos. Sci., 38,
1460–1473, https://doi.org/10.1007/s00376-021-0393-7, 2021.

https://doi.org/10.5194/gmd-16-6285-2023 Geosci. Model Dev., 16, 6285–6308, 2023

https://doi.org/10.1016/j.softx.2020.100561
https://doi.org/10.5194/gmd-9-2755-2016
https://doi.org/10.5194/gmd-9-2755-2016
https://doi.org/10.5194/gmd-9-77-2016
https://doi.org/10.5194/gmd-7-93-2014
https://doi.org/10.5194/gmd-6-1353-2013
https://github.com/E3SM-Project/scorpio
https://github.com/E3SM-Project/scorpio
https://doi.org/10.1177/1094342005056115
https://doi.org/10.1109/SC.2003.10053
https://doi.org/10.1007/s00376-012-2140-6
https://doi.org/10.1007/s00376-012-2140-6
https://doi.org/10.1007/s00376-013-2157-5
https://doi.org/10.1029/2020JD032574
https://doi.org/10.1029/2019MS002012
https://doi.org/10.1007/s13351-015-5045-3
https://doi.org/10.1029/2019MS002036
https://doi.org/10.1007/s13351-012-0305-y
https://doi.org/10.5194/gmd-7-2281-2014
https://doi.org/10.5194/gmd-11-3557-2018
https://doi.org/10.5194/gmd-8-595-2015
https://doi.org/10.1016/j.envsoft.2011.08.007
https://doi.org/10.1016/j.jcp.2007.07.022
https://doi.org/10.5194/gmd-3-87-2010
https://doi.org/10.5194/gmd-14-1101-2021
https://doi.org/10.5194/gmd-15-2345-2022
https://doi.org/10.1007/s00376-021-0393-7


6308 X. Yu et al.: CIOFC1.0

Thakur, R., Gropp, W., and Lusk, E.: Data sieving and collective
I/O in ROMIO, Proceedings. Frontiers’ 99. Seventh Symposium
on the Frontiers of Massively Parallel Computation, 182–189,
https://doi.org/10.1109/FMPC.1999.750599, 1999.

Valcke, S.: The OASIS3 coupler: a European climate mod-
elling community software, Geosci. Model Dev., 6, 373–388,
https://doi.org/10.5194/gmd-6-373-2013, 2013.

Valcke, S., Balaji, V., Craig, A., DeLuca, C., Dunlap, R.,
Ford, R. W., Jacob, R., Larson, J., O’Kuinghttons, R., Ri-
ley, G. D., and Vertenstein, M.: Coupling technologies for
Earth System Modelling, Geosci. Model Dev., 5, 1589–1596,
https://doi.org/10.5194/gmd-5-1589-2012, 2012.

Wang, G., Zhao, B., Qiao, F., and Zhao, C.: Rapid inten-
sification of Super Typhoon Haiyan: the important role of
a warm-core ocean eddy, Ocean. Dynam., 68, 1649–1661,
https://doi.org/10.1007/s10236-018-1217-x, 2018.

Yang, H., Liu, L., Zhang, C., Li, R., Sun, C., Yu, X., Yu, H.,
Zhang, Z., and Wang, B.: PatCC1: an efficient parallel triangula-
tion algorithm for spherical and planar grids with commonality
and parallel consistency, Geosci. Model Dev., 12, 3311–3328,
https://doi.org/10.5194/gmd-12-3311-2019, 2019.

Yepes-Arbós, X., Acosta, M. C., van den Oord, G., and Carver, G.:
Computational aspects and performance evaluation of the IFS-
XIOS integration, European Centre for Medium Range Weather
Forecasts, https://doi.org/10.21957/ggapxuny0, 2018.

Yepes-Arbós, X., van den Oord, G., Acosta, M. C., and Carver, G.
D.: Evaluation and optimisation of the I/O scalability for the next
generation of Earth system models: IFS CY43R3 and XIOS 2.0
integration as a case study, Geosci. Model Dev., 15, 379–394,
https://doi.org/10.5194/gmd-15-379-2022, 2022.

Yu, H., Liu, L., Sun, C., Li, R., Yu, X., Zhang, C., Zhang, Z.,
and Wang, B.: DiRong1.0: a distributed implementation for im-
proving routing network generation in model coupling, Geosci.
Model Dev., 13, 6253–6263, https://doi.org/10.5194/gmd-13-
6253-2020, 2020.

Yu, X., Liu, L., Sun, C., Jiang, Q., Zhao, B., Zhang, Z.,
Yu, H., and Wang, B.: CIOFC1.0: a Common Parallel In-
put/Output Framework Based on C-Coupler2.0, Zenodo [code],
https://doi.org/10.5281/zenodo.7648563, 2023.

Zhang, C., Liu, L., Yang, G., Li, R., and Wang, B.: A new adaptive
data transfer library for model coupling, Geosci. Model Dev., 9,
2099–2113, https://doi.org/10.5194/gmd-9-2099-2016, 2016.

Zhang, R. and Shen, X.: On the development of the GRAPES –
A new generation of the national operational NWP system in
China, Chinese Sci. B., 53, 3429–3432, 2008.

Zhao, B., Qiao, F., Cavaleri, L., Wang, G., Bertotti, L., and
Liu, L.: Sensitivity of typhoon modeling to surface waves
and rainfall, J. Geophys. Res.-Oceans, 122, 1702–1723,
https://doi.org/10.1002/2016JC012262, 2017.

Zou, Y., Xue, W., and Liu, S.: A case study of large-scale
parallel I/O analysis and optimization for numerical weather
prediction system, Future Gener. Comp. Sy., 37, 378–389,
https://doi.org/10.1016/j.future.2013.12.039, 2014.

Geosci. Model Dev., 16, 6285–6308, 2023 https://doi.org/10.5194/gmd-16-6285-2023

https://doi.org/10.1109/FMPC.1999.750599
https://doi.org/10.5194/gmd-6-373-2013
https://doi.org/10.5194/gmd-5-1589-2012
https://doi.org/10.1007/s10236-018-1217-x
https://doi.org/10.5194/gmd-12-3311-2019
https://doi.org/10.21957/ggapxuny0
https://doi.org/10.5194/gmd-15-379-2022
https://doi.org/10.5194/gmd-13-6253-2020
https://doi.org/10.5194/gmd-13-6253-2020
https://doi.org/10.5281/zenodo.7648563
https://doi.org/10.5194/gmd-9-2099-2016
https://doi.org/10.1002/2016JC012262
https://doi.org/10.1016/j.future.2013.12.039

	Abstract
	Introduction
	Overall design of CIOFC1.0
	Implementation of CIOFC1.0
	Implementation of the I/O configuration manager
	Configuration of file grids
	Configurations for outputting fields
	Configurations for inputting time series data fields

	Implementation of the spatial data interpolation manager
	Implementation of parallel I/O
	Implementation of the output time series manager
	Implementation of the output driving procedure
	Implementation corresponding to the API CCPL_ register_ configurable_ output_ handler
	Implementation corresponding to the API CCPL_ register_ normal_ output_ handler
	Implementation corresponding to the API CCPL_ handle_ normal_ explicit_ output

	Implementation of the input time series manager
	Implementation of the input driving procedure
	Implementation corresponding to the API CCPL_ register_ input_ handler
	Implementation corresponding to the API CCPL_ execute_ input_ handler
	Implementation corresponding to the API CCPL_ readin_ field_ from_ dataFile


	Evaluations of CIOFC1.0
	Test model
	Functionality of CIOFC1.0
	Correctness of the input and output functionalities
	Correctness of spatial interpolation
	Correctness of I/O time management

	Performance of CIOFC1.0

	Conclusions and discussion
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

