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Abstract. Accurate wind speed prediction is crucial for the
safe and efficient utilization of wind resources. However, cur-
rent single-value deterministic numerical weather prediction
methods employed by wind farms do not adequately meet
the actual needs of power grid dispatching. In this study,
we propose a new hybrid forecasting method for correct-
ing 10 m wind speed predictions made by the Weather Re-
search and Forecasting (WRF) model. Our approach incor-
porates variational mode decomposition (VMD), principal
component analysis (PCA), and five artificial intelligence
algorithms: deep belief network (DBN), multilayer percep-
tron (MLP), random forest (RF), eXtreme gradient boost-
ing (XGBoost), light gradient boosting machine (lightGBM),
and the Bayesian optimization algorithm (BOA). We first
predict wind speeds using the WRF model, with initial and
lateral boundary conditions from the Global Forecast Sys-
tem (GFS). We then perform two sets of experiments with
different input factors and apply BOA optimization to tune
the four artificial intelligence models, ultimately building
the final models. Furthermore, we compare the aforemen-
tioned five optimal artificial intelligence models suitable for
five provinces in southern China in the wintertime: VMD-

PCA-RF in December 2021 and VMD-PCA-lightGBM in
January 2022. We find that the VMD-PCA-RF evaluation in-
dices exhibit relative stability over nearly a year: the correla-
tion coefficient (R) is above 0.6, forecasting accuracy (FA) is
above 85 %, mean absolute error (MAE) is below 0.6 m s−1,
root mean square error (RMSE) is below 0.8 m s−1, rela-
tive mean absolute error (rMAE) is below 60 %, and relative
root mean square error (rRMSE) is below 75 %. Thus, for
its promising performance and excellent year-round robust-
ness, we recommend adopting the proposed VMD-PCA-RF
method for improved wind speed prediction in models.

1 Introduction

Sustainable energy plays a vital role in reducing carbon foot-
print and increasing system reliability (Hanifi et al., 2020).
As renewable energy sources have a negligible carbon foot-
print, they have become the preferred choice for many indus-
tries in the power sector (Dhiman and Deb, 2020). Among
these sources, wind energy is a crucial low-carbon energy

Published by Copernicus Publications on behalf of the European Geosciences Union.



6248 S. Zhou et al.: Correcting numerical weather prediction wind speed based on VMD-PCA-RF

technology with the potential to become a sustainable en-
ergy source (Tascikaraoglu and Uzunoglu, 2014). In 2022,
the global wind power capacity reached 906 GW, with a
9 % year-on-year increase due to a newly installed capac-
ity of 77.6 GW. The global onshore wind market increased
by 68.8 GW, while facing a 5 % growth decline compared to
the previous year. Such change is attributed to a slowdown in
China and the US, the world’s two largest wind markets that
account for over two-thirds of the world’s onshore wind farm
installations (Joyce and Feng, 2023). The instability and un-
predictability of wind power generation can lead to instabil-
ity in the power system. In addition, the decline of the wind
energy market also makes it more challenging to improve the
accuracy of wind speed forecasts. An accurate wind speed
prediction method is needed to reduce the instability risk of
the power system and the economic loss of wind power en-
terprises (Huang et al., 2019). Therefore, accurate and sta-
ble wind speed prediction (WSP) is very important for the
safe and stable operation of the power grid system and for
improving the utilization rate of wind energy and economic
development (Guo et al., 2021; Xiong et al., 2022; Tang et
al., 2021).

Current WSP algorithms are primarily categorized into
physical algorithms (Zhao et al., 2016), statistical algorithms
(Wang and Hu, 2015; Barthelmie et al., 1993), machine
learning (ML) algorithms (Huang et al., 2019; Salcedo-Sanz
et al., 2011; Ma et al., 2020), and hybrid algorithms (Deng
et al., 2020; Xu et al., 2021; Zhao et al., 2019; Xiong et al.,
2022; Tang et al., 2021). Physical methods, such as numer-
ical weather prediction (NWP), are commonly used in wind
speed forecasting. NWP, which accounts for atmospheric
processes and physical laws, solves discrete mass, momen-
tum, and energy conservation equations along with other fun-
damental physical principles, establishing itself as a widely
adopted and reliable physical method. Currently, the High-
resolution Limited Area Model (HIRLAM) (Služenikina and
Männik, 2016), the European Centre for Medium-Range
Weather Forecasts (ECMWF) model, the Fifth-Generation
Mesoscale Model (MM5) (Salcedo-Sanz et al., 2009), and
the Weather Research and Forecasting (WRF) model (Ska-
marock et al., 2021) are extensively utilized for wind speed
prediction. However, NWP modeling faces challenges due to
the selection of parameterization schemes, such as model mi-
crophysics and systematic errors, which exhibit temporal and
spatial differences and uncertainties. These uncertainties hin-
der the accuracy of NWP models in wind speed prediction,
making it difficult to meet the rising demands of the grid sys-
tem (Zhao et al., 2019; Xu et al., 2021).

Studies have demonstrated that enhancing the accuracy of
numerical weather prediction (NWP) models and correcting
prediction errors can effectively minimize the errors associ-
ated with wind speed prediction. These research endeavors
have typically sought to optimize the physical and dynamic
parameters of the NWP model (Cheng et al., 2013), refine
the model structure (Jiménez and Dudhia, 2012), or improve

the accuracy of model inputs through preprocessing and de-
noising techniques (Xu et al., 2015). Additionally, improving
initial field error through methods, such as target observation
and data assimilation (Williams et al., 2013), can also mini-
mize wind speed errors predicted by NWP models.

Physical methods are generally more appropriate for long-
term wind speed prediction, such as those 48–72 h in ad-
vance, while their practical application in short-term fore-
casting is limited (Zhao et al., 2019; Deng et al., 2020; James
et al., 2018). In contrast, statistical methods utilize histori-
cal data to establish a relationship between input and out-
put variables and are therefore well suited for short-term
wind speed prediction. They are usually time series mod-
els, such as autoregressive moving average (ARMA) (Erdem
and Shi, 2011) and autoregressive integrated moving average
(ARIMA) (Wang and Hu, 2015), whereas filtering models
(Cassola and Burlando, 2012; Chen and Yu, 2014), machine
learning models (Hu et al., 2013), and hybrid models (Huang
et al., 2019) have been gradually developed to further im-
prove wind speed prediction accuracy.

With purely statistical models becoming less suitable for
wind speed predictions beyond 6 h, the use of a combination
of physical and statistical methods has gained growing in-
terest (Zjavka, 2015; Xu et al., 2021). The error correction
model improves the accuracy of the NWP model by training
on the relationship between the NWP predictor variables and
the observed correlation variables (Sun et al., 2019). How-
ever, traditional error prediction models rely solely on his-
torical wind speed sequences as input factors (Deng et al.,
2020; Guo et al., 2021) and do not incorporate the character-
istic meteorological factors forecasted by the WRF model.
Studies have shown that considering all relevant historical
meteorological factors can lead to more accurate predictions
compared to only taking into account historical wind speed
(Z. Zhang et al., 2019). Therefore, it is crucial to include me-
teorological characteristic factors as input in the prediction
model.

For an error prediction model, wind speed is the most im-
portant input factor. Traditionally, the error prediction model
uses historical wind speed data as input, without any fea-
ture selection. Feature selection methods, such as filtering
methods, are commonly used in time series analysis. Cur-
rently, empirical mode decomposition (EMD) (Liu et al.,
2018; Guo et al., 2012), ensemble empirical mode decom-
position (EEMD) (Wang et al., 2017), wavelet decomposi-
tion (WD) (Y. Zhang et al., 2019), variational mode decom-
position (VMD) (Hu et al., 2021; D. Zhang et al., 2019),
and other filtering methods are used to select key features
in the wind speed data. As mentioned above, studies have
shown that these feature selection methods can effectively
extract the hidden features in the wind speed series to im-
prove wind speed prediction accuracy. However, despite the
effectiveness of wind speed filtering methods in wind speed
prediction, only a few studies have applied these methods to
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the correction of wind speed errors in NWP forecasting (Xu
et al., 2021; Li et al., 2022).

In addition, traditional error correction methods generally
adopt linear regression (Dong et al., 2013), multiple linear
regression (Liu et al., 2016), machine learning (Salcedo-Sanz
et al., 2011), and deep learning algorithms (Z. Zhang et al.,
2019). However, the efficacy of machine learning and deep
learning algorithms is highly dependent on the selection of
model parameters (Guo et al., 2021; Xiong et al., 2022). The
Bayesian optimization algorithm (Li and Shi, 2010; Guo et
al., 2021) is considered a relatively advanced algorithm for
optimizing model parameters and has been widely used in
MATLAB and Python packages.

In this study, we investigate a multi-step wind speed fore-
casting model that combines NWP simulation and an error
correction strategy. We present two sets of experiments di-
vided into three steps. (1) We use the first group of experi-
ments to extract hidden features from various meteorological
elements forecasted by NWP; the second group of experi-
ments mainly focuses on the wind speed forecast of NWP,
and the VMD-PCA algorithm is used to extract the hidden
features in the forecasted wind speed. Each set of experi-
mental input factors is matched with the actual 10 m wind
speed data of 410 stations in time and space. (2) We em-
ploy four advanced machine learning algorithms optimized
by the BOA algorithm and DBN deep learning algorithm
to train the two groups of experiments and perform 5-fold
cross-validation. (3) We analyze six distinct wind speed er-
ror indicators to compare and identify the most suitable
wind speed error correction schemes for the five southern
provinces (Yunnan, Guizhou, Guangxi, Guangdong, Hainan)
in winter and throughout most of the year. The remainder
of this paper is organized into sections discussing the effects
of the BOA-VMD-PCA approach, the interpretability of RF
feature importance, and the stability analysis of the proposed
models.

2 Data and methods

2.1 Data

The observed data come from the China Meteorological Ad-
ministration Land Data Assimilation System (CLDAS-V2.0)
real-time product dataset. According to the description of the
documents on the official website (https://data.cma.cn/data/
cdcdetail/dataCode/NAFP_CLDAS2.0_RT.html, last access:
13 October 2023), the dataset is constructed through the in-
tegration of multiple sources, including ground and satellite
data, and is refined using advanced techniques such as multi-
grid variational assimilation, physical inversion, and terrain
correction. This dataset exhibits superior quality in compar-
ison to other products, offering higher spatial and temporal
resolutions. The target observation data include 2 m air tem-
perature, 2 m specific humidity, 10 m wind speed, surface

Figure 1. WRF model simulation area elevation diagram (d02 rep-
resents the nested area of the second layer of the WRF model, and
the black triangles represent the meteorological sites).

pressure, and precipitation. These data are processed by the
China Meteorological Public Service Center to an equiva-
lent latitude and longitude grid scale, covering a geographi-
cal range of 15–32.97◦ N and 94–120.97◦ E. The spatial res-
olution of the grid is 0.03◦× 0.03◦ (3 km by 3 km), and the
temporal resolution is 1 h. The China Meteorological Pub-
lic Service Center applied the nearest neighbor interpolation
for precipitation and bilinear interpolation for the other four
meteorological elements with downscaling from 3 km to 410
sites. We select the 10 m wind speed data of 410 sites, as il-
lustrated in Fig. 1.

2.2 Methods

2.2.1 WRF simulation

The WRF 4.2 model (Skamarock et al., 2021), developed
by the National Center for Atmospheric Research (NCAR),
represents a new generation of mesoscale numerical models
with numerous applications in research forecasting. We use
the WRF model with forcing from the 0.25◦× 0.25◦ Global
Forecast System (GFS) model developed by the National
Centers for Environmental Prediction (NCEP). We use the
first 90 h of the daily GFS forecast initialized at 06:00 UTC
(hereafter all time zones are provided as UTC), with 3 h out-
put, to provide initial and boundary conditions for a daily
42 h WRF forecast, analyzing the 18–42 h forecast and dis-
carding the first 18 h as spinup. Surface static data, such
as terrain, soil data, and vegetation coverage, are derived
from the Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite with a resolution of 15 s (approximately
500 m). Incorporating a two-layer grid nesting configuration,
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the forecast area is illustrated in Fig. 1. The WRF configura-
tion process is detailed in Table 1. Given that the timescale
of the meteorological station data in the study area is 1 h,
the forecast data time interval of the WRF model is also set
to 1 h. As a widely used numerical weather forecast model,
the WRF model is suitable for weather studies from a few
meters to several thousand kilometers. Therefore, this paper
uses the WRF model to predict 10 m wind speed as the input
factor for the error correction model.

2.2.2 Variational mode decomposition

As a new filtering method, VMD is robust in feature selec-
tion. The VMD algorithm decomposes a time series signal
into several intrinsic mode functions (Isham et al., 2018). The
sum of the modes equals the original signal, and the sum of
the bandwidths is the smallest. The analysis signal is calcu-
lated using the Hilbert transform to estimate the modal band-
width. The optimization model is described as{

min{uk },{ωk }

{
K∑
k=1
|| ∂t

[(
δ(t)+

j

πt

)
uk(t)

]
e−jωk t

∣∣∣∣2
2

}
s.t.

K∑
k=1

uk = v, (1)

whereK is the total number of modes; uk is the decomposed
kth mode; wk is the corresponding center frequency; and v is
the time series signal, representing the wind speed sequence
predicted by the WRF model in this study.

The above-constrained problem can be transformed into
an unconstrained problem using the Lagrangian function:

L({uk} , {ωk} ,λ)= ω
n+1
k

=

∫
∞

0 ω
∣∣ûk(ω)∣∣2dω∫

∞

0

∣∣ûk(ω)∣∣2dω

K∑
k=1
||∂t

[(
δ(t)+

j

πt

)
uk(t)

×

]
e−jωk t ||22+ ||v(t)−

K∑
k=1

uk(t)||
2
2+

〈
λ(t),v(t)−

K∑
k=1

uk(t)

〉
, (2)

where α is the penalty parameter and λ(t) is the Lagrange
multiplier.

Then we update uk , wk , and λ using the alternating direc-
tion method of the multiplier:

ûn+1
k (ω)=

v̂(ω)−
∑
i 6=k

ûi(ω)+
λ̂(ω)

2

1+ 2α(ω−ωk)2
, (3)

ωn+1
k =

∫
∞

0 ω
∣∣ûk(ω)∣∣2dω∫

∞

0

∣∣ûk(ω)∣∣2dω
, (4)

λ̂n+1(ω)= λ̂n(ω)+ τ

[
v̂(ω)−

K∑
k=1

ûn+1
k (ω)

]
, (5)

where τ is the update parameter.
When the accuracy (left side of the following expression)

meets the following condition, uk , wk , and λ would stop up-
dating:

K∑
k=1

||ûn+1
k − ûnk

∣∣2
2

||ûnk ||
2
2

< ε, (6)

where ε is the tolerance of the convergence criterion.
The VMD algorithm is implemented to decompose the

wind speed signal predicted by the WRF model. When us-
ing multiple sub-signals instead of the original signal, more
features of the wind speed can be obtained. Therefore, it is
beneficial to improve the prediction accuracy when using the
sub-signal as input to the error correction model (Xu et al.,
2021; Li et al., 2022).

2.2.3 Principal component analysis

Subsequences obtained by VMD usually have several illu-
sory components. Using PCA to extract the principal compo-
nents of subsequences increases the number of features input
into the model and reduces the dimension of the data decom-
posed by VMD. When principal components (PCs) are used
as the input of the error prediction algorithm, the PCs fully
reflect the characteristics of the subsequence and reduce the
model complexity. The PCs yk , k = 1, 2, . . . ,K of the subse-
quence matrix U and the cumulative contribution rate ηn of
the first n principal components are expressed as

yk = c
′

kU, (7)

ηn =

n∑
k=1

λk

K∑
k=1

λk

, (8)

where ck is the corresponding characteristic unit vector, with
k = 1, 2, . . . , K; λk is the characteristic root, with λ1 ≥ λ2 ≥

. . .≥ λK .

2.2.4 Evaluation indicators

There are many commonly used predictive effect evaluation
indicators. This article uses the following evaluation indi-
cators: correlation coefficient (R), root mean square error
(RMSE), mean absolute error (MAE), relative root mean
square error (rRMSE), relative mean absolute error (rMAE),
and forecasting accuracy (FA). Six error indicators are used
to evaluate the correction results of short-term wind speed
forecasts of wind farms. The formula for calculating the er-
ror index is as follows:
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Table 1. WRF configuration scheme.

Model (version) WRF (V4.2)

Domains D1 D2
Horizontal grid points 600× 500 967× 535
1x (km) 9 3
Vertical layers 58
Longwave radiation RRTMG (Iacono et al., 2008)
Shortwave radiation RRTMG (Iacono et al., 2008)
Land surface Noah LSM (Chen et al., 1997)
Surface layer MYJ (Janjić, 1994)
Microphysics Thompson (Thompson et al., 2008)
Boundary layer MYJ (Janjić, 1994)
Cumulus Tiedtke (Tiedtke, 1989; C. Zhang et al., 2011)

R =

n∑
i

(yi − y)
(
ŷi − ŷ

)
√

n∑
i=1
(yi − y)

2

√
n∑
i=1

(
ŷi − ŷ

)2
, (9)

RMSE=

√√√√1
n

n∑
i=1

(
ŷi − yi

)2
, (10)

MAE=
1
n

n∑
i=1

∣∣ŷi − yi∣∣ , (11)

rRMSE=

√√√√1
n

n∑
i=1

(
ŷi − yi

)2
/

(
1
n

n∑
i=1

yi

)× 100 %,

(12)

rMAE=

(
1
n

n∑
i=1

∣∣ŷi − yi∣∣/(1
n

n∑
i=1

yi

))
× 100%, (13)

FA=Nr/Nf . (14)

Among them, n represents the number of samples, ŷi repre-
sents the ith predicted value, and yi represents the ith actual
value; Nr represents the number of wind speed absolute er-
rors not greater than 1 m s−1, and Nf represents the number
of research samples.

2.2.5 Proposed hybrid forecasting algorithms

This study used five machine learning algorithms to conduct
10 experiments following two main paths. The first path in-
volves increasing the meteorological variables possibly re-
lated to wind speed in the forecast field. The correlation be-
tween the WRF-predicted 10 m wind speed and the observed
wind speed is the highest. The purpose of the second experi-
mental path is using the VMD-PCA algorithm to dig out the
hidden wind speed characteristics of the 10 m forecast wind
speed, reduce the input of other meteorological factors such

as WD10 andD2, and further prove that the VMD-PCA algo-
rithm is effective before correcting the WRF-predicted wind
speed. The overarching goal is to achieve accurate correction
of the forecast field wind speed. The flowchart of the artifi-
cial intelligence models used to correct the WRF-predicted
wind speed for the two main experimental paths is illustrated
in Fig. 2 and comprises the following three steps:

Step 1 – data fusion, cleaning, and standardization. As
depicted in Fig. 2, this paper proposes two distinct ex-
perimental paths, with the primary difference being the
selection of input variables. In experiment 1, as shown
in Fig. 2, 12 sets of data are selected from the WRF fore-
cast field, including altitude (HGT), 10 m wind speed
(WS10), latitude (lat), longitude (long), surface pres-
sure (PRS), relative humidity (RH), 10 m meridional
wind (V10), 10 m zonal wind (U10), 2 m temperature
(T2), 2 m dew point temperature (D2), 10 m wind di-
rection (WD10), and hourly precipitation (PRE). Exper-
iment 2 derives eight sets of data by reducing the se-
lected WRF field forecast data to include only altitude,
10 m wind speed, latitude, longitude, surface pressure,
relative humidity, 2 m temperature, and hourly precipi-
tation. The focus is on unearthing hidden characteristic
information of forecast wind speed. In this experiment,
the wind speed is decomposed into nine intrinsic mode
functions (IMFks; k = 0, 1, 2, . . . , 8) using VMD. Sub-
sequently, a low-dimensional wind speed vector is ex-
tracted from the nine IMF components via PCA dimen-
sionality reduction (pca0, pca1, pca2), and all data are
concatenated to construct the input factors for the model
in experiment 2. The time points in the dataset where
missing values are located are eliminated. Experiment
1 (experiment 2) standardizes 12 sets of meteorological
elements (8 sets of meteorological elements in Fig. 3,
9 IMF components, and 3 PCA vectors in Fig. 4) and
wind speed observation data, respectively. Standardiza-
tion addresses the issue of varying meteorological fac-
tor values during training, which may result in different
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Figure 2. Flowchart of the artificial intelligence (AI) model used to correct WRF-predicted wind speeds in the two main experimental
pathways.
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Figure 3. Daily average hourly rainfall (a), surface pressure (b), 2 m temperature (c), 2 m relative humidity (d), 10 m wind speed (e),
2 m dew point temperature (f), and 10 m wind direction (g) which are located at Guangdong Lechang Station from 1 December 2021, to
28 February 2022. (February 2022 represents the training and verification sets, and December 2021 to January 2022 represents the testing
set).

Figure 4. Three-dimensional view of 12 wind speed components
after VMD and PCA processing of the 10 m forecast wind speed at
Lechang Station in Guangdong from 1 December 2021 to 28 Febru-
ary 2022.

contributions. In this paper, the 24 h forecast data cor-
respond to the observation data of the subsequent 24 h.
The dataset spans from 00:00 on 1 December 2021 to
23:00 on 28 February 2022, totaling 2160 h and encom-
passing 410 weather stations. Consequently, the original
dataset comprises 2160× 410 samples, with each sam-
ple containing 12 meteorological features in experiment
1 and 20 input features in experiment 2. While similar

past studies for wind speed correction from NWP mod-
els usually use several years for training and at least 1
year for testing, our periods are shorter, but the size of
our dataset is sufficient. For example, Sun et al. (2019)
used a dataset that contained 1827 d, from January 2012
to December 2016, using 143 grid points with a resolu-
tion of 0.5◦× 0.5◦ predicted by ECMWF, followed by
24 features for each sample, with a training set size of
1827× 143× 24 for each prediction time. Meanwhile,
the size of our training set is about 2160× 410× 12.
Therefore, even though it only took us a month to train,
for this project, we trained millions of data. Second, the
training data we used here were obtained through daily
operational runs of numerical weather forecasting, so it
would have taken several years to get an equal amount
of training data.

Step 2 – BOA optimization of AI models and cross-
validation. In this study, the dataset is partitioned into
training, validation, and test sets in accordance with
the time series. February 2022 serves as the training
and validation sets, while December 2021 and Jan-
uary 2022 constitute the test set. The training and vali-
dation sets are divided based on 5-fold cross-validation.
Both experiments employ five machine learning algo-
rithms (DBN, MLP, RF, XGBoost, and lightGBM) to
construct distinct machine learning models. Concur-
rently, this paper utilizes the BOA algorithm to tune the
parameters of all models, except for DBN, resulting in
the optimal hyperparameters for each model.

https://doi.org/10.5194/gmd-16-6247-2023 Geosci. Model Dev., 16, 6247–6266, 2023
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Step 3 – model evaluation and error analysis. The
trained machine learning models are applied to the test
set to obtain the revised wind speed data, and ultimately,
the accuracy of all models is assessed through the wind
speed evaluation index. The ultimate goal here is to
identify the best wind speed correction model suitable
for the entire year. Accordingly, the generalization of
all models is evaluated across other seasonal months of
the year, culminating in the selection of the best model.

3 Results

3.1 Experiment 1 evaluation

In experiment 1, the BOA optimization algorithm was ap-
plied to five AI models to correct the 10 m wind speed fore-
casted by WRF. There were 12 meteorological element fea-
tures to establish five different AI models (see Table S1 for
the hyperparameters of the five AI models). The training, val-
idation, and testing results for 10 m wind speed are shown in
Figs. S1–S5 in the Supplement. It is clear from Table 2 that
all models, except the DBN model, can fit the training set
data well. The DBN model exhibits the weakest performance
on both the training and the validation sets. Alternatively, the
lightGBM and XGBoost models demonstrate superior pre-
diction performance on the training set compared to the vali-
dation set. The scatters of the training sets of these two mod-
els accumulate on the 1 : 1 diagonal, indicating slight over-
fitting. As shown in Figs. S1–S5d, f, considering different
evaluation indices, the revision effects of the five models in 2
months demonstrate that RMSE in January 2022 is generally
lower than in December 2021, FA in January 2022 is gener-
ally higher than in December 2021, and R in January 2022
is generally lower than in December 2021. Overall, the pre-
diction performance of the five models in January 2022 sur-
passed that in December 2021. Furthermore, the lightGBM
and RF models exhibited the best performance among the
five models in the 2-month test sets, while the DBN model
had the least effective correction effect.

As illustrated in Fig. 5a, b, WS10 showed the strongest
positive correlation with WSobs, with the highest R of 0.51,
which was consistent with the highest variable importance
value of 31 % (23 %) in experiment 1 (experiment 2). In ad-
dition to WS10, experiment 1 (experiment 2) also had another
three dominant variables, namely lat, HGT, and long, with
importance values of 16 % (14 %), 15 % (15 %), and 15 %
(13 %), respectively. Meanwhile, in experiment 2, IMF0 and
pca0 generated by the VMD-PCA algorithm have a good im-
portance value of 9 % and 4 %, and the R values of them with
WSobs are as high as 0.47 and 0.45.

Concerning the importance of RF characteristics (Fig. 5a,
c), it is indisputable that the 10 m wind speed predicted by
WRF plays a dominant role in correcting the actual wind
speed. The ones following are latitude, longitude, and to-

pographic height, which represent spatial geographic infor-
mation, and the actual wind speed is closely related to ge-
ographic information. Subsequently, relative humidity is of
lesser importance. The distribution of the humidity field typ-
ically correlates with the movement of the atmosphere, which
is also closely related to wind speed. Certain meteorological
elements, such as rainfall, 2 m dew point temperature, and
2 m temperature, contribute less importance.

3.2 Experiment 2 evaluation

Experiment 2 builds upon experiment 1, concentrating on
the predicted 10 m wind speed by the WRF model. We use
the VMD algorithm to decompose the predicted wind speed
into nine components and use the PCA algorithm to extract
the main three principal components. In the RF feature im-
portance analysis (Fig. 5b, d), it is evident that the VMD
algorithm can decompose IMF0 and IMF1, with contribu-
tions surpassing those of 2 m temperature and precipitation,
respectively. The importance of the pca0 component, after
PCA extraction, reaches up to 8 %. What is particularly inter-
esting is that in the correlation analysis, the correlation val-
ues between the IMF0 and pca0 components and the actual
wind speed are 0.50 and 0.51, which are second only to the
forecasted wind speed.

From the indices (RMSE, FA, R) of the training and vali-
dation sets shown in Table 2, in comparison to the above five
artificial intelligence methods, the training results of VMD-
PCA-DBN are relatively inferior. VMD-PCA-lightGBM and
VMD-PCA-XGBoost models still train the processed data
effectively. According to the scatter density figure (Figs. 6a,
7a), the scatters are relatively concentrated on the 1 : 1 line.
From the indicators (RMSE, FA, R) of the testing set shown
in Figs. S6–S8d, f and 6–7d, f, the test results of the five
models in experiment 2 in December 2021 and January 2022
show that the error indices of RMSE and FA of each model
exhibit a minimal difference in 2 months. Nonetheless, disre-
garding the R results, the performance of the five models in
December 2021 is inferior to that in January 2022. The diur-
nal variation scatterplot of 2 months is tested. As is shown in
Figs. S6–S8d, f and 6–7d, f, the red scatters represent the
nighttime wind speed, which is more concentrated on the
1 : 1 line. In contrast, the blue scatters represent the after-
noon wind speed, which is slightly away from the 1 : 1 line.
This suggests that the correction effect of the five models
(VMD-PCA-lightGBM, VMD-PCA-XGBoost, VMD-PCA-
RF, VMD-PCA-DBN, and VMD-PCA-MLP) exhibits a no-
ticeable diurnal variation.

3.3 Comparison of the two experiments

Firstly, all 10 models effectively corrected the 10 m wind
speed forecasted by WRF. Tables S2 and S3 represent the
evaluation indices of wind speed errors predicted by the
10 models in December 2021 and January 2022. From
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Figure 5. Schematic diagram of correlation coefficients (represented by the WS10 and input variables) and feature importance (calculated by
the scikit-learn Python package) for two sets of experiments. Panels (a) and (c) represent experiment 1, and (b) and (d) represent experiment
2.

the two tables, it is evident that the VMD-PCA-RF and
VMD-PCA-lightGBM models have the best performance
in December 2021 and January 2022, respectively, with
the most comprehensive performance of the forecast indi-
cators. The MAE, RMSE, rMAE, rMAE, and FA for the
two models VMD-PCA-RF (VMD-PCA-lightGBM) were
0.46 m s−1 (0.45 m s−1), 0.62 m s−1 (0.63 m s−1), 37.36 %
(34.75 %), 50.39 % (48.65 %), and 91.79 % (91.49 %) in De-
cember 2021 (January 2022). Additionally, based on the

analysis of the Taylor chart (Fig. 8e, f) of the 10 models in
Fig. 8, it can also be seen that the scatter distance of VMD-
PCA-RF and VMD-PCA-lightGBM models is the closest to
the observed dotted black line and the black triangle position.
The two models show that the standard deviation is close
to the observed wind speed, with the lowest RMSE and the
highest R. Secondly, in the comparison of cumulative prob-
ability distributions, all models passed Kolmogorov’s 5 %
confidence interval test when the interval of wind speed is
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Table 2. Table of the evaluation indices of wind speed error trained and verified by the 10 models in February 2022.

Model training set validation set

R RMSE FA R RMSE FA
(m s−1) (m s−1)

VMD-PCA-lightGBM 0.96 0.33 0.99 0.88 0.53 0.94
VMD-PCA-XGBoost 0.96 0.31 1.00 0.87 0.54 0.94
VMD-PCA-RF 0.89 0.52 0.94 0.86 0.57 0.93
VMD-PCA-DBN 0.74 0.75 0.87 0.74 0.75 0.87
VMD-PCA-MLP 0.84 0.60 0.91 0.81 0.66 0.90
lightGBM 0.93 0.41 0.98 0.88 0.54 0.94
XGBoost 0.96 0.31 0.99 0.87 0.56 0.93
RF 0.89 0.52 0.94 0.86 0.57 0.93
DBN 0.76 0.73 0.88 0.76 0.73 0.88
MLP 0.85 0.59 0.92 0.83 0.62 0.91

Figure 6. The scatter density map compared with the actual 10 m wind speed: (a) 10-fold cross-validation training set of the VMD-PCA-RF
model in February 2022 and (b) 10-fold cross-validation validation set of the VMD-PCA-RF model in February 2022. The 24 h scatter map
compared with the actual 10 m wind speed: (c) WRF forecasts in December 2021, (d) the VMD-PCA-RF model forecasts in December 2021,
(e) WRF forecasts in January 2022, and (f) the VMD-PCA-RF model forecasts in January 2022.
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Figure 7. The scatter density map compared with the actual 10 m wind speed: (a) 10-fold cross-validation training set of the VMD-PCA-
lightGBM model in February 2022 and (b) 10-fold cross-validation validation set of the VMD-PCA-lightGBM model in February 2022. The
24 h scatter map compared with the actual 10 m wind speed: (c) WRF forecasts in December 2021, (d) the VMD-PCA-lightGBM model
forecasts in December 2021, (e) WRF forecasts in January 2022, and (f) the VMD-PCA-lightGBM model forecasts in January 2022.

0.5 m s−1 (Fig. 8a, d). However, when the interval of wind
speed is 0.2 m s−1 (Fig. 8b, e), the VMD-PCA-lightGBM
model deviated from Kolmogorov’s 5 % confidence interval
detection in December 2021. This indicates that the VMD-
PCA-RF model has a better predictive effect than the VMD-
PCA-lightGBM model in December 2021 when the actual
wind speed is within the range of 0.4–0.8 m s−1.

3.4 Spatial–temporal variations in the best models

Based on our comparative analysis results, we conclude
that the best-performing combination models in Decem-
ber 2021 and January 2022 are VMD-PCA-RF and VMD-
PCA-lightGBM, respectively. Figures 9 and S9 show the di-
urnal variation corrections of the two best models for a given
month, as well as the diurnal variation of wind speed in the
original WRF forecast. The wind speed of the original WRF

numerical weather forecast shows a noticeable overestima-
tion, which is confirmed in Fig. 7c and e. The scatters of the
WRF forecast predominantly deviate towards the upper-left
corner, with relatively low correlation coefficients, 0.56 and
0.23, respectively. Furthermore, the wind speed forecast by
WRF displays obvious diurnal variation traits, characterized
by large errors between the afternoon and evening, specif-
ically between 11:00 and 20:00 (Figs. 9a, S9a). Moreover,
the actual average wind speed in January 2022 deviates from
the range of 1 standard deviation of the WRF forecast wind
speed at 17:00 and 18:00 (Fig. S9a). This demonstrates that
the wind speed forecast by WRF is inaccurate and exhibits
substantial diurnal variation errors.

After the best model was corrected, the error in diurnal
variation was significantly reduced (Figs. 9b, S9b). First, the
average wind speed corrected by the best model is essentially
consistent with the actual average wind speed curve, with
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Figure 8. The cumulative distribution probability scatterplots of the actual wind speed and the predicted wind speed of the 10 models in
wind speed intervals of 0.5 m s−1 (a represents December 2021, d represents January 2022) and 0.2 m s−1 (b represents December 2021, e
represents January 2022), respectively; Taylor distribution map (c represents December 2021, f represents January 2022).
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Figure 9. VMD-PCA-lightGBM, VMD-PCA-RF, and WRF daily
variation in predicted and actual wind speeds in December 2021.
(The shaded areas represent an interval of 1 standard deviation,
which is a 68 % confidence interval).

minimal error and no diurnal variation. Second, the 1 stan-
dard deviation range of the corrected and actual wind speeds
is also well matched, indicating that the corrected and actual
wind speed distributions are consistent. The correction effect
at 16:00 and 17:00 on January 2022 is suboptimal, which
may be due to the insufficient generalization of the training
model and the excessive fluctuation of the actual wind speed
at these two time points.

The FA (Figs. 10a, S10a) and RMSE (Figs. 10b, S10b)
distribution of the WRF forecast 10 m wind speed at 410 sta-
tions in the five southern provinces shows that the 10 m wind
speed prediction effect of the WRF model in Yunnan is su-
perior to that in the other four provinces. In the regions of
Hainan, Guangxi, and Guangdong, the number of sites with
an RMSE for 10 m wind speed forecast in December 2021
ranging from 5.6 to 6.0 m s−1 was significantly higher than in
January 2022, especially in coastal areas (Figs. 10b, S10b).
In the Yunnan area, the FA of most WRF forecast station
10 m wind speeds exceeds 40 %, and the RMSE value is
mostly below 2.4 m s−1. Conversely, in other regions, such
as Guangxi, Guangdong, and Hainan, the terrain is relatively
flat. The FA of the 10 m wind speed forecast by WRF is
as low as 30 % at some stations, and the RMSE reaches up

to 5.4 m s−1. However, after the VMD-PCA-RF and VMD-
PCA-lightGBM models are corrected, the FA of most sta-
tions in the five southern provinces is as high as 90 %, and
the RMSE is as low as 0.6 m s−1. Moreover, in Guangxi,
Guangdong, and Hainan, where the WRF forecast effect is
subpar, the accuracy of the corrected 10 m wind speed by
VMD-PCA-RF (VMD-PCA-lightGBM) is significantly im-
proved.

4 Discussion

4.1 The effects of BOA-VMD-PCA

It is shown in Table S1 that the hyperparameters of the 10
models in the two experiments are different. Since the DBN
model is not added to the scikit-learn Python learning pack-
age, it is challenging to use the BOA algorithm for tuning
parameters. Apart from the DBN model, all the other mod-
els are optimized using the BOA algorithm. From the var-
ious evaluation indicators in Tables S2 and S3, the DBN
model, which does not use the BOA algorithm to adjust the
model parameters to obtain an optimal parameter configura-
tion, yields the worst prediction results in December 2021
and January 2022. Moreover, studies (Xiong et al., 2022)
have also shown that BOA can further improve the model’s
prediction accuracy by configuring optimal hyperparameters.
The hyperparameters, such as the number of neurons and
learning rate in the hidden layer, significantly impact the
model’s performance. When the same model is applied to
different datasets of two experiments, the BOA adaptively
obtains the optimal combination of hyperparameters, over-
coming the limitations of manual parameter adjustment (Guo
et al., 2021). This suggests that the selection of model hyper-
parameters introduces considerable uncertainty in our pre-
diction results. Therefore, the choice of optimization model
parameters represents one source of uncertainty in the cor-
rection results, which entails the complexity of parameter se-
lection. However, a more advanced parameter tuning method,
such as the BOA tuning algorithm, is essential.

The VMD is used to obtain unknown but meaningful fea-
tures hidden in the 10 m wind speed sequences predicted us-
ing WRF models (Li et al., 2022). In addition, the PCA can
extract important components of anemometer subsequences.
When the stationary subsequence serves as an input to the er-
ror correction model, it contains more valuable information
than the previous non-stationary wind speed sequences (Xu
et al., 2021).

The complexity of the input factors in this study is one of
the sources of uncertainty in the process of correcting WRF
prediction results. The input factors of the two experiments
are not identical. In the second set of experiments, the input
of meteorological factors is reduced based on the first set of
experiments, while component information of the 10 m wind
speed predicted by WRF is increased. Multiple wind speed
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Figure 10. FA (a, c) and RMSE (b, d) distribution maps of the VMD-PCA-RF and WRF models at 410 sites in five southern provinces in
December 2021.

components processed by VMD-PCA and noise reduction
are introduced. Among them, the importance of introduced
pca0 and IMF0 is approximately 5 %. In the 13-month test
sets, the correction accuracy of experiment 2 is no less than
the results of experiment 1 (Figs. S11, 12), indicating that
the 10 m wind speed components introduced by VMD-PCA
contribute positively to the correction results.

4.2 RF feature importance

To further understand the feature importance ranking of the
RF models, we divided the model prediction results and ac-
tual wind speeds of the 410 stations into 20 equal parts ac-
cording to terrain height above sea level (Fig. 11). First of all,
the actual wind speed in December 2021 and January 2022
varies with the height of the station, showing that the lower
the height of the station, the more significant the change in
wind speed. This relationship is associated with the wind
speed profile of the atmosphere, where wind speed increases
as height decreases. Secondly, the wind speed during the day
is generally greater than the wind speed at night, which is
related to the turbulent motion of the atmosphere during the
day. Solar radiation causes the atmosphere to mix, resulting
in convective movement. The 10 m wind speed at night is
affected by the cooling radiation of the surface, and the at-
mosphere is relatively stable.

The 10 m wind speed predicted by WRF has the highest
feature importance in the correction process of the RF mod-
els. Input factors with distinct geographic information, such
as latitude, longitude, and height, rank highly in feature im-
portance. Similarly, when Sun et al. (2019) used machine

learning to correct the 10 m wind speed predicted by the nu-
merical weather prediction model ECMWF, the characteris-
tic weight of the 10 m wind speed predicted by the model was
the highest, followed by the sea–land factor. Moreover, as the
10 m wind speed forecast by WRF increased, the instability
of the 10 m wind speed corrected by the 10 machine learn-
ing models gradually increased, and the correction accuracy
gradually decreased (Fig. 12). This partly explains the higher
importance of the 10 m wind speed forecast by WRF.

With 1 km as the center, the measured 10 m wind speed
is more variable in areas where the station terrain height
increases or decreases. However, the pink box of the 10 m
wind speed predicted by WRF becomes wider as the sta-
tion terrain height decreases (Fig. 11). The distance between
the gray box and the pink box is greater as the station ter-
rain height decreases. It shows that the 10 m wind speed
predicted by WRF has less accuracy with the station ter-
rain height decreases. The VMD-PCA-RF and VMD-PCA-
lightGBM models significantly reduce the variability in the
10 m wind speed predicted by WRF. When the height of the
station increases or decreases at 1 km, the correction intensity
tends to increase gradually. This further explains the higher
importance of the height factor in the RF model training.

4.3 Stability analysis of the proposed models

In order to identify the best model of the five southern
provinces and assess the model’s stability, we evaluated all
10 models over 13 different months. Figure 13 shows the
evaluation histogram of the 10 m wind speed predicted by
the 10 models in experiment 1 and experiment 2, as well
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Figure 11. The boxplots of the predicted wind speeds of the VMD-PCA-RF (yellow), VMD-PCA-lightGBM (blue), and WRF (pink) models
at 20 stations at different height intervals and the boxplots of the actual wind speeds (gray).

as the actual wind speed in various months. Meanwhile,
Figs. S11 and S12 can more effectively illustrate the daily
changes in the revised results of the 10 models in 13 differ-
ent months. As shown in Fig. 13, the evaluation indices of
the model trained in experiment 2, after VMD-PCA process-
ing, outperform those of the model trained in experiment 1.
The RF model demonstrates exceptional robustness, while
the MLP model exhibits the poorest performance. VMD-
PCA-RF evaluation indices are relatively stable across the
13 months, with a correlation coefficient R above 0.6, FA
above 85 %, MAE below 0.6 m s−1, RMSE below 0.8 m s−1,
rMAE below 60 %, and rRMSE below 75 %. However, the
robustness of the VMD-PCA-lightGBM and VMD-PCA-

XGBoost models is inferior to that of the VMD-PCA-RF
model, with all six evaluation indices performing worse than
the VMD-PCA-RF model as the seasons and months change.
In general, VMD-PCA-lightGBM is the superior wind speed
correction model for the winter, and VMD-PCA-RF per-
forms the best throughout the entire year in the five south-
ern provinces. In cases where ample machine CPU and other
hardware resources, as well as training time, are available, we
recommend using VMD-PCA-lightGBM for modeling each
season. However, when dealing with limited resources such
as a laptop and constrained training time, we recommend us-
ing VMD-PCA-RF to train data for a single month, as this
yields the most robust correction results.
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Figure 12. The prediction error boxplots of 10 models in different WRF prediction intervals.

5 Conclusions

In an effort to enhance the wind speed prediction perfor-
mance for wind farms, this study developed a WRF-based
multi-step wind speed prediction model. A hybrid error cor-
rection strategy combining BOA, VMD, PCA, and RF (light-
GBM) is proposed to increase the accuracy of WRF simula-
tions. The first group of experiments used various meteoro-
logical elements as input factors in a control experiment. In
the second group of experiments, the wind speed sequence
predicted by the WRF model was decomposed into multi-
ple IMFs using the VMD algorithm for feature extraction.
A principal component analysis method is used to extract
meaningful principal components from these subsequence
IMFs to improve computational efficiency. In the error cor-
rection model, RF (lightGBM) and other algorithms are used

to train the relationship between different input factors and
the actual wind speed error, respectively.

Through a case analysis of 410 stations in five south-
ern provinces in China, the following conclusions can be
drawn: (1) the machine learning models tuned by the BOA-
VMD-PCA algorithm exhibit a positive impact on wind
speed error correction; (2) feature importance analysis re-
vealed that the top eight contributing factors for correct-
ing WRF-forecasted wind speed include WRF forecast 10 m
wind speed (WS10), latitude, longitude, altitude, pca0 (pca0
physically represents the lowest-frequency wind speed series
after PCA treatment of all IMFks (k = 0, 1, 2, . . . , 8) sub-
series with reduced dimension), humidity, pressure, IMF0
(IMF0 physically represents the wind speed stationary se-
ries with a specific lowest center frequency after the original
wind speed series has been processed by VMD); (3) VMD-
PCA-RF and VMD-PCA-lightGBM are the most suitable
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Figure 13. Evaluation histograms of 10 m wind speed predicted by the 10 models in different months in experiment 1 and experiment 2 (a,
b, c, d, e, and f represent R, FA (%), MAE (m s−1), RMSE (m s−1), rMAE (%), and rRMSE (%), respectively).

wind speed correction algorithms for December 2021 and
January 2022, respectively. The MAE, RMSE, FA, rMAE,
rRMSE, and R of the corrected wind speed and the actual
wind speed are 0.46 (0.45), 0.62 m s−1 (0.63 m s−1), 37.36 %
(34.75 %), 50.39 % (48.65 %), 91.79 % (91.49 %), and 0.82
(0.78); and (4) the proposed wind speed correction model
(VMD-PCA-RF) demonstrates the highest prediction accu-
racy and stability in the five southern provinces in nearly a
year and at different heights. VMD-PCA-RF evaluation in-
dices for 13 months remain relatively stable: R is above 0.6,
FA is above 85 %, MAE is below 0.6 m s−1, RMSE is be-
low 0.8 m s−1, rMAE is below 60 %, and rRMSE is below
75 %. In future research, the proposed VMD-PCA-RF algo-

rithm can be extrapolated to the 3 km grid points of the five
southern provinces to generate a 3 km grid-corrected wind
speed product.

Code and data availability. The code and model are
available as a free-access repository on Zenodo at
https://doi.org/10.5281/zenodo.8108889 (Zhou, 2023). The
data are available as a free-access repository on Zenodo at
https://doi.org/10.5281/zenodo.8108889 (Zhou, 2023).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-16-6247-2023-supplement.
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