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Abstract. A particle-based cloud model was developed for
meter- to submeter-scale-resolution simulations of warm
clouds. Simplified cloud microphysics schemes have already
made meter-scale-resolution simulations feasible; however,
such schemes are based on empirical assumptions, and hence
they contain huge uncertainties. The super-droplet method
(SDM) is a promising candidate for cloud microphysical
process modeling and is a particle-based approach, making
fewer assumptions for the droplet size distributions. How-
ever, meter-scale-resolution simulations using the SDM are
not feasible even on existing high-end supercomputers be-
cause of high computational cost. In the present study, we
overcame challenges to realize such simulations. The contri-
butions of our work are as follows: (1) the uniform sampling
method is not suitable when dealing with a large number of
super-droplets (SDs). Hence, we developed a new initializa-
tion method for sampling SDs from a real droplet popula-
tion. These SDs can be used for simulating spatial resolu-
tions between meter and submeter scales. (2) We optimized
the SDM algorithm to achieve high performance by reducing
data movement and simplifying loop bodies using the con-
cept of effective resolution. The optimized algorithms can be
applied to a Fujitsu A64FX processor, and most of them are
also effective on other many-core CPUs and possibly graph-
ics processing units (GPUs). Warm-bubble experiments re-
vealed that the throughput of particle calculations per second
for the improved algorithms is 61.3 times faster than those
for the original SDM. In the case of shallow cumulous, the
simulation time when using the new SDM with 32-64 SDs

per cell is shorter than that of a bin method with 32 bins and
comparable to that of a two-moment bulk method. (3) Us-
ing the supercomputer Fugaku, we demonstrated that a nu-
merical experiment with 2 m resolution and 128 SDs per cell
covering 138247 x 3072m?> domain is possible. The num-
ber of grid points and SDs are 104 and 442 times, respec-
tively, those of the highest-resolution simulation performed
so far. Our numerical model exhibited 98 % weak scaling for
36 864 nodes, accounting for 23 % of the total system. The
simulation achieves 7.97 PFLOPS, 7.04 % of the peak ratio
for overall performance, and a simulation time for SDM of
2.86 x 10'3 particle - steps per second. Several challenges,
such as incorporating mixed-phase processes, inclusion of
terrain, and long-time integrations, remain, and our study
will also contribute to solving them. The developed model
enables us to study turbulence and microphysics processes
over a wide range of scales using combinations of direct nu-
merical simulation (DNS), laboratory experiments, and field
studies. We believe that our approach advances the scientific
understanding of clouds and contributes to reducing the un-
certainties of weather simulation and climate projection.

1 Introduction

Shallow clouds greatly affect the Earth’s energy budget, and
they are one of the essential sources of uncertainty in weather
prediction and climate projection (Stevens et al., 2005). Since
various processes affect the behavior of clouds, understand-
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ing the individual processes and their interactions is critical.
In particular, cloud droplets interact with turbulence over a
wide range of scales (Bodenschatz et al., 2010) in phenom-
ena such as entrainment and mixing as well as enhancement
of the collisional growth of droplets. Hence, numerical mod-
eling of these processes and model evaluation toward the
quantification and reduction of uncertainty are challenges in
the fields of weather and climate science.

Meanwhile, accurate numerical simulations of stratocu-
mulus clouds are difficult because of the presence of a sharp
inversion layer on the scale of several meters. Mellado et al.
(2018) suggest that combining the direct numerical simu-
lation (DNS) approach, which solves the original Navier—
Stokes equations while changing only the kinematic viscos-
ity (or Reynolds number) among the atmospheric parame-
ters, and the large-eddy simulation (LES) approach, which
solves low-pass-filtered Navier—Stokes equations for unre-
solved flow below filter length, can accelerate research on
related processes. Following Mellado et al. (2018), Schulz
and Mellado (2019) investigated the joint effect of droplet
sedimentation and wind shear on cloud-top entrainment and
found that their effects can be equally important for cloud-top
entrainment, while Akinlabi et al. (2019) estimated turbulent
kinetic energy. However, since they used saturation adjust-
ment for calculating clouds, their results do not include the
influence of detailed microphysics processes and their inter-
actions with entrainment and mixing as well as supersatu-
ration fluctuations (Cooper, 1989), which in turn affect the
radiation properties.

To incorporate the details of cloud processes into such
simulations, it is essential to remove the empirical assump-
tions on the droplet size distributions (DSDs) rather than us-
ing a bulk cloud microphysics scheme. We should use a so-
phisticated microphysical scheme such as a bin method and
a particle-based Lagrangian cloud microphysical scheme.
In particular, herein, we focus on the particle-based super-
droplet method (SDM) developed by Shima et al. (2009).
If meter- to submeter-scale-resolution simulations could be
performed using sophisticated microphysical schemes in
large domains, we could use a DNS-based approach (Mel-
lado et al., 2018) to simulate clouds and compare these sim-
ulations with small-scale numerical studies (Grabowski and
Wang, 2013) and observational studies on a laboratory scale
(Chang et al., 2016; Shaw et al., 2020) to field measurement
(Brenguier et al., 2011) scales. Such simulations may help
understand the origins of the uncertainty in the clouds and
their interactions with related processes. However, in real-
ity, only relatively low-resolution simulations are possible
using sophisticated microphysical schemes owing to their
high computational cost. For example, Shima et al. (2020)
recently extended the SDM to predict the morphology of ice
particles and reported that the computational resources of
the mixed-phase SDM are 30 times that of the two-moment
bulk method of Seiki and Nakajima (2014). To the best of
the authors’ knowledge, the previous studies by Sato et al.
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(2017, 2018) are possibly the state-of-the-art numerical ex-
periments on the largest computational scale yet. To inves-
tigate the sensitivity of nonprecipitating shallow cumulus
to spatial resolution, they performed numerical experiments
with spatial resolutions up to 6.25 m and 5 m (horizontal and
vertical, respectively) with 30 super-droplets (SDs) per cell
using the supercomputer K. They found that the highest spa-
tial resolution used in their study is sufficient for achieving
grid convergence of the cloud cover but not for the conver-
gence of cloud microphysical properties. For solutions of the
microphysical properties to converge with increasing spatial
resolution, it is necessary to reduce the vertical grid length
(Grabowski and Jarecka, 2015) for simulating the number
of activated droplets accurately and to maintain the aspect
ratio of the grid length close to 1 for turbulence statistics
(Nishizawa et al., 2015).

Nevertheless, using a sophisticated microphysical scheme
for meter-scale-resolution simulations remains a challenge.
One approach to cope with this difficulty is to await the de-
velopment of faster computers. However, single-core CPU
performance is no longer increasing according to Moore’s
law. Therefore, to take advantage of state-of-the-art super-
computers, we must adapt our numerical models to their
hardware design. Another solution to overcome the challenge
is to use the rapidly advancing data scientific approaches.
Seifert and Rasp (2020) developed a surrogate model of
cloud microphysics from training data using machine learn-
ing. Tong and Xue (2008) estimated the parameters of con-
ventional cloud microphysics models through data assimila-
tion to quantify and reduce parameter uncertainty. However,
these methods cannot make predictions beyond the train-
ing data or enhance the representation power of the bulk
cloud microphysics schemes. The Twomey SDM proposed
by Grabowski et al. (2018) could be used to reduce the com-
putational cost of a sophisticated model; in this SDM, only
cloud and rain droplet data are stored as SDs. However, the
Twomey SDM cannot incorporate the hysteresis effect of
haze droplets (Abade et al., 2018). Incorporating this effect
is necessary for reproducing entrainment and detrainment
when eddies cause the same droplets to activate or deacti-
vate in a short time at the cloud interface. In addition, since
clouds localize at multiple levels of hierarchy — from a sin-
gle cloud to cloud clusters — appropriate load balancing is
necessary for large-scale problems using domain decompo-
sition parallelization if the computational cost for cloud and
rain droplets is high. To the best of our knowledge, load bal-
ancing has not been applied to the SDM, even though some
studies have applied it to other simulations, such as plasma
simulations (Nakashima et al., 2009). The SDM and some
other plasma simulations are based on solving partial dif-
ferential equations that describe a coupled system of parti-
cles and cell-averaged variables, known as the particle-in-cell
(PIC) method. However, applying load balancing for weather
and climate models is not a good option because such codes
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are complicated and changes in dynamic load balancing can
affect the computational performance of other components.

In this study, we attempted meter-scale-resolution cloud
simulations with a sophisticated microphysical scheme by
optimizing and improving the SDM. This approach is re-
garded as a technical approach and has not been explored
much though it is a crucial approach. Our approach is based
on the SDM, which is robust to the difficulties caused by di-
mensionality for more complex problems and is free from
the numerical broadening of the DSD; furthermore, it can
be used even when the Smoluchowski equation for colli-
sional growth of droplets is invalid for small coalescence
volumes (see Grabowski et al., 2019; Morrison et al., 2020
and the references therein). We focus on optimization on the
Fujitsu A64FX processor, which is used in the supercom-
puter Fugaku. We designed cache-efficient codes and over-
came the difficulties in achieving high performance for the
PIC method based on the domain knowledge. To achieve
this goal, we reduced data movement and parallelization us-
ing single-instruction multiple-data (SIMD) for most calcu-
lations.

In addition, there are two potentially important aspects of
model improvement for meter- to submeter-scale-resolution
experiments with the SDM. One aspect is the initialization
for the SDM. In the SDM, we need to sample representa-
tive droplets from many real droplets to calculate the micro-
physical processes. Shima et al. (2020) used an importance-
sampling method to sample rare-state SDs more frequently
to improve the convergence of calculations of collision—
coalescence. However, when we sample many SDs for meter-
scale-resolution simulations, their number may exceed the
number of real droplets for rare-state SDs. The second aspect
is SD movement. In the SDM, the divergence at the position
of SDs calculated from interpolated velocity should be iden-
tical to that at the cell to ensure consistency in changes in
SD number density and air density (Grabowski et al., 2018).
However, the interpolation used by Grabowski et al. (2018)
only achieves first-order spatial accuracy, and the effects of
vortical and shear flows within a cell are not incorporated in
SD movement. Therefore, their scheme can introduce large
errors in the particle mixing calculations and deteriorate the
grid convergence of the mixing calculations, which may af-
fect the larger-scale phenomena due to the interactions be-
tween eddies and microphysics.

The remainder of this paper is organized as follows. In
Sect. 2, we describe and review the basic equations used in
our numerical model called the SCALE-SDM, target prob-
lem, and computers to be used. Section 3 describes the main
contributions in this study for optimizing and improving the
SDM. For this purpose, we first describe the domain de-
composition. Subsequently, we describe the development of
a new initialization method for the SDM and describe op-
timizations of each process in the SDM (SD movement,
activation—deactivation, condensation—evaporation, collision
and coalescence, and sorting for SDs). In Sect. 4, we evalu-
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ate the computational and physical performances of the new
SCALE-SDM in two test cases. We also compare our results
with those obtained with the same numerical model using a
two-moment bulk and bin methods as well as with those ob-
tained using the original SCALE-SDM. In Sect. 5, we eval-
uate the applicability of our model to large-scale problems
through weak scaling and discuss the detailed computational
performance. Section 6 discusses the challenges for incor-
porating mixed-phase processes, the inclusion of the terrain,
and long-time integration. We also discuss the possibilities
of achieving further high performance in current and future
computers. We summarize our main contributions in Sect. 7.

2 Overview of the problem
2.1 Governing equations

We use the fully compressible nonhydrostatic equations as
the governing equations for atmospheric flow. To simplify
the treatment of water in the SDM, only moist air (i.e., dry
air and vapor; aerosol particles or cloud and/or rain droplets
are excluded) is considered in the basic equations for at-
mospheric flow. The fully compressible equations require
a shorter time step (20_1—10_1) than that needed to solve
anelastic equations (advection time step). However, using nu-
merous message passing interface (MPI) nodes is advanta-
geous, as they do not require collective communications.

The basic equations are discretized using a finite-volume
method on the Arakawa C-grid. For solving the time evolu-
tion of dynamical variables and the water vapor mass mixing
ratio, the fifth-order upwind difference scheme (UDS5) and
the second-order central difference scheme discretize the ad-
vection terms and pressure gradient terms in the momentum
equations, respectively. We use the flux-corrected transport
(FCT) scheme (Zalesak, 1979) to ensure only positive defi-
niteness for the water vapor mass mixing ratio.

The time evolutions of dynamical variables during the At
interval are split into short time steps Atqyn associated with
acoustic waves and longer time steps for tracer advection
At,gv and physical processes Atphy. The classical four-stage
fourth-order Runge—Kutta method is used for short time
steps, and the three-stage Runge—Kutta method (Wicker and
Skamarock, 2002) is used for tracer advection. Unless oth-
erwise noted, At = At,gy = Atphy. Changes in the dynamic
variables caused by physical processes are calculated using
tendencies, which are assumed to be constant during At,qy.

The SDM is used as a cloud microphysics scheme.
In this study, only warm cloud processes are con-
sidered: movement, activation—deactivation, condensation—
evaporation, and collision—coalescence. Spontaneous and
collisional breakup processes were not considered here. In
the SDM, each SD has a set of attributes that represent
droplet characteristics. In this case, the data on SDs neces-
sary to describe time evolution are the position in 3D space

Geosci. Model Dev., 16, 6211-6245, 2023



6214

x, droplet radius R, number of real droplets (which we re-
fer to as multiplicity &), and the aerosol mass dissolved in a
droplet M. The ith SD moves according to the wind and falls
with terminal velocity, assuming that the velocity of each SD
reaches the terminal velocity instantaneously:

dx i

v; =U@x;) —v°(p(x;), P(x;). T(x;), Rj)ez, o = (D

where U is the air velocity at the position x, p is the air den-
sity, P is the atmospheric pressure, T is the temperature, e,
is the unit vector in the vertical positive direction, v™° is the
terminal velocity, v is the velocity of the SD, and ¢ is the
time. The midpoint method is used for time integration to
solve Eq. (1). We also need to specify a method for deter-
mining the velocity U at the position of the SDs, which will
be described in Sect. 3.3.2.

Activation—deactivation and condensation—evaporation
are represented by assuming that the SD radius R evolves
according to the Kohler theory:

12 (M’)] L@

a(T (x;))
R; R}

R-&—A( )| Skx)—1
ldl‘ - Xi Xi)—1—

where S is the saturation ratio; A is a function of the temper-
ature at the position, and it depends on the heat conductivity
and vapor diffusivity. The terms a/R and b/ R> represent the
curvature effect and the solute effect, respectively. The venti-
lation effect is ignored in Eq. (2). See Shima et al. (2020) for
the specific forms of A, a, and b since they are not important
here. A method to solve Eq. (2) is described in Sect. 3.3.3.

The collision—coalescence process is calculated using the
algorithm proposed by Shima et al. (2009). The volume in
which SDs are well mixed and capable of colliding is set to
have the same size as the control volume of the model grid.
If we consider all possible pairs of SDs (CN, where N is the
number of candidate SDs) to calculate collision—coalescence,
the computational complexity is of order O (N?). However,
their method considers only nonoverlapping pairs of SDs to
reduce the computational complexity to the order of O(N).
Hence, the obtained coalescence probability is low; this pa-
rameter was corrected to make it consistent with the actual
probability. Indeed, Unterstrasser et al. (2020) showed that
the method proposed by Shima et al. (2009), which they re-
ferred to as the all-or-nothing algorithm with linear sampling,
is suitable for problems when computational time is critical.

The Smagorinsky-Lilly scheme with the stratification ef-
fect (Brown et al.,, 1994) is used as a turbulent scheme
for LES. In the SDM, we do not consider the effect of
turbulent fluctuations on movement, activation—deactivation,
condensation—evaporation, and collision—coalescence due to
the high additional computational cost and memory space re-
quired to consider these effects. However, the effect of sub-
grid motion (or Brownian motion modeled for kinematic vis-
cous diffusion) should be included to ensure the convergence
to DNS with £ — 1 while fixing the spatial grid length (Mel-
lado et al., 2018); this will be addressed in future work.
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2.2 Target problem

We describe the final target problem in this study and com-
pare the problem size with that considered in Mellado et al.
(2018) and Sato et al. (2017); high-resolution numerical ex-
periments on shallow clouds were performed in these stud-
ies. Mellado et al. (2018) used the numerical settings of the
first research flight of the second Dynamics and Chemistry of
Marine Stratocumulus field campaign (DYCOMS-II RFO01)
(Stevens et al., 2005) to simulate nocturnal stratocumulus.
Sato et al. (2017) used the numerical settings of the Barbados
Oceanographic and Meteorological Experiment (BOMEX)
(Siebesma et al., 2003) to simulate shallow trade-wind cu-
mulous. In this study, we simulated the BOMEX case but
with much higher resolutions. The main computational pa-
rameters of the two previous studies and our study are listed
in Table 1. Here, the numbers of the time steps for 1 h time
integration are shown in the third and fourth columns of the
table.

Mellado et al. (2018) used anelastic equations with sat-
uration adjustment for calculating clouds. They performed
large-scale numerical experiments using a petascale super-
computer (Blue Gene/Q system supercomputer JUQUEEN
at Jiilich Supercomputing Centre). We also note that simi-
lar numerical experiments with a large number of grid points
(5120x5120x2048) were performed by Schulz and Mellado
(2019) using the same supercomputer. Meanwhile, Sato et al.
(2017) used fully compressible equations with the SDM and
performed 6.25 and 5 m resolution simulations of BOMEX
using the petascale supercomputer K. The number of time
steps for the dynamical process used in Sato et al. (2017) is
1 order of magnitude larger than that used in Mellado et al.
(2018). In addition, because of the high computational cost
of the SDM, Sato et al. (2017) used fewer grid points though
they used 14.8 % of the total system of supercomputer K.
We performed meter-scale-resolution numerical simulations

of BOMEX with \}/(6.25% x 5) /23 ~ 2.901 times higher res-
olution, 104 times more grid points, and 442 times more SDs
than Sato et al. (2017), thereby using 23.8 % of the total sys-
tem of the supercomputer Fugaku. The computational per-

formance of this simulation will be described in detail in
Sect. 5.2.

2.3 Target architecture

In this study, we mainly used computers equipped with Fu-
jitsu A64FX processors to evaluate the computational and
physical performance of the new model, SCALE-SDM. In
this section, we summarize the essential features and func-
tions of the computers.

A64FX is a CPU that adopts scalable vector extension
(SVE), an extension of the Armv8.2-a instruction set archi-
tecture. A64FX has 48 computing cores. Each CPU has four
nonuniform memory access nodes called the core memory
groups (CMGs). One core has an L1 cache of 64 KiB and
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Table 1. Comparison of model computational configurations among previous studies and this study. The last row shows the ratios of the

parameters used in Sato et al. (2017) to those used in this study.

No. of grid points  No. of SDs  Step (DYN)  Step (MP)  Grid length No. of nodes (system usage)
per cell
Mellado et al. (2018) 5120 x 5120 x 1280 - 60000 60000 1.1m -
Sato et al. (2017) 1152 x 1024 x 600 30 450000 45000 6.25m (vert.), 5m (horiz.) 12288 (14.8 %) of K
This study 6912 x 6912 x 1536 128 782 609 48913 2m 36864 (23.2 %) of Fugaku
Ratio 103.68 4.267 1.739 1.087 2.901! 3

Table 2. Size and bandwidth of the cache and memory for the Fujitsu A64FX processor.

L1D cache

L1D cache BW L2 cache (shared in CMG)

L2 cache BW HBM2 Memory BW

64KiB x48 11TBs™! 8 MiB x4

3.6TBs™! 32GB  1024GBs™!

can execute SVE-based 512-bit vector operations at 2.0 GHz
with two fused multiply—add units. Each CMG shares an L2
cache of 8 MiB and has high bandwidth memory (HBM?2)
of 32GB (bandwidth of 256 GBs~!). The theoretical peak
performance per node is 3.072 tera floating-point operations
per second (TFLOPS) for double precision (FP64). Super-
computer Fugaku has 158 976 nodes with a 6D torus shape.
The cache and memory performances, which are particularly
important for this study, are summarized in Table 2. A64FX
has high memory bandwidth comparable to a GPU. In ad-
dition, SVE can execute FP64, single-precision (FP32), 32-
byte integer (INT32), 16-byte floating-point number (FP16),
and 16-byte integer (INT16) calculations.

Fugaku and FX1000 have a power management func-
tion to improve the computational power performance (Grant
et al., 2016). Users can control the clock frequency (2.0 GHz
or 2.2GHz) and use one or two of the floating-point
pipelines.

The performance of Fugaku is 46 times the peak perfor-
mance and 30.7 times the memory bandwidth of K. In ad-
dition, using FP32 or FP16, the amount of data calculated
by single instruction and that transferred from memory dou-
bles or quadruples, respectively, and by optimizing a code
according to its characteristics, users can potentially achieve
a further 2 or 4 times higher effective peak performance, re-
spectively. Due to the high memory bandwidth of Fugaku,
its bytes per flops ratio (B/F) is 0.33, which is not too small
compared to that of K (B/F = 0.5).

Although this study describes optimizations for A64FX,
most of them can be applied to many-core general-purpose
CPUs such as Intel Xeon equipped with x86-64 instruc-
tion set architecture. For such generalization, please see
Sect. 3.3.1 with the parameters in Table 2 replaced with those
for the x86-64 architecture. Optimization using accelerators
such as GPUs is beyond the scope of this study. However,
since the applicability of this study to accelerators is nec-
essary for future high-performance computing, we discuss
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some differences between CPU-based and GPU-based ap-
proaches.

To map CPU-based optimization to GPU-based optimiza-
tion, the L1 cache of the CPU can be read as the register
file (for storing most frequently accessed data), L1 cache,
and shared memory; OpenMP parallelization can be read as
streaming multiprocessor parallelization for NVIDIA GPU
(or Compute Unite for AMD GPU); and MPI processes can
be read as the number of GPUs. In addition, since the mem-
ory bandwidth of one node of A64FX is comparable to that of
a single GPU (e.g., NVIDIA Tesla V100: 900 GB s~1 A100:
1555GBs™!), a comparison in terms of memory through-
put is reasonable if we assume that all the SD information
is on GPU memory. Although the approaches for cache and
memory optimization of the CPU and GPU are similar, those
for calculation optimization may differ. For example, GPUs
are not good for reduction calculations, such as calculating
the liquid water content in a cell from the SDs in the cell.
The current trend for supercomputers is to use heterogeneous
systems comprising both CPUs and GPUs as they provide ex-
cellent price performance. Nevertheless, memory bandwidth
is essential for weather and climate models, including the
SDM. Thus, it is not easy to achieve high performance un-
less the entire simulation can be handled only in GPUs.

The numerical model UWLCM (Arabas et al., 2015;
Dziekan et al., 2019; Dziekan and Zmijewski, 2022) uti-
lized GPUs for the SDM and CPUs for other processes, and
Dziekan and Zmijewski (2022) achieved 10-120 times faster
computations compared with CPU-only computations. Still,
the time to solution using the SDM is 8 times longer than the
bulk method. Although the CPU used had a lower bandwidth
memory compared with the GPU for the dynamical core and
the bulk method, we used a CPU with a higher bandwidth
memory for all processes. This is an advantage when the en-
tire simulation must be accelerated to reduce the time to so-
lution.

Geosci. Model Dev., 16, 6211-6245, 2023
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3 Numerical model
3.1 Domain decomposition

We used SCALE-RM (Scalable Computing for Advanced Li-
brary and Environment-Regional Model; Nishizawa et al.,
2015; Sato et al., 2015) as the development platform. We
adopted the hybrid type of three- and two-dimensional (3D
and 2D) domain decompositions using MPI. For 3D decom-
position, we denoted the numbers of MPI processes for the
x,y,and z axes as Ny, Ny, and N, respectively. For 2D de-
composition, we decomposed the x and y axes into N )%D and
Ny2D domains, respectively. Here, we set N)%D = N, -N,y; and
Ny2D = Ny- Ny such that N, = Ny;-Ny;. Then, the total num-
ber of MPI processes N is common, i.e., N = N, - Ny -N; =
N. %D -N. yzD. These two types of domain decompositions were
utilized depending on the type of computations. The hybrid
type of domain decomposition requires the conversion of grid
systems containing every N, of MPI processes. Note that the
cost should not be a significant issue compared to collective
communication across the entire MPI processes when N is
relatively small (N, < O(100)). The 3D domain decompo-
sition is suitable for dynamical processes because frequent
neighborhood communications are required to integrate short
time steps for acoustic waves; further, the amount of commu-
nication is less because of the small ratio of halos to the inner
grids. On the other hand, 2D domain decomposition is suit-
able for the SDM. As described later, since the number den-
sity of SDs is initialized proportional to the air density, the
number of computations varies vertically in a stratified at-
mosphere. In addition, variations in the computation amount
and data movement depend on whether clouds and precipi-
tation shafts are within the domain. If 3D decomposition is
used, domains without any clouds are likely, e.g., near the top
and bottom boundaries; such domains may lead to a drastic
load imbalance.

A drawback of the 3D domain decomposition is that it is
more likely to suffer from network congestion; further, there
will be hardware limitations on the number of simultaneous
communications due to the increase in the number of pro-
cesses in a neighborhood. The number of processes is 26
for 3D domain decomposition, while it is 8 for 2D domain
decomposition. In addition, the throughput of communica-
tion decreases for smaller message sizes. In this study, we
eliminated all unnecessary communications from the diago-
nal 20 directions and pack communications for each neigh-
borhood direction to the maximum extent possible to gain
high communication throughput. Communication time was
overlapped with computation time during the dynamics pro-
cess to reduce the time to solution.

3.2 Initialization of super-droplets

Although the SDM makes fewer assumptions about the DSD,
the accuracy of the prediction depends on the initializa-
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tion of the sampling of SDs from a vast number of real
droplets. Shima et al. (2009) first used the constant multi-
plicity method, which samples SDs from normalized aerosol
distribution. Further, Arabas and Shima (2013), Sato et al.
(2017), and Shima et al. (2020) used the uniform sampling
method, in which SDs were sampled from a uniform distri-
bution of the log of the aerosol dry radius to sample droplets
that are rare but important: for example, large droplets that
may trigger rain. Indeed, Unterstrasser et al. (2017) showed
that collision—coalescence calculations converge faster for
a given number of SDs if the dynamic range of multiplic-
ity is broader (i.e., the uniform sampling method), and they
converge slower if the constant multiplicity method is used.
However, owing to the broad dynamic range of the uniform
sampling method, some multiplicities obtained using this
method may fall below 1 if too many SDs are used to in-
crease the spatial resolution. In this case, since multiplicity
is stored as an integer type, some SDs will be cast to 0, and
the number of SDs and real droplets will decrease.

One approach to solve this problem is to allow multiplic-
ity to be a real number (floating-point number) (Unterstrasser
et al., 2017). The SDM can handle discrete and continuous
systems because its formulation is based on the stochastic
and discrete nature of clouds. Nevertheless, simulations us-
ing this method may not behave as discrete systems in a small
coalescence volume where the Smoluchowski equations do
not hold (Dziekan and Pawlowska, 2017).

Another approach to solve the deterioration of multiplic-
ity is to cast multiplicity from a floating-point number to an
integer by stochastic rounding (Connolly et al., 2021). For
example, let k be an integer, and let us set interval [k, k + 1]
that contains a real number /; then, / rounds to k with proba-
bility k + 1 — [ and to k + 1 with probability / — k. Hence, an
expected value obtained by the stochastic rounding process is
consistent with the original real number /. Thus, the sampling
accuracy does not decrease. Although this approach cannot
prevent a decrease in the SDs, it can prevent the decrease in
the number of real droplets statistically.

However, we can consider these approaches to not be opti-
mal for meter- to submeter-scale-resolution simulations. Un-
terstrasser et al. (2017)’s discussion was based on the result
of a box model, which is a closed system and requires a large
ensemble of simulations to obtain robust statistics. In prac-
tical 3D simulations, the cloud microphysics field fluctuates
spatiotemporally because of cloud dynamics and statistics in
finite samples. If we sample a vast number of SDs and if the
number of samples becomes close to the actual number of
droplets, imposing a constraint on the number is reasonable
so that the dynamic range of multiplicity will be small (i.e.,
more similar to constant multiplicity) and the multiplicity for
all SDs will be larger than 1. If such a method is used, we
expect rare droplets to exist only in some cells rather than
in every cell — this is a more natural continuation toward
discrete systems. How can we develop such an initialization
method? In addition, previous studies focused on collision—
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coalescence, but the sensitivity of cloud microphysical vari-
ability related to condensation—evaporation to SD initializa-
tion must also be considered. Against this background, which
type of initialization is better overall?

To develop a new initialization method, we considered the
simple method of generating a proposal distribution that con-
nects the uniform sampling method to the constant multiplic-
ity method. We chose the log of the aerosol dry radius logr
in the interval between rpi, and rmax as the random variable.
We denote an initial aerosol distribution as n(logr) and its
normalization as 7(logr). The relation between &, n, and the
proposal distribution p was given by Shima et al. (2020) as

n(logr)
Nspp(ogr) ’
where Nsp is the SD number concentration. In the following
explanation, we discretize the random variable into k bins
and nondimensionalize the bin width to 1 for simplicity.

We define a probability simplex, which is a set of dis-
cretized probability distributions as follows:

§(logr) = 3

k
Ci=1aeR':q;20, ) ai=17. 4)
i=1

Let us denote the discretized probability distribution of 7
as by € C; and the uniform distribution as b, € Cy. Then,
we define an «-weighted mean distribution a as the Fréchet
mean of by and b;:

a ="E0N( — ) L@ b)) +aLlla, b)), )

acCy

where £ is a metric to measure the distance between two
distributions. A distribution @ corresponds to a discretized
and nondimensionalized proposal distribution of p. When
the argument of the optimization is a function, the L> norm
is often used as the metric £. In our case, since the argu-
ment is a probability distribution, the Wasserstein distance
W, (Santambrogio, 2015; Peyré and Cuturi, 2019), which is
a metric that measures the distance between two probabil-
ity distributions, is a more natural choice. Several methods
have been proposed to obtain solutions in Eq. (5) numeri-
cally. One method is to regularize the optimization problem
of Eq. (5) by using the entropic regularized Sinkhorn distance
Sy (Cuturi, 2013; Schmitz et al., 2018) (y is the regulariza-
tion parameter) instead of the Wasserstein distance W22. An-
other method is to use displacement interpolation (McCann,
1997), which is an equivalent formulation of Eq. (5). We used
the method based on the Sinkhorn distance with y = 10™* in
Sect. 5. In this section and Sect. 4, we used the displacement
interpolation specialized for the case in which the random
variable is one-dimensional to solve Eq. (5) more accurately.
The specific forms of the Wasserstein distance W», Sinkhorn
distance S, and displacement interpolations are described in
Appendix A.

We verified this method of generating proposal distribu-
tions by adopting a specific aerosol distribution n(logr). We
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used the bimodal lognormal distribution of vanZanten et al.
(2011). This distribution is composed of ammonium bisulfate
with a number density of 105 cm™3. We chose the interval for
the random variable as ryin = 10nm and rpax = S um, and
we adopted k = 1000 bins and y = 10~* to calculate pro-
posal distributions.

The proposal probability distributions obtained using var-
ious « are shown in Fig. 1a. As « decreases, the uniform dis-
tribution gradually changes to the normalized aerosol distri-
bution, and probabilities (frequency for sampling) near both
ends of the random variable decrease.

The relationships between the aerosol dry radius and mul-
tiplicity for cell volume AV =23 m?3 and 128 AV ~! SDs are
shown in Fig. 1b. Multiplicity for the large dry radius of
aerosol falls below 1 for @ = 1.0 but exceeds 1 for ¢ = 0.8
for all samples.

Figure 1c shows the multiplicities of samples that are ob-
tained by sorting 2'® SDs by their multiplicity. The influ-
ence of o on changing the dynamic range of multiplicity
and the number of £ < 1 samples can be clearly observed in
Fig. lc. Since the relationship between the aerosol dry radius
and multiplicity does not change relatively with increasing
spatial resolution, we indicate & = 883 by dotted lines in
Fig. lc. As « decreases, the dynamic range of multiplicity
decreases, and the minimum log multiplicity increases by an
almost constant ratio when o > 0.2. When AV = 1m3, the
multiplicity of all samples exceeds 1 if o <0.7. Similarly,
the multiplicity exceeds 1 when AV =503 cm’ if & <0.6
and when AV =253 c¢m3 if « < 0.5. Since the numbers of
samples of & < 1 and 0.5 account for 7.82 % and 6.70 % of
total samples, respectively, many invalid SDs are sampled if
the uniform sampling method is used for 2 m resolution.

Figure 1d shows the results corresponding to Fig. 1c ob-
tained for the L? norm instead of W22 to generate proposal
distributions using Eq. (5). In this case, as o decreases, the
number of £ < 1 samples decreases (0.413 % of total sam-
ples when o = 0.1), but the dynamic range of multiplicity
does not change unless o = 0.0. Thus, these results suggest
that the manner of connecting the two distributions is critical.

How do aerosol statistics behave if we change « using
the above method? The probability distributions of the num-
ber and mass concentration of dry aerosol for various « are
shown in Fig. 2. We calculated the number and mass con-
centrations from 128 SDs. The multiplicity was cast to an
integer using stochastic rounding for AV =23 m3. We per-
formed 10 trials to obtain the probability distributions. The
statistics of real droplets, corresponding to the limit when
o = 0 and the exact expected value, are also shown by a dot-
ted red line in each panel of Fig. 2.

The expected values obtained by applying the importance-
sampling method do not depend on the proposal distribution
used. However, the variances of the expected values depend
on the ratio of the original distribution to the proposal dis-
tribution, and they become small when the original and pro-
posal distributions are similar. In fact, the aerosol number
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Figure 1. (a) Normalized aerosol distribution given by vanZanten et al. (2011) (bold black line) and proposal distributions used for sampling
(o = 0-1). The bold red line shows the proposal distribution used for the uniform sampling method. (b) Relationship between dry aerosol
radius and multiplicity when AV = 23 m? and 128 SDs per cell are sampled. (¢) Distribution obtained by sampling 216 §pg using the same
setup as (b) (AV = 23 m3 and 128 SDs per cell) and sorted by multiplicity in ascending order. (d) The distribution corresponding to (¢) when
the L2 norm is used as a metric. The dotted lines in (b), (¢), and (d) indicate & = 80 gl g2 g3
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Figure 2. Probability distributions of (a) aerosol number concentration and (b) aerosol mass concentration, obtained by sampling from
various proposal distributions. The red dotted lines show the exact expected values.
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concentration distribution is narrow when the proposal dis-
tribution used is the same as the original distribution (o« = 0)
(Fig. 2a), and it becomes broader as « increases. Thus, the
uniform sampling method introduces significant statistical
fluctuations (or confidence interval) of the aerosol number
concentration. In contrast, the aerosol mass concentration
distribution is narrow when o = 1.0, and it broadens as o de-
creases (Fig. 2b). Thus, the uniform sampling method results
in smaller statistical fluctuations of the aerosol mass concen-
tration. That is, as o decreases, the importance sampling for
the aerosol size distribution gradually changes its effect from
the reduction of the variance of mass concentration to the
reduction of the variance of number concentration. We note
that the results are almost identical when we store multiplic-
ity as a real-type floating-point number (not shown in the fig-
ures).

Based on the above considerations, the proposal distribu-
tions for « = 0.7 were used for the numerical experiments
described in Sect. 5. Although we focused on the statistical
fluctuations of the aerosol, & may also be a sensitive param-
eter influencing the cloud dynamical and statistical fluctua-
tions. Since this aspect is nontrivial because of the effect of
cloud dynamics, we will describe the results of the sensitivity
experiments for « in Sect. 4.3.

3.3 Model optimization
3.3.1 Strategy for acceleration

Based on the computers described in Sect. 2.3, we devised
a strategy for optimizing the SDM. All algorithms used in
the SDM have computational complexity of the order of SD
numbers. In general, the PIC applications tend to have small
B/F due to the large computations involved. This will also
hold for the SDM (except for the collision—coalescence pro-
cess) because of the velocity interpolation to the position of
SDs in movement, and the Newton iterations in activation—
deactivation involve many calculations. Then, one may ex-
pect that a high computational efficiency can be achieved
if the information for the grids and information for SDs are
both on the cache as this can prevent the memory throughput
being a bottleneck for the time to solution. However, since
the calculation pattern in the cloud microphysics scheme
changes depending on the presence of clouds and particle
types, the codes in a loop body are complicated and often in-
clude conditional branches. Hence, high efficiency is difficult
to achieve because of the difficulty of using SIMD vectoriza-
tion and software pipelining. In the following paragraphs, we
describe optimization based on two strategies: first, we de-
veloped cache-efficient codes by cache blocking (e.g., Lam
et al., 1991) and reduction of information for the SDs. Sec-
ond, we simplified the on-cache loop bodies to the maximum
extent possible by excluding conditional branches.

We first considered applying cache-blocking techniques to
the SDM. Since the L1 cache on A64FX is 64 KiB per core,
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32 data arrays, which consist of 8% grids of 4-byte elements
(each array consumes 2 KiB), can be stored on the L1 cache
simultaneously. Similarly, since the user-available L2 cache
is 7MiB (of 8 MiB)/12 = 597 KiB per core, two data arrays
which consist of 128 SDs per cell x83 can be stored on the
cache if an attribute of SDs consumes 4 bytes. Therefore, we
divide the grids into groups of less than 8> (hereafter called
“blocks”) for cache blocking. For each cloud microphysics
process, we integrated all SDs by one time step forward and
then moved on to the next process. In the original SDM, a
single loop is used for all SDs in the MPI domain. In this
study, we decomposed this single loop for all SDs into loops
for all blocks and all SDs in each block; subsequently, we
parallelized the loop for all blocks using OpenMP through
static scheduling with a chunk size of 1. Although applying
dynamic scheduling to the loop for all blocks may improve
load balancing among blocks, it is difficult to validate the
reproducibility of the stochastic processes, such as collision—
coalescence, because random seeds may change with every
execution.

To simplify the loop body for the SDs in a block, it is es-
sential that the gridded values in a block are a collection of
similar values because similar operations or calculations may
be applied to these values in such cases. The effective resolu-
tion of atmospheric simulations (Skamarock, 2004) imparts
such numerical effects on the grid fields. The volume, which
consists of 83 grids, is comparable with the volume of effec-
tive resolution, which is the smallest spatial scale at which
the energy spectrum is not distorted numerically by the spa-
tial discretization. For example, since the energy spectrum
obeys the —5/3 law roughly in the inertial range for LES, we
regard the effective resolution as the smallest spatial scale at
which the energy spectrum follows the —5/3 law. The typ-
ical effective resolution is 6 A—10A for planetary boundary
layer turbulence, which may depend on the numerical accu-
racy of the spatial discretization of basic equations as well as
the filtering length and shape of LES. The physical interpre-
tation of effective resolution is that the flow is well resolved
if the spatial scale is larger than 6A—10A, and the variabil-
ity decreases exponentially for scales smaller than this range.
We used this prior knowledge to simplify the loop body, as
described later.

3.3.2 Super-droplet movement

To save computational cost of the SDM, it would be advan-
tageous to maintain the SD number density in areas where
clouds are more likely to occur. This can be achieved by
resampling the SDs in clouds using methods such as SD
splitting and merging proposed by Unterstrasser and Solch
(2014), thereby optimizing the collision—coalescence calcu-
lations. Alternatively, one can automatically adjust the SD
number density following the SD movement. We describe
the second approach in detail.
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To maintain the SD number density in clouds globally, we
can initially place an increased number of SDs in the compu-
tational domain so that the SD number density is proportional
to air density. For example, when the parcel is lifted, the SD
number density decreases but may be maintained at the same
level as the surrounding SD number density. However, this
requires designing the SD movement scheme so that the time
evolution of the SD number density follows the changes in
air density. We focus on such schemes for grid-scale motion
since the effect of subgrid motion should be relatively small.
Because the air density decreases by the divergence of the
velocity fields, the interpolation of the velocity should be de-
veloped to provide the divergence at the position of SDs that
are calculated from interpolated velocity equal to divergence
at the cell. For such a scheme, a reduction in the variability of
the SD number density is also expected since the divergence
at the SDs does not differ within a cell.

In addition to ensuring consistency between changes in
SD number density and air density in velocity interpolation,
numerical accuracy of the interpolation may also be neces-
sary if small eddies and mixing are resolved in LES. Because
the SDM is free from numerical diffusion by solving the SD
movement in a Lagrangian manner, an interpolation scheme
of higher order than the first-order scheme (Grabowski et al.,
2018) may not significantly directly affect the phenomena
whose spatial scale is sufficiently larger than the grid scale.
However, as the flow within a cell is always irrotational
and is first-order convergent with respect to grid length, the
first-order scheme can deteriorate the numerical accuracy of
meter- to submeter-scale eddies. Furthermore, it can affect
large-scale phenomena through interactions between eddies
and microphysics.

In this study, a second-order spatial-accuracy-conservative
velocity interpolation (CVI) is developed on a 3D Arakawa
C-grid with these properties. While the CVIs of the second-
order spatial accuracy on 2D grids have been used in various
studies such as Jenny et al. (2001), few studies have explored
such CVIs on 3D grids. Recently, a CVI for a divergence-
free velocity field on a 3D A-grid was developed by Wang
et al. (2015). We extend the method used in their study for
the nondivergence-free velocity field on the C-grid. The ac-
curacy of the interpolation is of second order only within
the cell, and we allowed discontinuous velocity across the
cell. The derivation of our CVI using symbolic manipulation
(Python SymPy) is available in Matsushima et al. (2023b).
We only provide the specific form of the CVI in Appendix B.

The number of grid fields necessary to compute Eqgs. (B7)—
(B12) is important for computational optimization. While 24
elements (3 components x 8 vertices in a cell) are necessary
to calculate the velocity at an SD position for trilinear inter-
polation (and the same applies for second-order CVI on the
A-grid), only 18 elements are necessary for the second-order
CVI on the C-grid (Egs. B7)-(B12). That is, we can reduce
25 % of the velocity field data that occupy the L1 cache and
use the remaining cache for SDs. The change in the spatial
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distribution of SDs through SD movement considering the
spatial accuracy of CVI will be discussed in Sect. 4.2.

For warm clouds, since the information for the SD posi-
tion accounts for half of all attributes, reduction of these data
without loss of representation and prediction accuracy con-
tributes greatly to saving the overall memory capacity in the
SDM. However, using FP32 instead of FP64 may cause crit-
ical problems due to the relative inaccuracy and nonuniform
representation in the domain in the former case. In the fol-
lowing paragraphs, we describe these problems and a solu-
tion.

In the original SDM, the SD position is represented by its
absolute coordinate over the entire domain, but this method
requires many bits. However, since we already decomposed
the domain into blocks, using the relative position of SDs in
a block is numerically more efficient. For this case, we can
reduce the information per SD by subtracting the information
that arises from the partitioning of the domain by the MPI
process and a block from the global position.

If we represent the position of SDs as a relative position
in a block, additional calculations are necessary when an SD
crosses a block. Such calculations introduce rounding errors
for the SD position, and the cell position where the SD re-
sides may not be conserved before and after its calculations.
Let us consider an example. Consider a block that consists
of a grid. Let us define the relative position x of SDs be-
longing to x € [0, 1) and the machine epsilon for the preci-
sion of floating-point numbers as €. If SD crosses to the left
boundary and reaches —e /4 ¢ [0, 1), the relative position of
the SD is calculated by adding the values of right bound-
ary 1 in a new block to the SD position: —€/4+1 € [0, 1).
However, rounding to the nearest new position results in
the following: round(—e/4+41) =1 ¢ [0, 1). For FP32, since
€~1.2x1077=0.12um if we adopt meters as units, we
expect this does not happen frequently. However, if such a
case occurs even with only one SD of the vast number of
SDs in the domain, the computations may be terminated by
an out-of-array index. Although a simple solution is excep-
tion handling using min—max or floor—ceiling, this solution
may deteriorate the computational performance by making
the loop bodies more complex, and the correction bias in-
troduced by exception handling may be non-negligible when
low-precision arithmetic is used. To ensure safe computing,
the suitable approach is to calculate the relative position
without introducing numerical errors.

In this study, we represent the relative position using fixed-
point numbers. This format allows us to define the repre-
sentable position of SDs so that they are uniformly dis-
tributed in the domain, and integer-arithmetic-only calcula-
tions are used. Then, the same problem as in the case of
simply using floating-point numbers does not arise in prin-
ciple. Let us denote the range for which the SD is in cell £
as Zy = [k,k+ 1) and number of grid points along an axis
as b. Then the range of positions in a block is represented
as Z = Ui;ﬁ)zk. We define the conversion from z € Z to its
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fixed-point number representation g as the following affine
mapping:

-2(-[2)

When b <8, s =21 and when FP32 is used instead of
INT32, the range of —2%3 < ¢ <223 —1 is accurately rep-
resented by the mantissa of the floating-point numbers, and
the representation does not exceed the representable range
if it is only a few grids outside a block. With regard to the
velocity, the amount of movement per step is represented us-
ing a fixed-point number. We used FP32 instead of INT32
for the actual representation because the representable range
of fixed-point numbers is small and could easily exceed its
range by multiplication.

By using relative coordinates for the SD positions within
a block, the precision of their locations is varied when Az is
changed. This is because the change of position in real space
is 279 Az from Eq. (6) when the grid length is Az, and the
variation in ¢ is 1; this value is reduced for smaller Az. In
addition, the change in the relative position per time step is
2“viAtAz_1 when the time step is A¢; hence, it increases as
Az decreases, thus providing a better representation of the
relative position. At is set sufficiently small to ensure there
is no large deviation from the time step of tracer advection.
Then, the change in the relative position does not change
if the ratio of At to Az is kept constant. In real space, the
numerical representation accuracy of position and the arith-
metic operation accuracy of the numerical integration vary
with the spatial resolution and time step. Therefore, we can
maintain numerical precision for meter-scale-resolution sim-
ulations.

In terms of I/O, fixed-point numbers facilitate easy com-
pression. For example, the interval of representable posi-
tions ¢ in real space with Az =2m and a block size of 8
is 0.95 pm; this yields higher accuracy than the Kolmogorov
length of 1 mm and is thus always excessive as a represen-
tation for DNS and LES. We can discard unnecessary bits
when saving data on a disk.

3.3.3 Activation—condensation

The timescale of activation—deactivation of the cloud con-
densation nuclei (CCN) is short if the acrosol mass dissolved
in a droplet is small (Hoffmann, 2016; Arabas and Shima,
2017). Hence, the numerical integration of activation—
deactivation is classified as a stiff problem. To solve Eq. (2),
Hoffmann (2016) used the fourth-order Rosenbrock method
with adaptive time stepping. SCALE-SDM employs the one-
step backward differentiation formula (BDF1) with Newton
iterations. Although BDF1 has first-order accuracy, it has
good stability because it is an L-stable and implicit method,
and we can change time intervals easily because it is a single-
step method. However, with the implicit method, Newton it-
erations must be performed per SD, and the number of it-
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erations required for convergence of the solution differs for
each SD, thereby making vectorization a complicated task.
To overcome this difficulty, the original SDM uses exces-
sive Newton iterations (20-25) that are sufficient for all SDs
to converge, assuming that numerical experiments are per-
formed on a vector computer such as the Earth Simulator.
However, we cannot tune codes for both vector computers
and short-length vector computation by using SIMD instruc-
tions in the same way. In the original SDM code, the loop
body of time evolution by Eq. (2) is very complex because
of the presence of conditional branches, grid fields at the SD
position, and iterations; hence, it cannot issue SIMD instruc-
tions. Therefore, we devised a method to allow SIMD vec-
torization based on the previously described strategy.
Equation (2) is discretized by BDF1 as

a b
f(Rz):Rz—pz—ZAfA[S_I_WJFW]

=0, (N

where p is the current droplet radius, and R is the updated
droplet radius. Equation (7) has at most three solutions; in
other words, one or two of them may be spurious solutions.
However, the uniqueness of the solution is guaranteed analyt-
ically in the following two cases (see Appendix C for deriva-
tion). Case 1, which depends on At, is

25b [5b
Al= VAR ®

and Case 2, which depends on the environment and initial
condition, is

S—1<0, p*<=—. )
a

Case 1 implies that an activation timescale restricts the sta-
ble time step for each SD. Based on the estimation of tem-
perature 7 =294.5K at z ~ 600 m in the BOMEX profile,
when o = 0.7, 87.7 % of SDs satisfy the condition for Case
1if At =0.07365,91.0 % if At/2, and 100 % if At/2°. Sim-
ilarly, when o = 0.0, 91.4 % of SDs satisfy the condition
if At =0.0736, 97.6% if At/2, and 100 % if Az/2°. The
smaller the value of «, the smaller the frequency of sampling
small droplets and the greater the number of SDs that satisfy
the condition.

On the other hand, Case 2 is a condition for the initial size
of droplets p in an unsaturated environment. In the BOMEX
setup, since cloud fraction converges at a grid length of
12.5m (Sato et al., 2018), we can estimate the ratio of SDs
that satisfy Case 2 for higher resolutions by analyzing the
results of similar numerical experiments using new SCALE-
SDM. We define droplets of the size R < /3b/a as aerosol
particles (or haze droplets) and droplets that are larger than
J/3b/a and smaller than 40 um as cloud droplets. We do
not provide the detailed results, but the ratio of air density
weighted volume (i.e., mass) where cloud water exists in a
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cell to the total volume in the BOMEX case is approximately
1.5 % in a quasi-steady state based on the numerical experi-
ments with our developed model. Therefore, we estimate that
98.5 % of SDs satisfy the condition of Case 2 in the BOMEX
setup.

Hence, if we ensure the uniqueness of the solution by Case
1 for a cloudy cell and Case 2 for a cell with no clouds, the
frequency of exception handling during Newton iterations
can be largely reduced. We first check whether we need a
conditional branch of the unsaturated environment (of Case
2). Since the block has a small volume that is comparable
with the effective resolution, as discussed in Sect. 3.3.1, we
can convert the conditional branches of the unsaturated con-
dition for an SD to that for all SDs in a block with little or no
decreasing ratio of SDs to satisfy the condition. This conver-
sion of the conditional branch allows a loop body of time evo-
lution by Eq. (7) to be simple and specific to Case 2. There
is an exception: when the initial size of droplets is larger, it
is handled individually only if such droplets exist in a block.
If the environment is saturated, we ensure the uniqueness of
the solution with Case 1. In this case, we list the SDs that sat-
isfy Case 1 and perform Newton iterations according to the
list. Other SDs are calculated individually and using adaptive
time stepping for unstable cases.

By using this method, we find that almost all SDs sat-
isfy the uniqueness condition of the solution, and we should
only focus on optimizing these SDs. For tuning, the SDs in a
block are classified into groups of 1024 SDs (which fit in the
L1 cache), and each division calls the process of activation—
condensation. In each call, the time evolution of each SD is
calculated. A single loop for the updates of droplet radius
calculates two iterations because this is the maximum num-
ber of Newton iterations that can allow SIMD vectorization
and software pipelining without register spill of 32 registers
with the current compiler we used for A64FX. The loop is
repeated for all SDs in a division and breaks if the squares
of all droplet radii of SDs fall below the tolerance relative
error of 1072, Since the loop is vectorized by SIMD instruc-
tions and the number of iterations is often limited to two if
we use the previous droplet radius for the initial value for
the Newton iterations, the computational time for activation
and condensation is drastically less than that of the original
SDM, as shown later.

Note that the most frequently encountered case might de-
pend on the type of simulated clouds. For example, Case 2
is more often selected in an experiment when clouds occupy
a large fraction of the total domain volumes. However, the
calculations of both cases are almost identical; hence, the
computational performance depends more on the number of
iterations (i.e., the closeness between the initial guess and
solution) than the differences between the cases.
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3.3.4 Collision—coalescence

The computational cost of the collision—coalescence process
is already low for the algorithm developed by Shima et al.
(2009). We reduced the computational cost and data move-
ment further rather than achieving a higher efficiency against
theoretical peak performance of floating-point number oper-
ations. Since we used only the Hall kernel for coalescence,
the coalescence probability was small for two droplets of
small and similar sizes. Therefore, it is reasonable to ignore
the collision—coalescence process in cells with no clouds.
Notably, no cloud condition can precisely match Case 2 de-
scribed in Eq. (9). If even a single cloud droplet exists in
a block, it becomes necessary to sort the cell indices of
all SDs in the block. However, we can remove sorting if
cloud droplets do not exist in a block. We do not sort the
attributes of the SDs with cell indices as a key since they
are already sorted with a block as a key, as will be described
in Sect. 3.3.5. Further, some attributes are on the L2 cache
during the collision—coalescence process due to cache block-
ing. By not sorting the attributes of the SDs, the write mem-
ory access of SDs that do not coalesce is avoided. In the
BOMEX setup, 98.5 % of the SDs satisfy Case 2 and we do
not calculate the collision—coalescence of these SDs. There-
fore, we expect a drastic reduction in the computational cost
and data movement in some cases in which cloudy cells oc-
cupy only a small fraction of the total domain volume. This
method to reduce the computational cost potentially leads to
a large imbalance as in the Twomey SDM by Grabowski et al.
(2018). However, we also expect that the imbalance might be
mitigated better as cache blocking improves the worst-case
elapsed time among the MPI processes.

3.3.5 Sorting for super-droplets

To utilize cache blocking effectively during the simulation,
the SDs in a block should be contiguous on memory. This is
possible if we sort the attributes of the SDs using the block
ID as the sorting key when SDs move out of one block to an-
other. This sorting is different from the usual sorting in which
each block can send SDs to any other block; in the present
sorting, the direction of SD movement is limited to adjacent
blocks along x, y, and z axes. Such sorting is commonly used
in the field of high-performance computing. Although we did
not make any novel improvement, we summarize this process
because it is essential to our study, and some readers may not
be familiar with on-cache parallel sorting for the PIC method
used during computation (Decyk and Singh, 2014).

Since memory bandwidth generally limits sorting perfor-
mance, it is essential to reduce data movement. In our case,
the directions of data movement are limited, and most of
the SDs in a block are already sorted. We should adopt a
design such that these data are not moved and any unnec-
essary processes are not performed. We should also reduce
the buffer size for sorting because of the low memory ca-
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Figure 3. Data hierarchy (particle and cell, block, group) in each MPI process and algorithm for SD sorting toward the x direction in each
block. In the example, an MPI process has four groups, a group has four blocks, and a block has 4 x 4 cells. Using a list ({}) that stores the
indices, SD sorting is completed by copying in the SDs moving to adjacent blocks and copying back the SDs moving into the block. The
number of total SDs within a block is monitored by counting only the moving SDs.

pacity of A64FX, perform parallelization, and reduce com-
putational costs. However, ready-made sorting, such as the
counting sort, may not meet these requirements. Moreover,
in the worst case, such sorting may be slower than the main
computation in the SDM because of random access in the
memory.

In this study, we sorted the attributes of SDs in three steps
along the x, y, and z axes. Data hierarchy within each MPI
process and an example of one-dimensional SD sorting are
shown in Fig. 3. Each step requires at least two loops: copy-
ing in the SDs moving to adjacent blocks and copying back
the SDs moving into the block. Since the SDs in a block ei-
ther stay in the same block or only move one block forward
or backward, we did not sort the attributes of SDs with com-
binations as a key. Instead, we made a list of SDs to move to
reduce the computational costs and unnecessary data move-
ment. Copying in and back of the SDs to the working array
should be divided into small groups so that size of the work-
ing array for SDs is reduced by divisions. A loop for a block
in each step can be parallelized naturally by using OpenMP.
Although a few invalid SDs (buffer) may be included in the
arrays, this study does not attempt to defragment them ex-
plicitly, expecting that the SD movement and sorting with
blocks as a key per microphysical time step may cause de-
fragmenting.

This sorting can avoid the problems of using a ready-made
algorithm. The drawback of the current implementation is
that a larger buffer space is necessary for SD attribute arrays
because a block has few grids and the statistical fluctuation of
the number of SDs within a block is large. However, this can
be improved if we adaptively adjust the size of SD attribute
arrays in a block according to air density and statistical fluc-
tuations of SD numbers.
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4 Comparison of model performance
4.1 Methodology of performance evaluation

We evaluated the computational and physical performances
of the numerical models and microphysics schemes by com-
paring the results of the new SCALE-SDM with those ob-
tained with the same model but using the conventional cloud
microphysics schemes as well as with the results obtained
with the original SCALE-SDM. When comparing cloud mi-
crophysics schemes based on different concepts, we should
first consider convergence in spatiotemporal resolutions. The
two-moment bulk method imposes empirical assumptions on
the DSD, leading to less spatial variability or no dependency
on the spatial resolution, such as the spectral width of the
DSD. However, this does not mean that the simulated mi-
crophysics variables can converge quickly to increase the
spatial resolution; rather, this indicates that fair compari-
son in terms of spatial resolution is difficult in principle.
Because the bulk method solves the moments of the DSD,
one may assume that the timescale of the moments of the
DSD might be larger than that of droplets. However, San-
tos et al. (2020) performed eigenvalue analysis for a two-
moment bulk scheme and found that a fast mode (< 1 s) also
exists in the bulk scheme, which does not considerably de-
viate from the timescale of individual droplets. Based on
this fact, we use the same spatiotemporal resolutions to com-
pare the two-moment bulk method and sophisticated micro-
physics schemes.

Our optimization goal was to enable meter- to submeter-
scale-resolution experiments of shallow clouds to reduce un-
certainty and to contribute to solving future societal and sci-
entific problems. Therefore, we adopted a goal-oriented eval-
uation method instead of estimating the contributions of var-
ious innovations for improving the time to solution. Here, we
describe the evaluation of the time to solution and data pro-
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cessing speed (throughput) to ensure the usefulness of our
work for solving real problems. The throughput for the mi-
crophysics scheme, including the tracer advection of the wa-
ter and ice substances, is defined as follows:

Throughput = (total no. of tracers, bins or SDs)
X (total steps)/(elapsed time), (10)

where the number of steps and elapsed time correspond to the
microphysics scheme. To compare the cloud microphysics
scheme that is based on different concepts, we defined the
throughput for a bulk and a bin method by total tracers, in-
cluding all categories (e.g., water and ice) and statistics (e.g.,
number and mass). In contrast, we defined the throughput for
the SDM by sampling sizes in the data space (x, R, &, M).
This is because we can add any attributes with less computa-
tional cost and fewer data movements, and the effective num-
ber of attributes may change during time integration; hence,
considering many attributes for defining throughput is inap-
propriate. For example, because we give an initial value of
R as a stationary solution of the Eq. (2), R, &, and M are
initially correlated. We note that the number of tracers does
not account for the water vapor mass mixing ratio. An in-
creasing number of tracers or SDs improves the representa-
tion power for microphysics. Such an increase in the repre-
sentation power can be easily achieved for a bin method and
the SDM, but is difficult for a bulk method. We do not incor-
porate the number of SDs that are actually needed to obtain
converged solutions into the metric in Eq. (10) to avoid loss
of generality, and we will separately discuss the SD num-
bers. For example, the convergence properties can depend on
the variable to be checked, including liquid water content,
cloud droplet number concentration, and precipitation. They
can also depend on the setup and results of simulations, such
as cloud form, number of CCN, probability distributions used
for initialization, and random number properties.

To evaluate physical performance, we should confirm that
we obtained qualitatively comparable results faster with the
SDM than with the original SDM. In terms of throughput, we
should also confirm that we obtained qualitatively improved
numerical solutions if the elapsed time was approximately
the same.

Next, we briefly describe the original SCALE-SDM and
other cloud microphysics scheme used for performance eval-
uation. We refer to the SCALE-SDM version 5.2.6 (retrieved
6 June 2022 from Bitbucket, contrib/SDM_develop) as the
original SCALE-SDM. Meanwhile, we used the develop
branch, which branches off from version 5.4.5. The new
SCALE-SDM also includes a modification from SCALE ver-
sion 5.4.5 to generate an initial condition of water vapor mass
mixing ratio that is similar to that generated by the original
SCALE-SDM. The original SCALE-SDM was used only for
numerical experiments with the “original” SDM, as labeled
hereinafter. When focusing on some differences among cloud
microphysics schemes, we will refer to the SDM schemes as-
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sociated with new SCALE-SDM and original SCALE-SDM
as SDM-new and SDM-orig, respectively.

For the microphysics scheme, we used the Seiki and Naka-
jima (2014) scheme as a two-moment bulk method and
the Suzuki et al. (2010) scheme as a (one-moment) bin
method, both implemented in SCALE. The Seiki and Naka-
jima (2014) scheme solves the number and mass mixing ra-
tio of two water and three ice substance categories, while the
Suzuki et al. (2010) scheme solves the mass mixing ratio of
each bin in discretized DSD for water and ice substances.
We considered liquid-phase processes in the bin method and
considered liquid- or mixed-phase processes (only for dis-
cussion in Sect. 6.1) in the bulk scheme. We also intro-
duced the subgrid-scale evaporation model (Morrison and
Grabowski, 2008) in the Seiki and Nakajima (2014) scheme
for comparison with the SDM later, which considers a de-
crease in the cloud droplet number, depending on the en-
trainment and mixing scenario controlled by a parameter m
(ranges from O, indicating homogeneous mixing, to 1 for
inhomogeneous mixing). We did not consider the delayed
evaporation by mixing (Jarecka et al., 2013) because of the
increased computational cost, which should be addressed in
the future work. General optimization has been applied to the
Seiki and Nakajima (2014) scheme. In this scheme, SIMD in-
structions vectorized the innermost loop for the vertical grid
index, performing complex calculations on each water sub-
stance. The innermost calculations are divided by separate
loops to improve computational performance using cache.
However, there may still be room to find optimal loop fis-
sion and reordering calculations to reduce the latency of op-
erations. In terms of computational cost, optimization is ap-
plied to the Suzuki et al. (2010) scheme. However, the in-
nermost loops for bins are not vectorized for a small num-
ber of iterations. The future issues for optimization of the
mixed-phase SDM are discussed in Sect. 6.1. SCALE adopts
terrain-following coordinates and contains features of map
projection as a regional numerical model. However, since any
additional computational cost and data movement for these
mappings cannot be ignored for meter-scale-resolution simu-
lations, we excluded these features in the new SCALE-SDM
for the dynamical core, turbulence scheme, and microphysics
scheme.

4.2 Warm-bubble experiment

We first evaluated the computational and physical perfor-
mances via simple, idealized warm-bubble experiments. The
computational domain was 0.3km x 8km x 5km for x, y,
and z directions. For the lateral boundaries, doubly periodic
conditions were imposed on the atmospheric variables and
positions of the SDs. The grid length was 100 m. The initial
potential temperature 6, relative humidity (RH), and surface
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pressure Pyt were as follows:

6 =max (300K,
300K + 4.0 x 10_3Km_1(z—1000m)), (11)
RH =70%, (12)
Py =1013.25Pa. (13)

The air density was given to be in hydrostatic balance. We
provided a cosine-bell-type perturbation of the potential tem-
perature 6’ to the initial field to induce a thermal convection:

6" =2cos (= /mi ?
=2cos 5\/m1n(dx+du+dz,1) K, (14)

dy = (x —50m)?/(1200m)?,
dy = (y —2500m)?/(1200m)?,
d, = (z —500m)? /(400 m)>.

For the SDM, the initial aerosol distribution was the same as
that in vanZanten et al. (2011). For the two-moment bulk and
bin methods, we used Twomey’s activation formula and ac-
tivated CCN (CCNjy) to cloud droplets according to the su-
persaturation () as CCNyey = 10059462 cm—3. We used the
mixing scenario parameter m = 0.5 in the two-moment bulk
method as a typical value for the pristine case in Jarecka et al.
(2013). The uniform sampling method was used to initialize
the aerosol mass dissolved in a droplet and multiplicity. In
the SDM-orig, SDs were initialized so that they were ran-
domly distributed in the domain. In contrast, for SDM-new,
SDs were initialized such that the SD number density was
proportional to air density. In addition, to reduce the statisti-
cal fluctuations caused by a varying number of SDs in space,
we used the Sobol sequence (a low-discrepancy sequence)
instead of pseudorandom numbers in the four-dimensional
space of positions and aerosol dry radius in each block.

For the computational setup, the domain was decomposed
to four MPI processes of one node in the y direction using
FX1000 (A64FX, 2.2 GHz). Local domains in each MPI pro-
cess were further decomposed into blocks of size 3 x2 x 5 for
x, y, and z directions to apply cache blocking for SDM-new.
For the numerical precision of floating-point numbers, FP64
was used for the dynamics, two-moment bulk method, bin
method, and SDM-orig. In contrast, SDM-new uses mixed
precision, but calculations for SDs were primarily performed
by FP32. For time measurement, we inserted MPI_Wtime
and barrier synchronization at the start and end of the mea-
surement interval. In this experimental setting, there were no
background shear flows, and the simulated convective pre-
cipitation systems were localized and stationary in some MPI
processes, thereby imposing a huge load imbalance of com-
putational costs. However, the execution time was almost the
same in the presence and absence of barrier synchronization
owing to the stationarity of convective precipitation systems.
In addition, if the measurement interval was nested, the times
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Figure 4. Elapsed times of the total (circles) as well as tracer advec-
tion and SD tracking (squares) using the two-moment bulk method
(green), bin method (blue), SDM-orig (yellow), and SDM-new (red)
with different numbers of tracers or mean SDs per cell. Elapsed
times of the total (triangles) using the bin method with stochastic
collision—coalescence algorithms are also shown. Here, SD track-
ing included SD movement and sorting with a block as a key. The
dotted blue line is the line proportional to N 2, The dotted red and
yellow lines are lines proportional to N. The dotted green line indi-
cates a constant determined by N. Here, N is the number of tracers,
bins, or SDs per cell.

measured in its lowest level of nests did not include the wait
time between MPI processes. To this end, we evaluated the
performance of each microphysics subprocess without addi-
tional time. Time integrations were performed for 1800 s by
using Atgyn = 0.2s for dynamics and At =1.0s for other
physics processes.

Figure 4 shows the elapsed times of the warm-bubble ex-
periments for various cloud microphysics and different num-
bers of tracers or SDs per cell. Here, we show only the
elapsed times of those numerical simulations that were com-
pleted in less than 3 h and that required less than 28 GB of
memory. The elapsed time obtained using the bin method
(BIN) behaves as O(N?) because all possible pairs of
droplet size bins N are considered for calculating collision—
coalescence, while that of the SDM-orig behaves as O(N),
indicating that the collision—coalescence calculation devel-
oped by Shima et al. (2009) reduces the elapsed time. Sato
et al. (2009) proposed that the possible combinations of
collision—coalescence of the bin method (M < Cév ) could be
reduced using Monte Carlo integration, which is similar to
the SDM; hence, Fig. 4 also shows the results using this
option, in which we use M =16, 16, 16,32, 128, 1024, and
4096 for N =8, 16,32,64, 128,256, and 512, respectively.
We should use M o N for reducing the order of the computa-
tional complexity to O (N). However, when we set the num-
ber of bins to N > 128, the computations were terminated
due to large negative values of liquid water that fixers can-
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not compensate for. This is consistent with a previous study
(Sato et al., 2009), which stated that M > 0.056C§V should
be used. If we can use this option stably in the future, the
elapsed time of the bin method would become comparable to
that of SDM-orig. Even if we consider the above point, the
SDM-new drastically reduced the elapsed time compared to
the bin method for the same number of bins or SDs. More-
over, the elapsed time obtained using the SDM-new with 128
SDs per cell was about the same as that obtained using the
two-moment bulk method (BULK2MOM).

The results seem to contradict the intuition that computa-
tions using sophisticated cloud microphysics schemes take
more time than simpler schemes because of the high compu-
tational costs of the former. The main reason for the present
results is related to the tracer advection and SD tracking,
which is a bottleneck for the elapsed times, as described be-
low, rather than to other cloud microphysics subprocesses.
The elapsed times of tracer advection and SD tracking are
shown in Fig. 4. The elapsed times of tracer advection and
SD tracking obtained using the bin method and SDM-orig are
comparable and increase as O (N). For small N, the elapsed
time of tracer advection and SD tracking for the SDM-new
up to 32 SDs per cell is shorter than that for the two-moment
bulk method, which is advantageous in terms of the elapsed
time of simulations.

The advantages of SDM-new against the two-moment
bulk for calculating tracer and SD dynamics are fewer cal-
culations, higher compactness, and more reasonable use of
low-precision arithmetic for SD tracking than for tracer ad-
vection. While tracer advection requires a high-order dif-
ference scheme to reduce the effect of numerical viscos-
ity, SD tracking does not require a high-order scheme. We
used Fujitsu’s performance analysis tool (fapp) to measure
the number of floating-point operations (FLOPs). We found
303.915 FLOPs per grid and tracer for tracer advection
(UDS) excluding FCT and 164.3 FLOPs per SD for SD
movement using CVI of second-order spatial accuracy. Since
the calculation of UDS requires values at five grids and halo
regions of width 3 in each direction, the calculations are not
localized, and a relatively larger amount of communication is
necessary. For SD tracking, the calculations for a single SD
require only grids that contain the SD, and communication is
necessary only when the SD moves out of the MPI process.
If FP32 is used for tracer advection, one of the advantages
of the SDM-new over the two-moment bulk method is lost.
However, the calculations of tracer advection require differ-
ential operations, which may cause cancellation of the signif-
icant digits. This likely cannot be ignored for high-resolution
simulations where the amplitude of small-scale perturbations
from the mean state decreases, especially for variables that
have stratified structures (e.g., water vapor mass mixing ra-
tio). On the other hand, for the proposed SD tracking, numer-
ical representation precision of the SD positions in physical
space becomes more accurate as the grid length and time in-
terval decrease simultaneously. Therefore, the use of FP32
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for high-resolution simulations is reasonable. Of course, an-
other important factor behind these results is the fact that the
calculations of other SDM subprocesses are no longer bottle-
necks in SDM-new.

Now, we compare computational performance among dif-
ferent cloud microphysics schemes in terms of data through-
put. The throughput of the microphysics scheme (tracer ad-
vection, SD tracking, and microphysics subprocesses) for a
different number of mean SDs per cell is shown in Fig. 5a.
The throughput of the bin method decreases as the number
of bins increases, while that of the SDM-orig remains almost
constant but shows a slightly decreasing trend as the num-
ber of mean SDs per cell increases. The throughput of both
methods is smaller than that of the two-moment bulk method;
hence, the elapsed time does not become smaller than that
obtained using the two-moment bulk method. In contrast to
SDM-orig, the throughput of SDM-new is similar to that of
the two-moment bulk method for eight SDs per cell, and it
increases as the number of SDs increases. Because of the in-
crease in the throughput, which is related to the increased
computational performance and the grid calculations, the
elapsed time obtained using the SDM-new increases more
gradually than linearly with the increasing number of SDs.
Hence, the elapsed time becomes comparable with that ob-
tained using the two-moment bulk method even for larger
SDs (~ 256). However, as with the SDM-orig, the through-
put of the SDM-new shows a decreasing trend when the
number of mean SDs per cell exceeds 1024. The maximum
throughput of the SDM-new is 61.3 and 20.1 times that of
SDM-orig and two-moment bulk method, respectively.

The throughputs of subprocesses obtained by SDM-orig
and SDM-new are shown in Fig. 5b. The throughputs ob-
tained by SDM-orig are almost constant with respect to the
number of SDs per cell. As the number of SDs increases,
the throughput of SD tracking converges to a constant, and
the throughput of collision—coalescence decreases from ap-
proximately 256 SDs per cell. The throughput obtained by
SDM-new is larger than that obtained by SDM-orig for all
subprocesses. As the number of mean SDs per cell increases,
the throughputs of SD tracking and condensation increase
and converge to constants. The throughput of collision—
coalescence increases to about 256 SDs per cell but then de-
creases as in the case of SDM-orig. The minimum through-
put of collision—coalescence behaves as the mean through-
put, while the maximum throughput increases as the number
of SDs per cell increases. This finding reflects the fact that
the throughput decreases only in MPI processes that con-
tain clouds in the domain because the L1 and L2 cache miss
ratio increases because the random access in the cache and
memory during collision—coalescence calculations increases
for a large number of SDs. The maximum throughputs of
SD tracking, condensation, and collision—coalescence ob-
tained by the SDM-new are 21.3, 251, and 73.1 times that
obtained by SDM-orig, respectively. In this study, we did
not examine the contributed innovations for the acceleration
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Figure 5. (a) Data throughput of microphysics for using the two-moment bulk method (green), bin method (blue), bin method with stochastic
collision—coalescence algorithms (blue triangles), SDM-orig (yellow), and SDM-new (red) with different numbers of tracers or mean SDs
per cell. (b) The mean data throughput of SD tracking (SD movement and sorting with a block as a key), condensation process, and collision—
coalescence using SDM-orig and SDM-new with different numbers of mean SDs per cell. The dotted lines and solid lines show the mean
data throughput for SDM-orig and SDM-new, respectively. The range between the minimum and maximum throughputs of condensation and
collision—coalescence for SDM-new is indicated by the colors because the load imbalance is significant for only SDM-new.

of the throughput in detail. However, the acceleration rate
of the throughput is roughly explained by SIMD vectoriza-
tion (x16) for SD tracking and also reduced computational
cost by terminating Newton iterations faster (x 16 x 10) for
condensation. Before optimization, the condensation calcu-
lations were the bottleneck of SDM-orig. After optimization,
SD tracking calculations were the bottleneck of SDM-new.

Although we report only the computational performance
on FX1000 (A64FX), our innovations are also effective
on Intel Xeon. For example, using the Fujitsu Server
PRIMERGY GX2570 M6 (CPU part: a theoretical peak
performance of 5.53 TFLOPS and memory bandwidth of
409.6 GBs™!) equipped with Intel Xeon Platinum 8360Y,
the elapsed time obtained using the two-moment bulk
method was 14.0s, and that obtained using the SDM-new
with 128 SDs per cell on average is 13.9s. The maximum
throughput of the SDM-new is 31.6 times that of the two-
moment bulk method. The large ratio of the throughput
against FX1000 indicates that using FX1000 instead of a
more commercial computer with low memory bandwidth
(GX2570 M6) is more advantageous for the two-moment
bulk method.

Before evaluating the physical performance of SCALE-
SDM, we conducted an error analysis of first- and second-
order CVI. For this purpose, we analyzed the time evolu-
tion of the tracer field following a prescribed 2D Benard-
convection-like flow. The error analysis is detailed in the
Supplement. By investigating the time evolution of the tracer
field with various initial wavenumber patterns, we found that
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switching from first- to second-order CVI reduced the errors
in transient time evolution for any wavenumber and errors
following extended simulated times at higher wavenumbers.

Following this, we show the differences in the cloud simu-
lations between the first- and second-order CVI for SD track-
ing. In the SDM, we can add any new attribute, such as ID,
to each SD. By using the ID for analysis, we calculated the
initial position of the SD to investigate SD mixing. The distri-
butions of SD positions colored by the initial y coordinate for
warm-bubble experiments (SDM-new with 128 SDs per cell
on average) are shown in Fig. 6. Buoyancy torque induced
by the initial bubble generates vorticity, and the results are
different for the case when the first- and second-order CVIs
are used. At t = 600.0s, a staircase-like pattern with width
approximately equal to the grid length appears in CVI-1 be-
cause it does not consider the variation in the velocity com-
ponent relative to its orthogonal direction within the cell. In
contrast, such a pattern does not appear in CVI-2. The mo-
tion of the particle in the fluid can be chaotic even for sim-
ple flow fields. Particles experience stretching and folding
in flows, and fine and complex structures are generated even
from large-scale flows. These features are called chaotic mix-
ing (Aref, 1984) from the Lagrangian viewpoint, and they are
distinct from turbulence mixing. At ¢t = 1200.0s, fine struc-
ture (x = 1500m, z = 1200 m) and filaments (x = 1800 m,
7 =2800m) appear in CVI-2, whereas such structures are
noisy and obscure in CVI-1. This result indicates that such
structures in CVI-1 can be nonphysical when assuming that
structures in CVI-2 are more correct. The accuracy of the
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CVI may affect the entrainment and mixing induced by ther-
mal effects, also known as a coherent vortex ring in clouds.
Unfortunately, constructing a highly accurate CVI scheme
and comparing CVI-1 and CVI-2 with a reference solution
requires additional work. Furthermore, the in-cloud flows are
generally well-developed turbulent flows, enabling the po-
tential masking of the effect of the numerical accuracy of
the CVI by the effect of the subgrid-scale (SGS) turbulence.
However, in the meter- to submeter-scale simulations, the
moments of the DSD (tracer fields) can highly fluctuate un-
der turbulence, reducing the relative effects of the SGS ve-
locity (LES approach) or viscous diffusion (DNS approach).
Consequently, the numerical accuracy of the CVI can affect
the time evolutions of cloud microphysics and macrophysics
through interactions between eddies and microphysics.

Subsequently, we compared the results of warm-bubble
experiments among different cloud microphysics schemes.
The horizontally averaged time—height sections of the lig-
uid water content (LWC) are shown in Fig. 7. Here, we de-
note the names of the experiments, followed by the num-
ber of bins and SDs per cell on average, such as SDM-
new 128, for the results obtained using SDM-new with 128
SDs per cell on average. Here, the elapsed time for the
selected cases is SDM-new128 ~BULK2MOM < SDM-
origl28 < BIN128. In all cases, the qualitative characteris-
tics of time evolution are the same for bubble-induced cloud
generation and precipitation pattern. The quantitative charac-
teristics of the time evolution of LWC for t < 1000 s are also
similar in all cases. The differences between SDM-new and
SDM-orig arise when t > 1200 s for the precipitation pattern
(100 s slower than SDM-orig) and the LWC remains after
precipitation in the upper layers (z ~ 3500 m). However, if
the number of SDs is increased to 32768 (the results are
shown in the Supplement) as the differences become small,
the differences are mainly attributed to sampling (initializa-
tion of the SD number density so that it is proportional to the
air density for SDM-new) and randomness (initialization by
Sobol sequences, which exhibits faster convergence than a
pseudorandom number). The differences in the precipitation
and the remaining LWC after precipitation in the upper layers
between SDM-new and SDM-orig become small if we dis-
able the improvements presented in this study. Despite some
factors indicating differences between SDM-new and SDM-
orig, we conclude that their results are similar.

4.3 BOMEX and SCMS cases

In Sect. 4.2, we discussed the evaluation of the computational
performance using mainly data throughput by increasing the
number of mean SDs per cell. This approach is appropriate
for comparing SDM-orig and SDM-new as the contributions
of the stencil calculations that are not relevant to the inno-
vations in this study become small. However, the compar-
ison of SDM-new with the two-moment bulk and the bin
methods may not be fair. In general, the computational ef-
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ficiency improves in real-life scenarios when the number of
grid points per MPI process is increased. The number of grid
points in each MPI process used in Sect. 4.2 was relatively
small. In addition, the numerical settings of warm-bubble ex-
periments were too simple to be regarded as representative of
real-world problems. Therefore, we also evaluated computa-
tional and physical performances for the BOMEX case and a
case study of isolated cumulus congestus observed during the
Small Cumulus Microphysics Study field campaign (Lasher-
Trapp et al., 2005) — this case is referred to as the SCMS case
— as they present more practical problems.

The experimental settings for the BOMEX case were
based on Siebesma et al. (2003). The computational do-
main was 7.2km x 7.2km x 3.0km for x, y, and z direc-
tions, and the horizontal and vertical grid lengths were
50 and 40m, respectively. The experimental settings for
the SCMS case were based on the model intercompari-
son project for the bin methods and particle-based meth-
ods conducted in the International Cloud Modeling Work-
shop 2021 (see Xue et al., 2022, and references therein).
The computational domain was 10.0km x 10.0km x 8.0 km,
and the grid length was 50 m. For both cases, the time inter-
val was Atgyn = 0.1, Atagy = 2Atgyn = 0.2s, and Atppy =
0.2s. The Rayleigh damping imposed was 500 and 1000 m
from the top of the domains for the BOMEX and SCMS
cases, respectively. For the two-moment bulk method, we
used the mixing scenario parameter m = 0.5 for BOMEX
and 0.75 for SCMS cases as typical values for the pristine
and polluted cases in Jarecka et al. (2013), respectively. In the
SDM, SDs were not initially placed in the Rayleigh damp-
ing layers, and we did not generate or remove SDs in the re-
gions during simulations. For initialization, the uniform sam-
pling method (i.e., the proposed method using o = 1.0) was
adopted for both BOMEX and SCMS cases. For the SCMS
case, we also used the proposed method using & = 0.5 and
0.0 for SDM 128 to investigate the sensitivity of cloud micro-
physical variability to the initialization method.

Ensemble experiments with three members using differ-
ent initial perturbations controlled by other random seeds
were conducted for each experiment. The number of nodes
used for simulations was determined as the minimum val-
ues so that the memory usage was within the system mem-
ory per node. For example, one node of FX1000 was used in
both cases for the two-moment bulk method, and one node
and two nodes of FX1000 were used in BOMEX and SCMS
cases for SDM 128, respectively. For time measurement, we
used MPI_Wtime but did not use barrier synchronization.
During the simulation of three ensemble experiments, we
used the normal mode (2.0 GHz, two pipelines), boost mode
(2.2 GHz, two pipelines), and boost-eco mode (2.0 GHz, one
pipeline) for each ensemble member. We measured the (es-
timated) energy consumption of entire nodes between mea-
surement intervals.

The computational resources for various cloud micro-
physics schemes using the normal, boost, and boost-eco
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modes for each numerical setting are shown in Fig. 8. We
first focused on the node hours when the normal mode is
used. Here, node hours measure the amount of time for which
computing nodes are used, and they are calculated as the
product of occupied nodes and the hours. Comparing the
results between the SDM with 32 SDs per cell on average
(SDM32) and the bin method with 32 bins (BIN32), the node
hours of BIN32 are 6.8 times and 11.1 times that of SDM32
for BOMEX and SCMS cases, respectively. The node hours
consumed using the SDM with 32 to 64 SDs per cell are
comparable to those consumed using the two-moment bulk
method; furthermore, they do not increase linearly with in-
creasing number of mean SDs when the number is less than
256. The results are important because we should use more
than 128 SDs per cell to obtain converging solutions such
as the cloud droplet number concentration with respect to
the number of SDs (Shima et al., 2020; Matsushima et al.,
2021). In terms of memory usage, the simulations using the
two-moment bulk method consumed about 28.5 GB of sys-
tem memory, whereas those using the SDM with 128 SDs per
cell consumed about twice that memory. When the number of
available nodes is limited, simulations using the two-moment
bulk method can be performed with more grid points.

In Fig. 8, we see that the difference in the patterns among
the modes and between panels (a) and (b) is qualitatively
small, and the advantage of SDM over the two-moment bulk
method and bin method is apparent. For example, the en-
ergy consumption of BIN32 is 8.0 times and 6.4 times that
of SDM32 for BOMEX and SCMS cases, respectively, when
the boost-eco mode is used. In terms of node hours (Fig. 8a),
the following relations are observed: boost mode < normal
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mode. Further, node hours for the boost-eco mode are closer
to those for the normal mode (not shown in the figure). For
energy consumption (Fig. 8b), the boost-eco mode < boost
mode, and the energy consumption by the normal mode is
higher than that by the boost-eco mode (not shown in the
figure). The results obtained for the boost-eco mode have the
best power performance from the viewpoint of computational
resources among different modes. Although the boost-eco
mode offers an option to improve power performance when
FLOPS are not large, the power performances when using
not only the two-moment bulk and bin method but also SDM
are improved.

We evaluated the physical performance of microphysical
spatial variability obtained by the SCMS case experiments.
This case is suited for investigating the effect of entrainment
and mixing, which may lead to different results among mi-
crophysics schemes. In this study, we focused on analyz-
ing the results obtained using the SDM with 128 SDs per
cell on average; the computational resources used in this
case are about twice as high as those of the two-moment
bulk method but smaller than those used for the bin method
with 32 bins. The top panel of Fig. 9 shows contoured fre-
quency by altitude diagrams (CFADs) of the cloud droplet
number concentration (CDNC), LWC, mean radius, and stan-
dard deviation of the radius for one member (o = 1.0) of
SDM128 at t = 6600 s. The selected time of the snapshot was
when the cloud-top height almost reached its (local) maxi-
mum first (the movie of the CFADs from r = 3600 to r =
10800 is available in the Supplement: SCMS-R50SD128-
CFAD-m1.mp4). Once the clouds evolved to have depths
larger than approximately ~ 3 km, the CFAD patterns did
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not change much with time qualitatively even for the other
ensemble members (in the Supplement: SCMS-R50SD128-
CFAD-m[2,3].mp4). To enable intercomparison of models
for the readers, each microphysical variable of a cell was
calculated by taking statistics for SDs (only) within the cell.
However, the spatial scales of the variables were shorter than
the scales of effective resolution, which may introduce a nu-
merical influence on the statistics (Matsushima et al., 2021).
The adiabatic liquid water content (ALWC) was calculated
using Eq. (6) in Eytan et al. (2021), which is recommended
for the most accurate comparison with the passive tracer test
as a reference solution. In addition, we calculated the adia-
batic CDNC. The activated CDNC depends on the updraft
of the parcel when crossing the cloud base and hence on
the supersaturation of the parcel. However, we simply as-
sign an adiabatic CDNC at the cloud base of 1155cm™ as
the maximum value assuming large supersaturation, and all
haze droplets activate to the cloud droplets. Then, we de-
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fine an adiabatic CDNC, including the height dependency,
as CDNC, = 11550, (2)/ pa(zebase) €M™, where p, (2) is the
air density of the most undiluted cells in the z section, and
Zcbase 18 the cloud-base height.

One of the drawbacks of the SDM is the statistical fluctua-
tions caused by finite samples. Indeed, CDNC varies largely
centered around 500 cm™3; some samples exceed simple adi-
abatic prediction, and some samples of LWC also exceed
ALWC. However, the frequencies, for which CDNC and
LWC are larger than their adiabatic limits, are about 1 or-
der of magnitude smaller than frequencies within adiabatic
limits. Near the cloud base, the most frequent values of LWC
are close to ALWC. At z =2500m, the simulated conges-
tus clouds have a kink formed by detrainment, indicating
that cloud elements are left behind from the upward flow or
moved followed by a downward flow (not shown in figures).
The frequency for which LWC ~ 0 is large here. Above the
middle layer of the clouds (z > 2500 m), the LWC is strongly
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diluted. The mean radius narrowly varies in the lower lay-
ers of the clouds, but the variation becomes large above
z=2500m for small droplets because of entrainment and
activation. The most frequent values of the standard devi-
ation of the radius decrease as the height increases below
z=2500m in the adiabatic cores of the clouds. Above the
middle layers of the clouds, the most frequent values of the
standard deviation of the radius remain almost constant or in-
crease with height, and the medians of the frequencies at each
height reach 3 um at the upper layers of the clouds. These fea-
tures are consistent with typical observations (Arabas et al.,
2009). To compare the obtained solution with a reference so-
lution, we also adopted the same experimental setup as that
of SDM 128 but used mainly FP64. We represent the SD po-
sitions in a block by 50 bits using the mapping described
in Eq. (6). Meanwhile, we changed the tolerance relative
error for Newton iterations in condensation calculations to
1076 and computed the collision—coalescence process in all
grids. Here, the elapsed time and memory usage for only mi-
crophysics with FP64 were 1.03(1.45) node hours without
(with) collision—coalescence calculations in non-cloudy vol-
umes and 54.9 GB, which are 1.3-1.6 times and 1.8 times
larger than the case with FP32 for 0.625(1.14) node hours
and 29.7 GB memory usage, respectively. The middle panel
of Fig. 9 shows the CFAD analyzed by the reference ex-
periment. Although our innovations include the use of FP32
for the numerical representation of droplet radius, the dif-
ferences in the patterns of the mean radius between the top
and middle panels of Fig. 9 are minor. As we will show
in Sect. 6.4.1, simply using FP16 may cause stagnation of
the droplet radius and numerical broadening of the DSD for
condensational growth, but the use of FP32 does not cause
these problems. Therefore, our innovations do not worsen the
physical performance compared with the reference solution
and typical observation.

The CFAD for the two-moment bulk method is shown in
the bottom panel of Fig. 9. The variability of the CDNC and
LWC for BULK2MOM is smaller than those for SDM128.
As in the SDM128, the mean radius increases with height.
The relative standard deviation of the cloud droplet radius
for BULK2MOM was analytically calculated to be 0.248 be-
cause it prescribes the shape parameters of the generalized
gamma distribution. Thus, the mean and standard deviation
of the radius have identical patterns except for scaling. The
standard deviation of the radius for BULK2MOM is smaller
than that for SDM128 and does not decrease as height de-
creases in the adiabatic core, as seen in the case of SDM128.
This happens because the two-moment bulk method cannot
represent many possible scenarios inside the clouds due to
the empirical assumptions of the DSD. Based on these re-
sults, our numerical simulations using new SCALE-SDM
provide a qualitatively better solution than that obtained us-
ing the two-moment bulk method if twice the computational
resources are used by the new SCALE-SDM.
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In Sect. 3.2, we proposed a new initialization method for
meter- to submeter-scale-resolution simulations. Because the
aerosol number concentration of the SCMS case is high
(11 times that in vanZanten et al., 2011), the importance
of collision—coalescence is relatively low. Hence, it may be
reasonable to use another initialization parameter instead
of @ = 1.0, which favors faster convergence of collision—
coalescence with the number of SDs per cell. Despite the
original motivation to develop an initialization method for
meter-scale-resolution simulations, we investigated the sen-
sitivity of microphysical variability to o for the SCMS case
by 50 m resolution simulations. The CFADs for the initial-
ization parameters & = 0.5 and 0.0 are shown in Fig. 10. The
selected times of the snapshots are ¢t = 6720 and ¢ = 6540,
respectively, which are determined for the same reason as
in the case of o = 1.0. If we assume no spatial variability
of the aerosol number concentrations and that all aerosols
(haze droplets) are activated to cloud droplets, the maximum
CDNC for the SCMS case is 1155cm ™. Nevertheless, the
maximum values of CDNC reach 1500 cm™3 for & = 1.0. As
« decreases, the variation in CDNC decreases, and the max-
imum values of CDNC are almost limited within 1155 cm™3
for o =0.0. These results show that the statistical fluctua-
tion of the aerosol number concentration for large o affects
that of the CDNC. We can interpret the cause of the statis-
tical fluctuation of the CDNC as follows. Suppose that for a
given supersaturation, the haze droplets that have an aerosol
dry radius larger than the specific threshold activate to form
cloud droplets, as assumed in the Twomey activation model.
Then, the CDNC in each grid cell is determined by the SDs
that have an aerosol dry radius larger than the threshold size.
If the proposal distribution with a limited area of the sup-
port (domain of the random variable) for aerosol dry radius
is not similar to the aerosol size distribution, the distribu-
tion of the CDNC also has a statistical fluctuation due to
the property of importance sampling. Of course, the actual
3D simulations exhibit other effects, such as spatially vary-
ing supersaturation, considering a more detailed activation
process and the dynamical fluctuation induced by varying
the numbers of SDs per cell. On the other hand, the statis-
tical fluctuation of the aerosol mass concentration for small
o does not affect that of LWC. Instead, the fluctuations of
the LWC decrease as o decreases, and LWC is almost within
the ALWC. This finding can be physically interpreted as fol-
lows. As « decreases, the samples of small droplets that have
a small contribution to the aerosol mass concentration in-
crease, leading to more significant statistical fluctuations of
aerosol mass. Similarly, the statistical fluctuation of the LWC
for only haze droplets is larger as o decreases (not shown
in figures). However, without the turbulence effect, droplet
growth by condensation causes the droplet radius of the sam-
ples to be more similar with time, thereby damping the statis-
tical fluctuations. In terms of microphysical variability with-
out collision—coalescence, the obtained results for small o
are considered to be more accurate because the prediction
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of the microphysical variable for each grid is less variable.
The sensitivity of variability for the mean and standard devi-
ation of the radius to « is unclear. However, the largest val-
ues of the mean radius become larger as « increases. This is
consistent with the fact that initialization that leads to large
dynamic range of multiplicity (larger ¢« in this study) cre-
ates larger droplet samples and triggers precipitation, as ob-
served in the study using a box model (Unterstrasser et al.,
2017). The results suggest that for nonprecipitating clouds,
small @ may be allowed even for low-resolution simulations,
and optimization of « or proposal distribution by constraints
from observations can be explored. For meter- to submeter-
scale-resolution simulations, when using small « such that
the multiplicity of SDs is not smaller than 1, the microphysi-
cal variability induced by condensation—evaporation (major-
ity of the droplets) and precipitation (triggered by rare, lucky
droplets) as well as turbulent fluctuations interacting with
clouds through phase relaxation can simultaneously better
represent the natural variability of clouds.

5 Applicability for large-scale problems
5.1 Scalability

In Sect. 4, we evaluated the computational and physical per-
formances of SCALE-SDM with relatively low-resolution
experiments using at most four nodes. Here, we show the
feasibility of using our model for large-scale problems using
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more computing nodes. First, we show the scaling perfor-
mance of the new SCALE-SDM for the BOMEX case. Al-
though our numerical model adopts a hybrid type of 3D and
2D domain decompositions using the MPI, we investigated
only weak scaling performance in horizontal directions with
the vertical domain fixed. This is because almost all clouds
localize in the troposphere, and hence extending the vertical
domain does not provide any benefit.

For all directions, the grid length is set to 2m. The num-
ber of grid points without halo grids per MPI process is
72 x 72 x 96 and 18 x 18 x 1536 for the 3D and 2D domain
decompositions, respectively. The shape of network topolo-
gies is a 3D torus. In one direction of the 3D torus, the 16
MPI processes or nodes are used for vertical domain decom-
position. In each node, 2 x 2 MPI processes per node are
used for horizontal domain decomposition. For grid conver-
sions between 3D and 2D domain decompositions, N, = 16
is decomposed by (Ny;, Ny;) = (4,4). For the grid system in
2D domain decompositions, grids are divided into groups of
6 x 6 x 6 for cache blocking. For arithmetic precision, FP64 is
used for the dynamical process and mixed precision is used
for the SDM. Here, most of the representations and opera-
tions for the SDM use FP32/INT32. In contrast, reduction
operations, such as calculation of SDs within a cell, to lig-
uid water in the cell use FP64, while calculations of SD cell
positions use INT16. The scales of problems per node are
mainly limited by memory capacity because the usable sys-
tem memory of HBM2 is 28 GB, and SD information con-
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sumes 8.32 GB memory capacity per node for the above set-
ting if an extra 36 % of the buffer arrays for the SDs is re-
served.

The node shapes are 4 x4 x 16,24 x 16 x 24, and 48 x 16 x
48 with horizontal domains of 1152, 6912, and 13 824 m, re-
spectively. For the BOMEX case, streaks and roll convection
with about 1 km wavelength are well resolved for simulations
with 12.5 m horizontal and 10 m vertical resolution, and they
restrict cloud patterns (Sato et al., 2018). To exclude the ef-
fect of domain size, we evaluated the weak scaling perfor-
mance from the horizontal domain of 1152 m.

Time integrations were performed for 3680 s. The time in-
terval was Atgyn = 0.0046 s, Atagy = 4Atgy, = 0.0184 s, and
Atphy = 0.0736s for dynamical process, tracer advection,
and physical process, respectively. The short simulated time
for the BOMEX case compared with the standard numeri-
cal settings is because some challenges remain in outputting
large restart files (see Sect. 6.3) and mitigating load imbal-
ance due to clouds. Further, it takes longer to obtain the pro-
files of the computational performance. However, since the
simulated time is sufficiently long for clouds to be gener-
ated in the domain and to approach a quasi-steady state, the
obtained performance is a good approximation of the actual
sustained performance. Note that we set At,gy smaller than
the constraint of the Courant—Friedrichs—Lewy (CFL) condi-
tion for tracer advection (typical wind velocity of shear flows
is about 10ms~! for the BOMEX case). Because the time-
splitting method was applied for compressible equations, the
noise induced by the acoustic wave is dominant on the tracer
fields if At,qy is larger than several times Afgyy,. If an instan-
taneous value for dynamical variables is used for the time
integration of physical processes and Afpny is several times
Atqyn, a compressional pattern may arise for the SD density
because the instantaneous dynamic variables have a specific
phase of the acoustic wave pattern. To reduce these effects,
we used dynamic variables averaged over At,gy for physical
process calculations.

For measuring the computational performance, we used
both the timer (MPI_Wtime) and fapp. We used the results
obtained by the timer only for obtaining a quick view of
the elapsed time and that obtained by fapp for other de-
tailed analysis, such as the number of floating-point number
operations, number of instructions, and amount of memory
transfer. We note that the measured results have an overhead
through the use of fapp. The I/O time is included in the to-
tal elapsed time of the time integration loops, but it is quite
small. We did not use explicit barrier synchronization before
and after the time measurement intervals. All-to-all commu-
nications with blocking in the local communicator, which
consists of N, MPI processes, were used for converting the
grid systems. Since barrier synchronization is not performed
for all MPI processes, the effect of wait time for communica-
tion will be experienced across dynamics and microphysics
processes. However, even if the variations in the presence of
clouds in each MPI process are large, these effects become
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Figure 11. Elapsed times corresponding to the dynamics, micro-
physics, and the other processes for different numbers of nodes.

small when the variation of the clouds in each group of N,
MPI processes is small. Since no large-scale cloud organiza-
tion occurs in this case, we evaluated the computational per-
formance of individual components separately, such as the
components of dynamics and microphysics.

The weak scaling performance of the new SCALE-SDM
obtained for the above settings is shown in Fig. 11. We
adopted the grid system for 3D domain decomposition as
the default grid system. The elapsed time for the grid system
conversion from 3D to 2D or from 2D to 3D domain decom-
position is included in the total elapsed time of the process
that requires these conversions for calculations. In this case,
it is only included in the elapsed time for the microphysics
process during the time integration loop. The total elapsed
time of the experiments was 566 min for 256 nodes and ex-
hibits 98 % weak scaling for 36 864 nodes. In addition, the
elapsed time for dynamics and microphysics was 268 and
286 min for 256 nodes and exhibits 92 % and 104 % weak
scaling for 36 864 nodes, respectively. All-to-all communi-
cations during the conversion of grid systems do not degrade
the weak scaling performance for microphysics because the
hop counts of communications are small, and the number of
MPI processes involved is small. Other physics processes,
such as the turbulence scheme, consume only about 2 % of
the total elapsed times.

5.2 Largest-scale problem

The detailed profile of the largest problems among our ex-
periments for the weak scaling test is summarized in Table 3.
The peak ratio is obtained against the theoretical peak perfor-
mance of FP64 operations. The overall time integration loop
(excluding the initialization and finalization of the simula-
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tion) achieves 7.97 PFLOPS, which is 7.04 % of the theoret-
ical peak performance, and 13.7 PBs~!, which is 37.2 % of
the peak performance. The achieved peak ratio of the FLOPS
is comparable to that of 6.6 % by NICAM-LETKEF (Yashiro
et al., 2020), which was nominated for the 2020 Gordon
Bell Prize. In addition, because the effective peak ratio of
memory throughput performance is approximately > 80 %
for the STREAM Triad benchmark, the obtained peak ratio
achieves about half of it, implying that the overall calcula-
tions utilize HBM2 well. At the subprocess level, the short
time step (for acoustic waves), which consumes most of the
elapsed time in dynamics, achieves 9.5 PFLOPS (8.39 % of
the peak) and 21.3PBs~! (57.9%). SD tracking and con-
densation achieve 15.3 PFLOPS (13.5 % of the peak) and
18.2 PFLOPS (16.1 % of the peak), respectively. These rel-
atively high performances are partly attributed to the use of
FP32 for most operations. For these cases, the effective peak
ratios for the calculations should be the ratio against peak
performance for FP32, which are half of the ratio against
FP64 and hence not high. The bottleneck of these processes
is a large L1 cache latency of A64FX due to the random ac-
cess of the grid fields. For collision—coalescence, the peak
ratio of the FLOPS is very low. However, in terms of instruc-
tions per second (IPS), which includes integer operations,
store and load operations, and computation for conditional
branches, the performance is not low compared with those of
the other processes.

In the SDM, SD tracking, condensation, and collision—
coalescence computations consume 44 % of the elapsed time.
Elapsed time is also consumed by the data movement time,
such as the SD sorting and conversion of grid systems, which
still needs improvement. However, it should be noted that the
elapsed time may not be the time needed to process SD sort-
ing and conversion of grid systems as load imbalances from
other processes will likely affect it. In this experiment, be-
cause of the limited memory capacity, we divided loops with
a block into small groups to reduce the memory usage for
sorting. This affects the increase in the latency and wait time
because of synchronization by increasing the communication
counts and inefficient OpenMP parallelization by decreasing
the loop counts — this is one reason for the long time required
for data movement.

The data throughput of the SDM, which we define as
shown in Eq. (10) in Sect. 4, as well as the elapsed time, is
a fundamental measure that includes not just the number of
FLOPs but also all the information about a numerical model,
a scheme, an implementation, and a computer. In terms of
data throughput, we attempted to compare our results with
those of a tokamak plasma PIC simulation, which shares sim-
ilarities in computational algorithms but has an entirely dif-
ferent target. The tokamak plasma PIC simulation performed
by Xiao et al. (2021) was nominated for the 2020 Gordon
Bell Prize. It used the entire system of the Sunway Ocean-
Light, which has a higher theoretical peak performance than
the Fugaku. For the largest-scale problems, the throughput
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of the SDM reaches 2.86 x 1013, which is comparable to
3.73 x 10"3 particle - step per second of their study. In ad-
dition, the throughput of each subprocess is larger than the
simulated throughputs. The major difference between our re-
sults and their results in terms of data throughput is the num-
ber of operations per particle — it is ~ 5000 in their simula-
tions, which is much larger than that achieved in our study.
In research focusing on FLOPS as a measure of better com-
putational performance, it is common to reduce the appli-
cation B/F by increasing the number of FLOPs per particle
to fit a computer that has a small B/F, which may result in
small data throughput. However, we achieved data through-
put comparable to that of their study; moreover, ours is a
more practical measure of application than merely consid-
ering the FLOPS even if the throughputs are comparable.
Finally, we compare the elapsed time using the SDM with
the estimated elapsed time using the two-moment bulk and
the bin methods, specifically focusing on the SD movement
and tracer advection. These components are chosen because
the elapsed time for the microphysics schemes depends on
the computational algorithms and degree of optimization, as
discussed in Sect. 4.1. However, the elapsed time for tracer
advection is more robust in terms of optimization. Moreover,
it can be one of the major computational bottlenecks and can
be easily estimated. From Table 3, the elapsed time for tracer
advection (only water vapor mass mixing ratio) is 15 min
and the peak ratio of memory throughput is 58.7 %, which
indicates good effective peak performance of tracer advec-
tion. In the current implementation, since the time evolution
of the tracers was solved by each tracer separately, the to-
tal elapsed time for tracer advection was easily estimated as
the product of 15 min with the number of tracers. If the wa-
ter vapor mass mixing ratio plus 4 (10) or 32 tracers is used
for the bulk of the bin method, the elapsed time for tracer
advection is estimated as 75(165) and 495 min, respectively;
these values are larger than the elapsed time of the sum of
the SD movement and tracer advection (103 min). For the
bin method, the estimated elapsed time of tracer advection
is larger than the total elapsed time of the SDM. Here, we
explain that this relationship is robust with respect to the op-
timization of the bin method. The bottleneck of the tracer
advection is memory throughput for B/F =3.69 > 0.3. We
computed the tracer flux in each direction from the mass flux
and tracer variables of the previous step to update the tracer
variable based on the finite-volume method. If the arrays are
large, memory access occurs in nine arrays (one component
mass flux, tracer variable, and one component tracer flux for
each direction). Since the mass flux is common for different
tracer variables and memory access for the tracer variable oc-
curs thrice for computing the tracer flux, our implementation
is not optimal for minimizing memory access. Thus, in prin-
ciple, there is room for optimization. However, since there
are no known successful examples of such optimization in
the Fugaku (and in the other general-purpose CPUs), tracer
advection is a memory-bound application in practice. Then,
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Table 3. Elapsed time, FLOPS (peak ratio of the FLOPS, %), peta instructions per second, memory throughput (peak ratio of the memory
throughput, %), and particle throughput (no. of floating-point operations per SD).

Time Speed PIPS Memory throughput Part. throughput
[min] [PFLOPS] [PB s_l] [particle - step per second]
Time integration loop 576  7.97(7.04) 1.86 13.7 (37.2)
Dynamics 290 8.55(7.55) 2.03 20.5 (55.7)
Microphysics 274 7.50(6.62) 1.69 6.25 (16.9) 2.86 x 1013
Short time step 238 9.50(8.39) 2.19 21.3(57.9)
Tracer time step 15.0 5.85(5.17) 1.78 21.6 (58.7)
Tracking 879 15.3(13.5) 2.14 2.89 (10.5) 8.91 x 1013 (171)
Condensation 32.6 18.2(16.1) 5.35 5.28 (14.3) 2.40 x 1014 (75.9)
Coalescence 575 7.58(6.69) 2.96 17.5 (47.3) 1.36 x 1013 (5.57)
SD sorting 79.2 12.5(33.9)
3D to and from 2D conversion ~ 53.47

a possible optimization may be to simply refactor the codes,
and we may be able to improve the memory throughput per-
formance of tracer advection to achieve up to 80 % of the
theoretical peak performance. However, even with such opti-
mization, the elapsed time of tracer advection with 33 tracers
is estimated to be 363 min. Therefore, our simulations with
the SDM still have an advantage against the bin method.

6 Discussion
6.1 Mixed-phased processes

In this study, we optimized the SDM for only liquid-phase
processes. Here, we discuss the possible extensions to incor-
porate mixed-phase processes into our model.

Shima et al. (2020) extend the SDM approach to consider
the morphology of ice particles. Ice processes considered in
Shima et al. (2020) include immersion—condensation and ho-
mogeneous freezing; melting; deposition and sublimation;
and coalescence, riming, and aggregation. To solve these pro-
cesses, new attributes, such as freezing temperature, equato-
rial radius, polar radius, and apparent density, are introduced.
A critical aspect of the approach using the SDM is that de-
spite many attributes for water and ice particles, the effective
number of attributes decreases if particles are in either the
water or ice state. For example, when warm and cold pro-
cesses are considered, the apparent density is necessary for
ice particles, but it is not required for liquid droplets. Indeed,
the memory space used for the attributes of ice particles can
be reused to represent the attributes of droplets when they
change to liquids, and vice versa. Thus, if well implemented,
the increase in the memory requirement for considering both
warm and cold processes can be mitigated. In addition, if we
can easily discriminate the particle state as water or ice, the
computational cost of the mixed-phase SDM when used for
warm clouds will be almost identical to that of the liquid-
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phase SDM, while computational costs of the bulk method
increase due to the new tracers of ice substances and mixed-
phase processes (see Figs. 4, 5, and 8).

Alternatively, if water droplets and ice particles are mixed
in the cell, computational performance will decrease because
of challenges such as the different formats of information on
water droplets and ice particles as well as SIMD vectoriza-
tion. For example, such situations would arise when ice parti-
cles grow by riming in a mixed-phase regime of —38 to 0 °C
for deep convection. In addition, they make assumptions such
as particles are in either the water or ice states, and instanta-
neous melting occurs above 0 °C. These problems should be
addressed in future works by making fewer assumptions.

6.2 Terrain

An extension of this study to the case with terrain is also es-
sential. For terrain-following coordinates with the map factor
used in the regional model, our SD tracking using a fixed-
point representation of the SD’s position can be applied when
we map from terrain-following coordinates to Cartesian co-
ordinates. However, if coordinate mapping is introduced, the
CVI scheme may not guarantee consistency between changes
in air density and SD density. In addition, there is an addi-
tional computational cost for SD tracking. If computational
cost is critical, we can include the effect of terrain in the
SCALE-SDM by combining it with the immersed boundary
or cut-cell methods. Then, the computational performance
will not deteriorate because additional cost arises only in the
block with the terrain. When realistic terrain is considered,
another additional cost will be incurred at the top—bottom—
side boundaries to impose inflow—outflow conditions. More-
over, sampling of the initial SDs from the probability dis-
tributions normalized by air density will be more complex
because the probability distributions will be a 3D distribu-
tion. However, the cache-blocking algorithm introduced in
this study also helps improve the computational efficiency
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for such complex processes. Examining if and how we can
construct a CVI for terrain-following coordinates and spher-
ical coordinates is a future task.

6.3 Long-time run

In Sect. 5.2, we focused on the feasibility of large-scale prob-
lems and performed only about 1h time integration. To in-
vestigate the statistical behavior of clouds, longer time in-
tegration is required. However, if we create a checkpoint or
restart file for the largest-scale problems in this study, it will
require approximately 225 TB without compression for the
total number of SDs of 9.39 x 1012 SDs, and each SD consists
of six attributes with 4 bytes for each attribute. Thus, online
analysis becomes imperative if we require information from
all SDs. While the output of such a big dataset is feasible
on Fugaku, extending the simulated time by enhancing the
strong scaling and using numerous nodes will be critical if
we plan to increase the number of SDs any further. Alterna-
tively, we may consider the development of lossy compres-
sion for SDs, which sacrifices the exact reproducibility of the
simulations.

6.4 Can we achieve higher performance?
6.4.1 Lower-precision arithmetic

Since A64FX is a general-purpose CPU with FP16/INT16,
it may be possible to reduce memory usage and data move-
ment and achieve higher performance if low-precision arith-
metic is utilized. Unfortunately, we could not use it simply
for this study. However, since using lower-precision arith-
metic may be essential for future high-performance comput-
ing, we briefly discuss the obstacles for the same.
Grabowski and Abade (2017) showed that supersatura-
tion fluctuation could broaden the DSD even in the adia-
batic parcel. Their method and Abade et al. (2018) serve as
a type of parameterization of the turbulence effect for the
SDM. Instead of using the 3D numerical model, we discuss
the sensitivity of the DSD to numerical precision based on
Grabowski and Abade (2017). The numerical settings of the
adiabatic parcel model are the same as theirs. The box vol-
ume of a parcel is 503 m>. Time integration was performed
for 1000 s with the time interval of Ar =0.2s. In contrast,
we used different numerical precisions (FP64, FP32, and
FP16) and different rounding modes (round to the nearest
mode and two modes of stochastic roundings) for time inte-
gration of droplet radius. The detailed mathematical property
of stochastic rounding is described in Connolly et al. (2021).
Mode 1 rounds to an up/down direction considering the pre-
cise position (calculated by other methods such as higher-
precision arithmetic) in the interval between the upward and
downward rounded values. Mode 2 rounds to an up/down di-
rection with a probability of 1/2. For basic operations such
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as the inner product, the expected values calculated using the
stochastic rounding of mode 1 are identical to true values.

The DSDs at 500 and 1000 s are shown in Fig. 12. Without
the effect of supersaturation fluctuations, the results obtained
using FP64 and FP32 are in good agreement. In contrast,
the DSD obtained using FP16 is stagnant in time because
the tendency of condensational growth is too small to add to
the droplet radius (i.e., loss of trailing digits). However, the
DSD obtained using FP16 with mode 1 rounding is similar
to that obtained using FP64 or FP32 because the tendencies
can be added to the droplet radius stochastically. If we focus
on individual SDs, some SDs may experience more round-
ing down, and some may experience more rounding up. That
is, the DSD is slightly diffusive compared with that obtained
using FP64 and FP32. If we use FP16 with mode 2, the ob-
tained DSD shifts toward a larger droplet radius (the mean
radius reaches about 36 um at + = 1000 s), indicating that the
probability for rounding direction is essential to ensure ac-
curacy. With supersaturation fluctuations, the DSD obtained
using FP16 is less stagnant because the magnitude of tenden-
cies does not reach 0 because of the fluctuations. The DSD
obtained using FP16 with mode 1 is similar to that obtained
using FP64 or FP32 except for a slight diffusional trend.

These results indicate that we cannot simply use FP16, but
we can use FP16 with mode 1 rounding for some problems.
For example, suppose larger At is used in low-resolution
simulations. In that case, the DSD becomes less diffusive be-
cause the effect of rounding becomes small, and the mag-
nitude of supersaturation fluctuations becomes large. On the
other hand, if smaller At is used in high-resolution simu-
lations, the effect of rounding error on the DSD becomes
large. In such cases, the use of FP16 is not suitable even
if stochastic rounding is used. For SD movement, because
of the variable precision for SD position, it may be feasi-
ble to use fixed-point number representation such as INT16
using mode 1 in high-resolution simulations. For collision—
coalescence, FP16/INT16 may be troublesome. For example,
since the mass of aerosol dissolved in droplets has a wide dy-
namic range (at least 10° from Fig. 1), it is difficult to repre-
sent it with FP16 even if scaling is performed by adopting an
appropriate unit.

6.4.2 Reduction of data movement

For the largest-scale problems, the time for data movement
(i.e., other than SD tacking, condensation, and collision—
coalescence) in the SDM accounts for 53.9 % of the time
in the SDM, which accounts for 25.7 % of the total elapsed
time. To reduce the time to solution further, it is necessary to
optimize data movement.

One possible optimization is to not to sort SDs with a
block as a key for every time step of the SDM. Although
such an approach is adopted in the tokamak plasma PIC ap-
plication (Xiao et al., 2021), it requires some consideration
for application to the SDM. For collision—coalescence, all
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Figure 12. DSD obtained using different numerical precisions of floating-point number operations and rounding modes (a) without and (b)
with the effect of supersaturation fluctuations. The DSDs for t = 500s and r = 1000 s are shown by dotted and dashed lines, respectively.

SDs in a block must be in the same MPI process to cal-
culate the interaction between SDs in a cell; however, this
is not necessary for SD movement and condensation pro-
cesses. That is, if the Afcolr/coatse for collision—coalescence
process can be taken larger than Afpyove for SD movement
and Atong for condensation, the sorting frequency can be re-
duced by At for sorting equal to Afcol/coatse- In addition,
when cloud or rain droplets are not included in a block, the
collision—coalescence process is not calculated. Then, it is
possible to set Ao larger than Atpove and Afcong to reduce
the sorting frequency.

The second possible optimization is to merge the loops di-
vided by subprocesses in microphysics to lower the required
B/F of the SDM. However, this approach may be less effec-
tive on computers with high B/F, such as A64FX, and it re-
quires a large amount of L2 cache to store all SD information
in a block.

From the operations in each subprocess listed in Table 3,
the minimum B/F for the SDM is estimated as BF = (6 x
4x2)/(171475.945.57) = 0.190 < 0.3, where we assume
read—write for six attributes (positions, radius, multiplicity,
and aerosol mass) that each consist of 4-byte information.
On the other hand, if we separate each subprocess and create
a working array for 2-byte SD cell positions instead of using
SD positions, the minimum B/F for SD movement and con-
densation is BF = (4 x3x2+4)/171 = 0.164 < 0.3 (assum-
ing read—write for 4-byte three positions and read for 4-byte
multiplicity) and BF = (2+4x24+4x2)/75.9 = 0.237 < 0.3
(assuming read for 2-byte cell position, read for 4-byte multi-
plicity and mass of aerosol, and read—write for 4-byte droplet
radius), respectively. These results are consistent with the
measured B/F (from speed and memory throughput in Ta-
ble 3) (0.189 and 0.290, respectively). The minimum B/F
for SD movement and condensation is smaller than the B/F
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of the A64FX. However, since the measured B/F for the
SDM and collision—coalescence is 0.833 and 2.31, respec-
tively, collision—coalescence is a memory-bound computa-
tion, and it causes an increase in the level of the total B/F for
the SDM.

As is the case with many computers, the B/F values are
expected to be smaller in future. Merging loops will be nec-
essary for future high-performance computing after assum-
ing that high-capacity and high-B/F cache or local memory
may be achieved with new technologies such as 3D stacking.

6.5 Possible research directions

Our study focused on optimizing and improving the numer-
ical model. The developed model can be applied to many
fields of research from technical and scientific viewpoints.
For model development, in addition to the discussion in
Sect. 6.1 to 6.3, the sensitivity of the microphysical vari-
ability and precipitation to initialization parameter « should
be further explored through meter-scale-resolution simula-
tions. A reduction in the variance of prediction for the SDM,
such as when using low-discrepancy sequences, should also
be explored. We did not examine this impact in this study.
Moreover, the continuation of proposal distributions between
the DNS and LES may help in realizing more sophisticated
model components. The computational performance of our
numerical model may be further improved if we store only
the activated cloud and rain droplets in memory, following
methods such as those described in S6lch and Kércher (2010)
and Grabowski et al. (2018). Their method can reduce com-
putational cost only when the cloud volume occupies a small
fraction of the total volumes and cannot reduce memory us-
age unless dynamic load balancing is employed. In contrast,
our optimization can improve the performance and reduce
memory usage even when the cloud volume occupies a large
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fraction. Suppose we could further reduce the computational
cost and data movement for SD tracking. In this case, our
model may be more practical than a bulk method in terms of
the costs for complex real-world problems because we have
already achieved performance comparable to that of a bulk
method.

For scientific research, the study enables us to address
the problems described in the Introduction as ~ 1 m reso-
lution numerical experiments are now possible. For exam-
ple, we can investigate the cloud turbulence structure in shal-
low cumulous (Hoffmann et al., 2014) and its interaction
with boundary layer turbulence (Sato et al., 2017) in de-
tail. We can also confidently compare the simulation results
with observational studies (Matsushima et al., 2021) because
the effective resolution of simulations is now comparable
to the observational scale (~ 10m). We also improved the
initialization method. For stratocumulus, we can investigate
the statistical quasi-steady-state DSD, which is affected by
cloud-top entrainment and a realistic radiation process.

7 Conclusions

In the present study, we developed a particle-based cloud
model to perform meter- to submeter-scale-resolution simu-
lations to reduce the uncertainty in weather and climate sim-
ulations. The super-droplet method (SDM) is promising for
complex microphysical process modeling. The main contri-
butions of our SDM-based work are as follows: (1) the devel-
opment of an initialization method for super-droplets (SDs)
that can be used for simulating spatial resolutions between
the meter and submeter scales, (2) improvement of the al-
gorithms of the SDM as well as computational and physical
performance evaluations, and (3) demonstration of the feasi-
bility for large-scale problems using the supercomputer Fu-
gaku.

1. The uniform sampling method, which has good conver-
gence for the mass of SDs, results in many invalid sam-
ples when the number of SDs is larger than the num-
ber of real droplets, and multiplicity falls below 1 for
rare but important SDs. We developed a new initial-
ization method that is suitable for scales between the
meter and submeter scales by connecting the uniform
sampling method and constant multiplicity method. The
developed initialization method requires a proposal dis-
tribution apart from the aerosol distribution. The pro-
posal distribution is formulated as a Fréchet mean with
weighting parameter « of proposal distributions be-
tween the constant multiplicity and uniform sampling
methods. To calculate the mean, we require a measure of
the distance between elements. For this metric, instead
of using the L? norm, we suggest using the Wasserstein
distance, which is the natural distance between proba-
bility distributions. The developed method gives a larger
minimum and reduces the dynamic range of SD mul-
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tiplicity. As « decreases, importance sampling for the
aerosol size distribution gradually changes from a vari-
ance reduction effect for mass concentration to a vari-
ance reduction effect for number concentration.

. We improved the algorithms of the SDM to achieve

high performance on a Fujitsu A64FX processor, which
is used in the supercomputer Fugaku. The developed
model employs a hybrid type of 3D and 2D domain de-
composition using a message passing interface (MPI)
to reduce communication cost and load imbalance of
calculations for the SDM. The SDM, or more gener-
ally the particle-in-cell (PIC) method, has a limitation
in high-performance computing because such codes in-
clude many complex calculation patterns and condi-
tional branches. We further divided the decomposed do-
main for the cache block into blocks and set the block
size with a spatial scale equivalent to the effective res-
olution of the large-eddy simulation (LES) so that the
variables within the block were nearly uniform. We
converted the conditional branches for each SD, which
depends on supersaturation or the presence of clouds,
into conditional branches for each block. This conver-
sion improved the ratio of identical instructions for each
SD and resulted in parallelization by single-instruction
multiple-data (SIMD) vectorization even for Newton it-
erations and reducing the costs of calculations as well
as data movement for the collision—coalescence pro-
cess. For SD movement, the 3D conservative velocity
interpolation (CVI) of second-order spatial accuracy on
the C-grid was derived to ensure consistency between
the changes in SD number density and changes in air
density. The interpolated velocity can represent simple
vortical and shear flows within a cell, and the diver-
gence at the position of SDs that are calculated from
the interpolated velocity is consistent with divergence
at the cell. We subtracted partition information using
MPI processes and blocks from the information on SD
global positions to reduce information per SD. Then, we
stored the relative position of the SD in a block with a
fixed-point number using FP32. This approach guaran-
tees uniform precision in representing the absolute po-
sition of SD across the computational domain and good
numerical accuracy for meter- to submeter-resolution
simulations, even when using a low-precision format.

Next, we evaluated the computational and physical per-
formances of the model on A64FX by comparing the
results obtained using SDM-new, the two-moment bulk
method, the bin method, and SDM-orig. Simple warm-
bubble experiments showed that the time to solution
obtained using SDM-new is smaller than that obtained
with the bin method for the same number of tracers or
SDs per cell; furthermore, this is comparable to that ob-
tained with the two-moment bulk method when an av-
erage of 128 SDs per cell is used. The factors contribut-
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ing to the enhancements are fewer calculations, higher
compactness, and more reasonable use of low-precision
arithmetic for SD tracking than for the conventional
tracer advection used with the bulk and bin methods.
The data throughput of SDM-new is 61.3 times that of
SDM-orig. For the Barbados Oceanographic and Mete-
orological Experiment (BOMEX) and the Small Cumu-
lus Microphysics Study field campaign (SCMS) cases,
the computational resources consumed in terms of node
hours and energy consumption using the SDM with
about 128 SDs per cell are at most twice those con-
sumed using the two-moment bulk method; this is an
important result because previous studies showed that
the SDM requires about 128 SDs per cell for the conver-
gence of statistics such as the cloud droplet number con-
centration (CDNC). For the SCMS, new SCALE-SDM
yielded realistic microphysical variability comparable
with that typically observed in nature, including fea-
tures that cannot be simulated by the two-moment bulk
method. As the initialization parameter o decreased, the
in-cloud variabilities of CDNC and liquid water content
(LWC) gradually improved, and they were distributed
within their simple adiabatic limits. We confirmed that
new SCALE-SDM yields qualitatively better solutions
than the two-moment bulk method for a comparable
time to solution.

3. Finally, we demonstrated the feasibility of using our ap-
proach for simulating large-scale problems using the
supercomputer Fugaku. The target problem was based
on the BOMEX case but with a wider domain and
higher spatial resolutions. The new SCALE-SDM ex-
hibited 98 % weak scaling from 256 to 36 864 nodes
(23 % of the total system) on Fugaku. For the largest-
scale experiment, the horizontal and vertical extents
were 13 824 and 3072 m covered with 2 m grids, respec-
tively, and 128 SDs per cell were initialized on aver-
age. The time integration was performed for about 1 h.
This experiment required about 104 and 442 times the
number of grid points and SDs compared to the highest-
resolution simulation performed so far (Sato et al.,
2018). The overall calculations achieved 7.97 PFLOPS
(7.04 % of the peak), and the maximum performance
was 18.2PFLOPS (16.1 % of the peak) for the con-
densation process in the SDM. The overall throughput
in the SDM was 2.86 x 10! particle - step per second.
These results are comparable to those reported by the re-
cent Gordon Bell Prize finalists, such as the peak ratio of
the simulation part of the NICAM-LETKEF and the par-
ticle throughput of the tokamak plasma PIC simulation.
We did not examine the largest-scale problem by using
the bin model or the two-moment bulk model; instead,
we used a simple extrapolation to estimate that, for the
largest problem, the time to simulation of the SDM is
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shorter than that of the bin method and is comparable to
that of the two-moment bulk method.

Several challenges remain — for example, incorporating
mixed-phase processes, inclusion of terrain, and long-time
integration. However, our approach can handle such fur-
ther sophistication. The simplification of a loop body inno-
vated in this study can contribute to optimizing the mixed-
phase SDM. We also discussed the possibility of reducing
attributes, which increases when using mixed-phase SDM,
to obtain effective attributes. However, our approach cannot
simply be applied to improve the computational performance
when the water and ice states are both present in a cell. Thus,
further refinement is necessary. The developed CVI scheme
can be applied to cases with terrain if we combine our al-
gorithm with the immersed boundary or cut-cell methods.
The computational performance of our model will not be de-
graded in such cases. However, SD tracking over a larger area
and in spherical coordinates remains a challenge. The long-
time integration of SCALE-SDM is still difficult because of
the large data volume. Additional study on reducing data vol-
ume by using lossy compression and resampling to restore
the data is necessary. For future supercomputers, reducing
data movement will be the key to achieving high computa-
tional performance. This can be achieved, for example, by
reducing information on SD positions, reducing the SD sort-
ing frequency, lowering the application bytes per flops ratio
(B/F) by merging the loops for physics subprocesses, and
developing computers that will make this possible.

Our study is still in the stage of demonstrating the feasi-
bility of large-scale problems for meter- to submeter-scale-
resolution simulations. However, suppose the meter-scale-
resolution cloud simulations demonstrated in this study can
be performed routinely. In this case, these results can be com-
pared with direct numerical simulation (DNS), laboratory ex-
periments, and field studies to study turbulence and micro-
physics processes over a vast range of scales. Therefore, we
strongly believe that our approach is a critical building block
of future cloud microphysics models, advances the scientific
understanding of clouds, and contributes to reducing the un-
certainties of weather simulation and climate projection.

Appendix A: Wasserstein distance

As described in Sect. 3.2, the Wasserstein distance was used
to develop a new initialization method for the SDM. The
Wasserstein distance and its strongly related optimal trans-
port theory are powerful mathematical tools for tackling
problems dealing with a probability distribution, such as ma-
chine learning. Here, we briefly introduce the Wasserstein
distance, its regularization, and displacement interpolation
(McCann, 1997) for readers who are unfamiliar with them.
Let two probability distributions be expressed as a and b.
If we allow mass split during transportation, the amount of
transportation from ith bin ¢; to jth bin b; is represented

https://doi.org/10.5194/gmd-16-6211-2023



T. Matsushima et al.: Overcoming computational challenges for the super-droplet method

using a coupling matrix P;;. Let a set of coupling matrices U
be expressed as

U(a,b) =

[PE RnanPijZO, Zpijzai, ZP,‘j:bj]. (A1)
j i

The pth (p > 1) Wasserstein distance W), for two probability

density distributions (a, b) is defined as

Wp(a,b) = (P f{};“ ZI!—JIPPU) . (A2)

That is, Wg is the minimum total cost of transportation from
a to b when transport cost from i to j is |[i — j|P. On the
other hand, the difference between two distributions is often
measured using LP norm:

LP(a,b) = Z(ai — b;)P. (A3)

The significant difference between the Wasserstein distance
and LP norm is that the distance between two distributions
is measured in terms of horizontal or vertical differences.
Therefore, the Wasserstein distance is a useful measure if
the location of the random variable is essential. A coupling
matrix P can be obtained by solving a linear programming
problem, which is computationally expensive for large-scale
problems because its computational complexity is of the or-
der of O(N?) for N dimension. If the computational cost is
important, the Sinkhorn distance (Cuturi, 2013), which is a
regularization of the Wasserstein distance, can be used in-
stead:

Sy(a,b) = m(nb)|:2|z—]|PP,J+VZP,J(logP,]—1):| (A4)

L]

The negative sign of the second term on the right-hand side
is the entropy of the probability distribution, which is non-
negative and increases with the uncertainty.

For the one-dimensional case, the Wasserstein distance has
a simple alternative form:

Wpy(a,b) = f |F, ' (») = F; 'IPdy | (AS)

where F, ! and F, b !'are quantile functions (inverse functions
of the cumulative function) for @ and b, respectively. In this
case, the displacement interpolation (a solution of the contin-
uous case in Eq. 5) is represented as

Fl ) =-a)F ) +aF, (). (A6)
When we denote right-hand side of Eq. (A6) as
x=(1—a)F, ' () +aF,' (), (A7)
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and then Eq. (A6) is rewritten as
F () =x. (A8)

Here, we describe a method to obtain y = F,(x), assumlng
we already know the specific forms of Fy,, Fp,, and F 1 We
change the variable from y to x’ in Eq. (A7) as y = Fb1 (x")
and we get
x=(—a)x' +aF, Fp ). (A9)
This means that if we assign a value to x’, we can obtain
a function of x as y = F,(x). The simple discretization of
these calculations yields practical numerical algorithms to
obtain y = F,(x). For example, in this study, we assign b
as the normalized aerosol distribution and b, as the uniform
distribution. Because b is close to 0 near the edge of the sup-
port for the distribution and because the quantile function of
b changes sharply, it is difficult to construct discrete points
in y directly. However, if we discretize x” using equidistant
points, the points in y are automatically ensured to resolve
the sharp changes in the quantile function.

Appendix B: Second-order conservative velocity
interpolation on Arakawa C-grid

For simplicity, we considered interpolation within a cell; let
the coordinates be (x,y,z) and let the regions be 0 <x <
Ax, 0 <y <Ay, and 0 < z < Az. Coordinates and veloci-
ties are nondimensionalized as follows:

= —, = —, = —, Bl

* Ax Y Ay ¢ Az ®B1

,  ulAt , vAr , wAt

UW=—"vw=———, w=——:. (B2)
Ax A Az

In the following discussion, ' is omitted, and only the re-

sults are shown (the proof is available in Matsushima et al.,
2023Db).

Letu(x,y,z), v(x,y,2),and w(x, y, z) be the nondimen-
sional velocities, and let their values on the C-grid be repre-
sented as follows:

uo=u(0,1/2,1/2),u1 =u(1,1/2,1/2), (B3)
vo =v(1/2,0,1/2),v1 = v(1/2,1,1/2), (B4)
wo = v(1/2,1/2,0), w; = w(l/2,1/2,0). (B5)

Further, let the partial differential coefficient for the nondi-
mensional velocities be represented as

9
Syug = 8—”(0, 1/2,1/2). (B6)
y
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Then, the velocity at the SD position U = (u, vy, wp) ob-
tained using the second-order CVI is represented as follows:

1 1

u 0,1y = 0,1y + Syuqo,1 (y - 5) +8;uq0,1y (Z - 5)’ (B7)
1 1

Vr{0,1) = V{0,1) + 8x (0,1} x—5 +8,v(0,1) =5 ) (B3)

1 1
W (0,1} = Wy0,1} + Sx Wyo,1) (x - 5) + 8ywio, 1 <y - 5), (B9)

up = (1—=x)uro+xur

+x(1—x) {%(Sle — 8y wop) + %(val —(vao)}, (B10)
vp = =yvpo+yvsi

+y(1—y) {%(8ywl —8ywp) + %(5ybt1 —Byuo)}, (B11)

wp = —2wpo+zwyi

+z(1—-2) {%(511)1 —8;v0) + %(SZul —(Szuo)} . (B12)

If all partial differential coefficients in Eqs. (B7)—(B12) are
set as 0, the interpolated velocity becomes identical to the
results obtained using the first-order CVI. The coefficients
are evaluated simply by calculating the second-order central
difference from the velocities at the cell boundaries.

Appendix C: Conditions for existence and uniqueness of
the solutions of discretized activation—condensation
equation

To solve Eq. (7) numerically, we consider two cases in which
the uniqueness of the solution can be easily determined.
Here, f is continuous function of R? in the interval R? €
(0, 00), and it behaves as f(40) = —oo and f(400) = o0.
The intermediate value theorem states that Eq. (7) has at least
one solution in the interval (0, 00).

To derive the Case 1 condition, we first differentiate f with
respect to R?:

f’(R2)=1_A—tA|:a_ﬁ:| (C1)
(RD)3? R2 |

: 3A1A 1 5b
F(RY) = T’W[a_ﬁ] (C2)

Since f’ has a minimum value at > = 5b/a where (f')' =
0, f' is always positive in R? € (0,00) if f'(«?) > 0. In
this case, there is one unique solution in the interval. From
f’(oez) > 0, we obtain the Case 1 condition of Eq. (8). On the
other hand, the solution for f = 0 has at most three solutions
if f'(a?) <0, and one or two of them may not be physical
solutions. Our purpose is neither to find sufficient conditions
for the uniqueness of solutions nor to discriminate physical
solutions from at most three solutions. Although Eq. (8) is a
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more stringent condition than the condition for the unique-
ness of solutions, it has the advantage that Newton’s method
becomes more stable because f’ is always positive.

The Case 2 condition is obtained when we constrain the
initial values and environmental conditions. We consider the
interval 0 < R? < 3b/a where f behaves as f'(R%) > 1 and
f(+0) = —oo. The intermediate value theorem states that
Eq. (7) has the unique solution in the interval if f(3b/a) > 0:

3N _3 g e
f<7)_a » 2AtA[Sl 3\/;} ()

If we give S — 1 <2a./a/(3+/3b), then f(3b/a) > 3b/a —
p?. Therefore, the condition f(3b/a) >0 is met if p? <
3b/a. Since b depends on an attribute of the droplets, we
can make the condition more stringent to depend on only a
variable at a cell. For an unsaturated environment, S —1 <0
and p? < 3b/a.
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