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Abstract. The Rapid Adaptive Optimization Model for At-
mospheric Chemistry (ROMAC) is a flexible and computa-
tionally efficient photochemical box model. Its unique adap-
tive dynamic optimization module allows for the dynamic
and rapid estimation of the impact of chemical and physical
processes on pollutant concentration. ROMAC outperforms
traditional box models in evaluating the influence of physi-
cal processes on pollutant concentrations. Its ability to quan-
tify the effects of chemical and physical processes on pollu-
tant concentrations has been confirmed through chamber and
field observation cases. Since the development of a variable-
step and variable-order numerical solver that eliminates the
need for Jacobian matrix processing, the computational effi-
ciency of ROMAC has seen a marked improvement with only
a marginal increase in error. Specifically, the computational
efficiency has improved by 96 % when compared to several
established box models, such as F0AM and AtChem. More-
over, the solver maintains a discrepancy of less than 0.1 %
when its results are compared with those obtained from a
high-precision solver in AtChem.

1 Introduction

Numerical models are effective tools of atmospheric chem-
istry studies. The 0-dimensional (0-D) box model has been
widely used in previous studies to investigate the relation-
ship between secondary pollutants and precursors (Decker et

al., 2021, 2019; Ling et al., 2017; Wang et al., 2017; He et al.,
2019). The box model can be used as a ground Lagrangian
trajectories model to study the influence of the regional trans-
port of precursors on the formation of secondary pollutants
(Cheng et al., 2010; Wang et al., 2019). In addition, the box
model is also a powerful tool in environmental chamber stud-
ies (Chen et al., 2015; Novelli et al., 2018). Several box
models have been developed and applied in previous stud-
ies, such as AtChem (Sommariva et al., 2020), Chemistry
As A Box Model Application (CAABA/MECCA) (Sander
et al., 2011, 2019), Framework for 0-D Atmospheric Model-
ing (F0AM) (Wolfe et al., 2016), PyCHAM (O’Meara et al.,
2021), JlBox (Huang and Topping, 2021) and Photochemical
Box Model incorporating the Master Chemical Mechanism
(PBM-MCM) (Wang et al., 2018).

Since the processes of vertical and horizontal transmission
are ignored, the simulation speed of the 0-D box model is
higher than that of the 3-D air quality model. This allows
box models to use more comprehensive chemical mecha-
nisms and to focus on the analysis of chemical processes.
For instance, the utilization of 0-D models in coupling with
near-explicit chemical mechanisms can offer a comprehen-
sive understanding of photochemical processes (Y. Wang et
al., 2023). However, it is important to consider the impact
of physical transport on long-lived species, such as its ef-
fect on O3 concentration (Li et al., 2021; Liu et al., 2022).
The 0-D model, which lacks a 3-D structure, is unable to di-
rectly estimate the impact of physical processes (e.g., vertical
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and horizontal transport) on pollutant concentrations. There-
fore, it is necessary to find a proper scheme to estimate the
physical process for these models. Furthermore, as the at-
mospheric chemistry mechanism continues to develop, the
number of chemical reactions involved gradually increases.
Consequently, when using a chemical mechanism with mas-
sive reactions, the process of obtaining a chemical solution
in a 0-D box model also becomes time-consuming. For ex-
ample, the Master Chemical Mechanism (MCM v3.3.1) con-
tains about 5900 species (Jenkin et al., 2015), and the size
of the Jacobian matrix is close to 5900× 5900, which re-
quires a large number of matrix calculations in the process
of solving with the implicit solver. Therefore, it is neces-
sary to develop a computationally efficient model for chem-
ical mechanisms. Most of box models rely on third-party
tools for differential equation solving. Several multistep or
multistage approaches are commonly used by these chemi-
cal solvers, such as ROSENBROCK, BDF, LSODE, GEAR,
SMVGEAR, etc. (Verwer et al., 1996; Aro, 1996a; Sandu et
al., 1997a, b). Although these third-party solving tools have
good accuracy and stability, the solving process requires a
lot of computing resources, which significantly reduces the
computational efficiency.

The simplified chemical mechanism can effectively im-
prove the solution efficiency of chemical processes, such as
SAPRC07 (Carter, 2010), CB6 (Yarwood, 2010), MOZART
(Emmons et al., 2010) and the Mainz Organic Mechanism
(MOM) (Sander et al., 2019). The MCM mechanism also
has a simplified version (https://mcm.york.ac.uk/CRI, last
access: 21 October 2023), which can improve the computa-
tional efficiency. General methods for reduction (Young and
Boris (1977); Djouad and Sportisse, 2002) and their on-line
implementations (Sander et al., 2019; Shen et al., 2022; Lin
et al., 2023) have been developed. These simplified mech-
anisms generally have a focus on getting particular parts
of chemistry. As a result, the simulation results for certain
species may diverge from those obtained using near-explicit
chemical mechanisms, particularly concerning radicals (e.g.,
OH, HO2, RO2) and the concentrations of secondary pollu-
tants (Ying and Li, 2011; Jimenez, 2003). The adoption of
near-explicit chemical mechanisms enables a more detailed
representation of the intricate process of photochemical re-
actions. Consequently, the simplified mechanism cannot ad-
equately replace the role of the near-explicit mechanism.
To improve efficiency, another approach is to improve the
computational efficiency of differential equation solver pro-
grams, such as using GPU acceleration (Alvanos and Chris-
toudias, 2017) or using the quasi-Newton method (Esentürk
et al., 2018). These methods can effectively shorten the run-
ning time of the program, but still need to consume a lot of
memory and CPU (or GPU) resources when processing the
Jacobian matrix. There are alternative solution methods that
do not need to store and update the Jacobian matrix, such
as quasi-steady-state approximation (QSSA), multistep ex-
plicit and semi-implicit methods (Mott et al., 2000; Young

and Boris, 1977). But these methods usually do not conserve
mass (Cariolle et al., 2017). In addition, there are also fully
implicit methods that do not need to deal with the Jacobian
matrix, such as the Euler backward iterative (EBI) method
(Hertel et al., 1993). However, the EBI solver has a large
truncation error because it is only first-order accurate. An-
other stiff ordinary differential equations (ODEs) precondi-
tioner method based on Newton linearization also simplifies
the matrix operations during the solution (Aro, 1996a). But
these algorithms may fail to converge when the Jacobian ma-
trix is significantly off-diagonally dominant (Aro, 1996b).
Hence, with the increasing complexity and scale of chemi-
cal mechanism systems, it is still a challenge to make these
solving algorithms converge stably.

The Rapid Adaptive Optimization Model for Atmospheric
Chemistry (ROMAC) is a computationally efficient pho-
tochemical box model. To enhance its computational effi-
ciency, a variable-step and variable-order (VSVOR) solver
without Jacobian matrix processing was developed for RO-
MAC. This distinctive solver offers superior computational
efficiency in handling atmospheric chemical mechanisms by
eliminating the need for third-party libraries for numerical
solving. By utilizing the VSVOR solver, ROMAC provides
users with the flexibility to dynamically optimize the influ-
ence of physical processes on pollutant concentration, which
is difficult to achieve in the traditional box model with over-
simplified physical modules. Therefore, ROMAC will be
computationally efficient and outperform the traditional box
models in evaluating the impact of physical processes on pol-
lutant concentrations.

2 Description of ROMAC

ROMAC is a 0-D model focused on the simulation of atmo-
spheric chemical kinetics problems. It was developed to pro-
vide users with a flexible and efficient computational tool.
The core modules of ROMAC were developed in Fortran,
and the data pre-processing and post-processing modules
were developed in Python, which can keep the model run-
ning efficiently and provide users with flexible processing
tools. In ROMAC, the changes in concentration of a species
can mathematically be represented as Eq. (1):

dc
dt
=

[
dc
dt

]
chem
+

[
dc
dt

]
emis
+

[
dc
dt

]
dry

+

[
dc
dt

]
dilu
+

[
dc
dt

]
others,

(1)

where
[

dc
dt

]
chem

represents the changes due to chemical reac-

tions;
[

dc
dt

]
emis

represents the emission rate for the species;[
dc
dt

]
dry

and
[

dc
dt

]
dilu

represent the dry deposition and dilu-

tion, respectively. For dry deposition, ROMAC uses the max-
imum dry deposition velocity (cm s−1) calculated by Zhang
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et al. (2003) to estimate the dry deposition process of the
species, and users can also customize this value. The dry de-
position process is added to the model in the form of first-
order kinetics, and the kinetic constant is calculated by the
dry deposition velocity and the preset boundary layer height
(cm). Similar to other models (Wolfe et al., 2016; Sommariva
et al., 2020), ROMAC uses first-order kinetics to calculate
the dilution process, and users can customize the constants
of the dilution process. Note that the current version of RO-
MAC does not feature a dedicated input function for wet de-
position. Instead, ROMAC allows users to set a custom rate
term,

[
dc
dt

]
others

, which can be employed to account for wet
deposition. If wet deposition is important for the simulation
case, especially concerning the chemical mechanism of hy-
drophilic components like sulfate, it is suggested that the user
incorporates it into

[
dc
dt

]
others

. Moreover, users have the flex-
ibility to add additional change rates as needed, such as the
gas-wall partitioning in the chamber studies or the external
transport (e.g., vertical and horizontal transport) in field ob-
servations. It is not a difficult task to incorporate new rates of
change into

[
dc
dt

]
others

within the ROMAC framework.
The subsequent sections offer a comprehensive overview

of the ROMAC features. Furthermore, to facilitate reference,
all the parameters employed in this paper are catalogued in
Appendix B.

2.1 High-efficiency solver for atmospheric chemical
kinetic equations

Unlike many existing models, ROMAC distinguishes it-
self by not relying on third-party libraries for numerical
solving. Instead, ROMAC employs its own computationally
efficient variable-step and variable-order numerical solver
named “VSVOR.” This solver is engineered to enhance com-
putational efficiency while accommodating the universal at-
tributes of atmospheric chemical mechanisms. It approaches
all differential equations uniformly, eliminating the need for
customized solution schemes tailored to specific chemical
mechanisms. Therefore, the VSVOR solver offers a univer-
sal and versatile method for chemical solving. The VSVOR
solver has a control on the truncation error of integration ac-
cording to the relative tolerance (rtol) and the absolute toler-
ance (atol) specified by the user. The proposed solver offers
an algorithm that strikes a balance between efficiency and ac-
curacy. Most of the time, the accuracy of the VSVOR solver
can be second order.

The chemical mechanism is the core of atmospheric chem-
ical box models. Generally, chemical reaction equations can
be described in Eq. (2):

α1r1+α2r2+ . . .+αnrn→ β1p1+β2p2+ . . .+βmpm, (2)

where α and β represent the stoichiometric number, and
r and p represent the reactant and product, respectively.

Hence, the derivative of species concentration with respect to
time can be described as an ODEs system shown in Eq. (3).
For species i, fi can be calculated by Eq. (4). In Eq. (4),
Pi,t and Li,t denote the chemical generation rate and the loss
rate of species i at time t , respectively. It is worth noting
that the loss rate is related to the concentration of species
i. Therefore, to facilitate the subsequent formula derivation,
Li,t can be described as a multivariate higher-degree equa-
tion for the concentration of species i shown in Eq. (5),
where Rtot represents the total number of the reactions re-
lated to the loss rate of species i; α is the stoichiometric
number, and li,t,R is the part of the chemical reaction rate
that is not directly related to the concentration of species i.
The computation of the f (Ct , t) follows the approach in the
Fortran code provided on the MCM official website (https:
//mcm.york.ac.uk/MCM/about/archive, last access: 21 Octo-
ber 2023).[

dCt
dt

]
chem
= f (Ct t) (3)

fi
(
Ci,t , t

)
= Pi,t −Li,t (4)

Li,t =

Rtot∑
R=1

li,t,RC
αi,R
i,t (5)

The lifetime of different species in atmospheric chemical
mechanisms varies greatly. For example, OH has an atmo-
spheric lifetime of only seconds but O3 has a lifetime of
several days. Therefore, the ODEs system of atmospheric
chemical kinetics simulation is extremely stiff, and explicit
methods (e.g., explicit Euler method, explicit Runge–Kutta
method) cannot achieve a stable solution without using a time
step shorter than all lifetimes in the system, which is compu-
tationally unfeasible.

In ROMAC, the implicit Euler method and the trapezoidal
method were used to solve the ODEs; the iteration formula
is given in Eqs. (6) and (7). The implicit Euler method,
renowned for its exceptional numerical stability, has found
extensive application in other atmospheric chemistry models
(Esentürk et al., 2018). However, because the implicit Eu-
ler method only has first-order accuracy, it may introduce
large truncation errors in the process of integration. Hence,
the trapezoidal method iteration formula shown in Eq. (7) is
used for integration in a specific situation. Both the implicit
Euler method and the trapezoidal method have the term of
f (Ct+1, t + 1) which is unknown at time t and needs to be
solved. The Newton–Raphson (NR) scheme is a widely used
method for solving implicit equations in both the implicit Eu-
ler method and the trapezoidal method. Equations (6) and (7)
can be expressed in the form of Eqs. (8) and (9), respectively.

Ct+1 = Ct + f (Ct+1, t + 1)1t (6)

Ct+1 = Ct +
f (Ct , t)+ f (Ct+1, t + 1)

2
1t (7)

g1 (Ct+1)= Ct+1−Ct − f (Ct+1, t + 1)1t = 0 (8)
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g2 (Ct+1)= Ct+1−Ct

−
f (Ct , t)+ f (Ct+1, t + 1)

2
1t = 0 (9)

Thus, the iteration formula of the NR scheme can be ex-
pressed in the form of Eq. (10). Where ∇g−1(Ct+1) is the
inverse matrix of the Jacobian matrix of g(Ct+1). The Jaco-
bian matrix for the implicit Euler method is given in Eq. (11),
and the Jacobian matrix for the trapezoidal method is given
in Eq. (12). It should be noted that the size of the Jacobian
matrix and its inverse matrix will increase with the num-
ber of species in the chemical mechanisms increasing. In
particular, dealing with near-explicit chemical mechanisms
(e.g., MCM) would consume a lot of computer resources to
store the Jacobian matrix and its inverse matrix. In addition,
the inverse of a large-scale Jacobian matrix is quite time-
consuming.

Ck+1
t+1 = C

k
t+1−∇g

−1(Ct+1)g(Ct+1) (10)

∇g1(Ct+1)=


1− ∂f1(C1,t+1)

∂C1,t+1
1t · · · −

∂f1(C1,t+1)
∂Cn,t+1

1t

.

.

.
. . .

.

.

.

−
∂fn(Cn,t+1)
∂C1,t+1

1t · · · 1− ∂fn(Cn,t+1)
∂Cn,t+1

1t

 (11)

∇g2(Ct+1)

=



1−
∂f1(C1,t+1)
∂C1,t+1

1t −
∂f1(C1,t+1)
∂Cn,t+1

1t

−
∂L1,t+1
∂C1,t+1

1t
2 · · · +

∂P1,t+1
∂Cn,t+1

1t
2 −

∂L1,t+1
∂Cn,t+1

1t
2

.

.

.

.
.
.

.

.

.

−
∂fn(Cn,t+1)
∂C1,t+1

1t · · · 1−
∂fn(Cn,t+1)
∂Cn,t+1

1t

+
∂Pn,t+1
∂C1,t+1

1t
2 −

∂Ln,t+1
∂C1,t+1

1t
2 −

∂Ln,t+1
∂Cn,t+1

1t
2


(12)

A simplified Newton (SN) method can effectively reduce the
computational complexity of the iterative process of the NR
method. The traditional SN method substitutes the inverse
Jacobian matrix obtained in the first iteration for the inverse
matrix in the subsequent iterations. Although the traditional
SN method can reduce the amount of computation, it still
needs to calculate and store the inverse of the Jacobian matrix
at each time step. To further improve the computational ef-
ficiency, ROMAC uses a diagonal simplified Newton (DSN)
method to solve the implicit equations.

When the1t in Eqs. (11) and (12) is small enough, the Ja-
cobian matrix of g(Ct+1) will be a diagonally dominant ma-
trix or a quasi-diagonally dominant matrix. The aforemen-
tioned characteristics are inherently present within the Ja-
cobian matrix of chemical mechanisms and are impervious
to variations in specific chemical mechanisms. As a result,
this scheme proves to be universally applicable across dif-
ferent chemical mechanisms. Under these conditions, the in-
verse matrix of Jacobian in Eq. (11) can be approximated by
Eq. (13). According to the equations associated with the im-
plicit Euler method in Eqs. (1)–(13), the iteration formula for
species i is shown in Eq. (14), where k represents the number
of iterative solutions. A previous study has also shown that
such approximations are reliable (Aro, 1996b). Similarly, the

approximate inverse of the Jacobian matrix for the trape-
zoidal method and the iterative formulas for the solution can
be derived as shown in Eqs. (15) and (16), respectively. The
solution process was iterated until the difference between the
results of two iterations was less than one-tenth of the preset
truncation error tolerance (etc., 0.1× atol or 0.1× rtol) for
ODEs solution.

∇g−1
1 (Ct+1)≈


1

1−
∂f1(C1,t+1)
∂C1,t+1

1t
· · · 0

.

.

.
. . .

.

.

.

0 · · ·
1

1−
∂fn(Cn,t+1)
∂Cn,t+1

1t

 (13)

Ck+1
i,t+1 =

Rtot∑
R=1

(αi,R − 1)lt+1,RC
kαi,R
i,t+11t +Ci,t +Pt+11t

1+
Rtot∑
R=1

αi,R lt+1,RC
kαi,R−1
i,t+1 1t

(14)

∇g2
−1(Ct+1)

≈


1

1−
∂f1(C1,t+1)
∂C1,t+1

1t−
∂Lt+1
∂C1,t+1

1t
2

· · · 0

.

.

.
. . .

.

.

.

0 · · ·
1

1−
∂fn(Cn,t+1)
∂Cn,t+1

1t−
∂Lt+1
∂Cn,t+1

1t
2

 (15)

Ck+1
i,t+1

=

Rtot∑
R=1

(αi,R − 1)lt+1,RC
kαi,R
i,t+11t + 2Ci,t +Pi,t1t −Li,t1t +Pi,t+11t

2+
Rtot∑
R=1

αlt+1,RC
kαi,R−1
i,t+1 1t

(16)

It is worth noting that if all of the stoichiometric number (αR)
is equal to 1, Eq. (14) is the same as the iteration formula
of the EBI solver (Hertel et al., 1993) used in the CMAQ
model. In this study, Eq. (14) provides a generalized form of
the EBI iteration formula. Hertel et al.’s (1993) study shows
that the EBI solver has the advantages of high computational
efficiency and high accuracy. However, the convergence con-
dition of this method has not been discussed, such as how to
choose the optimal integration time step size to make the so-
lution process stable and convergent. If the time step size is
too short, the computational efficiency will decrease. How-
ever, if the time step size is too large, the Jacobian matrix
will not be diagonally dominant, it will lead to an algorithm
hard to converge or even not to converge. This problem also
exists in the EBI algorithm. Especially for such a complex
chemical mechanism as the MCM, directly using the EBI
scheme involves a large risk of causing the algorithm not to
converge. In ROMAC, the variable time step and variable or-
der scheme help to balance the computational efficiency and
accuracy, maintain the Jacobian matrix as a quasi-diagonally
dominant matrix and reduce the risk of convergence failure.
Hence, this scheme will enhance the applicability and sta-
bility of the ROMAC numerical solver compared to the EBI
numerical solver.

Actually, it is difficult to use a fixed time step to ensure
that the Jacobian matrix is always quasi-diagonally domi-
nant. In order to find the optimal time step, a variable time
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step size scheme is used in our model. First, 1t0 is defined
as an extremely small positive value to ensure that this value
is not less than the rounding error of the computer. Accord-
ing to IEEE Std 754–2008 (IEEE, 2008), 1t0 is defined as
2.22× 10−16 s in ROMAC. Secondly, 1t1 is defined as at-
mospheric lifetime of the species with the shortest lifetime
in the chemical mechanism, as shown in Eq. (17). Third, a
strict diagonal dominance matrix requires that the diagonal
elements are greater than the sum of the rest of the elements
in the same row, as shown in Eq. (18). Hence, 1t2,i is cal-
culated by Eq. (19) to ensure that Eq. (18) holds, and 1t2 is
the minimum in the set of 1t2,i shown in Eq. (20), where i
represents the rows of the Jacobian matrix. Finally, the initial
integration time step size is determined by Eq. (21).

1t1 = [
1
Lt
]min (17)

∣∣∇g(Ct+1)i,i
∣∣> n∑

j=1
|∇g(Ct+1)i,j | (18)

1t2,i =
0.9

(
n∑
j=1
|
∂fi(C1,t+1)
∂Cj,t+1

|)

(19)

1t2 = [1t2,i]min (20)

1tinit =

{
1t0 (1t0 ≥1t1 and 1t0 ≥1t2)
1t1 (1t0 <1t1 and 1t0 <1t2 and 1t2 ≥1t1)
1t2 (1t0 <1t1 and 1t0 <1t2 and 1t2 <1t1)

(21)

In order to improve the computational efficiency, the integra-
tion time step size should grow while ensuring the accuracy
of the solution. When the time step size grows, the local trun-
cation error (LTE) should be controlled. In each step (1t),
ROMAC uses both single-step and double-step methods for
integration, and the calculated results are recorded as C1t
and C1t

2
, respectively. LTE is estimated by the difference be-

tween C1t and C1t
2

(LTE=
∣∣∣C1t

2
−C1t

∣∣∣), and the relative
error is estimated by Eq. (22). This method has been suc-
cessfully used in a previous study (Aro, 1996a).

RERR= [

∣∣∣C1t
2
−C1t

∣∣∣
1+C1t

]min (22)

The model needs to adjust the integration time step according
to the tolerance preset by the user. This requires inferencing a
maximum integration time step based on the preset tolerance.
According to the Lagrange remainder of the Taylor formula,
the RERR of the integration result can also be expressed as
Eq. (23), where s is the order of integration accuracy, equal
to 1 for the implicit Euler method and equal to 2 for the trape-
zoidal method. Similarly, the user-specified maximum inte-
gral relative error can be expressed as Eq. (24), where 1tmax
is an estimate of the maximum step size allowed when the
preset rtol condition is satisfied. In ROMAC, the values of ξ1
and ξ2 in Eqs. (23) and (24) are assumed to be approximate
(ξ1 ≈ ξ2). According to Eqs. (23) and (24), the maximum in-
tegration time step can be estimated by Eq. (25). Finally, the

integration time step is updated according to Eqs. (26) and
(27) to make sure that the time step is not larger than the
maximum time step. In order to avoid a too accurate result
making the integration time step size grow too large, when
1topt is greater than1t by a factor of 10, the time step is only
increased by a factor of 10. In general, as the integration step
size increases, the number of iterations (N ) required by the
solver in this study will also increase. Too many iterations
will make the computation time-consuming, and thus the in-
tegration time step is not increased when the solver iteration
time exceeds 50 (N ≥ 50).

RERR=
Rn(1t)

1+C1t
=

f (s+1)(ξ1)1t
s+1

(1+C1t )× (s+ 1) !
(23)

rtol=
Rn(1tmax)

1+C1t
=

f (s+1)(ξ2)1t
s+1
max

(1+C1t )× (s+ 1) !
(24)

1tmax =

(
rtol

RERR

) 1
s+1
1tt (25)

1topt = 0.91tmax (26)

1tt+1 =

 1topt (1topt < 101tt and N < 50)
101tt (1topt ≥ 101tt and N < 50)
1tt (N ≥ 50)

(27)

If RERR< rtol or LTE< atol, proceed to the next integration
time, otherwise the integration time step is halved and re-
integrated until the tolerance requirement is satisfied.

Another important question is whether to choose the im-
plicit Euler method or the trapezoidal method for the integra-
tion process. Both the implicit Euler method and the trape-
zoidal method are stable for stiff ODEs. However, the so-
lution method used in this study requires the Jacobian ma-
trix to be diagonally dominant or quasi-diagonally dominant.
Since the initial time step in Eqs. (18) and (19) are derived
from the implicit Euler method, the implicit Euler method is
used for integral starting. If the algorithm converges quickly
(N < 50), then the trapezoidal method is used in the next in-
tegration time step. When N is greater than 50, the algorithm
is switched to the implicit Euler method in the next integra-
tion time step to improve the computational efficiency.

2.2 Adaptive dynamic optimization module and
variables constraints

ROMAC can be run under user-specified variable constraints,
including but not limited to concentrations of chemical
species, photolysis rate, temperature, humidity, pressure and
other meteorological conditions. For concentrations of chem-
ical species, ROMAC provides the user with three different
constraint schemes.

Scheme 1. Different from previous models, ROMAC pro-
vides a novel constraint scheme to use the observed data to
constrain the model run. Scheme 1 does not directly input the
species concentration, but controls the [ dcdt ]others term with
adaptive dynamic optimization algorithm. The default value
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for [ dcdt ]others is 0, after integration, 1[ dcdt ]others can be esti-
mated by the gap between the observed and simulated values,
as detailed in Eq. (28):

1

[
dc
dt

]
others
=



Cobs,n+1−Cmodel,n+1
tn+1−tn(

|Cobs,n+1−Cmodel,n+1| ≤ 0.1
×|Cmodel,n+1|

)
0.1×Cmodel,n+1

tn+1−tn
× (−1)u(

|Cobs,n+1−Cmodel,n+1 |> 0.1
×|Cmodel,n+1

∣∣)
, (28)

where Cobs represents the observations and Cmodel repre-
sents the simulations. In Eq. (28), u= 1 when Cobs,n+1 is
less than Cmodel,n+1 and u= 2 when Cobs,n+1 is greater than
Cmodel,n+1. In complex systems, changing [ dcdt ]others may also
affect other chemical process, and thus the relationship be-
tween [ dcdt ]others and the simulation results may be nonlinear.
Therefore, it is difficult to calculate [ dcdt ]others in a single it-
eration. It is necessary to estimate this by loop iteration until
the difference between observation and simulation reaches
a preset tolerance. In this study, the difference between ob-
servation and simulation is characterized by the root mean
square error (RMSE) shown in Eq. (29).

RMSE=
√
(Cobs,n+1−Cmodel,n+1)2 (29)

The cyclic dynamic optimization process of
[

dc
dt

]
others

is

shown in Fig. 1. The iterative updating formula of
[

dc
dt

]
others

based on the Newton–Raphson method is given in Eq. (30).[
dc
dt

]
othersm+1

=


[

dc
dt

]
othersm

+1
[

dc
dt

]
others

(m= 1)[
dc
dt

]
othersm

−RMSEm ·

[
dRMSE

d
[

dc
dt

]
others

]−1

m

(m > 1)
(30)

 dRMSE

d
[

dc
dt

]
others


m

=

 1RMSE

1
[

dc
dt

]
others


m

=
RMSEm−RMSEm−1[

dc
dt

]
othersm

−

[
dc
dt

]
othersm−1

, (31)

wherem is the number of iterations and1[ dcdt ]others at the first
iteration (m= 1) is estimated by Eq. (28). When the number
of iterations is greater than 1 (m> 1), the update equation
of 1[ dcdt ]others is developed based on the Newton–Raphson
method. The RMSE is used as the objective function for op-
timization, and the derivative of RMSE with [ dcdt ]others is es-
timated by the difference method shown in Eq. (31).

The [ dcdt ]others can also be optimized in the mode of kinetic
equations (e.g., [ dcdt ]others = kothers×C), and then the kinetic
constants (kothers) can be optimized using a similar process

Figure 1. The cyclic dynamic optimization process of [ dcdt ]others.

shown in Fig. 1. ROMAC provides an option for the user to
switch between these two modes. Furthermore, the user can
also use other algorithms for dynamic optimization, such as
ensemble Kalman filter (EnKF).

Scheme 2. In Scheme 2, the concentration of species can
be initialized at the beginning of each simulation time step,
which is mainly applied to the solution of initial value prob-
lems and more suitable for chamber simulation. This scheme
has been widely used in previous models (e.g., PBM-MCM,
AtChem, F0AM). However, if the regional transport process
of pollutants is not considered, the simulation results of long-
lived species in this scheme may have large deviations from
the observed results.

Scheme 3. Scheme 3 constrains the change rate of species
concentration ( dc

dt = 0) while constraining the initial concen-
tration, in a similar way as in F0AM. The advantage of this
scheme is that the constrained variables can be kept at a user-
specified level throughout the simulation. In this scheme, the
long-lived species can maintain the observed concentration
level. This constraining is appropriate if the temporal res-
olution of the observed data is high. The time interval of
the model should be significantly smaller than the lifetime
of constrained species. However, this approach also has its
limitations. Since species concentrations are constrained as a
constant, chemical imbalances may result.

To better understand the distinctive attributes of various
constraint schemes, we conducted a straightforward test case
in which nitric oxide (NO) was constrained by three differ-
ent schemes. Other input species (i.e., VOCs, NO2, O3, SO2,
CO) were constrained by Scheme 3. Figure 2 illustrates the
results of this test, showcasing how different schemes affect
the concentration of target species. The simulation utilized a
time step of 120 s, while the input data interval from obser-
vations was set at 3600 s. Under Scheme 2, where emissions
and regional transport were not considered, NO concentra-
tions experienced a rapid decline before reaching a steady
state (Fig. 2a). By contrast, both Scheme 1 and Scheme 3
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Figure 2. Model output results illustrating diurnal variations for selected species, highlighting the impact of different concentration constraint
schemes. (a) NO concentrations; (b) OH concentrations; (c) PAN concentrations.

displayed NO concentrations in close agreement with the ob-
served hourly averages, ensuring that the model faithfully
replicated the real atmospheric conditions. It is worth noting
that due to variations in constraint schemes, simulated con-
centrations of other unconstrained species, such as OH and
PAN, can also diverge (Fig. 2b and c). This case study was
primarily designed to elucidate the unique features of differ-
ent constraint schemes, with no intent to definitively validate
or invalidate any particular scheme. Users are encouraged to
make their scheme selections judiciously, aligning them with
their specific research needs and observational findings.

2.3 Photolysis

ROMAC provides two ways for the user to set the photolysis
rate. First, the user can specify the photolysis rate at each
integration time step in the form of an ASCII file. The input
photolysis rate can be estimated by other models or the ob-
servations. In ROMAC, a Python script (TUV2ROMAC.py)
is provided for coupling the output of the Tropospheric
Ultraviolet and Visible Radiation model (TUVv5.2,
available at https://www2.acom.ucar.edu/modeling/
tropospheric-ultraviolet-and-visible-tuv-radiation-model,
last access: 6 May 2023). Users can easily use this tool to
convert the TUV model output results into ROMAC input
files.

ROMAC provides users with an inline calculation mod-
ule to calculate photolysis. In the current version, the in-
line calculation module of photolysis uses the algorithm pro-
vided by MCM, an algorithm based on the solar zenith an-
gle (SZA). The trigonometric parameterization function is
shown in Eq. (32). The parameters of l, m, n are provided
by MCM (http://mcm.york.ac.uk/, last access: 6 May 2023).

J = l× cos(SZA)m× e−n×sec(SZA) (32)

If both the input photolysis rate and the inline calculated pho-
tolysis rate are present, ROMAC will use the input photoly-
sis rate preferentially. In addition, ROMAC provides the user
with a photolysis rate modification factor (Jrate), which can
easily be used to adjust the photolysis rate in the model. The

default value of Jrate is 1.0, and the actual photolysis rate
used in the model is the input rate or the inline calculated
rate multiplied by Jrate.

2.4 Model accuracy and computational efficiency

The comparison of ROMAC with AtChem, F0AM and FAC-
SIMILE, which is widely used for MCM, was performed
on a PC with a CPU of 16-core AMD Ryzen 9 3950X at
3.5 GHz and 32 GB RAM. The operating system was 64 bit
Ubuntu (version 20.04.1) and the software was compiled us-
ing Intel Fortran (ifort version 2021.2.0). The computational
efficiency of the model is evaluated by CPU time. AtChem,
ROMAC, and FACSIMILE are all run using a single core
and the CPU time is recorded by the built-in function of the
software. The CPU time used by F0AM is recorded by the
function cputime in MATLAB. The total integration time is
345 600 s, and the integration time step is 900 s. The settings
of atol (10−4) and rtol (10−3) in the models are consistent.
The temperature, pressure and humidity in the scenario sim-
ulation are 25 ◦C, 101.325 kPa and 35 %, respectively. The
chemical mechanism used in this test is MCM v3.3.1, and the
initial species concentrations are shown in Table A1. Since
running the entire version of MCM v3.3.1 using AtChem is
computationally excessive for our computing platform, we
only selected the VOCs included in the EPA Photochem-
ical Assessment Monitoring Stations (PAMS) Target List
(https://www.epa.gov/amtic/, last access: 21 October 2023)
and exported the mechanism file from the MCM website. In
this test case, 3899 species and 11 814 chemical reactions
were included.

In this study, we assumed that the solution results of
AtChem based on the CVODE library are accurate. There-
fore, the accuracy of the model is evaluated by calculating
the relative difference between the solution results of RO-
MAC and AtChem (Eq. 33).

REt =
|CROMAC,t −CAtChem,t |

|CAtChem,t |
× 100% (33)

Figure A1 shows a comparison of simulation results for nine
species, including radicals and gaseous pollutants, which
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Figure 3. Accuracy evaluation and comparison of model computational efficiency. (a) Maximum relative error between the integration results
of ROMAC and AtChem. (b) CPU time used to run compared with other models.

were commonly used in previous studies to evaluate solu-
tion results (Hertel et al., 1993; Esentürk et al., 2018; Aro,
1996b). The simulation results for ROMAC in Fig. A1 are
processed by the VSVOR solver. As shown in Fig. A1, the
solution results of ROMAC and AtChem are comparable, in-
dicating that the solution results of ROMAC are comparable
to the high-precision solution algorithm. The time series of
relative error and its growth rates are depicted in Fig. A2. The
relative difference between the solution results of ROMAC
and that of AtChem is gradually stabilized, and the rate of
change of the relative error after 270 000 s is extremely low,
between−1.0×10−6 % s−1 and 1.0×10−6 % s−1. Although
the relative error of O3 has a trend of continuous increase,
the growth rate of the error remains stable and extremely low
(3.3× 10−8 % s−1). Hence, the relative error remains within
the preset rtol even if the simulation duration is extended by
an additional 2.0×106 s at this growth rate. This suggests that
the error of the ROMAC result can be stably controlled dur-
ing long-term simulations. Figure 3 illustrates the maximum
relative error in the scenario simulation and the CPU time
used by each model. The maximum relative errors between
the results of the VSVOR solver and the results of AtChem
are all smaller than the preset rtol. The solution results ob-
tained from the EBI solver were also evaluated in this study.
The discrepancy of certain species in the results obtained by
EBI exceeds the preset tolerance (0.1 %), such as NO, NO2
and MGLYOX. Compared with the single-step EBI solver,
the VSVOR solver with variable time step and variable or-
der can better control the truncation error. In terms of CPU
time required for execution, the VSVOR solver with higher
solution accuracy is even more efficient than EBI. The CPU
time consumed by EBI with different integration time steps is
shown in Table A2. For the MCM chemical mechanism, the
algorithm fails to converge when the integration time step is
longer than 50 s. After a series of tests, we found that even
with an integration time step of 10 s, the EBI solver was at

risk of failing to converge. However, reducing the integra-
tion time step too much diminishes the efficiency of the EBI
solver when handling the MCM mechanism in comparison
to the VSVOR solver. Hence, the VSVOR solver exhibits
comparable computational efficiency to the EBI solver, while
maintaining superior solution accuracy and stability.

Compared with other models, ROMAC has greatly im-
proved the computational efficiency of solving large-scale
chemical mechanisms. The computational efficiency of RO-
MAC is 97 % higher than that of F0AM and AtChem, and
96 % higher than that of FACSIMILE.

3 Model validation and application

3.1 Chamber simulation case

A chamber experiment for toluene degradation was used to
evaluate the capabilities of ROMAC to dynamically opti-
mize chemical and physical processes. In this case, the in-
door smog chamber in JNU-VMDSC was used to simulate
the degradation of toluene. The JNU-VMDSC provides a re-
liable experimental platform, and its structure and character-
ization (e.g., wall loss, light intensity, airtightness test) have
been described in a previous study (W. Wang et al., 2023).
Toluene and isoprene were injected into the chamber be-
fore the UV light was turned on. The initial mixing ratios of
toluene and isoprene were 2157 and 160 ppbv, respectively.

In order to simulate the effect of the dilution process on the
toluene concentration, nitrogen was injected into the cham-
ber at a flow of 7 L min−1, while sampling was carried out
at a flow of 7 L min−1 at the sampling port. Similar to previ-
ous studies (Dada et al., 2020; Jiang et al., 2020), the rate of
dilution was calculated using Eqs. (34) and (35):[

dc
dt

]
dilu
=

C× dv
Vchamber× dt

= kdilu×C (34)
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Figure 4. Model simulation results. (a) Comparison results between the simulated and observed toluene mixing ratios. (b) Chemical loss
rate of toluene. (c) Comparison of kinetic constants in dilution process. Error bars indicate the standard deviation of kothers at different times
in scenario 3.

kdilu =
1

Vchamber
×

dv
dt
=

Flow
Vchamber,

(35)

where kdilu is the rate constant of dilution, Vchamber is the
volume of the chamber (8000 L), and “Flow” is the flow of
nitrogen injection. Therefore, the theoretical estimation re-
sult of kdilu in this case is 1.458× 10−5 s−1. Wall loss was
not considered in this simple experiment with gaseous pollu-
tants.

The version of the chemical mechanism used in the model
simulations is MCM v3.3.1, all species and mechanisms in
MCM are included. Three case scenarios were set up to eval-
uate the simulation capabilities of ROMAC. In scenario 1,
only chemical processes were considered (Eq. 36). In sce-
nario 2, chemical processes and dilution processes were con-
sidered (Eq. 37). In scenario 3, we assume that the results
of the experiment are influenced by an unknown process,
and this process is assumed to be a first-order kinetic pro-
cess (Eq. 38). The kothers in scenario 3 was dynamically opti-
mized with Scheme 1 as described in Sect. 2.2. Theoretically,
the value of kothers obtained by the dynamic optimization in
scenario 3 should be close to kdilu in scenario 2.

dcTolu

dt
=

[
dcTolu

dt

]
chem

(36)

dcTolu

dt
=

[
dcTolu

dt

]
chem
+

[
dcTolu

dt

]
dilu

=

[
dcTolu

dt

]
chem
+ kdilu×CTolu (37)

dcTolu

dt
=

[
dcTolu

dt

]
chem
+

[
dcTolu

dt

]
others

=

[
dcTolu

dt

]
chem
+ kothers×CTolu (38)

The total duration of the chamber experiment was 8 h, and
the CPU time consumed by a single simulation of ROMAC
was about 13 s. Figure 4 illustrates the comparison results be-
tween the simulated and observed toluene mixing ratios for
different scenario cases. Due to the lack of dilution process
in scenario 1, there is a large gap between simulation results
and observations. After considering the dilution process, the
simulation of scenario 2 was improved, which indicates that
the setting of scenario 2 is reasonable. The absence of a phys-
ical process in the model is identified as the primary cause
for failure to reproduce observations in scenario 1. The sim-
ulation results of scenario 3 agree well with the observations,
which indicates that the dynamic optimization algorithm suc-
cessfully captures the process that cannot be explained by the
MCM chemical mechanism. Figure 4b illustrates the chemi-
cal loss rate of toluene under different simulation scenarios.
The results of scenario 3 and scenario 2 are consistent and
significantly different from the results of scenario 1. This in-
dicates that the dynamic optimization algorithm can improve
the chemical process while optimizing the physical process.
Ignoring physical processes in the traditional box model may
introduce large uncertainty to the simulation results. The rate
of the physical process is subject to uncertainty in practi-
cal applications, but its average value is expected to closely
approximate the theoretical value. The optimized value of
kothers in scenario 3, as shown in Fig. 4c, exhibits a certain
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Figure 5. Species mixing ratio and the rate of O3 change. (a) VOCs and NOx mixing ratios. (b) Model and observation O3 mixing ratios.
(c) The effect of the physical process on the O3 mixing ratios calculated by the adaptive dynamic optimization module. (d) The rate of O3
chemical production.

range of fluctuations rather than a fixed value. However, its
average values (1.430×10−5) are comparable to kdilu in sce-
nario 2 (Fig. 4c), which indicates that the dynamically opti-
mized algorithm is reliable.

3.2 Field observation case

This case demonstrates the application of ROMAC to the
analysis of the photochemical process of O3 formation and
the dynamic optimization of physical processes. The obser-
vation data were obtained at the Heshan Atmospheric Super-
site (22.728◦ N, 112.929◦ E) in Guangdong Province, China.
A detailed description of the Heshan site can be found in
previous publications (He et al., 2019; Yang et al., 2017).
The observation period was from 4 to 10 April 2021. Mete-
orological parameters and the mixing ratios of NOx , VOCs,
SO2, CO were constrained by Scheme 3. The concentrations

of NOx and VOCs were shown in Fig. 5a, with the meteoro-
logical observations in Fig. A3.

The simulation of O3 was constrained by Scheme 1. In
this case, all physical processes of O3 (e.g., dry deposition,
dilution, transport) were merged into [

dcO3
dt ]others. The rate of

change of O3 is shown in Eq. (39). The optimal estimate of
[

dcO3
dt ]others uses Scheme 1 shown in Fig. 1.

dcO3

dt
=

[
dcO3

dt

]
chem
+

[
dcO3

dt

]
others

(39)

The comparison between the optimized simulation results
and the observations of O3 mixing ratios is shown in Fig. 5b.
As expected, the model outputs are consistent with the ob-
servations due to the dynamic optimization. The estimated
value of

[
dcO3

dt

]
others

for the physical process is shown in

Fig. 5c. Positive values of
[

dcO3
dt

]
others

indicate that phys-
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Figure 6. RIR values of O3 precursors, i.e., VOCs, NOx and CO.

ical processes increase local O3 concentration (e.g., exter-
nal transport), while negative values indicate a decrease in
O3 concentration (e.g., dilution, deposition). As displayed in
Fig. 5c,

[
dcO3

dt

]
others

is usually negative during the daytime,
indicating that O3 was transported out of the region after for-
mation by photochemical processes. However, positive val-
ues of

[
dcO3

dt

]
others

can also occur during the daytime. On
6 April, the surface ozone mixing ratio increased rapidly, and
the maximum hourly mixing ratio exceeded China II Emis-
sion Standard (> 100 ppbv). The value of

[
dcO3

dt

]
others

on the
afternoon of 6 April is positive, indicating that physical pro-
cesses were one of the reasons for the occurrence of O3 pol-
lution.

The rate of O3 chemical production and precursor sensi-
tivities were calculated using a method described in previous
studies (Liu et al., 2022; Wang et al., 2018). As displayed
in Fig. 5d, the net O3 production rate on 6 April 2021 was
significantly higher than that on other days, indicating that
chemical processes were also an important cause of O3 pollu-
tion. The sensitivity of the O3 formation to its precursors can
be represented by relative incremental reactivity (RIR). Fig-
ure 6 shows the daily average RIR values of VOCs, NOx and
CO. The RIR values of VOCs and CO were positive, which
indicates that reducing the concentration of VOCs and CO
can effectively reduce the chemical formation of O3. Except
for 8 April, the RIR values of NOx were negative, indicating
that decreasing the NOx concentration leads to an increase in
O3 concentration. The negative values of RIR for NOx and
higher positive values of RIR for VOC indicate that the ozone
formation at the Heshan Atmospheric Supersite was mostly
likely under a VOC limited regime. The result was consis-
tent with a previous study (He et al., 2019), indicating that
the application of ROMAC in chemical process diagnosis is
reliable.

The application of this case demonstrates the ability of
ROMAC to quantify the contribution of physical and chemi-
cal processes to air pollutant concentrations. Compared with
the traditional observation-based box model (OBM), RO-
MAC is superior in evaluating the impact of physical pro-
cesses on pollutant concentrations. Compared with emission-
based 3-D air quality models (e.g., CMAQ, WRF-Chem,
NAQPMS), the observation-based dynamic optimization al-

gorithm in ROMAC reduces the uncertainty introduced by
emission inventory and meteorological simulation.

4 Future developments

ROMAC will be continuously updated and developed. Func-
tionality for future improvements and upgrades includes the
following:

– A multiphase chemical reaction module and a module
for gas–particle partitioning and sectional simulation
are being developed.

– Adjoint sensitivity analysis will be added in a future ver-
sion, and users can use ROMAC to analyze the relation-
ship between precursors and secondary pollutants.

– The ensemble Kalman filter (EnKF) will be added to
dynamically optimize the physical process in future ver-
sions.

– In a future development roadmap, we have plans to
introduce a modeling framework version of ROMAC
known as “ROMAC plug-in.” This ROMAC plug-in
will support calls from Python or Fortran, ensuring
compatibility and flexibility for users. Importantly, the
efficient design of ROMAC will be maintained, allow-
ing for an optimized performance. The kernel of the RO-
MAC plug-in will be specifically engineered to provide
users with flexibility to effortlessly construct their own
models or integrate ROMAC with existing frameworks,
such as CTMs.
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Appendix A

Table A1. Initial species concentration used for model comparisons (unit: molecules cm−3).

Species Concentration Species Concentration Species Concentration

O3 5.20× 1010 NC11H24 4.90× 108 TM123B 1.20× 109

NO2 9.80× 1011 NC12H26 9.80× 108 STYRENE 5.90× 109

NO 9.80× 1011 C2H4 4.70× 1010 C4H6 4.90× 108

CO 1.50× 1013 C3H6 5.70× 109 BENZAL 1.90× 1010

SO2 7.50× 1010 BUT1ENE 7.40× 108 CH3COCH3 9.10× 109

NO3 1.40× 108 TBUT2ENE 2.50× 108 MEK 4.90× 1010

C2H2 6.20× 1010 C5H8 2.50× 108

C2H6 9.70× 1010 PENT1ENE 1.80× 109

C3H8 1.40× 1011 TPENT2ENE 2.50× 108

IC4H10 5.00× 1010 CPENT2ENE 1.50× 109

NC4H10 9.90× 1010 HEX1ENE 2.50× 108

IC5H12 1.30× 1011 TOLUENE 1.00× 1011

NC5H12 1.70× 1011 BENZENE 1.40× 1010

CHEX 1.70× 109 EBENZ 4.20× 1010

M22C4 1.20× 109 OXYL 5.80× 1010

M23C4 7.20× 109 IPBENZ 1.50× 109

M3PE 7.40× 109 PBENZ 1.20× 109

NC6H14 8.40× 109 OETHTOL 1.50× 109

M2HEX 6.60× 109 METHTOL 2.00× 109

M3HEX 6.40× 109 TM135B 2.50× 109

NC7H16 4.40× 109 HCHO 1.20× 1011

NC8H18 4.40× 109 CH3CHO 3.90× 1010

NC9H20 4.40× 109 C2H5CHO 3.40× 109

NC10H22 1.50× 109 C3H7CHO 1.70× 109

PETHTOL 2.00× 109 MIBK 3.80× 1011

TM124B 2.20× 109 HEX2ONE 6.30× 1011

Table A2. CPU time used by the EBI solver at different integration time step sizes (unit: seconds). “Nonconvergence” represents that the
EBI solver fails to converge.

Time step 1 10 50 120 900

CPU time 256 73 Nonconvergence Nonconvergence Nonconvergence
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Figure A1. Comparison of the simulation results between ROMAC and AtChem for nine substances. ROMAC used the VSVOR solver in
this test.

Figure A2. (a) Time series of relative errors, with dots marking the maximum values. (b) Growth rate of relative errors.
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Figure A3. Meteorological data input to the model. (a) Temperature. (b) Relative humidity. (c) Atmospheric pressure. (d) Photolysis rate.
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Appendix B: Nomenclature

ODEs Ordinary differential equations
VSVOR Variable-step and variable-order solver
atol absolute tolerance
rtol relative tolerance
r The reactant in a chemical reaction
p The product in a chemical reaction
α, β Stoichiometric number
Ct Concentration of species at time t
fi
(
Ci,t , t

)
Rate of change of species i at time t

Pi,t Product rate of species i at time t
Li,t Loss rate of species i at time t
li,t,R The part of the chemical reaction rate that is not directly related to the concentration of species i in reaction

R at time t
1t Integration time step size
g1 (Ct+1) The objective function when Newton’s method solves the implicit Euler method
g2 (Ct+1) The objective function when Newton’s method solves the implicit trapezoidal method
Ckt+1 Species concentration at iteration k of Newton’s method
∇g1(Ct+1) The Jacobian matrix of g1 (Ct+1)

∇g2(Ct+1) The Jacobian matrix of g2 (Ct+1)

∇g−1(Ct+1) The inverse of the Jacobian matrix
1t0 Integration time step size equal to 2.22× 10−16 s
1t1 Minimum species atmospheric lifetime in chemical mechanisms
1t2 The maximum time step size necessary to achieve diagonal dominance of the Jacobian matrix.
1tinit Initial integration time step size
1tmax The maximum integration time step to ensure the result does not exceed the preset tolerance
1topt Optimal integration step size
RERR Relative error calculated by doubled-step method
LTE Local truncation error
atol Absolute tolerance
rtol Relative tolerance
Rn Lagrangian remainder in the Taylor expansion
ξ Real number in the Lagrangian remainder in the Taylor expansion
RMSE Root mean square error
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