
Geosci. Model Dev., 16, 5979–6000, 2023
https://doi.org/10.5194/gmd-16-5979-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Overcoming barriers to enable convergence research by integrating
ecological and climate sciences: the NCAR–NEON system Version 1
Danica L. Lombardozzi1,�, William R. Wieder1,2,�, Negin Sobhani1, Gordon B. Bonan1, David Durden3,
Dawn Lenz3, Michael SanClements3, Samantha Weintraub-Leff3, Edward Ayres3, Christopher R. Florian3,
Kyla Dahlin4, Sanjiv Kumar5, Abigail L. S. Swann6, Claire M. Zarakas6, Charles Vardeman7, and Valerio Pascucci8
1Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
2Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
3National Ecological Observatory Network, Battelle, Boulder, CO, USA
4Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI, USA
5College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL, USA
6Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
7Center for Research Computing, University of Notre Dame, Notre Dame, IN, USA
8Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
�These authors contributed equally to this work.

Correspondence: Danica L. Lombardozzi (dll@ucar.edu)

Received: 16 February 2023 – Discussion started: 25 April 2023
Revised: 17 August 2023 – Accepted: 22 August 2023 – Published: 26 October 2023

Abstract. Global change research demands a convergence
among academic disciplines to understand complex changes
in Earth system function. Limitations related to data us-
ability and computing infrastructure, however, present bar-
riers to effective use of the research tools needed for this
cross-disciplinary collaboration. To address these barriers,
we created a computational platform that pairs meteorologi-
cal data and site-level ecosystem characterizations from the
National Ecological Observatory Network (NEON) with the
Community Terrestrial System Model (CTSM) that is de-
veloped with university partners at the National Center for
Atmospheric Research (NCAR). This NCAR–NEON sys-
tem features a simplified user interface that facilitates ac-
cess to and use of NEON observations and NCAR mod-
els. We present preliminary results that compare observed
NEON fluxes with CTSM simulations and describe how the
collaboration between NCAR and NEON that can be used
by the global change research community improves both the
data and model. Beyond datasets and computing, the NCAR–
NEON system includes tutorials and visualization tools that
facilitate interaction with observational and model datasets
and further enable opportunities for teaching and research.
By expanding access to data, models, and computing, cyber-

infrastructure tools like the NCAR–NEON system will ac-
celerate integration across ecology and climate science disci-
plines to advance understanding in Earth system science and
global change.

1 Introduction

Earth system science aims to deepen understanding of in-
teractions between natural and social systems and their re-
sponses to global change. As such, the collective under-
standing of changes in Earth system function in response
to global change drivers requires a convergence among sci-
entific disciplines, including physical and natural sciences
(Kyker-Snowman et al., 2022). This research combines a va-
riety of complex observational data with ever more sophisti-
cated computational models. Notably, Earth system models
(ESMs) are essential tools for assessing and predicting our
changing environment (Bonan and Doney, 2018), but limi-
tations related to data usability and access to computing in-
frastructure present barriers to effective use of these research
tools (Fer et al., 2021). Addressing these barriers is critical
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to engage the broad cross-disciplinary communities that are
required for Earth system science research, education, and
training (National Academies of Sciences, Engineering, and
Medicine, 2022). We feel that tractable progress can be made
to reduce these data and technical barriers to better under-
stand and project changes in Earth system function under
global change.

The availability, discoverability, and usability of observa-
tional data are essential to running, calibrating, and validat-
ing models. For example, the scientific advancements made
in measuring eddy covariance (EC) fluxes have been criti-
cal to the development, evaluation, and improvement of the
representation of terrestrial ecosystems in ESMs. Initially,
model–data comparisons were limited to short, intensive
field campaigns extending over a few weeks (Bonan et al.,
1997), but this grew to comparison with flux network datasets
extending over several years at multiple sites (Stöckli et al.,
2008) and comparison with globally gridded flux products
(Bonan et al., 2011; Jung et al., 2020). Flux tower datasets
continue to provide essential information for land model de-
velopment and evaluation (Best et al., 2015; Lawrence et al.,
2019). Notably, single-point simulations can use EC mea-
surements to facilitate more rapid model development and
testing of ecological hypotheses (Bonan et al., 2012; Burns et
al., 2018; Collier et al., 2018; Swenson et al., 2019; Wieder et
al., 2017). An explosion of EC measurements and strong net-
work coordination make these data easier to find (Beringer et
al., 2022; Durden et al., 2020; Pastorello et al., 2020; Novick
et al., 2018), but the need to perform additional data process-
ing prior to use presents barriers to integrating ecological
observations into land model development and evaluation.
These barriers include gap filling associated meteorological
data, assessing EC flux data quality, and persistent challenges
in discovering and harmonizing complementary data – in-
cluding information about vegetation and soils at EC tower
sites. Our work seeks to provide a framework to address these
data challenges to facilitate the integration of local meteorol-
ogy, EC flux measurements, and ecosystem characterizations
in the development and evaluation of land models that are
used for Earth system prediction and global change research.

Beyond these data challenges, barriers to accessing and
using computing infrastructure also impede broader commu-
nity engagement with tools that are central to global change
research. This limits the participation of scientists from en-
vironmental science, ecology, and agroecology, which are
fundamental components of the Earth system, in the de-
velopment and use of ESMs. The Community Earth Sys-
tem Model (CESM; Hurrell et al., 2013; Danabasoglu et al.,
2020) has a long history of being freely and openly available
to users, yet several barriers related to training, cyberinfras-
tructure, and data integration have hampered broader adop-
tion and use of this model by a wide range of researchers.
Thus, model code may be publicly available, but access to
computing resources and the associated technical expertise
needed to use them presents barriers to engaging a diverse

cross-disciplinary community of model users who can har-
ness these powerful tools for research and teaching. We con-
tend that broader engagement across scientific disciplines is
critical to improving the representation of Earth system pro-
cesses and their likely responses to global change.

This work overcomes some of the barriers to the use of
ESMs in ecology by creating an integrated “NCAR–NEON
system”. This system combines meteorological data and site-
level ecosystem characterizations from the National Ecologi-
cal Observatory Network (NEON) with the Community Ter-
restrial System Model (CTSM), an extension of the Commu-
nity Land Model (CLM5; Lawrence et al., 2019). CTSM is
the terrestrial component of CESM, which is developed with
university partners at the National Center for Atmospheric
Research (NCAR; Fig. 1). The NCAR–NEON system also
features a simplified user interface that facilitates access to
and use of NEON observations and NCAR models. By devel-
oping this NCAR–NEON system, we aim to enable the con-
vergence of climate and ecological sciences by providing ac-
cessible cyberinfrastructure, quality-controlled datasets from
NEON, and tutorials for analyzing and visualizing observed
and simulated data. We describe development of the NCAR–
NEON system, present results comparing observed NEON
fluxes with simulations from CTSM, and outline opportuni-
ties that the system enables for research and education across
research networks and scientific disciplines.

2 Methods

2.1 NEON data

NEON is a research network comprising 81 monitoring
sites (47 terrestrial, 34 aquatic) that are collecting standard-
ized, open data across the major ecosystems of the United
States (Table S1 in the Supplement). NEON’s data products
are highly complementary to land models, providing high-
quality and standardized data for soil, vegetation, and at-
mosphere states and fluxes across vast spatiotemporal scales
with high-throughput instrumented system data and spatially
expansive remote sensing data (Hinckley et al., 2016; Balch
et al., 2020; Durden et al., 2020). Each of the 47 NEON ter-
restrial sites includes an EC tower to determine the surface–
atmosphere exchange of momentum, heat, water, and CO2,
alongside meteorology (precipitation, wind speed, humid-
ity, temperature), atmospheric composition (water vapor and
CO2 concentrations and isotopic ratios), and soil sensor
assemblies measuring depth-resolved soil temperature and
moisture at several locations in the EC tower footprint (Met-
zger et al., 2019). In this preliminary effort to bring NEON
measurements and NCAR modeling together we use NEON
data for (1) meteorological inputs that are gap-filled and pro-
vide local atmospheric boundary condition inputs to CTSM,
(2) vegetation and soil properties, and (3) eddy covariance
fluxes to compare observed and simulated results (Fig. 1, Ta-
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Figure 1. A conceptual diagram illustrating the integration of NEON data and NCAR modeling enabled through the NCAR–NEON system.
NEON meteorological measurements are gap-filled using redundant streams and used as inputs for single-point simulations with the Commu-
nity Terrestrial System Model (CTSM). Additional NEON observations are used as input data to the model, including surface characteristics
of vegetation (e.g., mapping to simulated plant functional types – PFTs) and the soil properties (soil texture, organic matter content, and depth
to bedrock if < 2 m). Simulations with CTSM are conducted in CESM-Lab, a computing environment that runs in a container or with cloud
computing resources, which includes model code and analysis tools. Simulated data are compared with observed fluxes using visualization
scripts that are provided within CESM-Lab to improve observed data products, model parameterization, and model process representation.

ble 1) with prototype data available through the NEON data
portal (NEON, 2023).

2.1.1 Meteorological inputs

Generating the gap-filled meteorological data that are
required for single-point simulations with land models
can be time-consuming and requires expertise in micro-
meteorology that land model users and developers may not
have. Thus, the modeling community historically relied on
external efforts like FLUXNET synthesis databases to pro-
vide gap-filled meteorological measurements at eddy flux
sites (e.g., La Thuile or FLUXNET2015; Pastorello et al.,
2020). Downloading and processing these datasets into a for-
mat that is usable by the model is also time-consuming, and
often the flux measurements are not paired with information
about local vegetation or soil properties that are easy to dis-
cover or digest. Collectively, these factors create barriers for
use and latencies in updating the EC observational data that
are used in single-point simulations. The NCAR–NEON sys-
tem aims to remove some of these barriers.

NEON meteorological input data used to run CTSM are
summarized in Table 1 and gap-filled using publicly avail-
able code (Table 2). While NEON is highly standardized,
a few differences in instrumentation exist between NEON
core (representative of the predominant natural ecosystem
of each respective domain) and gradient sites (representing
other end-member conditions in each respective domain).

For example, core NEON sites measure precipitation with
double-fenced intercomparison reference gauges, while gra-
dient sites all have tipping buckets (Metzger et al., 2019).
Accounting for these site-specific sensor configurations and
variation in their associated data streams is the first step in
providing usable meteorological inputs to CTSM. The me-
teorological inputs to CTSM must be continuous; therefore,
additional gap filling of missing data is required. Addition-
ally, the EC system collects data necessary to calculate fluxes
of energy, water vapor, and CO2. The NEON site design
builds in some redundancy in observations with profiles of
incoming radiation, wind, temperature, water vapor, and CO2
concentrations measured at different heights on each NEON
tower (Metzger et al., 2019). These data redundancies allow
for a robust initial gap filling using linear regressions among
the primary and redundant data streams to correct for instru-
ment or location differences. For example, if wind speed or
air pressure measurements from the tower top are missing,
we gap-fill with the value from the redundant data stream
(typically measured at a lower tower height) corrected by the
linear relationship with the primary sensor data. If multiple
redundant data streams are available, the best-fit regression
with data available is used to determine the gap-filled value
for each missing data point.

After gap filling using related data stream regression, some
range thresholds and proper unit conversions are applied
to prepare the meteorological data for processing through
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Table 1. NEON data product name, data product use in CTSM, NEON data product ID, and digital object identifier (DOI). Data products
were used for meteorological inputs and surface characterization, which are inputs needed to run CTSM, as well as for model evaluation.

Data product name Data product use Data product ID DOI

Precipitation Meteorological input DP1.00006.001 https://doi.org/10.48443/6wkc-1p05 (National Eco-
logical Observatory Network (NEON), 2022a)

Relative humidity Meteorological input DP1.00098.001 https://doi.org/10.48443/w9nf-k476 (National Eco-
logical Observatory Network (NEON), 2022b)

Shortwave and longwave
radiation (net radiometer)

Meteorological input DP1.00023.001
DP1.00024.001∗

DP1.00014.001∗

https://doi.org/10.48443/stbf-bh38 (National Eco-
logical Observatory Network (NEON), 2022c)
https://doi.org/10.48443/8a01-0677 National Eco-
logical Observatory Network (NEON), 2022j)
https://doi.org/10.48443/hv8e-5696 (National Eco-
logical Observatory Network (NEON), 2022k)

Barometric pressure Meteorological input DP1.00004.001
DP4.00200.001∗

https://doi.org/10.48443/zr37-0238 (National Eco-
logical Observatory Network (NEON), 2022d)
https://doi.org/10.48443/7cqp-3j73 (National Eco-
logical Observatory Network (NEON), 2022g)

Wind speed Meteorological input DP4.00200.001
DP1.00001.001∗

https://doi.org/10.48443/7cqp-3j73 (National Eco-
logical Observatory Network (NEON), 2022g)
https://doi.org/10.48443/77n6-eh42 (National Eco-
logical Observatory Network (NEON), 2022e)

Air temperature Meteorological input DP4.00200.001
DP1.00003.001∗

https://doi.org/10.48443/7cqp-3j73 (National Eco-
logical Observatory Network (NEON), 2022g)
https://doi.org/10.48443/q16j-sn13 (National Eco-
logical Observatory Network (NEON), 2022f)

Forcing height Meteorological input DP4.00200.001 https://doi.org/10.48443/7cqp-3j73 (National Eco-
logical Observatory Network (NEON), 2022g)

Soil physical and chemical
properties, Megapit

Soil property characterization DP1.00096.001 https://doi.org/10.48443/10dn-8031 (National Eco-
logical Observatory Network (NEON), 2022h)

Dominant vegetation type Surface characterization Manually assigned

Bundled data pro
ducts – eddy covariance

Model evaluation DP4.00200.001
DP1.00023.001∗

https://doi.org/10.48443/7cqp-3j73 (National Eco-
logical Observatory Network (NEON), 2022i)

Net radiation Model evaluation DP1.00023.001
DP1.00014.001∗

https://doi.org/10.48443/stbf-bh38 (National Eco-
logical Observatory Network (NEON), 2022c)
https://doi.org/10.48443/hv8e-5696 (National Eco-
logical Observatory Network (NEON), 2022k)

Photosynthetically active
radiation (PAR)

Model evaluation DP1.00024.001
DP1.00023.001∗

DP1.00014.001∗

https://doi.org/10.48443/8a01-0677 (National Eco-
logical Observatory Network (NEON), 2022j)
https://doi.org/10.48443/stbf-bh38 (National Eco-
logical Observatory Network (NEON), 2022c)
https://doi.org/10.48443/hv8e-5696 (National Eco-
logical Observatory Network (NEON), 2022k)

Direct and diffuse
radiation

Model evaluation DP1.00014.001 https://doi.org/10.48443/hv8e-5696 (National Eco-
logical Observatory Network (NEON), 2022k)

Soil water content and
water salinity

Model evaluation DP1.00094.001 https://doi.org/10.48443/ghry-qw46 (National Eco-
logical Observatory Network (NEON), 2022k)

∗ Indicates that the data product was used in the redundant stream to gap-fill the primary data product.
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the ReddyProc R package following the gap filling work-
flow outlined in Wutzler et al. (2018). After using related
data stream regressions, the meteorological data are checked
for additional gaps, and gap filling is performed using one
of three additional gap filling methodologies that include a
look-up table (Falge et al., 2001), mean diurnal course, and
marginal distribution sampling (Moffat et al., 2007; Reich-
stein et al., 2005). The gap filling method is tracked and pro-
vided as a flag with the data to allow users to assess data
with various methodology restrictions. The meteorological
data streams are then converted to units required by CTSM
and output to cloud storage in Network Common Data Form
(NetCDF) format with associated metadata to fully describe
data provenance and formatting. At most sites data cover-
age spans 1 January 2018 through 31 December 2021, but
as more NEON data are collected these files will also be
updated in near-real time, thus removing barriers associated
with processing flux tower data and reducing latencies in us-
ing new data as they are collected. Tables S1 and S2 in the
Supplement provide a list of all the sites where input data
have been successfully gap-filled and note any potential data
quality issues.

2.1.2 Soil and vegetation properties

Basic information on edaphic properties is needed in the pe-
dotransfer functions that describe soil thermal and hydraulic
properties in CTSM. Although NEON has several soil sam-
pling datasets, we used information from the Megapit charac-
terization of soil physical and chemical properties in CTSM
because it contains more details about deep soil horizons
(> 1 m depth; Table 1) from a single soil pit at each site.
Megapit samples were collected by pedogenic soil horizon
down to 2 m or restrictive feature and analyzed for several
properties including total soil carbon concentration, calcium
carbonate concentration, bulk density, coarse fragments, soil
pH, and texture. Soil organic carbon stocks used in CTSM
were estimated for each soil horizon by calculating organic
carbon concentrations (after subtracting carbonates from to-
tal carbon measurements) and multiplying by bulk density.

Currently, the CTSM simulations are run with a single
plant functional type (PFT) at each NEON site (Table S1).
We acknowledge that this belies the diversity in vegetation
that is present at NEON sites, but it provides a tractable start-
ing point for further investigation into developing more so-
phisticated site- to regional-scale parameterizations and rep-
resentations of biotic diversity with CTSM. CTSM repre-
sents mixed species communities as separate patches occu-
pied by single PFTs. CTSM can represent more than one
PFT at each site, and users can update the provided CTSM
surface dataset to include more than one PFT. Future efforts
may provide datasets with multiple PFTs corresponding to
their proportion at NEON sites. The dominant PFT at each
NEON site was assigned at the location of each EC tower
using expert assessment that was informed by NEON vege-

tation surveys. Information on soil properties and dominant
vegetation types is output as .csv files to public-access cloud
storage buckets for use by CTSM (Fig. 1; Sect. 2.3).

2.1.3 Independent model evaluation

The EC flux data (energy, water vapor, and CO2) are time-
regularized, and quality assurance and control (QA/QC)
are applied. The QA/QC applied includes removing data
when quality flags are raised, removing CO2 data when
the field calibration algorithm cannot be applied, applying
range thresholds, and applying a despiking routine to remove
outliers (Brock, 1986; Starkenburg et al., 2016). The data
are gap-filled using the ReddyProc methodology outlined in
Sect. 2.1.1. The vapor pressure deficit (VPD) is derived from
the difference between actual and saturated vapor pressure,
while gross primary production (GPP) is calculated from net
ecosystem exchange (NEE), the sum of turbulent and stor-
age fluxes, using the nighttime flux partitioning method of
Reichstein et al. (2005). The nighttime approach is a com-
munity standard and was used at all sites in this work. Future
work can explore whether other partitioning approaches may
be more appropriate at some sites. The data, quality flags,
and metadata are formatted and provided at 30 min intervals
as NetCDF files for comparison with modeled fluxes. In fu-
ture releases of the NCAR–NEON system we aim to use the
ONEFlux data pipeline to enable additional methodologies
for flux partitioning, which also includes storage fluxes (Pas-
torello et al., 2020). Finally, NEON continuous soil moisture
data were compared with model simulations for two sites.
Since the soil moisture sensors were reconfigured with differ-
ent calibration coefficients during the 2018–2021 validation
period, which introduced step changes in NEON’s soil mois-
ture data product (Table 1), the raw sensor measurements
were back-calculated and consistent soil-specific calibration
coefficients were subsequently applied over the entire mea-
surement period (Ayres et al., 2021) prior to comparison with
CTSM data. Only values that passed quality tests were used.
In future work we aim to provide standardized soil moisture
data for more sites across the observatory.

2.2 NCAR modeling

Numerical models of weather and climate have long been
recognized as essential research tools to advance atmo-
spheric science. Land surface fluxes of energy, moisture, and
momentum, required to solve the equations of atmospheric
physics and dynamics, are controlled by heat and water stor-
age in soil, as well as the physiology of plants and their or-
ganization into canopies of leaves. Consequently, models of
soil–plant–atmosphere processes are required to provide the
necessary surface fluxes. Indeed, the first numerical weather
prediction model included mathematical equations for soil
temperature, soil moisture, and the stomata on leaves, and
it envisioned canopies as a film of leaves covering the sur-
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Table 2. List of helpful websites created for the NCAR–NEON system, their contents, and a URL address (last access: 8 October 2023) for
each.

Name Contents

Project home page Main landing page for users interested in learning more about the project
URL: https://neoncollab.ucar.edu

Tutorial Tutorial that introduces running CTSM at NEON tower sites in the CESM-Lab container
URL: https://ncar.github.io/ncar-neon-books/notebooks/NEON_Simulation_Tutorial.html

Interactive visualizations Interactive plots that allow users to explore data produced by the NCAR–NEON system without running
the model or downloading data

URL: https://ncar.nationalsciencedatafabric.org/neon-demo/v1/

Processing NEON data Docker image with scripts used for gap filling meteorological data, flux partitioning, and formatting
NEON datasets

URL: https://quay.io/repository/ddurden/ncar-neon

DiscussCESM forum Discussion forum bulletin boards for questions related to CESM including CESM-Lab and CTSM
URL: https://bb.cgd.ucar.edu/cesm/

CTSM repository Code base, technical documentation, and information related to CTSM
URL: https://github.com/ESCOMP/CTSM

NEON prototype data NEON prototype datasets, which include the gap-filled meteorological data for flux-partitioned data
used for model input and evaluations

URL: https://data.neonscience.org/prototype-datasets/0a56e076-401e-2e0b-97d2-f986e9264a30

face (Richardson, 1922). As science progressed from mod-
els of atmospheric general circulation to climate models and
now Earth system models, the role of terrestrial ecosystems
in climate processes has come to the forefront. The terrestrial
components of ESMs, such as CTSM, have improved ecolog-
ical processes representation and now include biogeochem-
ical cycles, wildfires, and land use and land cover change
(Bonan, 2015, 2019; Lawrence et al., 2019). This evolution
in the Earth system sciences is evident in 40+ years of sci-
entific research linking weather, climate, and land model-
ing at NCAR, from pioneering initial model implementa-
tions (Deardorff, 1978; Dickinson et al., 1986, 1993; Bo-
nan, 1996) to community-based model development (Ole-
son et al., 2004, 2010, 2013; Levis et al., 2004; Lawrence
et al., 2019) that continues to engage ecological and environ-
mental sciences communities in CTSM development and ap-
plication. As more ecology and biogeochemistry are added
to the models (Fisher and Koven, 2020), the notion of cli-
mate prediction is expanding to Earth system prediction, in-
cluding terrestrial ecosystems and biotic resources (Bonan
and Doney, 2018). These models have also become impor-
tant tools for scientific discovery by identifying the ecolog-
ical processes that affect climate (e.g., photosynthetic tem-
perature acclimation; Lombardozzi et al., 2015) and advanc-
ing theory at the macroscale (e.g., developing a theory of
ecoclimatic teleconnections; Swann et al., 2018). With the
new NCAR–NEON system tools described here, we aim
to expand engagement and accessibility with the ecologi-
cal and environmental science communities to continue test-

ing, evaluating, and improving terrestrial process representa-
tion within CTSM. This will improve our understand of how
ecosystems function within the Earth system, including the
regulation of carbon, water, and energy fluxes that affect cli-
mate.

2.2.1 Containerized version of CESM-Lab

CESM has a long history of being freely and openly avail-
able to users (Hurrell et al., 2013; Danabasoglu et al., 2020),
yet several barriers related to training, cyberinfrastructure,
and data integration have hampered its adoption by a wide
range of researchers. Even with open-source software, port-
ing CESM to a new computer also requires the new comput-
ing system to be able to compile model source code and to
have all the necessary input data and library dependencies. To
address these computing challenges, NCAR recently devel-
oped CESM-Lab, which is a pre-configured and standardized
environment that contains CESM and Jupyter-Lab. CESM-
Lab is available via a Docker container and distributed via
DockerHub (Table 2). The containerized version of CESM-
Lab, and containers in general, gives researchers the capa-
bility to package and distribute source code, libraries, de-
pendencies, and system settings as one unit – thereby ensur-
ing reproducibility. Using the containerized system, CESM-
Lab can be used on any computing system, even a laptop or
a cloud platform, to allow researchers to easily run CESM
and its component models. The NCAR–NEON system uses
CESM-Lab capabilities to run single-point CTSM simula-
tions at NEON sites.

Geosci. Model Dev., 16, 5979–6000, 2023 https://doi.org/10.5194/gmd-16-5979-2023

https://neoncollab.ucar.edu
https://ncar.github.io/ncar-neon-books/notebooks/NEON_Simulation_Tutorial.html
https://ncar.nationalsciencedatafabric.org/neon-demo/v1/
https://quay.io/repository/ddurden/ncar-neon
https://bb.cgd.ucar.edu/cesm/
https://github.com/ESCOMP/CTSM
https://data.neonscience.org/prototype-datasets/0a56e076-401e-2e0b-97d2-f986e9264a30


D. L. Lombardozzi et al.: The NCAR–NEON system Version 1 5985

2.2.2 Single-point CTSM simulations

The workflow for running single-point CTSM simulations
requires several steps that can be error-prone and time-
consuming, particularly when using EC tower or other site-
level data to drive simulations. To facilitate using NEON
data in CTSM simulations we made several modifications
to simplify this workflow. When users create a new simu-
lation, the system queries NEON public-access cloud stor-
age buckets and downloads available data into a designated
directory (Sect. 2.3). For each NEON site, this includes a
surface dataset that reflects soil properties and the dominant
vegetation (Table 1), meteorological data that provide bound-
ary conditions for the land model, and an initial condition
file with equilibrated, or steady-state, carbon, water, energy,
and nitrogen states to initialize ecosystem pools simulated
by CTSM. Initial conditions at each NEON site were gen-
erated by cycling over the meteorological data at each site
for 200 years in accelerated decomposition (AD) mode and
another 100 years in normal, or post-AD mode, or until bio-
geochemical states reached steady state (when ecosystem C
pools change by < 1 g C m−2 yr−1; this is standard proto-
col for equilibrating the model state; Lawrence et al., 2019).
Colder sites, especially those in Alaska, took longer to reach
these steady-state conditions.

The NCAR–NEON system uses a top-level Python code
called “run_neon” that simplifies downloading the pre-
configured datasets and automatically creates, builds, and
runs cases for individual and multiple NEON sites. The
Python script, which also resides in the CTSM repository
(Table 2), includes several command-line arguments and op-
tions for automatically running spin-up and transient sim-
ulations. Collectively, these features dramatically improve
CTSM site simulation accessibility, facilitate the use of new
NEON data, reduce potential errors in configuring the CTSM
case at NEON tower sites, and enable users to run simula-
tions at multiple NEON sites. While users of the system can
now easily generate their own data, NCAR provides model
simulation data at each of the tower sites that are available
on the NEON public-access cloud storage bucket (Sect. 2.3).
Simulation data are generated at a 30 min time step and are
aggregated into daily NetCDF files.

2.2.3 Tutorials, analysis, and visualization

Three interactive tutorials are available to guide users
through the new NCAR–NEON system (Table 2). The
first tutorial helps system users to access CESM-Lab us-
ing Docker, which will ultimately allow users to run CTSM
simulations at NEON sites on their local computing system.
The first step requires that users download Docker from the
company website. This step is potentially challenging, as
Docker is an externally controlled application and some re-
cent Docker updates do not work with older computing sys-
tems. We provide links to additional resources to help the

user navigate these potential problems and offer a resource
for asking questions about containers through the CESM dis-
cussion forum (Table 2). After downloading and installing
Docker, users are guided through downloading, running, and
connecting to the CESM-Lab container and accessing the
NEON tower simulation and visualization tutorials.

The second tutorial is a Jupyter Notebook that guides users
through running CTSM simulations for NEON flux tower
sites. The beginning of this tutorial provides a short descrip-
tion of CTSM and its component models, as well as resources
for finding additional information. The process of running a
simulation at NEON tower sites has been streamlined into the
“run_neon” script (see Sect. 2.2.2) that can be called with
a single line of code after the user defines a NEON tower
site. The simulation itself downloads approximately 2.5 GB
of input data and takes several minutes or more to complete,
depending on the speed of the internet connection and com-
puting system being used. After the simulation is complete,
the user is pointed to where the model data are stored and has
the option to generate plots of soil temperature and moisture
profiles for 1 year of the simulation.

The third tutorial guides users through analyzing and eval-
uating model simulations against observed NEON flux tower
measurements. This tutorial requires a successfully com-
pleted NEON tower simulation from the previous simula-
tion tutorial. The user selects the site and the year of interest
and is guided through loading and opening the model data
files, as well as downloading EC data for evaluation from
the NEON server and loading and opening the files. Next,
the tutorial guides users through formatting, processing, and
plotting simulation and flux tower data. Users generate plots
of mean annual and diel cycles of latent heat flux. Addi-
tional plots illustrate how CTSM partitions latent heat flux
into ground evaporation, canopy evaporation, and transpira-
tion, as component fluxes are not available from the observed
data. Scatter plots are also created using simulated fluxes to
illustrate the relationship between component evaporation as
well as transpiration fluxes and total latent heat flux on sea-
sonal and annual timescales. The tutorial explains the Python
tools used to process and plot the data and asks probing ques-
tions about the results that tutorial users are exploring to help
guide the user in thinking about patterns in the data and con-
sidering how to compare model and flux tower data. Users
are encouraged to use the code available in this tutorial to
explore other sites, years, and variables.

2.3 Cyberinfrastructure to facilitate data exchange and
interactive visualizations

Cyberinfrastructure for scientific data provides data han-
dling and management functionality including data stor-
age, processing, transfer, security, and access. Cyberinfras-
tructure components developed for the NCAR–NEON sys-
tem include access-managed cloud storage for project data,
standards-based metadata generation enabling dataset search
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Figure 2. A schematic representation of cloud-based data manage-
ment for the NCAR–NEON system. Internal data may include pre-
liminary results, data shared for review within the project, or data
staged for release. Released data files are available for public access
to the user community as well as anyone on the internet and include
NEON meteorological inputs, NEON surface characterization data,
CTSM surface datasets and initial condition files, NEON measure-
ments used for model evaluation, and data from CTSM simulations
that are used for interactive visualizations. Access-restricted cloud
buckets require authentication to access files stored in them. Public-
access cloud storage buckets provide open access to the files stored
in them.

and discovery, and data exploration tools for the user com-
munity. Datasets for the NCAR–NEON system are hosted in
cloud object storage, providing secure web-enabled access
to the data files (Fig. 2). Data files are grouped in the cloud
storage system into logical storage containers called buckets.
Buckets that are granted public access allow anyone on the
internet to download the data stored in them. Buckets pro-
tected with authentication mechanisms require users to have
either individual account permissions on the bucket or an ac-
cess key for the bucket and are meant for internal dataset
sharing or staging data prior to public release.

Data exchange between NCAR and NEON within this sys-
tem enables automated generation of datasets as well as col-
lation of NCAR model outputs and NEON data. The ini-
tial data collation for NEON data products uses a container
that sources all atmospheric forcing and model evaluation
data from the NEON API, performs gap filling, and for-
mats the data for model ingestion with standardized metadata
(Sect. 2.1). Simulation datasets from NCAR (Sect. 2.2) are
automatically synced to NEON object storage in the cloud at
scheduled intervals (Fig. 2). To facilitate automated transfer
of datasets between NCAR and NEON, a staging bucket is
configured that allows file uploads from authenticated users.
An automated process moves files from the staging bucket
to the publicly available target bucket at scheduled intervals.
Metadata describing scientific datasets using standard vocab-
ularies and formatting can be used by internet search engines
to facilitate dataset discovery. JavaScript Object Notation
for Linked Data (JSON-LD; https://www.w3.org/TR/json-ld,

last access: 8 October 2023) is a human- and machine-
readable open metadata standard. Schema.org defines a vo-
cabulary of standard HTML tags compatible with JSON-LD
markup (Shepherd et al., 2022). A metadata generation com-
ponent for NCAR–NEON datasets is implemented in Python
and uses the Binary Array Linked Data library (binary-array-
ld, https://github.com/binary-array-ld/bald, last access: 8 Oc-
tober 2023) to generate JSON-LD metadata for NCAR–
NEON NetCDF files with the Schema.org vocabulary.

Beyond these automated data exchanges, we also devel-
oped a Python-based interactive visualization dashboard (Ta-
ble 2) as a graphical user interface (GUI) that enables users
to explore and interact with model outputs and observations
on the fly. This tool allows users to generate graphs and sta-
tistical summaries comparing CTSM simulations and obser-
vational data for NEON sites without downloading the ob-
servational data or running the model. This dashboard was
developed using a scientific Python stack, including Xarray,
Bokeh, and Holoviews, which allows a developer to create
a user interface with widgets and visualization components
inside a Jupyter Notebook. Users access a GUI to select indi-
vidual NEON sites, variables, and output frequencies to visu-
alize. The tool offers different types of interactive visualiza-
tions and statistical summaries based on user selections. This
interactive visualization dashboard does not require special-
ist knowledge to operate; therefore, it can be used for educa-
tional outreach activities and in classrooms. Moreover, users
can interact with the dashboard using a browser, so it is pos-
sible to interact with the plots via a tablet or smartphone.

Data input–output and manipulation, particularly at the
30 min frequency available in the NCAR–NEON system,
are typically computationally resource-intensive aspects of
data access. Input–output and calculations can both benefit
from parallel computing, which can process multiple sub-
sets of a dataset simultaneously and thereby enable efficient
dataset access and operations. The back end for the visu-
alization dashboard uses dataset chunking for efficient ac-
cess to NetCDF file content. The Zarr format and library
enable generation of metadata providing chunked access to
NetCDF files (Miles et al., 2022). Zarr metadata for daily
files are combined into monthly files, reducing the number
of files accessed for time intervals spanning multiple days
and thereby improving access efficiency. The Python Xarray
library, which is used to read the datasets, integrates with the
Python Dask library for parallel computing and thus enables
loading and processing NetCDF data chunks in parallel as
Dask arrays. The Dask components that Xarray uses use a
local thread pool by default, and local threads incur minimal
task overhead associated with the parallel processing. Opera-
tions on the Dask arrays use the Python NumPy library for ar-
ray operations, and the NumPy implementation takes advan-
tage of thread pool parallelism, enabling efficiency improve-
ments in dataset operations even on small (∼ 100–200 KB)
files.
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3 Results

We illustrate features of the NCAR–NEON system with
comparisons of observed and simulated fluxes across diverse
ecosystems that the observatory spans. A subset of the sites
highlighted in our analysis is described in Table 3. The com-
parisons are intended to summarize the status of the project,
illustrate the data produced through this project, and high-
light potential insights the data affords. We recognize that
there are rich opportunities to expand on these analyses, in-
tegrate additional measurements, and improve modeled pa-
rameterization and representations of specific sites and pro-
cesses. Indeed, such contributions are encouraged from the
community.

Annual climatologies of site-level data provide compar-
isons of measured and simulated fluxes. Site-level simula-
tions with CTSM received inputs of incoming shortwave and
longwave radiation measured at NEON EC towers (Table 1),
but the model calculates reflected shortwave radiation and
outgoing longwave radiation based on albedo and surface
temperature. Accordingly, net radiation is a useful metric by
which to compare observed and simulated fluxes. Since net
radiation is a driver of numerous ecosystem fluxes, identi-
fying biases can help to explain biases in other fluxes. We
look at a climatology of daily mean net radiation that is sim-
ulated over the NEON record. Results shown here for Bartlett
Experimental Forest (BART; Fig. 3a) suggest that the model
adequately captures the seasonal cycle of net radiation at this
temperate deciduous forest site. (Figure S1 in the Supple-
ment shows a similar climatology for a boreal forest site at
Delta Junction (DEJU) in central Alaska.)

Users can also compare latent and sensible heat fluxes
that are simulated by the model and observed at EC towers.
At BART we see that CTSM tends to overestimate sensible
heat fluxes, while underestimating latent heat fluxes, espe-
cially during the summer months (Fig. 3b–c). Such biases in
the evaporative fraction (the ratio of latent heat flux to the
sum of latent and sensible heat fluxes) of turbulent fluxes are
common in land models, including CTSM (Best et al., 2015;
Wieder et al., 2017) and the NCAR–NEON system. The in-
consistencies at BART could reflect model biases in stomatal
conductance or leaf area index (LAI) and deserve further in-
vestigation. Future work can leverage data from PhenoCam
(Richardson et al., 2018) and stable isotope measurements at
NEON towers (Finkenbiner et al., 2022; Moon et al., 2022)
to better understand LAI and stomatal conductance, respec-
tively.

Comparing measured and simulated carbon fluxes pro-
vides insights into model parameterizations and can be used
to estimate missing observational data. Carbon fluxes from
CTSM simulations can be compared to data from NEON EC
towers: net ecosystem exchange (NEE) data are measured at
the NEON EC towers, while GPP is a modeled product that
is derived from statistical relationships, here using the night-
time flux partitioning method of Reichstein et al. (2005). By

contrast, models like CTSM first simulate GPP based on leaf-
level photosynthetic rates that are scaled to the canopy with
simulated LAI. Subsequently, NEE is calculated after sub-
tracting ecosystem respiration fluxes from GPP. Results at
BART suggest that CTSM generally captures the timing and
magnitude of GPP fluxes at the site (Fig. 3d), although at-
tention to phenology, especially environmental controls and
interannual variability of leaf-out and senescence, is likely
warranted (Birch et al., 2021; Li et al., 2022). The climatol-
ogy of NEE fluxes simulated by CTSM shows biases dur-
ing the spring and autumn when the model simulated a land
source of CO2 to the atmosphere (Fig. 3e) due to high ecosys-
tem respiration fluxes. Moreover, the land sink of CO2 in the
summer appears to be weaker in CTSM simulations than the
NEON observations at the BART tower (Fig. 3e). Since the
magnitude of GPP is similar in the model and observations,
the underestimated summer NEE is possibly due to high bi-
ases in simulated ecosystem respiration fluxes. Diagnosing
the source of this model biases is challenging, in part due to
the interconnectivity of simulated processes and the limited
capacity to measure such processes. Deeper insights may be
afforded by taking a closer look at results with higher tempo-
ral frequencies.

NEON tower data are simulated in near-real time within
the NCAR–NEON system, with data available to simulate
most towers starting in 2018 through the most recent full
year, here 2021. Figure 4 shows daily mean carbon fluxes
(NEE) that are measured and simulated for the Konza Prairie
Biological Station (KONZ), where the NEON tower is in an
unplowed tallgrass prairie in Kansas, and the Steigerwaldt
Land Services (STEI) site, where the NEON tower is lo-
cated in an early successional aspen stand in Wisconsin. Pos-
itive NEE fluxes show net carbon release from land to the
atmosphere, while negative fluxes indicate carbon gain into
ecosystems. Looking at the full data record shows several
notable features of NEON measurements and CTSM simu-
lations. Data gaps in NEON measurements are most com-
mon during the early operation of the observatory (August–
October of 2018 at STEI) and in the early months of the
COVID-19 pandemic, when field crews could not travel to
field sites to maintain equipment (April–June of 2020 at
STEI). Across the observatory the NEON EC measurements
have greater than 70 % data coverage, up from less than
40 % data coverage at the start of observatory operations.
The current NEON EC data coverage aligns with that of the
FLUXNET2015 dataset (van der Horst, 2019). Second, al-
though EC directly measures NEE, mean daily NEON ob-
servations show high variability at both sites. Finally, NEON
EC towers measure both storage and turbulent fluxes, but re-
sults shown here omit the storage component. Storage fluxes
contribute to uncertainty in measured NEE fluxes, which may
(or not) be large for individual sites at different times of year.

The NEE fluxes that are simulated by CTSM are calcu-
lated as the differences in GPP and ecosystem respiration
fluxes, which includes both autotrophic and heterotrophic
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Table 3. Summary of site name, location, mean annual temperature (MAT), mean annual precipitation (MAP), gross primary production
(GPP), and latent heat flux at a subset of NEON sites. Values show annual means and standard deviations in parentheses. Due to gaps in
the NEON observational estimates, mean annual GPP and latent heat fluxes are for the full time series simulated by CTSM at each site. All
results are for 2018–2021 unless noted otherwise. The full list of results is shown in Tables S1 and S2.

NEON Site name Lat Long MAT MAP GPP Latent heat
site ID (◦C) (mm yr−1) (g C m−2 yr−1) (W m−2)

BART Bartlett Experimental Forest 44.065 −71.2883 7.7 (0.7) 1213 (146) 1126 (57) 33.6 (1.3)
HARV Harvard Forest 42.536 −72.1756 8.5 (0.6) 1404 (502) 1153 (53) 32.3 (1.8)
STEI Steigerwaldt–Chequamegon 45.508 −89.5888 5.7 (0.9) 659 (110) 1109 (88) 29.7 (0.8)
KONZ Konza Prairie Biological Station 39.101 −96.5623 12.9 (0.7) 617 (168) 1158 (235) 49 (4.8)
SRER Santa Rita Experimental Range 31.911 −110.835 20.4 (0.7) 328 (104) 360 (133) 26.1 (6.8)
ABBY Abby Road 45.762 −122.33 10.1 (0.4) 2042 (409) 1906 (35) 29.5 (1.3)

respiration. These component fluxes are much larger, depend
on simulated ecosystem states (LAI, vegetation biomass, and
soil organic carbon stocks), and have associated environ-
mental sensitivities (e.g., temperature, precipitation). Thus,
biases in these component fluxes can potentially transmit
biases to simulated NEE fluxes (Figs. 3–4). For example,
CTSM simulations show periods of positive NEE during the
spring and fall that are not evident in NEON observations.
The seasonal biases in NEE could result from an underesti-
mation of GPP during the shoulder season caused by phe-
nological mismatches in simulated and observed LAI or re-
sult from only simulating a single plant functional type in
CTSM. Alternatively, NEE biases could result from higher-
than-observed soil respiration rates in the model that reflect
potential biases in total soil C stocks or the temperature sen-
sitivity of heterotrophic respiration. Finally, the CTSM sim-
ulations were equilibrated to steady-state conditions, mean-
ing that annual NEE averaged over the simulation period
will be zero. The real ecosystems being measured at NEON
sites, however, have historical legacies – KONZ is burned
periodically and STEI is an aggrading forest site – and do
not necessarily meet these same steady-state assumptions.
Collectively, this points to rich opportunities to learn about
the ecosystems being measured by NEON observations and
the processes that are important to represent in models like
CTSM.

We calculated summary statistics of CTSM-simulated bias
(Fig. 5) and root mean square error (RMSE; Fig. S2) in
ecosystem fluxes compared to NEON observations. Biases
in GPP and NEE are relatively low in the Great Plains and
Intermountain West but are larger in the eastern US. Specifi-
cally, NEE is biased high east of the Mississippi, while GPP
biases are largest in the southeastern US. CTSM typically has
high biases in sensible heat fluxes and concurrent low biases
in latent heat flux. Some sites, particularly grasslands (e.g.,
CPER, OAES, and SJER), do not follow this general pattern.
We therefore probed precipitation data from NEON, which
appear to have significant biases at some grassland sites (dis-
cussed in Sect. 4.1) and contribute to artificially high biases
in CTSM simulations at these sites.

Additional insights into potential sources of biases in
data–model comparisons can be provided by looking deeper
into component fluxes of latent heat at higher temporal fre-
quencies. The NEON EC towers provide 30 min measure-
ments of total latent heat fluxes, but latent heat fluxes in
CTSM can be partitioned into contributions from canopy
transpiration, canopy evaporation, and soil evaporation.

For example, the CTSM simulations show temporal bi-
ases in both the timing and magnitude of the mean diel cycle
of summertime (June, July, and August, or JJA) latent heat
fluxes at the NEON Abby Road site (ABBY; Fig. 6). The
bulk of daytime latent heat fluxes simulated by the model
come from canopy transpiration fluxes, suggesting that the
representation of stomatal conductance does not respond cor-
rectly to atmospheric conditions or plant water availability.
We also note that this site experienced two very strong heat-
waves in the summers of 2020 and 2021. Additional mea-
surements of soil moisture, LAI, or sap flux could help test,
evaluate, and improve various model parameter values and
parameterizations to produce results that are most consistent
with observed fluxes.

Light response curves (Fig. 7) illustrate how canopy pho-
tosynthesis responds to changes in the radiation environment.
At forested sites, CTSM tends to overestimate GPP at low
light levels, underestimate GPP under full irradiance, and
simulate lower variance in GPP across a range of high inci-
dent radiation; this pattern is illustrated in Fig. 7a for Harvard
Forest. At the Santa Rita grassland site, GPP is biased high in
most irradiance bins, although it is comparable to observed
estimates of GPP at full irradiance (Fig. 7b). As GPP is the
driver for carbon fluxes and plant-mediated water fluxes in
CTSM, inaccurate responses to the light environment affect
several processes, including NEE and transpiration, which is
a primary driver of midday (Fig. 6c) and summertime latent
heat flux.

Finally, there are opportunities to use data from CTSM
simulations to augment NEON measurements. For example,
measurements of soil moisture are important for calculat-
ing soil CO2 fluxes from NEON sites, but the soil moisture
probes currently deployed at NEON sites do not always pro-
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Figure 3. Climatology of daily mean NEON measurements (orange) and CTSM simulations (blue) at the Bartlett Experimental Forest in New
Hampshire (BART). Points show the daily mean (a) net radiation, (b) sensible heat flux, (c) latent heat flux, (d) gross primary production
(GPP), and (e) net ecosystem exchange (NEE). Shading shows the standard deviation of daily average data for 2018–2021.

vide reliable measurements. For example, at the Abby Road
site soil moisture observations have phases of erratic mea-
surements, are missing at depth throughout much of 2020
and 2021, and have large offsets when instruments were cal-
ibrated (Figs. 8, S3). By contrast, CTSM provides continu-
ous datasets that could be used to gap-fill or augment ongo-

ing NEON soil moisture measurements, although simulated
data may need to be bias-corrected. Similarly, soil mois-
ture controls aspects of plant phenology in CLM, meaning
that soil moisture measurements could help constrain or ex-
plain potential biases in simulated LAI and ecosystem fluxes.
At ABBY, both CTSM simulations and NEON observations
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Figure 4. Full time series of daily mean net ecosystem exchange (NEE) from NEON measurements (orange) and CTSM simulations (blue)
at the (a) Konza Prairie Biological Station in Kansas (KONZ) and (b) Steigerwaldt Land Services site in Wisconsin (STEI). Positive NEE
fluxes show net carbon release from land to the atmosphere, while negative fluxes indicate carbon gain into ecosystems.

Figure 5. Maps showing the location of the NEON site in the conterminous United States and annual biases in fluxes that are simulated by
CTSM for (a) sensible heat flux (W m−2), (b) latent heat flux (W m−2), (c) gross primary production (GPP, gC m−2 d−1), and net ecosystem
exchange (NEE, gC m−2 d−1) over the observational record (2018–2021), unless otherwise noted in Table S2.
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Figure 6. Diel cycle of summertime (June, July, and August, or JJA) latent heat flux at the Abby Road site in Washington (ABBY). Panels
show (a) mean half-hourly fluxes (2018–2021 mean ±1σ ) for NEON measurements and CTSM simulations (orange and blue lines, respec-
tively), (b) CTSM bias relative to the observations (W m−2), and (c) partitioning of latent heat into fluxes that are simulated by CTSM,
which includes canopy evaporation, canopy transpiration, and ground evaporation (blue, green, and orange bars, respectively). Additional
visualizations showing all sites and seasons are available on the interactive visualization website (Table 2).

show similar temporal patterns – a dry-down of soil moisture
during the dry summer months followed by wetter fall winter
and spring months (Figs. 8; S3), although CTSM simulates
wetter soils than observed at the NEON site.

4 Discussion

The NCAR–NEON system links models and measurements
to provide a powerful suite of tools to understand ecosystem
properties and processes through space and time. In addi-
tion to facilitating the integration of measurements and mod-
eling, a major focus of this work is to enable new oppor-
tunities for research and education by expanding access to
and interaction with NCAR models and NEON data, con-
tributing to a growing body of work that increases the ac-
cessibility and usability of large datasets and computing re-

sources for research (e.g., Novick et al., 2018; Beringer et
al., 2020; Keetz et al., 2023) and education (e.g., Carey et al.,
2020; O’Reilly et al., 2017). The user community can access
quality-controlled and gap-filled NEON meteorological and
EC flux data as prototype datasets through the public-access
cloud storage buckets that support the NCAR–NEON system
or the Prototype Data section of the NEON Data Portal (Ta-
ble 2). Additionally, the NCAR–NEON system streamlines
running NCAR’s CTSM and simplifies access through the
containerized CESM-Lab platform, bypassing the logistical
challenges of porting CTSM to different computing systems.
It also creates customized model input data that include local
site characterizations of soil and vegetation using NEON data
products and allows users to add custom input data to simu-
late other locations. These capabilities allow researchers to
focus their time on customizing CTSM and integrating ad-
ditional NEON datasets to address research questions. Com-
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Figure 7. Box–whisker plots showing light response curves and
the relationship between gross primary production (GPP) and in-
cident shortwave radiation that are derived from NEON measure-
ments and CTSM simulations (orange and blue, respectively) at (a)
Harvard Forest (HARV) and the (b) Santa Rita Experimental Range
(SRER). Data represent 30 min measurements that are binned by in-
cident shortwave radiation levels observed at NEON sites over the
observational record in July (2018–2021). Boxes show the mean
(dots), median (line), and interquartile range (boxes). The whiskers
extend from the boxes (showing the first and third quartiles) by 1.5
times the interquartile range (Q3–Q1). Note the differences in the
scale of the y axis.

bined with the visualization software provided in the tuto-
rials, the NCAR–NEON system also facilitates opportuni-
ties for teaching about land–atmosphere interactions, ecol-
ogy, and land modeling and can be incorporated into under-
graduate and graduate courses alongside similar efforts (e.g.,
Carey et al., 2015). Below we discuss some of the synergistic
enhancements this collaboration makes for NEON measure-
ments and NCAR models as well as opportunities that the
NCAR–NEON system enables for research and teaching.

4.1 Synergistic enhancements of NEON measurements
and NCAR models

The NCAR–NEON system is a collaborative partnership
between observationalists and modelers that enhances both
NEON’s measurements and NCAR’s models. One typically
thinks of observations as improving models, but the re-
verse can also happen in which models inform and aug-
ment the collection of measurements. For example, models
require continuous meteorological input data, so gap filling

the missing meteorological data required to run CTSM was
paramount to the success of the project. A new prototype data
product provided by the project is a continuous time series
of meteorological data at each NEON location. Comparison
of modeled and measured EC fluxes identified QA/QC im-
provements to the meteorological data needed for the model
simulations and, similarly, improvements to the processing
of the raw EC fluxes to compare with model results.

One issue raised in the simulations is the estimation of pre-
cipitation at grassland sites. NEON has experienced issues
where small amounts of noise in the raw data cause spuri-
ous trace precipitation to be recorded at all primary precipi-
tation sensors. Because secondary and throughfall precipita-
tion buckets are unaffected, there is a redundant data stream
at forested sites, but these are unavailable for grassland sites.
An updated algorithm was expected to resolve the spurious
trace precipitation issue in late 2022 with back-processed
data available in the NEON 2024 data release. In the mean-
time, we manually evaluated the mean annual precipitation
recorded at each NEON site against other observational data
networks and noted locations where this issue is generating
unexpectedly high or low precipitation values (Table S2).

Another example of how NCAR modeling improved
NEON data quality comes from unusual soil moisture pro-
files that were initially generated in preliminary simulations
at the ABBY site (data not shown). Upon closer inspection
these patterns were found to be caused by an unusual rela-
tionship between soil organic carbon content and depth at
this site, which did not match related data gathered during
sample collection or subsequent analyses. Further investiga-
tion confirmed that the labels for the soil carbon analysis sub-
samples had been switched for two ABBY soil horizons. The
NEON soil data have since been corrected and the modeled
soil moisture profiles for ABBY now follow a more typical
pattern with surface soils drying out during the summer and
less variation in soil moisture in deeper soil horizons (Figs. 8,
S3). There are also important differences in vertical profiles
of simulated and measured soil moisture, with soil mois-
ture simulated by CTSM typically decreasing with depth,
while NEON soil moisture observations generally increase
with depth. Additional investigation is needed to determine
if these discrepancies extend to other sites and indicate is-
sues with CTSM simulations or NEON data products, but it
does underscore a synergy in NCAR modeling and NEON
measurements that deserves more attention moving forward.

We see clear opportunities for NEON observations to help
guide future model improvements, especially related to po-
tential biases in phenology (discussed above), photosynthe-
sis (Fig. 7), and other processes. Some biases in modeled
processes are already documented; for example, Wozniak et
al. (2020) found that CTSM underestimates maximum rates
of simulated GPP compared to EC observations in deciduous
forest sites. This suggests that implementation of the photo-
synthesis scheme in CTSM has parametric or structural is-
sues that prevent high rates of GPP from occurring in the
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Figure 8. Time series of volumetric soil moisture profiles that are simulated by CTSM simulations (blue) and measured by NEON (orange)
at different depths in soil plot 3 at the Abby Road site in Washington (ABBY) from 2018–2021.

model. Auxiliary data from NEON that are not always avail-
able from other EC flux towers, for example foliar chemistry,
can be used to update parameter values and to evaluate cor-
related model variables and processes. The opportunities af-
forded by NEON’s EC and auxiliary data to improve the rep-
resentation of ecological processes in CTSM will improve
modeled carbon fluxes at NEON towers and may also ame-
liorate biases in global simulations.

Finally, the NCAR–NEON system can also facilitate
model-informed prioritization of future data collection ef-
forts. Models can quantify the dominant drivers of uncer-
tainty in model parameters as well as in response to en-
vironmental drivers using ensemble-based methods of pa-
rameter uncertainty propagation and variance decomposition
(LeBauer et al., 2013). Site-level CTSM simulations could
therefore help future NEON data collection campaigns to
target variables that contribute the most to uncertainty in
modeled ecosystem fluxes and ecosystem responses to global
change.

4.2 Opportunities enabled for research

The NCAR–NEON system enables research opportunities in
the ecology, global change, and Earth system science com-
munities by (1) facilitating access to NCAR models that can
be customized to meet researchers’ needs, (2) providing a
computational platform that leverages NEON observational
datasets for site-level model configuration and evaluation
across the diverse range of ecosystems captured in the NEON
design, (3) facilitating reproducible research workflows, and
(4) providing gap-filled meteorological data and partitioned
EC flux data products that create synergies with other flux
networks and data pipelines (Novick et al., 2018; Beringer et
al., 2020; Pastorello et al., 2020).

In building the NCAR–NEON system we improved the
software infrastructure and workflows that are required to
run single-point simulations with CTSM, while developing
derived, prototype datasets with NEON’s EC measurements.
Although the focus of this work is on connecting CTSM
and NEON data, measurements from non-NEON sites can
also be used with this system, facilitating the use of data
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from additional EC towers and the ONEFlux data pipeline in
CTSM development and evaluation. Moving forward, NEON
is working with AmeriFlux to incorporate the redundant data
stream gap filling from NCAR–NEON with ONEFlux stan-
dardized data processing as well as providing proper data for-
mats and metadata for modeling framework ingestion.

Through CESM-Lab, the NCAR–NEON system provides
access to the full model code and datasets used to run CTSM
on any computing system. A strength of this system is the
auxiliary data collected by the NEON network used to in-
form site-specific model inputs and model evaluation. With
some effort, users can adapt this system to incorporate and
simulate flux towers at other research sites using the “Pro-
cessing NEON data” tools linked in Table 2 to guide data
formatting. Thus, future work could expand this system to in-
clude gap-filled flux data from other regional and global net-
works like AmeriFlux and FLUXNET, allowing for broader
spatial coverage. Additionally, researchers do not need ac-
cess to large-scale computing resources and can use alter-
native model configurations; the CTSM code can be modi-
fied and compiled within the container, so researchers who
wish to run simulations with new model parameterizations
or with additional model features may now do so from any
computer. Most personal laptop computers are more than suf-
ficient for running site-level simulations, even when using
more computationally complex versions of the land model
that include, for example, ecological dynamics (using the
Functionally Assembled Terrestrial Ecosystem Simulator –
FATES; Koven et al., 2020) or representative hillslope hy-
drology (Swenson et al., 2019). Advanced users can run
CTSM at any single-point site by making their own input
files. Additionally, researchers can quantify the impact of ad-
justing model parameters and processes on terrestrial ecosys-
tems under historical and future climate scenarios. This flex-
ibility is useful for calibrating the model to improve model
performance at a given site, as well as for gaining mecha-
nistic insights into how different processes and uncertainties
affect ecosystem functioning. Broadening access to CTSM
also allows researchers to rapidly compare model output to
their own observational datasets or to existing NEON obser-
vational datasets that are not yet integrated into the NCAR–
NEON system.

Moving forward, we see additional NEON data products
as providing valuable insights to the NCAR–NEON system.
These could include NEON measurements that are used as
both model inputs (foliar chemistry, phenology and LAI, and
historical land use legacies) and model validation datasets
(including snow depth, vertical profiles of canopy tempera-
ture, leaf water potential, litterfall rates, biomass and vege-
tation structure, and depth profiles of soil moisture, temper-
ature, carbon, and nitrogen). Although these data have not
yet been integrated into the NCAR–NEON system, we are
optimistic that existing tools can help facilitate their integra-
tion into research opportunities. We see powerful opportuni-
ties to expand on this approach to integrate information from

NEON’s Airborne Observation Platform (AOP) into work-
flows that extend model capabilities beyond the relatively
small footprint of the EC towers. For example, the AOP light
detection and ranging (lidar) data could provide information
to initialize stand structure that would be helpful for calibrat-
ing reduced-complexity configurations of the CTSM-FATES
model (Fisher and Koven, 2020).

The NCAR–NEON system also promotes reproducibility
of research in alignment with the FAIR (findable, accessible,
interoperable, and reusable) data principles (Wilkinson et al.,
2016), addressing an ongoing challenge facing both ecol-
ogy and geosciences (Powers and Hampton, 2019; Culina et
al., 2020; Kinkade and Shepherd, 2021). The NCAR–NEON
system makes it easy for researchers to share their research
workflow as part of their publications, including accompany-
ing code and data. The containerized system also reduces the
time required to configure and run other researchers’ work-
flows, thereby facilitating the process of reproducing previ-
ous studies and expanding existing workflows to answer new
research questions.

In addition to enabling opportunities for research with
NCAR models, the NCAR–NEON system also facilitates ac-
cess to NEON data, which can be used for observationally
based research or research using other models. For example,
the gap-filled micrometeorological data and partitioned flux
data products provided in the NCAR–NEON system could
be used in other projects related to ecological forecasting
and model evaluation that focus on ecological processes and
land model simulations (Best et al., 2015; Collier et al., 2018;
Eyring et al., 2019; Lewis et al., 2022). As latencies in pub-
lishing NEON data are reduced, we intend to provide up-
dated input and evaluation data to the NCAR–NEON system
to enable near-real-time hindcasts of ecosystem states and
fluxes. In short, we see the information that is being gener-
ated through this activity as a resource to meet data require-
ments of the broader Earth system science community.

4.3 Opportunities enabled for teaching

The NCAR–NEON system makes it easy to run and visu-
alize site-level simulations that can be integrated into class-
room settings, and the NEON Observatory design provides a
unique opportunity for students to access data from world-
class field research sites and instrumentation in a variety
of ecosystems. Here we highlight two capacities in which
this tool can be integrated into classroom activities, comple-
menting other learning modules that integrate ecological data
with modeling tools, such as those from project EDDIE (e.g.,
Carey et al., 2020; O’Reilly et al., 2017), to broaden exposure
to large datasets, ecological modeling, and system thinking.
The first is an interactive web-based visualization tool (Ta-
ble 2). This tool does not require any software or data down-
loads, allowing students to access and explore NEON and
CTSM data without running any simulations. Students can
explore and compare observational and simulated data for
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numerous fluxes at different temporal scales from 45 terres-
trial NEON sites (Table S1 in the Supplement). Classroom
modules can be developed to probe various ecological ques-
tions, including comparisons across sites, how fluxes change
seasonally, and quantification of interannual variability. In-
structors can also use this tool to highlight differences be-
tween models and observations, helping students to better
understand how we measure, simulate, and predict ecosys-
tem processes.

A second opportunity for classroom activities is to run
simulations using the NCAR–NEON system within the
CESM-Lab container. The flexible cyberinfrastructure, short
simulation run times (typically less than 10 min), and simpli-
fied coding requirements facilitate running simulations for
classroom applications. Technical challenges are minimal
and can be reduced by using a computer lab with Docker
pre-installed and computers that have sufficient memory and
space requirements for data downloads or by using larger-
scale computing resources like university clusters or cloud
computing resources. Once access to the containerized com-
puting environment is established, students can use the avail-
able tutorials to run NEON tower simulations at the site of
their choice and evaluate simulated fluxes against observa-
tions (Table 2).

The NCAR–NEON system is flexible, allowing instructors
to easily make additional customizations for their classes.
As an example, this cyberinfrastructure tool was used in
a graduate-level land–climate interaction course at Auburn
University in the 2021–2022 academic year. First, students
performed CTSM simulations for the Talladega National
Forest (TALL) site, the NEON site closest to Auburn Uni-
versity, and compared latent heat flux simulated by CTSM
with the NEON measurements using system tutorials. Next,
students were divided into two project groups focusing on
either TALL or Ordway–Swisher Biological Station (OSBS)
sites to conduct parameter perturbation experiments using a
tutorial developed by the instructor. Students collected the
relevant parameter values from the literature, updated model
parameter files, and performed 10 CTSM simulations at each
site, finding that GPP was more sensitive to the selected pa-
rameters than latent heat fluxes. These classroom exercises
were paired with a visit to the TALL site to enrich students’
experiences and motivate them to design their own investi-
gation and experiments. Exposure to the NCAR–NEON sys-
tem has motivated graduate students to contribute analyses,
tutorials, and additional resources to the broader community.
For example, one graduate student compared NEON precip-
itation measurements with nearby NOAA sites, helping to
identify potentially problematic NEON sensors (Sect. 4.1),
while another is developing a model to estimate aboveground
biomass using ground-based NEON data and remote sensing
measurements (Narine et al., 2020). These examples high-
light how the NCAR–NEON system is inspiring the next
generation of scientists.

5 Conclusions

Deeper engagement of diverse scientific communities, re-
moving technical barriers, and increasing access to research
data and tools are critical to advancing Earth system sci-
ence, prediction, and understanding of ecosystem responses
to global change. By developing cyberinfrastructure tools
that facilitate the easy and rapid use of measurements, mod-
els, and computing tools, the NCAR–NEON system aims to
enable this convergence of climate and ecological sciences
and facilitates the development and testing of data-driven and
model-enabled scientific hypotheses. The system provides a
computationally simplified platform for scientific discovery
and for rigorous evaluation and improvement of model sim-
ulations and observational data at NEON tower sites. By fa-
cilitating community engagement in modeling and observing
terrestrial ecosystems, cyberinfrastructure tools like this are
a key component for building a more intellectually diverse
workforce for global change research and Earth system sci-
ence.

Code and data availability. Datasets created as part of this
project are available as a NEON prototype dataset and
archived at NCAR’s Geoscience Data Exchange (GDEX)
at https://doi.org/10.5065/tmmj-sj66 (Wieder et al., 2023).
CTSM code is available through the CTSM GitHub page
and archived at https://doi.org/10.5281/zenodo.7342803
(CTSM Development Team, 2022). Post-processing scripts
that used to make figures in this paper are available at
https://github.com/NCAR/neon_scripts (last access: 8 Octo-
ber 2023) and https://doi.org/10.5281/zenodo.7641892 (Sobhani et
al., 2023).
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