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Abstract. Quantitative precipitation nowcasting (QPN) can
help to reduce the enormous socioeconomic damage caused
by extreme weather. The QPN has been a challenging topic
due to rapid atmospheric variability. Recent QPN studies
have proposed data-driven models using deep learning (DL)
and ground weather radar. Previous studies have primarily
focused on developing DL models, but other factors for DL-
QPN have not been thoroughly investigated. This study ex-
amined four critical factors in DL-QPN, focusing on their im-
pact on forecasting performance. These factors are the deep
learning model (U-Net, as well as a convolutional long short-
term memory, or ConvLSTM), input past sequence length
(1, 2, or 3 h), loss function (mean squared error, MSE, or
balanced MSE, BMSE), and ensemble aggregation. A to-
tal of 24 schemes were designed to measure the effects of
each factor using weather radar data from South Korea with
a maximum lead time of 2 h. A long-term evaluation was
conducted for the summers of 2020–2022 from an opera-
tional perspective, and a heavy rainfall event was analyzed
to examine an extreme case. In both evaluations, U-Net out-
performed ConvLSTM in overall accuracy metrics. For the
critical success index (CSI), MSE loss yielded better results
for both models in the weak intensity range (≤ 5 mmh−1),
whereas BMSE loss was more effective for heavier precip-
itation. There was a small trend where a longer input time
(3 h) gave better results in terms of MSE and BMSE, but
this effect was less significant than other factors. The en-
semble by averaging results of using MSE and BMSE losses
provided balanced performance across all aspects, suggest-
ing a potential strategy to improve skill scores when imple-

mented with optimal weights for each member. All DL-QPN
schemes exhibited problems with underestimation and over-
estimation when trained by MSE and BMSE losses, respec-
tively. All DL models produced blurry results as the lead time
increased, while the non-DL model retained detail in predic-
tion. With a comprehensive comparison of these crucial fac-
tors, this study offers a modeling strategy for future DL-QPN
work using weather radar data.

1 Introduction

Short-term precipitation forecasting is an essential topic in
weather forecasting, providing crucial information related to
socioeconomic effects in daily life. Short-term precipitation
forecasting within 2 h is generally called quantitative precip-
itation nowcasting (QPN), which can be of great assistance
in preventing damage from severe precipitation over a short
period (Prudden et al., 2020). Despite the critical importance
of QPN, it has been a challenging issue for a long time be-
cause of the complexity and dynamic characteristics of the
atmosphere (Ravuri et al., 2021). Two major approaches to
QPN exist: numerical weather prediction (NWP) and statis-
tical extrapolation (Prudden et al., 2020). NWP simulates
future atmospheric conditions, such as precipitation, pres-
sure, temperature, and wind vectors, based on physical gov-
erning equations and global data assimilation. Even though
NWP has been improved over decades with higher predic-
tion skills and denser spatiotemporal resolution, NWP for
QPN still has limitations due to its high computational cost,
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synoptic-scale prediction, and spin-up issues (Yano et al.,
2018; Bowler et al., 2006). For short-term forecasting of pre-
cipitation, QPN has generally adopted extrapolation of the
sequence of weather radar to focus on local rainfall with rel-
atively high estimation accuracy (Wang et al., 2009; Ravuri
et al., 2021; Prudden et al., 2020; Ayzel et al., 2020). Gen-
erally, QPN extrapolates the precipitation pattern using only
radar sequences (Shi et al., 2015; Ravuri et al., 2021), but
it can integrate other data sources, such as weather stations,
NWP, and satellite data (Bowler et al., 2006; Haiden et al.,
2011; Chung and Yao, 2020).

Weather radar provides real-time distribution of precipita-
tion with high spatial (approximately 0.5–1 km) and tempo-
ral (about 5–10 min) resolutions. Various extrapolation ap-
proaches have been used for QPN from time series weather
radar data. Temporal extrapolation of the radar sequence
demonstrated high prediction accuracy for 1–2 h lead times,
but the performance degraded as lead times increased. Sev-
eral radar extrapolation methods have been developed, in-
cluding thunderstorm identification tracking analysis and
nowcasting (TITAN), tracking radar echo by correlation
(TREC), and the McGill Algorithm for Precipitation Now-
casting by Lagrangian Extrapolation (MAPLE) (Dixon and
Wiener, 1993; Mecklenburg et al., 2000; Germann and Za-
wadzki, 2002; Turner et al., 2004; Germann and Zawadzki,
2004). Despite their superior performance within a few hours
compared with NWP, there have been limitations in predict-
ing the onset of precipitation (Kim et al., 2021).

Recent advances in deep learning (DL) have altered con-
ventional weather forecasting methods, especially for short-
term predictions like QPN. The radar-based QPN can be
viewed as a spatiotemporal video prediction that simulates
upcoming frames based on past sequences (Han et al., 2023).
Some studies used multiple input sources, such as meteo-
rological variables, ground measurements, and NWP data
(Adewoyin et al., 2021; Chen and Wang, 2022; F. Zhang
et al., 2021; Kim et al., 2021), but the majority of studies
used only radar precipitation without any additional input
sources. Among DL approaches, convolutional neural net-
works (CNNs) are widely used for spatial modeling in com-
puter vision and geoscientific fields. Recurrent neural net-
works (RNNs) are expected to perform well on time series
datasets owing to their architecture, which recursively feeds
the output as the following input and handles successive se-
quence data. Basic RNNs are not designed to consider spa-
tial information, so there have been attempts to use RNNs
for precipitation forecasting for each gauge station (Kang
et al., 2020). Shi et al. (2015) suggested convolutional long-
short term memory (ConvLSTM) to combine the benefits of
CNN and RNN to improve QPN performance in Hong Kong.
ConvLSTM was designed to model spatiotemporal predic-
tion by applying long short-term memory (LSTM), one of
the most popular RNN models, to convolutional CNN op-
erations. Other RNN-based models of the trajectory gated
recurrent unit (TrajGRU) and convolutional gated recurrent

unit (ConvGRU) were proposed by (Shi et al., 2017). They
reported that the deep learning models outperformed the op-
erational models based on real-time optical flow by varia-
tional methods for echoes of radar (ROVER) by the Hong
Kong observatory. Several studies using ConvLSTM, Traj-
GRU, and ConvGRU have demonstrated the superiority of
CNN and RNN models over traditional approaches (Franch
et al., 2020; Chen et al., 2020; Y. Zhang et al., 2021; Ravuri
et al., 2021). However, some studies have only used CNNs
for DL-QPN. The most widely used model is the U-Net
(Ronneberger et al., 2015), which has a U-shaped struc-
ture with cascaded encoders, decoders, and skip connections.
As U-Net can predict upcoming radar precipitation frames
with a more straightforward form than RNN-fused models,
it has been widely adopted in recent QPN studies employ-
ing deep learning (Ayzel et al., 2020; Agrawal et al., 2019;
Samsi et al., 2019; Ko et al., 2022; Kim and Hong, 2021). In
several application domains, CNNs have demonstrated their
numerical robustness during training and made more accu-
rate predictions than RNNs (Bai et al., 2018; Gehring et al.,
2017). Recent studies have indicated that deep learning has
become the predominant method for QPN owing to its supe-
rior performance compared to traditional approaches. How-
ever, there is still a dearth of exploration of the various con-
siderations for the DL-QPN besides the DL model itself. As
most studies have primarily focused on developing DL mod-
els across multiple study areas and datasets, it is difficult to
determine how other factors can affect the skill score, even if
they are crucial.

Considering this context, this study investigates critical
factors that affect a DL-QPN model. Categorizing key fac-
tors in the DL-QPN is challenging, as there is a lack of stan-
dard agreement or explicit considerations in the literature.
After analyzing various experimental designs used in previ-
ous studies, we summarized the following four critical fac-
tors in the DL-QPN: (1) the DL model, (2) the input sequence
length, (3) the loss function, and (4) ensemble aggregation.
The DL model has been the most highlighted factor in previ-
ous DL-QPN studies. The two representative types are fully
convolutional networks (FCNs) and a combination of CNN
and RNN. U-Net (Agrawal et al., 2019; Ayzel et al., 2020;
Trebing et al., 2021; Kim and Hong, 2021) and ConvLSTM
(Shi et al., 2015; Jeong et al., 2021; Xiong et al., 2021) are the
most popular models for FCN and CNN-RNN in DL-QPN,
respectively. As the DL-QPN is data-driven, the sequence
length will likely determine the model performance. How-
ever, the data sequence length has rarely been investigated
in previous studies. Various time steps from 25 to 180 min
were used as input data to predict future radar precipitation
for up to 360 min, with little explicit comparison in the lit-
erature. Hence, the input sequence lengths were included as
critical factors for further in-depth analysis. The loss function
is a crucial element as it guides the training process of the
model. In this context, we examined two widely employed
loss functions in DL-QPN: the mean squared error (MSE)
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and the balanced MSE (BMSE). Lastly, we viewed ensemble
of schemes as a potential key factor in DL-QPN. Although
the ensemble method has not yet been a major topic of dis-
cussion in DL-QPN, we believe that this approach holds sig-
nificant potential for enhancing accurate nowcasting in the
future. A detailed explanation of these four key factors is pro-
vided in Sect. 2.

In this study, we compared diverse DL-QPN schemes con-
sidering four factors along with a non-DL model. Experi-
ments were conducted in South Korea using weather radar
data from 2012–2022 over June to August. As the DL-QPN
is highly anticipated to mitigate damage from severe weather,
heavy rainfall events in the Korean Peninsula were examined
in detail. The remainder of this paper is organized as follows.
A detailed explanation of the four key factors and compari-
son schemes is provided in Sect. 2. Section 3 describes the
data and methods used. Section 4 presents the results, and
Sect. 5 discusses the results. Finally, Sect. 6 concludes the
paper.

2 Key factors in DL-QPN

2.1 Deep learning model

The four critical factors identified from previous DL-QPN
studies using weather radar are summarized in Table 1.
Two basic models are CNN and RNN. CNNs have been
widely adopted in various DL-QPN studies because of their
outstanding performance in spatial modeling in various re-
mote sensing and environmental studies including atmo-
sphere (Lee et al., 2021; Gardoll and Boucher, 2022; Geiss
et al., 2022; Chattopadhyay et al., 2022; Kim et al., 2018),
ocean (Chinita et al., 2023; Barth et al., 2022; Kim et al.,
2023), urban and land (Wu et al., 2022; Sato and Ise, 2022;
Qichi et al., 2023), and cryosphere (Lu et al., 2022; Y. J. Kim
et al., 2020; Chi and Kim, 2021). The crucial part of CNNs
is finding optimal convolutional filters to predict the target
value with input data. The set of convolutional filters with
specific window sizes (e.g., 3× 3 or 5× 5) was initialized
with dummy values. The initial prediction is generated by
conducting the dot product between the filters and the input
over the cascading layers. The total error is calculated using
the loss function between the model prediction and the ac-
tual value. The L1 (mean absolute error, MAE) or L2 (mean
squared error, MSE) loss function is commonly used in su-
pervised learning for regression; however, other types of loss
functions can be used in DL-QPN (Ayzel et al., 2020; Ravuri
et al., 2021). Following the loss calculation, the weights of
the convolutional layers are updated through backpropaga-
tion. With an increasing number of iterations, the model was
progressively fitted to the given dataset.

U-Net is one of the most representative image-to-image
models among CNNs. Because DL-QPN can be viewed as
image-to-image modeling, U-Net has been widely adopted

in recent DL-QPN studies (Ayzel et al., 2020; Bouget et al.,
2021; Ko et al., 2022; Kim and Hong, 2021). U-Net consists
solely of convolutional layers that can preserve spatial in-
formation from the input to the output. The input for the DL-
QPN with weather radar is the previous sequence of the radar
images. This model is expected to generate a series of fu-
ture precipitation scenes. The input and output are image se-
quences with the dimensions of [ny,nx,M] and [ny,nx,N ],
where M and N are the lengths of the sequence in the past
and future, respectively. Its skip connections distinguish U-
Net between the same level of encoding and decoding layers,
which can mitigate the loss of original information as the net-
work deepens (Ronneberger et al., 2015). In this study, Rain-
Net v1.0 (https://github.com/hydrogo/rainnet, last access: 16
October 2023) by Ayzel et al. (2020) was adopted for the
U-Net model.

RNNs are expected to yield good performance in time
series forecasting. An RNN is distinguished by its recur-
rent layers, which feed the output of a specific layer back
to its input. As the vanilla RNN structure suffers from the
vanishing gradient problem with an increasing number of
recurrent hidden layers, revised RNNs, such as long short
term memory (LSTM) and gated recurrent units (GRU), have
gained widespread acceptance (Cho et al., 2014; Hochre-
iter and Schmidhuber, 1997). They added additional gates to
control the information transmitted or dropped, resulting in
improved performance compared with vanilla RNNs. Sev-
eral studies have been conducted on using RNNs for short-
term rainfall forecasting (Ni et al., 2020; Aswin et al., 2018).
However, these were station-based rainfall predictions that
did not account for 2-D information because RNNs were not
designed to take spatial information into account. Shi et al.
(2015) suggested the ConvLSTM, which combines CNN and
LSTM into a single model. Because ConvLSTM has been
adopted in recent DL-QPN studies (Chen et al., 2020), it was
compared with U-Net in this study. A detailed explanation of
the ConvLSTM can be found in Shi et al. (2015).

2.2 Input sequence length

The DL-QPN predicts upcoming precipitation based on past
sequences. Thus, the composition of the past series directly
affects the model performance. A longer past sequence may
provide more information than a shorter one, but it could also
contain redundant information for model training. The opti-
mal length of the past sequence can vary depending on other
factors, such as the forecasting design, DL model, radar time
interval, and maximum lead time. Thus, it is difficult to de-
termine the direct effect of past sequence length on DL-QPN.
To examine the impact of the input sequence length, we com-
pared radar sequences of 1, 2, and 3 h against 12 future radar
scenes for 2 h. This sets up a ratio of input–output sequences
at 1 : 2, 1 : 1, and 3 : 2.
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Table 1. Summary of key factors used in previous image-to-image QPN only using radar sequence based on deep learning. “B” in the loss
column stands for “balanced,” which blends different weights for rainfall intensity or each input time.

Reference Study area and
data source

Key factors Others

DL model Input sequence Loss function Model design Prediction time GAN

Shi et al. (2015) Hong Kong
Hong Kong Observa-
tory 7 (HKO7)

ConvLSTM 5
(30 min)

Cross entropy Multiple 15
(90 min)

–

Shi et al. (2017) Hong Kong
HKO-7

TrajGRU 5
(30 min)

BMSE, BMAE Multiple 20
(120 min)

–

Agrawal et al. (2019) USA
Multi-Radar/Multi-
Sensor System
(MRMS)

U-Net Unknown Cross entropy Unknown Unknown –

Ayzel et al. (2020) Germany
Deutscher Wetterdienst
(DWD)

U-Net 6
(30 min )

LogCosh Recursive 1
(5 min)

–

Franch et al. (2020) Italy
Trentino-Alto Adige/
Südtirol Radar 2019
(TAASRAD19)

TrajGRU 5
(25 min)

BMSE, BMAE Multiple 20
(100 min)

–

Ravuri et al. (2021) UK
RadarNet4

ConvGRU 22
(110 min)

Custom spatial and
temporal losses

Multiple 18
(90 min)

Conditional
GAN

Xiong et al. (2021) Hong Kong
HKO-7

ConvLSTM 5
(30 min)

MAE, MSE,
BMAE, BMSE

Multiple 20
(120 min)

–

Cuomo and
Chandrasekar (2021)

USA
Next Generation
Weather Radar
(NEXRAD)

CNN
ConvGRU

16
(80 min)

LogCosh Multiple 16
(80 min)

–

Trebing et al. (2021) Netherlands
Koninklijk
Nederlands Meteorolo-
gisch Instituut
(KNMI)

U-Net 12
(60 min)

MSE Single 1
(30 min)

–

Jeong et al. (2021) South Korea
KMA

CNN
ConvLSTM

18
(180 min)

MSE Multiple 18
(180 min)

–

Kim and Hong (2021) South Korea
KMA

U-Net 60 min MAE, MSE,
BMSE

Multiple 240 min Conditional

GAN

Ko et al. (2022) South Korea
KMA

U-Net 7
(70 min)

BCSI Single 6
(360 min)

–

Liu et al. (2022) China
China Meteorological
Data website (CMD)

LSTM 3
(3 h)

MAE+MSE Multiple 3
(3 h)

–

Han et al. (2023) South Korea
KMA

Simpler yet better
video prediction

12
(120 min)

MSE Multiple 12
(120 min)

–

2.3 Balanced loss function

The loss function guides the direct optimization of DL mod-
els. The basic loss function in DL-QPN is MSE (Eq. 1). By
summing up the error of each pixel, it produces a single value
for a given prediction image. As most valid precipitation pix-
els are severely skewed in weak rainfall intensity approxi-
mately≤ 5 mmh−1 (Fig. 1), calculating MSE with a uniform
weight for all pixels might result in an underestimation prob-
lem across the range of values. Shi et al. (2017) suggested
the BMSE to mitigate the sample imbalance by using differ-

ent weights for precipitation intensity (Eq. 2).

MSE=

N∑
i=1

(
yi − ŷi

)2
N

, (1)
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Figure 1. Mean distribution of rainfall intensity for the summers
of 2020–2022 in a pixel window of 400× 400. The blue bar repre-
sents the histogram of rainfall intensity. The green line shows the
cumulative distribution function. The red line represents the bal-
anced weights for mitigating data imbalances, as suggested by Shi
et al. (2017).

BMSE=

N∑
i=1

w(yi)
(
yi − ŷi

)2
N

,

w(yi)=



1,yi < 2

2,2 < yi < 5
5,5 < yi < 10
10,10 < yi < 30
30,yi > 30

, (2)

where y is the reference value, ŷ represents the predicted
value, and N is the number of all valid pixels within the radar
area. Figure 1 shows the distribution of rainfall intensity and
weights for BMSE.

2.4 Ensemble approach

Ensemble approaches have been adopted as the standard in
NWP by combining multiple different members to produce
robust results. Despite their potential, ensemble approaches
have not been actively adopted in DL-QPN. The ensembling
of multiple schemes can bring enhanced and more stable per-
formance than a single model in various evaluation aspects.
An ensemble approach can be executed with simple aggre-
gation with equal weights, or it can employ another machine
learning model to learn the optimal way of combining each
prediction, such as a stacking ensemble (Cho et al., 2020;
Franch et al., 2020). The primary interest of this study is how
the results can be improved through ensemble approaches.

Figure 2. Weather radar over the Korean Peninsula used in this
study. The grey shadow at the boundary indicates the area outside
of valid radar coverage. The locations of the 11 weather radars are
represented by red dots.

Hence, only a simple ensemble was done by averaging re-
sults from multiple schemes with same weight.

3 Data and methods

3.1 Data and preprocessing

South Korea, located in northeastern Asia, has a population
of approximately 50 million and hosts numerous industrial
facilities. Every year, particularly during the summer mon-
soon season, the country experiences flooding, inundation,
and landslides. Sudden heavy rainfall can occasionally dis-
rupt urban transportation systems, and continuous heavy rain
during the rainy season (Jangma in Korean) can result in dam
failures and significant flooding in river basins. A total of 11
ground weather radars have been operated by the Korea Me-
teorological Administration (KMA) to monitor precipitation
over South Korea. Multiple radars were combined to produce
a composite radar reflectance image with a spatial resolution
of 1 km (Fig. 2). We used the constant altitude plan position
indicator (CAPPI), widely used to study precipitation, with
an altitude of 1.5 km provided by the KMA (Shi et al., 2017;
Han et al., 2019; Kim et al., 2021). To exclude the area out-
side the radar coverage, we cropped the data from 33 to 39◦ N
and 124 to 131.15◦ E. This encompasses most of the national
territory of South Korea and a portion of North Korea. For
the long-term test, the CAPPI dataset was collected every
10 min from 2012 to 2022 during the months of June, July,
and August (JJA). A large radar sequence dataset was created
using 144 radar scenes daily, with more than 142 560 radar
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scenes in the study period. Data from 2012–2018 were used
for model training, and data from 2019 were used for model
validation (i.e., hyperparameter optimization). To evaluate
the long-term performance from an operational standpoint,
we used the summer data of 2020–2022 as the test dataset,
which corresponds to approximately 38 880 radar scenes.

The KMA weather radar data were provided as reflectance
values in decibels relative to Z (dBZ). The Marshall–Palmer
Z–R equation (Marshall and Palmer, 1948) converts radar
reflectance into precipitation intensity (Eq. 1).

R =
1

200
Z0.625, (3)

where Z represents reflectance and R is the precipitation in-
tensity in mmh−1. While the original CAPPI radar data had
a spatial resolution of 1 km, they were resampled to 2 km, re-
sulting in a 400× 400 grid to reduce the model training time.
As most pixels in the radar data have no precipitation value,
we only used radar scenes when pixels with precipitation in-
tensity higher than 10 mmh−1 existed in more than 3 % of
the study area for training.

3.2 Comparison with non-DL model

To compare the DL-QPN results with a non-DL model, we
also included pySTEPS (Pulkkinen et al., 2019) in our com-
parison. PySTEPS is a Python implementation of the Short-
Term Ensemble Prediction System (STEPS) proposed by
Bowler et al. (2006). It has been widely used as a control
non-DL model in previous studies (Ravuri et al., 2021; Choi
and Kim, 2022; Han et al., 2023; Zhang et al., 2023). By
calculating the mean wind vector using the input radar se-
quence, pySTEPS simulates future radar sequences. To ex-
amine the impact of input sequence length, we also tested
1–3 h of input sequence in pySTEPS to predict a maximum
of 2 h, the same as the other DL models. More detailed in-
formation and usage of pySTEPS can be found in its docu-
mentation (https://pysteps.github.io, last access: 16 October
2023) and repository (https://github.com/pySTEPS/pysteps,
last access: 16 October 2023).

3.3 Scheme configuration

Considering these four key factors, a total of 24 experimental
schemes for DL-QPN and pySTEPS were designed (Table 2).
The selection of the DL model and its tuning are crucial for
maximizing forecasting accuracy. U-Net and ConvLSTM,
two representative models in the DL-QPN, were compared
in this study. The structures of the U-Net and ConvLSTM
are summarized in Fig. 3. The U-Net model uses five levels
of spatial filters to utilize the different scales of hidden fea-
tures (Fig. 3a). At each level, two convolutional layers with a
3× 3 kernel were used. The number of convolutional filters
varied depending on the depth of the layer. Skip connections
concatenated the equal-sized shallow and deep layers. For

Table 2. Specifications of the schemes designed in this study with
their abbreviations. “U” stands for U-Net, “C” stands for ConvL-
STM, and “P” is for pySTEPS. “M” and “B” indicate MSE and
BMSE loss functions, respectively. The following number is the
length of the input past sequence in hours. The number of runs in-
dicates that there are n total members to yield an average for each
scheme with different random seeds to ensure stability and repre-
sentativeness.

Abbreviation Model Loss Input sequence No. of run

UM1 U-Net MSE 1 h 5
UM2 U-Net MSE 2 h 5
UM3 U-Net MSE 3 h 5
UM Ensemble averaging (UM1, UM2, UM3)
UB1 U-Net BMSE 1 h 5
UB2 U-Net BMSE 2 h 5
UB3 U-Net BMSE 3 h 5
UB Ensemble averaging (UB1, UB2, UB3)
U Ensemble averaging (UM, UC)
CM1 ConvLSTM MSE 1 h 5
CM2 ConvLSTM MSE 2 h 5
CM3 ConvLSTM MSE 3 h 5
CM Ensemble averaging (CM1, CM2, CM3)
CB1 ConvLSTM BMSE 1 h 5
CB2 ConvLSTM BMSE 2 h 5
CB3 ConvLSTM BMSE 3 h 5
CB Ensemble averaging (CB1, CB2, CB3)
C Ensemble averaging (CM, CB)
P1 pySTEPS - 1 h 1
P2 pySTEPS - 2 h 1
P3 pySTEPS - 3 h 1
P Ensemble averaging (P1, P2, P3)
UC Ensemble averaging (U, C)
UCP Ensemble averaging (U, C, P)

the ConvLSTM, we adopted an encoder–decoder structure
designed for video prediction (https://github.com/holmdk/
Video-Prediction-using-PyTorch, last access: 16 October
2023). Several tests were conducted for ConvLSTM to deter-
mine the optimal number of layers and hidden states for the
ConvLSTM layer, considering the model performance and
GPU’s memory capacity. Four ConvLSTM layers were used
in this study with 32, 64, 64, and 32 hidden states per layer in
both encoder and decoder (Fig. 3b). All models were trained
with the MSE and BMSE loss functions and adaptive mo-
mentum optimizer (ADAM) with a learning rate of 0.001,
widely adopted in deep-learning regression models (Kingma
and Ba, 2014). The batch size was set to 1 to easily skip train-
ing when no precipitation event is in the batch. After the con-
volutional layers, the rectified linear unit (ReLU) was used as
an activation function to model the nonlinearity of the data.
Each model was trained with a maximum of 100 epochs, and
the model training was terminated when the validation per-
formance did not improve over three iterations.

It is notable that other DL models and hyperparameters
are also to be considered in addition to these four factors.
The common hyperparameters for deep learning include the
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Figure 3. The structure of (a) U-Net and (b) convolutional long-short term memory (ConvLSTM) used in this study.

batch size, activation function, learning rate, and optimizer.
Because finding the best set of hyperparameters is time-
consuming, other combinations of hyperparameters were not
considered at this time. Some recent studies have adopted
generative adversarial networks (GANs) in DL-QPN (Ravuri
et al., 2021; Kim and Hong, 2021). Although GANs can be
expected to be a promising approach in DL-QPN, we did not
compare it in this study because it is far beyond our scope
owing to its complexity and diversity.

In DL models, there are various aspects that contain ran-
domness, such as random weight initialization or a random
mini batch from the entire samples. To evaluate the model
performance more reliably, we ran each scheme five times
with different random seeds of 0, 999, 2023, 44 919, and
2 022 276. Starting from combining DL models (U-Net or
ConvLSTM), loss functions (MSE or BMSE), and input se-
quence lengths (1 h, 2 h, or 3 h), a total of 12 initial schemes
were generated before ensemble averaging. As each initial
scheme had five runs with different random scenes, a total of
60 runs for training DL models were conducted in this study
(Table 2 and Fig. 4). By aggregating five members for each

scheme, each scheme can assure more stability than a sin-
gle run. For example, UM1 stands for the average of U-Net
trained by MSE loss with an input sequence of 1 h for five
different random seeds. The average of each scheme with dif-
ferent input sequence lengths was again aggregated; for ex-
ample, UM is the ensemble mean of UM1, UM2, and UM3.
Consequently, UM is the mean of the total 15 runs, and the
same is true for UB, CM, and CB. The remaining ensemble
processes are similar to those in Table 2.

3.4 Evaluation

Four metrics were used to evaluate model performance:
MSE, BMSE, mean bias, and the critical success index (CSI)
(Table 3 and Eqs. 2–5). To exclude clear scenes from the
evaluation, we only used scenes in which the number of pix-
els with precipitation greater than 1 mmh−1 exceeded 3 % of
each scene’s total number of pixels. A total of 3801 scenes
met this criterion during the evaluation period from 2020 to
2022, and the percentage of precipitation days was 12.73 %.
We excluded precipitation of less than 1 mmh−1 to avoid the
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Figure 4. The infographic for overall flowchart for DL models in this study. “U” stands for U-Net and “C” stands for ConvLSTM. “M” and
“B” indicate MSE and BMSE loss functions, respectively. Refer to Table 2 for each scheme.

Table 3. Confusion matrix for given threshold precipitation p.

Radar Prediction

Hit ≥ p ≥ p

Miss ≥ p < p

False alarm < p ≥ p

Correct negative < p < p

effects of clear skies and radar noise. Additional thresholds
of 5 and 10 mmh−1 were used to account for moderate and
heavy precipitation events.

Moreover, temporal analysis was conducted using summer
monsoon rainfall events across the Korean Peninsula in Au-
gust 2020 to examine the model performance for heavy rain-
fall phenomena. The summer monsoon rainfall in South Ko-
rea in 2020 lasted 54 d, from 24 June to 16 August. More
than 66 % of the annual average precipitation fell during this
period, with significant regional variation. In particular, 400–
600 mm of rainfall fell over the southern part of the Korean
Peninsula between 7 and 8 August (Lee et al., 2020; Y.-T.
Kim et al., 2020). Therefore, the specific evaluation period
was set up from 08:00 KST on 7 August to 20:00 KST on
8 August, including record-breaking rainfall in the south-
western region.

mean bias=

N∑
i=1

(
yi − ŷi

)
N

, (4)

where y is the reference value and ŷ represents the predicted
value.

CSI=
hit

hit+miss+ false alarm
(5)

4 Results

4.1 Model evaluation using precipitation events for
2020–2022

Tables 4 and 5 present the evaluation results for 1 and 2 h
predictions, respectively, over June, July, and August (JJA)
from 2020 to 2022. The n-hour persistence model represents
a straightforward approach in which the current precipitation
is assumed to persist without any change for the next n hours.
A longer input sequence length generally yields lower MSE
and BMSE for all schemes, with specific improvements seen
for UM and CM in both prediction lead times. This trend can
also be observed with UB and CB and, interestingly, in the
pySTEPS non-DL model. P3 demonstrated the lowest MSE
and BMSE across all P1-P3 schemes in both prediction pe-
riods, suggesting that a longer input sequence can reduce
both general capitation (MSE) and high-intensity weighted
metrics (BMSE). However, no significant patterns were dis-
cernible in other metrics, such as mean bias or CSI, across all
schemes with varying input sequence lengths. As the ensem-
ble mean revealed similar results to individual members with
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Table 4. Quantitative performance over the summers of 2020–2022 for the 1 h prediction. Please refer to Table 2 for each scheme. The
numbers after metrics indicate the thresholds of precipitation for evaluation. Upward and downward arrows indicate that the metric is better
when larger and smaller, respectively. The best scores (i.e., lowest MSE and BMSE and highest CSIs) are marked in bold.

Scheme MSE↓ BMSE↓ Bias1 Bias5 Bias10 CSI1↑ CSI5↑ CSI10↑

UM1 10.22 206.43 −0.80 −3.00 −7.93 0.60 0.41 0.22
UM2 9.98 200.15 −0.80 −3.02 −7.96 0.59 0.40 0.22
UM3 9.73 192.80 −0.66 −2.75 −7.58 0.59 0.40 0.22
UM 9.97 203.99 −0.80 −3.11 −8.21 0.61 0.42 0.22
UB1 15.58 151.96 2.62 3.75 3.78 0.51 0.36 0.25
UB2 15.27 148.74 2.52 3.62 3.50 0.49 0.35 0.25
UB3 14.56 150.27 2.22 3.15 2.73 0.48 0.35 0.24
UB 12.87 144.76 2.39 3.25 2.44 0.48 0.37 0.28
U 10.27 168.64 1.01 0.50 −2.62 0.53 0.42 0.28
CM1 12.28 251.25 −0.72 −3.87 −11.33 0.51 0.31 0.10
CM2 11.87 242.57 −0.79 −4.09 −11.24 0.51 0.31 0.11
CM3 11.60 235.31 −0.77 −4.14 −11.15 0.51 0.30 0.11
CM 12.09 249.31 −0.80 −4.12 −11.49 0.52 0.32 0.11
CB1 25.52 171.82 4.08 6.15 7.33 0.32 0.23 0.18
CB2 24.67 165.02 3.58 5.99 7.12 0.29 0.23 0.18
CB3 25.57 159.65 3.88 6.25 7.59 0.31 0.23 0.17
CB 24.79 168.68 3.89 6.03 7.11 0.31 0.24 0.18
C 14.79 196.83 2.06 2.42 −0.36 0.37 0.30 0.20
P1 19.18 291.18 −0.19 −0.33 −0.62 0.52 0.35 0.22
P2 18.90 284.38 −0.16 −0.29 −0.55 0.52 0.34 0.22
P3 18.73 279.51 −0.14 −0.26 −0.51 0.52 0.34 0.21
P 16.18 252.12 −0.34 −0.76 −1.41 0.47 0.31 0.19
UC 11.72 180.08 1.52 1.21 −2.34 0.43 0.37 0.25
UCP 11.04 191.04 0.87 −0.08 −4.22 0.44 0.38 0.26
Persistence 21.61 267.60 0.15 0.34 0.55 0.47 0.27 0.16

different input sequence lengths, subsequent analyses solely
focused on aggregated results (i.e., UM, UB, CM, and CB),
as illustrated in Fig. 5.

Distinct loss functions exert a substantial influence on ev-
ery metric. Schemes with MSE loss (UM and CM) revealed
a lower MSE and higher BMSE compared to BMSE scenar-
ios (UB and CB) at both lead times, an expected outcome
given they were optimized for each respective loss function
(refer to Tables 4 and 5, and Fig. 5). In terms of bias, UM
and CM consistently had negative values at thresholds of 1,
5, and 10 mmh−1. While the magnitude of negative BIAS1
in CM was less than UM, it increased at higher thresholds as
lead time extended, reaching approximately−15 mmh−1 for
BIAS10 in a 2 h lead time. Conversely, UB and CB generally
presented positive biases except for UM with a 2 h lead time
in BIAS10 (Fig. 5). This suggests that utilizing BMSE bol-
sters overall intensities by focusing on heavy precipitation,
potentially leading to model overestimation. Equally notable
is the exacerbation of underestimation in UM and CM at
higher thresholds and longer lead times. Consequently, a fu-
sion of both losses could help alleviate issues of underesti-
mation and overestimation, as demonstrated in U and C. Fig-
ure 5 reveals that the biases of the U and C approaches are
close to zero across all thresholds and lead times after aggre-

gating MSE and BMSE. Zero bias does not inherently sig-
nify superior performance. When looked at with other met-
rics like MSE or CSI, it seems that the combination of MSE
and BMSE successfully reduced severe underestimation and
overestimation problems while keeping overall performance
the same. For instance, even though U does not exhibit higher
CSI across all thresholds and lead times than UM or UB, it
provides a more balanced performance. There were insignif-
icant improvements resulting from the ensemble over differ-
ent input sequence lengths. Additionally, UC or UCP did not
show more meaningful improvement than U. This implies
that having more ensemble members with different schemes
does not guarantee model improvement when the individual
members do not create meaningful synergy.

Both MSE and BMSE loss functions yielded better over-
all metrics with U-Net than ConvLSTM. Comparisons of en-
semble means of input sequence length in both 1 and 2 h pre-
dictions showed that UM and UB had lower MSE and BMSE
and higher CSIs for all thresholds than CM and CB, respec-
tively (Tables 4 and 5, Fig. 5). The performance gap between
U-Net and ConvLSTM widened with increasing lead time
and precipitation intensity. The disparity in bias was partic-
ularly large in ConvLSTM compared to U-Net. Moreover,
when aggregating all ensemble members for each model, U
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Table 5. Quantitative performance over the summers of 2020–2022 for the 2 h prediction. Please refer to Table 2 for each scheme. The
numbers after metrics indicate the thresholds of precipitation for evaluation. Upward and downward arrows indicate that the metric is better
when larger and smaller, respectively. The best scores (i.e., lowest MSE and BMSE and highest CSIs) are marked in bold.

Scheme MSE↓ BMSE↓ Bias1 Bias5 Bias10 CSI1↑ CSI5↑ CSI10↑

UM1 12.62 257.45 −1.75 −5.63 −13.00 0.49 0.23 0.07
UM2 12.29 249.03 −1.75 −5.59 −12.91 0.48 0.23 0.07
UM3 12.03 242.30 −1.63 −5.35 −12.52 0.48 0.23 0.07
UM 12.27 254.84 −1.78 −6.09 −13.69 0.51 0.24 0.06
UB1 18.04 208.84 1.80 2.21 0.61 0.38 0.26 0.14
UB2 19.07 196.56 2.31 3.25 2.66 0.39 0.26 0.15
UB3 18.52 197.14 2.12 2.90 1.95 0.39 0.25 0.14
UB 14.83 192.23 1.93 2.30 −0.36 0.37 0.29 0.17
U 12.20 218.85 0.50 −1.25 −7.61 0.44 0.30 0.13
C1M 13.90 281.72 −1.00 −7.06 −16.73 0.40 0.12 0.00
C2M 13.50 273.02 −1.05 −7.06 −16.53 0.41 0.12 0.00
C3M 13.23 266.75 −1.04 −7.06 −15.95 0.41 0.12 0.01
CM 13.82 281.01 −1.09 −7.22 −16.55 0.41 0.12 0.01
C1B 29.79 198.82 3.05 6.04 6.82 0.16 0.17 0.12
C2B 29.04 190.89 3.01 6.00 6.91 0.16 0.18 0.12
C3B 29.74 185.57 3.19 6.23 7.34 0.17 0.17 0.12
CB 29.23 196.31 3.01 5.98 6.78 0.16 0.18 0.13
C 16.99 227.21 1.92 2.16 −3.46 0.27 0.22 0.10
P1 24.33 337.08 −0.31 −0.46 −0.71 0.39 0.21 0.11
P2 23.87 327.89 −0.27 −0.40 −0.62 0.38 0.21 0.11
P3 23.58 321.85 −0.24 −0.37 −0.59 0.38 0.20 0.11
P 19.41 288.13 −0.52 −1.10 −2.03 0.33 0.18 0.10
UC 13.64 220.93 1.30 0.18 −7.40 0.33 0.28 0.11
UCP 13.26 240.00 0.49 −1.69 −9.33 0.35 0.27 0.11
Persistence 25.39 288.91 0.25 0.60 1.03 0.37 0.19 0.10

consistently outperformed C. However, given the variety of
possible model configurations, it should be noted that our
findings do not suggest that all CNN-RNN models are in-
herently inferior to solely CNN models for QPN.

4.2 Evaluation of heavy rainfall events

Figures 6 and 7 present a time series analysis of CSI1 and
CSI10, respectively, for a heavy rainfall event occurring from
7 to 9 August 2020. It is important to note that the perfor-
mance of all models, including persistence, was influenced
by the rate of rain pixels in each scene (Fig. 6). Consequently,
the performance of QPN should be interpreted in terms of
the precipitation rate because the likelihood of achieving a
correct prediction (i.e., CSI) increases as the area of precip-
itation expands (Han et al., 2023). As illustrated in Fig. 6,
UM achieved the highest CSI1, whereas CB registered the
poorest performance across all lead times. Echoing the long-
term evaluation results from the summers of 2020–2022,
UM and CM significantly outperformed UB and CB for the
1 mmh−1 threshold, yielding higher CSI values. U and C,
the ensembles of MSE and BMSE for each deep-learning
model, demonstrated CSI1 performance roughly equivalent
to the average of UM and UB and CM and CB, respectively.

At the 10 mmh−1 threshold, however, UM and CM’s perfor-
mance declined. Although UM retained competitive perfor-
mance in the 30 min forecast, its skill score plummeted to
the lowest level for CM in the 2 h prediction (Fig. 7). UB and
CB achieved higher CSI10 than UM and CM in both 1 and
2 h predictions, implying that the benefits of using BMSE in-
creased with longer lead times, a pattern consistent with the
long-term evaluation in Fig. 5. As the CSI10 performances
of UB and U were nearly identical in 30 min and 1 h pre-
dictions, U’s performance in heavy precipitation seemed to
be largely dictated by UB. Despite the overestimation caused
by the use of BMSE, U’s CSI10 did not degrade, even with
the average of weaker precipitation from UM whose loss was
MSE. However, due to the severe underestimation issue with
UM, U’s CSI10 ultimately degraded relative to UB in the 2 h
prediction (Fig. 7). This pattern also aligns with Fig. 5.

Figure 8 provides a comparative map for each scheme’s
2 h prediction for 05:00 KST on 8 August 2020. To demon-
strate the sensitivity to random seeds, predictions with each
seed were included. Stability over random seeds increased
more significantly with U-Net than with Conv-LSTM and
with MSE than BMSE, in terms of both quantitative metrics
(i.e., CSI1 and CSI10) and qualitative visual interpretation.
Generally, UM and CM tended to underestimate both the
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Figure 5. Quantitative performance over the summers of 2020–2022 of lead times of 30 min, 1 h, and 2 h. Please refer to Table 2 for each
scheme. The numbers after the metrics indicate the thresholds of precipitation for evaluation.

area and intensity of precipitation, while UB and CB gener-
ated higher intensity over a larger area. UM exhibited the best
performance in CSI1, suggesting its proficiency at forecast-
ing the overall precipitation area. In terms of CSI10, UB and
CB outperformed the others, indicating the effectiveness of
BMSE in forecasting areas of heavy precipitation. Although
pySTEPS appeared to closely mimic actual radar observa-
tions, the location of the forecast was simulated faster (more
eastward) than the actual position. Moreover, no forecast re-
sults were available for the western part of the map because
its prediction was based on a calculated wind vector. In con-
trast, some deep-learning models simulated rainfall over the
Yellow Sea (black circle in the radar observation map), indi-
cating the superior capabilities of these models in forecasting
areas of precipitation. In terms of the 99th percentile (P99 %)
precipitation intensity for each scene in Fig. 8, the results
from the ensemble generally show a decreased P99 %. Even
U showed a lower P99 % than UM despite being ensembled

with UB. As Franch et al. (2020) pointed out, the ensemble
might attenuate peak intensity. All deep-learning models pro-
duced blurred predictions compared to pySTEPS or radar ob-
servations, showing the common limitation that is discussed
in Sect. 5.2.

5 Discussion

5.1 Performance comparison and considerations of key
factors

To address data imbalance and improve skill scores, var-
ious loss functions have been considered in previous re-
search. Our comparison of two representative losses, MSE
and BMSE, revealed that each has its strengths and weak-
nesses. The selection of an appropriate loss function should
be informed by a comprehensive evaluation of QPN results.
Optimal loss functions may vary depending on the specific
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Figure 6. Comparison of CSI performance for the case of heavy rainfall over South Korea from 7 to 8 August 2020 with the 1 mmh−1

threshold. Refer to Table 2 for scheme names. The bottom black line represents the ratio of precipitation pixels > 1 mmh−1 for each radar
scene.

objectives as it provides guidance to DL modeling. For in-
stance, if the model’s focus is on severe weather, BMSE can
be weighted to emphasize high intensities. In cases where the
area of precipitation over a certain threshold is of key inter-
est, a modified CSI loss can be used (Ko et al., 2022). As
a single metric cannot fully evaluate a model, combinations
of different losses can also be explored. Alternatively, the en-
semble approach analyzed in our study can leverage different
loss functions to create a synergistic effect for QPN.

In this study, U-Net consistently outperformed ConvL-
STM in various respects, both in long-term evaluation and
in a single heavy rainfall event. This finding is in line with
previous research (Ayzel et al., 2020; Ko et al., 2022; Han
et al., 2023). Additionally, U-Net demonstrated more stabil-
ity across different random seeds than ConvLSTM (Fig. 8).
Contrary to the widespread expectation that DL models pow-
ered by RNN would excel in time series forecasting, it was

found that a model relying solely on CNN can perform bet-
ter. However, this does not imply that all models using RNN
structures are inferior to full CNN models. Considering the
wide range of U-Net and ConvLSTM variants, there could
be potential for RNN-powered models to exhibit superior re-
sults. Lastly, the input sequence length did not significantly
impact the results compared to other factors in this study.
Nevertheless, sequence length should still be carefully con-
sidered because DL-QPN relies significantly on past infor-
mation. In other DL models and QPN designs, input se-
quence length may have a greater impact than it did in this
study; therefore, we continue to regard this as a key factor in
DL-QPN.

Due to the inherent randomness and stochastic nature of
deep learning, modeling and evaluation need to be carefully
conducted, taking into account relevant factors. As demon-
strated in Fig. 8, results can vary for each run with a different
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Figure 7. Comparison of CSI performance for the case of heavy rainfall over South Korea from 7 to 8 August 2020 with the 10 mmh−1

threshold. Refer to Table 2 for scheme names. The bottom black line represents the ratio of precipitation pixels > 10 mmh−1 for each radar
scene.

random seed. Thus, stability should be a priority when devel-
oping a DL-QPN model, a point often overlooked in previous
studies. By treating each run as an ensemble member, we can
avoid unstable results under varying conditions of random-
ness.

5.2 Common drawbacks of DL-QPN

In this study, all DL-QPN schemes demonstrated a dwin-
dling intensity problem as the lead time increased for both
the long-term experiment and the heavy rainfall event. Previ-
ous studies have also reported deformation and significant
blurring effects in DL-QPN models (Trebing et al., 2021;
Ayzel et al., 2020; Shi et al., 2015), which is also found
in Fig. 8. Ravuri et al. (2021) introduced Deep Generative
Models of Rainfall (DGMR) to provide realistic rainfall pre-
diction maps. While DGMR reduced the blurring effect by

leveraging GAN, it did not perform better than U-Net in
terms of CSI (Ko et al., 2022).

Regarding the typical limitations of DL-QPN, the follow-
ing two factors may play a significant role: (1) the uneven
distribution of precipitation and the sparsity of precipitation
events and (2) the dynamic movement of the atmosphere.
A substantial issue with DL-QPN is the skewed distribution
of precipitation towards weak intensities (Adewoyin et al.,
2021; Chen and Wang, 2022; Shi et al., 2017). Even after re-
jecting radar scenes when precipitation event was too weak
during the sampling phase, the pixel-level distribution re-
mained skewed towards the weak range. The sparsity of pre-
cipitation events is also strongly related to data imbalances.
Because most pixels have no radar signal, the background of
the weather radar mainly consists of zero values. This spar-
sity distinguishes the DL-QPN from general video prediction
and makes the model susceptible to the prediction of under-
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Figure 8. Comparison map for 05:00 KST on 8 August 2020 with a 2 h lead time. Refer to Table 2 for scheme names. Schemes with seed
numbers are the averages of results for three scenes using 1, 2, and 3 h input sequences. CSI1 and CSI10 represent the CSI scores for
thresholds of 1 and 10 mmh−1, respectively, while P99 % denotes the precipitation intensity at the 99th percentile of the distribution for
each scene in mmh−1. The dashed black circle on the radar map indicates new growing precipitation areas that have appeared beyond radar
coverage.

estimated results. Data augmentation or patch-level sampling
can be used during the sampling phase to reduce data imbal-
ance and sparsity. Some loss functions have also been used
to solve this skewed distribution during the model training
phase (Ravuri et al., 2021; Shi et al., 2017; Ko et al., 2022).

Because the DL-QPN deals with very dynamic atmo-
spheric data, the mismatched position between past and fu-

ture sequences can result in significantly degraded perfor-
mance as the forecasting time increases. The DL-QPN does
not explicitly learn the movement of the precipitation cells.
Because convolutional filters in a single layer cannot link
remote information beyond the kernel size, multiple layers
gradually extend the receptive field of interest. However,
even with multiple layers, the model may fail to simulate a
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Figure 9. Three forecasting designs in DL-QPN with radar sequence: (a) single, (b) recursive, and (c) multiple predictions.

future precipitation cell whose position is too far from its ori-
gin. This limitation might be improved by the attention tech-
niques that enable the model to identify high relationships
between input and prediction over a global area.

Although recent studies on DL-QPN have reported that
they achieve better performance than traditional models with
end-to-end learning, it is crucial to investigate how to fully
exploit precipitation characteristics in DL-QPN. The proper-
ties of each precipitation cell can be explicitly fed into the
model to successfully simulate the relationship between the
precipitation cells across different time steps. In a similar
context, there is ample room to contribute to radar-based DL-
QPN using additional input variables, such as atmospheric
instability indices, temperature, vertical humidity profiles,
wind vectors, and NWP-predicted precipitation. Although
some previous studies have attempted to fuse heterogeneous
datasets for DL-QPN (F. Zhang et al., 2021; Adewoyin et al.,
2021; Bouget et al., 2021), further research is required to de-
termine their contribution and develop a synergetic model to
maximize the multimodal dataset, instead of just stacking the
variables as input features.

5.3 Other factors to consider

In addition to the four key factors investigated, there are other
factors that could be considered. First, there are different pre-
diction designs other than the multi-to-multi approach used
in this study: three representative approaches are summarized
from the literature (Table 2 and Fig. 9). In a single prediction,
each model individually predicts each time step. Because of
its simplicity and good performance focusing on a single
lead time, image-to-image DL-QPN with radar (Chen et al.,
2020) and image-to-point QPN with radar (Y. J. Kim et al.,
2020) adopt this method. A single prediction employs n dis-
tinct models for m time steps (Fig. 9a). As shown in Fig. 9b,
recursive prediction only considers the next time step. The
predicted output of the first future time step was fed into an
input sequence to predict the next time step, and this pro-
cess was repeated iteratively to forecast longer lead times.

Ayzel et al. (2020) proposed RainNet v1.0, with a recursive
approach, using the previous six sequences to forecast up to
12 future sequences with an interval of 5 min. Because the
recursive model only considers the next time step, it is ex-
pected to yield accurate predictions. However, the primary
disadvantage of this method is the accumulation of errors
with increasing lead time because more predicted results with
uncertainty are used as input data. In the multiple prediction,
a model simultaneously forecasts all future sequences. This
design has been widely adopted for DL-QPN using a weather
radar (Kim and Hong, 2021; Ravuri et al., 2021; Shi et al.,
2015; Shi et al., 2017; Franch et al., 2020). A multiple pre-
diction model can generate m time steps, as shown in Fig. 9c.
Because a multiple prediction model is calibrated for various
lead times by minimizing the overall loss, its performance
may be degraded for a particular lead time. Although only
multiple prediction was evaluated in this study due to its pop-
ularity, other approaches may also be considered based on
the specific goal of each model. Additionally, there is room
for the aggregation of different prediction designs to create
synergy among them.

As precipitation is calculated from radar reflectivity, direct
prediction of the original signal can also be considered. Some
previous studies utilized radar reflectivity in DL-QPN (Bon-
net et al., 2020; Lepetit et al., 2021; Albu et al., 2022; Han
et al., 2022). To our knowledge, there have been few stud-
ies comparing radar reflectivity and precipitation intensity di-
rectly in DL-QPN. In this study, we chose to forecast precip-
itation intensity because our final interest is in the strength of
the precipitation. However, as the precipitation intensity can
be converted from predicted reflectivity, further investigation
is needed in the future to find a better skill score.

5.4 Novelty and limitations

This study conducted a comprehensive comparison of the
DL-QPN. The major novelties of this study are summarized
as follows. First, we categorized and investigated four criti-
cal factors of DL-QPN. While most previous DL-QPN stud-
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ies have focused on DL models, there has been a dearth of
research on other factors to be considered. Second, a long-
term evaluation was conducted for 3 years during the sum-
mer. This long-term evaluation provided helpful information
from an operational perspective of DL-QPN. Randomness in
the training phase, such as initialization of weights, was ad-
dressed for the first time in this study. Stability is one of the
most important aspects of the operational model for disas-
ter forecasting; however, this was rarely considered in previ-
ous studies. By running each DL scheme five times with dif-
ferent random seeds, we could examine the stability of each
scheme and test the effect of ensemble aggregation. The en-
semble with different DL-QPN schemes and even with a non-
DL model was also newly conducted in this study, showing
the potential of the ensemble approach. With advanced ap-
proaches to adjusting the optimal weights for each ensemble
member, such as stacking ensemble (Cho et al., 2020), fur-
ther improvements are expected. Lastly, we summarize the
common drawbacks of DL-QPN and discuss their possible
causes.

Despite the innovations in investigating key factors in DL-
QPN, several limitations remain. One of the significant limi-
tations of this study is the lack of investigation of more loss
functions beyond MSE and BMSE. In addition to L1 and L2
losses, several loss functions have been suggested for DL-
QPN, such as logcosh (Ayzel et al., 2020; Cuomo and Chan-
drasekar, 2021) or adversarial loss using GAN (Ravuri et al.,
2021; Kim and Hong, 2021). Although the loss function in
the DL-QPN is of the utmost importance, it is beyond the
scope of this study, as there are too many aspects to cover
in a single paper. Another limitation is the small study area.
To generalize the research findings, it would be ideal for ex-
amining several study areas with different environments if
possible. Some recent studies have attempted to extend their
study areas using different radar data (Ravuri et al., 2021;
Zhang et al., 2023). Consequently, it is highly expected to
evaluate models over multiple study areas in the future to in-
crease operational generalizations. As DL-QPN has garnered
significant attention in recent years, advanced models have
been continuously suggested, including GANs (Ravuri et al.,
2021; Choi and Kim, 2022; Kim and Hong, 2021), latent dif-
fusion (Leinonen et al., 2023), Transformer (Franch et al.,
2023), simpler yet better video prediction (Han et al., 2023),
and NowcastNet (Zhang et al., 2023). Despite the importance
of using state-of-the-art (SOTA) models in DL-QPN, at this
moment they are out of the scope of this paper due to their
complexity, limitations of implementation, or issues of code
availability. A comprehensive benchmark for different SOTA
models is anticipated in our future studies, and if possible
determining their optimal ensemble for further improvement
will also be one of our future areas of investigation.

6 Conclusion

This paper summarizes and compares the effects of the four
critical factors in the DL-QPN. As previous studies mainly
focused on developing DL models with less investigation of
other considerations, we expect this study to contribute to
future DL-QPN studies by drawing attention to other essen-
tial factors. We evaluated various DL schemes, considering
the deep learning model, input sequence length, loss func-
tion, and ensemble method. Through our quantitative and
qualitative comparisons, we found that the U-Net model with
the MSE loss function appeared to be the optimal combina-
tion for weak precipitation prediction in this study, while the
BMSE was effective for heavy precipitation (≥ 10 mmh−1).
In general, there was a weak tendency for longer past se-
quence lengths to yield lower MSE and BMSE for both DL
models, but there was little difference in terms of the CSI.
After running experiments five times for each scheme, we
determined that U-Net and MSE were more stable than Con-
vLSTM and BMSE in terms of randomness. The aggrega-
tion of different schemes resulted in balanced skill scores
across multiple metrics, especially when MSE and BMSE
were combined. Common issues with DL-QPN include un-
derestimation as the lead time gets longer and the production
of smoothed spatial patterns. These drawbacks are likely due
to the skewed distribution of weak intensity and the sparsity
of precipitation events. They are expected to be mitigated
with the implementation of an improved sampling strategy
and the use of various loss functions beyond MSE or BMSE.

While our study provided a comprehensive comparison of
key factors in DL-QPN, it also underscored the need for con-
tinued exploration. Areas for future research include inves-
tigating more advanced loss functions, broadening the study
areas to diverse environments for greater generalization, and
comparing SOTA models. Furthermore, the potential of en-
semble approaches for further enhancing the performance of
DL-QPN models offers promising opportunities for future
investigation. Ultimately, our study points out the importance
of looking at DL-QPN as a whole, not just focusing on cre-
ating DL models, and recognizing the need to consider many
factors that affect precipitation nowcasting.

Code and data availability. The original RainNet v1.0 is an
open-source code provided by Ayzel (2020) via GitHub
(https://github.com/hydrogo/rainnet, last access: 18 Septem-
ber 2023). The ConvLSTM was implemented using the
Video-Prediction-using-PyTorch GitHub repository (https:
//github.com/holmdk/Video-Prediction-using-PyTorch/tree/master,
last access: 18 September 2023; Nielsen, 2019). Ground weather
radar data over South Korea are available at the KMA data portal
(https://data.kma.go.kr/data/rmt/rmtList.do?code=11&pgmNo=
62&tabNo=2, last access: 18 September 2023; Korea Meteorologi-
cal Administration, 2023) upon request. Model structures, trained
models, and validation datasets over heavy rainfall events in Au-
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gust 2020 can be found at https://doi.org/10.5281/zenodo.8353423
(Han, 2023).
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