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Abstract. Despite recent developments in geoscientific (e.g.,
physics- or data-driven) models, effectively assembling mul-
tiple models for approaching a benchmark solution remains
challenging in many sub-disciplines of geoscientific fields.
Here, we proposed an automated machine-learning-assisted
ensemble framework (AutoML-Ens) that attempts to resolve
this challenge. Details of the methodology and workflow of
AutoML-Ens were provided, and a prototype model was real-
ized with the key strategy of mapping between the probabil-
ities derived from the machine learning classifier and the dy-
namic weights assigned to the candidate ensemble members.
Based on the newly proposed framework, its applications for
two real-world examples (i.e., mapping global soil water re-
tention parameters and estimating remotely sensed cropland
evapotranspiration) were investigated and discussed. Results
showed that compared to conventional ensemble approaches,
AutoML-Ens was superior across the datasets (the training,
testing, and overall datasets) and environmental gradients
with improved performance metrics (e.g., coefficient of de-
termination, Kling–Gupta efficiency, and root-mean-squared
error). The better performance suggested the great potential
of AutoML-Ens for improving quantification and reducing
uncertainty in estimates due to its two unique features, i.e.,
assigning dynamic weights for candidate models and taking
full advantage of AutoML-assisted workflow. In addition to

the representative results, we also discussed the interpreta-
tional aspects of the used framework and its possible ex-
tensions. More importantly, we emphasized the benefits of
combining data-driven approaches with physics constraints
for geoscientific model ensemble problems with high dimen-
sionality in space and nonlinear behaviors in nature.

1 Introduction

With improvements to sensing systems and modeling tech-
nologies, a wide range of physics-based or data-driven mod-
els have been developed in the sub-fields of geosciences,
mainly to simulate or predict essential variables for under-
standing climate, biodiversity, ocean, and geodiversity (Hur-
rell et al., 2013; Karpatne et al., 2019; Reichstein et al.,
2019). However, significant precision inconsistencies exist
among these models due to their own limitations, even for the
same process or variable on an identical scale (Steffen et al.,
2020). It is, therefore, not surprising that the corresponding
simulations or predictions are often different or even contra-
dictory, particularly with the influence of anthropogenic ac-
tivities in Earth systems, leading to the increasing need for
better theories, methods, and datasets (Abbott et al., 2019;
Tortell, 2020).

Published by Copernicus Publications on behalf of the European Geosciences Union.



5686 H. Chen et al.: Dynamically weighted ensemble of geoscientific models

As a critical flux variable that links water, energy, and
carbon cycling, a variety of terrestrial evapotranspiration
(ET) products are currently available at regional and global
scales (Mueller et al., 2013), which are derived from var-
ious sources and/or approaches, including in situ observa-
tions, land surface models, satellite inversion, and estimates
from data-driven algorithms (Pan et al., 2020). Although
these ET products provide an indispensable tool for inves-
tigating ET and its related processes (Han et al., 2020; Jung
et al., 2010; Pascolini-Campbell et al., 2021), they often ex-
hibit considerable discrepancies across diverse biomes and
climate regimes, which could be attributed to a number of
reasons, such as differences in model structure and parame-
terization, input data, and scaling problems (Pan et al., 2020).
In particular, no ET products with consistently low noise lev-
els over time and space were found (Mueller et al., 2013),
and therefore how to approach a benchmark ET dataset re-
mains a major challenge. To tackle this issue, it is advocated
to apply model ensemble approaches to enhance the preci-
sion of available ET products (Lu et al., 2021), as previous
studies have demonstrated the superiority of using ensemble
strategies over any of the single models (Fragoso et al., 2018;
Maclin and Opitz, 1999; Zounemat-Kermani et al., 2021).

In this context, increasing efforts have been devoted to
assembling multiple geoscientific models to improve quan-
tification and reduce uncertainty in estimations (Araújo and
New, 2007; Palmer et al., 2005; Reshmidevi et al., 2018).
Numerous ensemble methods have been proposed, ranging
from simple methods such as arithmetic mean (referred to as
MEAN) to more complicated ones, such as weighted mean
using the Bayesian model averaging (BMA), empirical or-
thogonal function (EOF), and reliability ensemble average
(REA) approaches (Lu et al., 2021). For example, Dai et
al. (2019a) reported a fitting method to obtain a global dataset
of hydraulic and thermal parameters of the soil from the en-
semble pedotransfer functions (PTFs), which led to greater
reliability than the median values of various PTFs (Dai et
al., 2013). Chen et al. (2019a, b) constructed a combined ter-
restrial water storage anomaly (TWSA) series by assigning
time-dependent weights for five GRACE TWSA solutions,
with the lowest noise level compared to other single solu-
tions. Other ensemble approaches have also been proposed,
such as least-squares and maximizing temporal correlation
techniques for merging soil moisture products (Kim et al.,
2015; Yilmaz et al., 2012), conditional merging and geo-
graphic ratio analysis for precipitation data fusion (Duan and
Bastiaanssen, 2013; Jongjin et al., 2016), and deep-learning-
based multi-dimensional ensemble methods for short-term
runoff prediction (Liu et al., 2022). In general, those studies
showed that the use of ensemble approaches could virtually
reduce the uncertainties in the data products by deriving and
assigning their weights to generate the merged ones.

It should be noted that currently available ensemble ap-
proaches usually provide fixed weights to each candidate ac-
cording to either their statistical degree of approximation to

sparse observations or relative uncertainties without compar-
ing to true variables (see, e.g., Fragoso et al., 2018; Liu et
al., 2022; Madadgar et al., 2014; Tebaldi et al., 2005). Since
environmental factors jointly and nonlinearly regulate under-
lying processes, assigning fixed weights under all conditions
to individual models that depend on just a subset of con-
straints may not fully utilize the strength of ensemble ap-
proaches and/or individual models (Bai et al., 2021; Telteu
et al., 2021). Therefore, it underscores the universality and
importance of a particular issue, i.e., multiple models always
exist while an effective ensemble one is still necessary to-
wards better estimations (e.g., Abramowitz et al., 2019). To
that end, it is still warranted to investigate and develop inno-
vative methods based on ensemble model frameworks.

With increasing data availability for Earth systems, ma-
chine learning (ML) techniques provide additional avenues
for addressing this issue (e.g., Zounemat-Kermani et al.,
2021). As an illustration, Zaherpour et al. (2019) proposed a
unique application of ML to deliver optimized combinations
of multiple global hydrological model (GHM) simulations,
with considerably improved performance compared to the
best performing GHM. Bai et al. (2021) presented four en-
semble models based on ML to assemble six physics-based
ET models to map cropland ET. Their ensembles can unify
the capabilities of various environmental constraints on ET
utilized by specific models. However, the use of ML mod-
els is still faced with several challenges, such as feature en-
gineering, model and optimization algorithm selection, and
neural architecture design, making it time-consuming and
error-prone if constructed manually (Tuggener et al., 2019).

In contrast, state-of-the-art automated ML (AutoML) ap-
pears to take the human factor out of these complex ML
pipelines (Yao et al., 2018). Like ML approaches, AutoML is
a computer program that has acceptable generalization per-
formance on input data and given tasks. The critical differ-
ence is that AutoML emphasizes the construction of high-
level controlling approaches (i.e., what and how to automate)
to use ML tools effectively and optimally, leading to new
levels of capability and customization (Truong et al., 2019).
For instance, Sun et al. (2021) applied an AutoML workflow
(comprising six types of ML algorithms and various sets of
predictors) to perform gridded water storage reconstruction
over the conterminous United States (CONUS). The authors
found that no one ML algorithm could reach the best re-
construction performance across the CONUS, underscoring
the importance of adopting an AutoML workflow to train,
improve, and merge different ML methods to achieve ro-
bust performance. Nowadays, a host of AutoML tools and
platforms, both free or open-source and commercially avail-
able, have been released for various scientific and engineer-
ing applications, e.g., Auto-Weka, TPOT, AutoKeras, Auto-
Sklearn, H2O-Automl, Google Cloud Automl, and Microsoft
AzureML (see the review by Truong et al., 2019). However, a
comprehensive comparison among these different platforms
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to solve given problems is another crucial issue beyond the
scope of this study.

Based on the above discussions, the objectives of this
study were to (1) introduce an AutoML-based ensemble
(AutoML-Ens) framework for assembling multiple geosci-
entific models and (2) present examples with the proposed
AutoML-Ens framework, including mapping global soil wa-
ter retention parameters and improving remote sensing-based
cropland ET estimates. In the following, Sect. 2 covers the
details of the methodology and workflow of the AutoML-Ens
framework, while Sect. 3 presents data acquisition, results,
and discussion about the two representative applications; this
is followed by conclusions in Sect. 4.

2 Proposed AutoML-Ens framework

2.1 Methodology and workflow of AutoML-Ens

The overall pipeline of the proposed AutoML-Ens frame-
work is illustrated in Fig. 1. The main strategy of AutoML-
Ens is based on varying weights; i.e., weights assigned to
candidate ensemble members vary depending on the spatial
and temporal changes in environmental conditions and the
performance capabilities of individual models under these
conditions. Specifically, once a multimodel ensemble prob-
lem is defined, an extensive spectrum of physically meaning-
ful predictors (i.e., environmental conditions) denoted by xm,
where m= 1, . . .,M with a single or a combination of few
subsets are selected and used to develop physics-constrained
models (hereafter the predictions P s where s = 1, . . .,S).

P s = f (xm, . . .), (1)

where x is the vector representing a predictor that can be
a static or spatiotemporally varying environmental variable;
the vector P denotes the predictions of different models; and
the subscripts m and s represent the index of a predictor and
model, respectively.

To determine the ideal weights (W k) for various models
(P k), we use an ML classifier to calculate the probability
(designated as W k) that each model is optimal in a certain en-
vironmental state. Especially, the ML classifier is trained to
find the optimal models labeled as those that produce predic-
tions with specific criteria (e.g., the least absolute error com-
pared against observations for each sample of spatial or tem-
poral predictions) under a specific environmental condition.
Thus, ML classifiers can approximate model weights with
only factors that reflect the environment after training. Here,
an AutoML-based training, validation, and testing workflow
is conducted to help automatically find the top classifier CT
(either a specific ML algorithm or an ensemble of a few ML
algorithms [M l, l = 1, . . .,L] based on the ensemble learning
technique). The final AutoML-Ens estimation (Y ) can sub-
sequently be obtained by combining these candidate predic-
tions (P ) and their corresponding probabilities (i.e., varying

weights W ) derived by the AutoML-based CT.

Y = [y1,y2, . . .,yK ], (2)
yk = P k ×W k, (3)
P k = [pk,1,pk,2, . . .,pk,N ], (4)

W k = [wk,1,wk,2, . . .,wk,N ]
T , (5)

where the vector Y represents the final AutoML-Ens estima-
tion; the subscript k refers to the sample index of a model
prediction that can be spatially and/or temporally varying,
thus yk denotes the ensemble of multimodel predictions for
the sample k; W k is the varying weights associated with the
multiple predictions P k for sample k. These weights are de-
rived from an AutoML-based classifier, that is, the probabil-
ity of an individual model being optimal under certain en-
vironmental conditions, and

∑N
n=1wk,n = 1; the subscript K

and N are the numbers of samples and models, respectively.
Accordingly, two distinguishing features of AutoML-Ens

can be stated as follows: (1) it focuses on assembling mul-
tiple physics-constrained models to seek the optimal combi-
nation of physical and data-driven solutions, and (2) it is a
supervised classification-based optimization that realizes the
mapping between ML classifier-derived probabilities and dy-
namic adaptivity (or weights) used for an ensemble estima-
tion to capture the nonlinear nature of targeted processes that
takes full advantage of AutoML-assisted workflow. In addi-
tion, it is noteworthy that most AutoML platforms support
both a collection of existing ML algorithms to select the best
one and their ensembles (referred to as the pure AutoML-
based ensemble, P-AutoML-Ens) based on “ensemble learn-
ing” (see Fig. 1) techniques such as bagging, boosting, dag-
ging, and stacking (Zounemat-Kermani et al., 2021). Al-
though both can be implemented on the AutoML platform,
there are significant differences in the target ensemble ob-
jects and the strategies used between the proposed AutoML-
Ens and these P-AutoML-Ens. Specifically, the core of the
proposed AutoML-Ens is an ML classifier, and in order to
obtain the optimal classifier, the inherent multi-classifier en-
semble learning approaches in the AutoML platforms could
be used. Meanwhile, for P-AutoML-Ens, the “ensemble”
here is not aimed at assembling multiple models constrained
by physics but the ML algorithms involved for given tasks.
For example, we can select various ML algorithms to pre-
dict a target variable as a regression task without physical
constraints. The AutoML tools can then help to assemble
these pure data-driven algorithms inherently to make the fi-
nal better estimation. Further comparison and discussion of
AutoML-Ens and P-AutoML-Ens can be found in Sect. 3.2.2.

2.2 A prototype AutoML-Ens for geoscientific
examples

In this study, we built a prototype AutoML-Ens in the
R environment (V3.6.3) using the H2O-AutoML platform
(V3.32.1.7) in H2O.ai (Ledell and Poiri, 2020). Note that our
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Figure 1. Procedures for building an AutoML-based ensemble framework (AutoML-Ens) to assemble geoscientific models.

AutoML-Ens is not limited to the platform of H2O-AutoML.
We have chosen to use this platform because it is consid-
ered one of the leading open-source AutoML platforms ac-
cording to recent benchmarking tests (Truong et al., 2019).
The algorithms available in H2O-AutoML include some of
the most commonly used ML algorithms and their variants,
e.g., deep neural network (DNN), distributed random for-
est (DRF), generalized linear model (GLM), gradient boost-
ing machine (GBM), extreme gradient boosting (XGBoost),
and extremely randomized trees (XRT). Furthermore, H2O-
AutoML provides a stacking process to find the best combi-
nation of algorithms to obtain better predictive performance,
which can be recognized as one kind of realization form of P-
AutoML-Ens. Detailed explanations of H2O.ai and its H2O-
AutoML platform can be found in Ledell and Poiri (2020).
Here, the common features of AutoML-Ens for the examples
are summarized below. (1) In the H2O-AutoML pipeline,
the data (i.e., predictors and labels) are randomly shuffled
into training (75 % with five equal-sized subsets for cross-
validation) and testing (25 %). Note that due to the use of
the automatic hyperparameter optimization based on Carte-
sian or random grid search methods in an H2O-AutoML run
(Ledell and Poiri, 2020), the maximum number of ML mod-
els was set to be 30, in addition to the two ensemble models
stacked (one with the highest-performance model of each al-
gorithm family and the other with all training models). Then,
all 32 models were ranked to select the best ML classifier
for final estimations. (2) Two widely used ensemble meth-
ods (that is, MEAN and BMA) were chosen for comparison;
here, BMA was performed using the package “EBMAfore-
cast” (Montgomery et al., 2017) in the R environment. In
addition, the hierarchical multimodel ensemble (HME) ap-
proach proposed by Zhang et al. (2020) to estimate soil wa-
ter retention parameters and the multilayer perception neu-
ral network classifier (MLP) introduced by Bai et al. (2021)
with the most efficient in terms of accuracies and costs for
assembling multiple physically driven cropland ET models
were also investigated as baseline models, respectively. An
overview of the MEAN, BMA, HME, and MLP methods we

used is presented in Supplement Sect. S1) For an ML classi-
fier, an even distribution of samples across both major and
minor classes (i.e., balanced dataset) is needed to guaran-
tee reasonable predictions of not only the majority but also
classes with small sample size or extreme values (Kavzoglu,
2009). While the imbalance issue does not have a significant
impact on the two examples we presented (Tables S2 and S6),
we acknowledge its importance in other applications. For-
tunately, the H2O-AutoML platform provides a parameter,
namely “balanced_class”, which allows for addressing class
imbalance during model training. Additionally, other meth-
ods such as the synthetic minority oversampling technique
(SMOTE) (Chawla et al., 2002) can also be implemented
in the data preprocessing stage to generate synthetic sam-
ples for the minority class, further mitigating the class im-
balance problem. (4) Regarding the performance evaluations
for different models and/or ensembles, several statistical met-
rics, namely the Kling–Gupta efficiency (KGE) (Gupta et al.,
2009; Kling et al., 2012), the coefficient of determination
(R2), and the root-mean-square error (RMSE), were utilized.

3 Illustrative examples

Two real-world examples are presented in this section to test
the viability of using AutoML-Ens for tackling geoscientific
model ensemble problems.

3.1 Mapping global soil water retention parameters

3.1.1 Related work and data acquisition

Accurate mapping of soil water retention characteristics is
essential to quantify mass-energy exchanges between the ter-
restrial surface and the atmosphere but is challenged by lim-
ited measurements across the globe (Dai et al., 2019b). Em-
pirical models (i.e., PTF) often use available soil attributes.
(e.g., soil texture; bulk density, BD; and soil organic matter
content, OC), have been developed to estimate soil hydraulic
properties, e.g., hydraulic conductivity and water retention
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parameters (Van Looy et al., 2017). However, despite various
advancements, the reliability of PTFs for global estimates
is generally uncertain, given their nonlinearities and hetero-
geneities (Jena et al., 2021). Thus, the assembly of multi-
ple PTFs has been highly recommended to develop global
datasets on soil hydraulic properties (Dai et al., 2019a).
For instance, using a well-established global database (i.e.,
NCSS database), Zhang et al. (2020) proposed an ensemble
of up to 13 PTFs that allows estimates of soil water reten-
tion parameters with global coverage. However, the perfor-
mance of these existing generic ensembles could be further
improved, as those studies assigned fixed weights to candi-
date PTFs regardless of regional soil conditions.

Following Zhang et al. (2020), we further tested the use of
AutoML-Ens to map global soil water retention parameters.
The locations of soil samples in the NCSS database cover
mainly the CONUS with some data from other regions of the
world (Fig. 2a), with their density distribution plotted in the
USDA soil textural triangle (Fig. 2b). After data quality con-
trols (e.g., removing some extreme soil samples with a mois-
ture content greater than 0.6) as done by Zhang et al. (2018),
49 855 soil samples and a total of 118 599 water retention
records were used with moisture content measured at matric
potentials of−0.06,−0.1,−0.33,−1,−2, or−15 bar. Since
Zhang et al. (2020) have provided a comprehensive summary
of the selected PTFs (listed in Table S1), we focus mainly
on comparing the estimates from AutoML-Ens with those
from individual PTFs and their three baseline ensembles (i.e.,
MEAN, BMA, and HME) in this work. For the predictors of
AutoML-Ens, it is noted that we do not group these PTFs ac-
cording to their predictor variable requirements as in Zhang
et al. (2020) but use all potential predictors (i.e., volumetric
fractions [%] of sand, silt, and clay, BD [g cm−3], OC [%],
and matric potential [bar]). Additionally, the least absolute
error between the predicted and observed moisture content
was selected to label the optimal PTF for each sample in the
workflow. Consequently, this leads to an enclosed AutoML-
assisted workflow that enables the assignment of dynamic
weights for each PTF under various environmental condi-
tions for the final ensemble estimation. Specifically, our goal
was to achieve the following two objectives in this example:
(1) to demonstrate the predictive capacity of AutoML-Ens,
especially its unique scheme of assigning dynamic weights
to candidate members, and (2) to produce a set of improved
global maps of key parameters of soil water retention char-
acteristics (i.e., field capacity and wilting points) for global
applications.

3.1.2 Necessity of assigning dynamic weights in
ensembles

Figure 3 shows how R2 and RMSE of the soil water content
from the 13 PTFs and their ensembles (i.e., MEAN, BMA,
HME, and AutoML-Ens) vary across the datasets (training,
testing, or overall data) and wide environmental gradients.

Note that AutoML-Ens here was defined as the leader-one
ranking among all the 32 ML models involved in the Au-
toML workflow, which was selected to be the stacked en-
semble based on all models derived from the H2O-AutoML
platform. Results demonstrate that each PTF has distinct
strengths and weaknesses in modeling underneath the data,
such as the PTF with relatively better performance or the
worse one, i.e., Wösten PTF (Wösten et al., 1999) and Carsel
& Parrish PTF (Carsel and Parrish, 1988), respectively, for
both the training and testing data. Further inspection indi-
cated that the four ensembles achieved improved predictive
capabilities than any single PTF used in the analyzes, where
BMA and HME yielded better performances than MEAN.
Meanwhile, AutoML-Ens was superior on the overall data
with the largest positive R2 difference value of 0.075 (im-
proved by 9 % from 0.797 to 0.872) and the lowest negative
RMSE difference value of−0.012 m3 m−3 (reduced by 22 %
from 0.055 to 0.043 m3 m−3) compared to the MEAN en-
semble (considered the benchmark). We further explored the
variations in the R2 and RMSE values of the overall 17 mod-
els under different environmental conditions (that is, differ-
ent classes of USDA soil texture, matric potential, BD, and
OC, as shown in Fig. 3c–j, respectively). Figure S1 presents
a detailed prediction comparison of 13 individual PTFs and 6
individual ML algorithms along the environmental gradients.
The general conclusions remain the same, indicating that dif-
ferent PTFs and their ensembles present various abilities, as
expected in terms of the changing environmental gradients.
More precisely, both the predictive capacities of individual
PTFs and their ensembles appear to have a high sensitivity
to the selected predictors. For instance, the performance of
these predictions improves with increasing BD and OC val-
ues. It also suggests that those environmental factors with
significant influences on model performance should not be
ignored when developing models and simulating or predict-
ing variables.

In addition, ensemble PTFs are more practical due to their
higher reliability and error compensation among ensemble
members. For instance, BMA weights each PTF according to
its posterior model probability and offers a fixed weight for
each PTF, potentially reducing the uncertainties in individual
models. However, the fixed weight assigned by these conven-
tional ensembles (MEAN, BMA, and HME; see Supplement
Sect. S1) may not fully leverage the strengths of a PTF since
it is based on the assumption that the performance of a PTF
is constant under all environmental conditions. The fact is
that multiple soil factors nonlinearly regulate the processes
in soil water retention and further result in various perfor-
mances of individual PTFs. On the contrary, the results show
clear advantages of AutoML-Ens over these conventional en-
sembles on different datasets (both the training data and the
testing data) and across various environmental constraints
than other ensembles and individual PTFs, highlighting its
relatively better suitability for assembling multiple PTFs for
estimating soil water retention parameters.
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Figure 2. (a) Locations of selected soil samples from the National Cooperative Soil Survey Characterization (NCSS) covering the conter-
minous United States (87.7 % of the data) and other regions of the globe (12.3 % of the data) and their density distribution plotted in (b)
the US Department of Agriculture soil textural triangle (USDA). (c) Locations of 47 eddy covariance flux sites that cover croplands from
AmeriFlux, AsiaFlux, FLUXNET, and the European Flux Database Cluster and (d) their mean annual temperature (MAT, ◦C) and mean
annual precipitation (MAP, mm) distributions.

Furthermore, a set of global soil water retention parame-
ters (with a resolution of 10 km) was produced at different
soil depths (that is, 0–5, 5–15, 15–30, 30–60, 60–100, and
100–200 cm) using the SoilGrids soil composition database
(Hengl et al., 2014, 2017) as input for the newly proposed
AutoML-Ens. Meanwhile, the ensemble estimates based on
HME were also generated for comparison (partly shown in
Fig. 4). Here we chose two key variables, i.e., moisture con-
tent at −0.33 and −15 bar, which are commonly used to in-
dicate field capacity and permanent wilting point (Jury and
Horton, 2004), respectively, for comparison. It can be seen
in Fig. 4 that despite the considerable discrepancies in the
values identified in northern high-latitude regions (>50◦ N),
there was a similar spatial pattern between the ensemble es-
timations of HME and AutoML-Ens in most parts of the
globe. Although both approaches were developed on the ba-
sis of the same independently measured water retention data,
the ensemble schemes for optimized estimations are differ-
ent. A major difference is that HME was developed for the
entire dataset, although a bootstrap resampling process was
adopted in optimization, in which a set of fixed weights was
assigned to each PTF in all soil conditions, so that the opti-
mized results depended highly on the measurements. How-
ever, AutoML-Ens depicts soil conditions (predictors) as a
continuum, with the aim of finding the optimal PTF un-
der certain environmental conditions by assigning dynamic
weights for the candidate PTFs. In other words, AutoML-

Ens has learned the optimal adaptation between the predic-
tors (environmental constraints) and the predictions (PTFs),
which allows for stronger extrapolation and increased gener-
alization for approaching other issues or regions. Thus, due
to the limited distribution of NCSS soil samples in northern
high-latitude regions, a significant difference in the estima-
tions from the two ensemble methods with different general-
ization abilities can be expected.

Another form of evidence on the necessity of enabling
dynamic weights for an ensemble is provided in Fig. 5a,
which directly reflects the varying weights assigned for each
PTF based on the overall data samples. As can be seen, the
weights of each PTF fluctuated dramatically with the range
from approximately 0 to 1. In addition, Fig. 5b and c illus-
trate global maps of PTF with the largest weight derived from
AutoML-Ens among the 13 selected PTFs at a matric poten-
tial of −0.33 and −15 bar, respectively. For different soil re-
tention parameters (e.g., water content at different matric po-
tentials), even at the same spatial location, their PTFs with
the largest weight are significantly different. These again
suggested that no PTF had been found to be consistently bet-
ter than the other under different environmental conditions.
Therefore, if fixed weights are used in assembling these mul-
tiple PTFs for different parameters estimation, e.g., as the
HME approach does, it will inevitably lead to the failure
to use the advantages of different PTFs fully. However, this
evaluation has some limitations because the same database
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Figure 3. Difference in performance metrics (R2 (a) and RMSE (b)) between MEAN and all 17 models, including individual PTFs and
model ensembles (in bold font) for training and testing data. A positive R2 or negative RMSE difference means that the model yields a larger
R2 or smaller RMSE, indicating the better performance of the model than MEAN (considered the benchmark). R2 (c, e, g, i) and RMSE (d,
f, h, j) when the moisture content estimates of different ensemble approaches were compared with observations (including all training and
testing data) under various environmental conditions (six variables, among which the content of sand, silt, and clay was expressed together in
terms of USDA soil texture classes) that were represented by predictors for AutoML-Ens. The gray band denotes the uncertainties calculated
as the mean± standard deviation of the R2 (or RMSE) values of the 13 selected PTFs.

(i.e., the NCSS database) was utilized to compile HME and
AutoML-Ens, indicating that the two methods were not in-
dependently validated. Other evaluations and applications,
for example, as input parameters to drive regional and global
LSMs, need to be further conducted to indicate which prod-
uct is more accurate and reliable. Furthermore, it should be
noted that regional- to global-scale soil parameters with a
higher spatial resolution of 90 m to 1 km can also be gen-
erated through the workflow based on various data sources
(e.g., recently released national gridded soil property maps
of China; Liu et al., 2021) in addition to the SoilGrids. We
expect that the AutoML-Ens-derived soil parameter datasets
can be helpful for a variety of purposes, such as improving
the performances of Earth system models.

In general, how to fully use the strength of individual mod-
els under certain environmental conditions is vital for mak-
ing better ensemble estimates. This example emphasizes the
necessity of assigning optimal dynamic weights in ensemble

approaches, which also demonstrates the great potential of
AutoML-Ens to map global soil water retention-like param-
eters in geosciences. More specifically, for example, some
observations may have already been used in calibrating the
physics-based models with varying degrees, resulting in di-
verse performances of these models under certain environ-
mental conditions. While the final goal of the numerous en-
semble approaches is the same, that is, to obtain the final
improved estimations, they are different in ensemble strate-
gies. It can be expected that when a physics-based model has
involved more observations (i.e., more approximate to ob-
servations), the model’s weight in an ensemble is relatively
large. This is especially true for conventional ensemble meth-
ods that provide fixed weights for candidate models under
all conditions. However, with a varying-weight strategy un-
der certain conditions, the advanced AutoML-Ens would not
worship the model that integrates more observations nor ex-
clude the one that may perform well under certain condi-
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Figure 4. Global maps (with 10 km resolution) of moisture content (0–5 cm depth) with a matric potential of −0.33 bar (a, c, e) and −15 bar
(b, d, f) delivered based on the soil composition database of SoilGrids. The first-row panels show the differences in moisture content
between the prediction of AutoML-Ens and HME. The second- and third-row panels are ensemble predictions from AutoML-Ens and HME,
respectively.

tions but does not have observation constraints. Hence, the
AutoML-Ens’ generalization ability is worth emphasizing.

3.1.3 Does the classification accuracy matter?

Moreover, it is worth noting that the essence of AutoML-Ens
is a kind of AutoML-assisted classifier, which also gener-
ates classification accuracy. However, improving this accu-
racy is not the overarching objective of AutoML-Ens. Poor
accuracy may result from the uneven distribution of avail-
able data samples, their low representative ability, and inter-
model similarities and dependencies (Holtanová et al., 2019).
The similarities within a multi-model ensemble in particular
may result from using the same set of data samples, sharing
certain components, or being based on the same hypothesis.
This makes it difficult to justify the independence assumption

between ensemble members, further leading to poor classifi-
cation. Regarding the similarities between these 13 PTFs, it
should be noted that not all PTFs were developed using in-
dependent calibration datasets, and the development legacy
is not always evident. For example, data used to establish
the Rawls & Brakensiek (Rawls and Brakensiek, 1985) PTF
was used by Carsel & Parrish and partially for the Rosetta3
(Zhang and Schaap, 2017) PTFs. The Vereecken (Vereecken
et al., 1989) data was used for the Weynants (Weynants et
al., 2009) PTF and also included in the database used to de-
velop Rosetta3 PTFs. Moreover, various ways exist by which
PTFs can be grouped or distinguished, such as the predictor
variable requirements (e.g., requiring the variable BD and/or
OC or not) and techniques utilized (e.g., lookup table, regres-
sion, and neural networks) (Zhang et al., 2020). Furthermore,
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Figure 5. Varying weights assigned for each PTF under the overall data samples (a). Global maps (at 10 km resolution) of PTF with the
largest weight among the 13 selected PTFs at a matric potential of −0.33 bar (b) and −15 bar (c) delivered based on the soil composition
database of SoilGrids through AutoML-Ens.

taking the derived soil water content at −0.33 bar (0–5 cm
depth) as an example, the largest weights (Fig. 6a) and the
difference between the largest and the second-largest weights
(Fig. 6b) for specific PTFs are relatively small in most re-
gions of the world. The largest weight values below 0.3 and
the weight difference below 0.1 accounted for approximately
71.0 % and 56.6 % of the total global land area, respectively.
The direct cause of this result is the similarities between these
PTFs mentioned above. However, regardless of how the se-
lected classifier performs, the sum of the varying weights
(i.e., derived probabilities) is equal to 1 under all specified
conditions. For instance, if taking the mean per class er-
ror, which indicates misclassification of the data across the
classes, as an indicator, it ranges from 77 % to 90 % for the 32
trained classifiers in this example. More precisely, it does not
perform very well, even for the leader model in the AutoML-
Ens workflow, but has been proven to be a promising en-
semble relative to others. Therefore, efforts could be made
to reduce the similarities within candidate models to obtain
a higher classification accuracy. Moreover, once a good clas-
sification accuracy is obtained among the training and test-
ing datasets, the linkage between the predictors and the label
in the workflow will be more clearly determined, which can
help implement and/or modify these candidate models ap-
propriately.

3.2 Improving remotely sensed cropland ET estimates

3.2.1 Related work and data acquisition

Accurate delineation of spatiotemporal variations in land ET
is essential to appraise many geoscience issues, such as the
ecosystem responses to global environmental changes, but
often challenging because of its highly dynamic and non-
linear response in nature (Fisher et al., 2017; Pascolini-
Campbell et al., 2021; Wang and Dickinson, 2012). Given
that recent studies have shown that a multimodel ensem-
ble can outperform individual ET models (e.g., Bai et al.,
2021), the objective of this example was to improve crop-
land ET estimates globally by using the AutoML-Ens frame-
work. Following Bai et al. (2021), observations from 47 crop-
land eddy covariance flux sites (listed in Table S4) covering
various environmental gradients and three continents were
used (see Fig. 2c–d). Estimates from six physical ET models
based on remote sensing, namely PT-JPL, PT-DTsR, SEBS,
STIC, RS-WBPM, and EVI-PM, were adopted as candidate
predictions. An overview of these six ET models is pre-
sented in Table S5. A total of 11 variables (i.e., the predic-
tors of AutoML-Ens) jointly constraining ET based on dif-
ferent biophysical principles were considered, including sev-
eral widely used meteorological and remote sensing factors:
daily precipitation rate (mm d−1), air temperature (◦C), net
radiation (W m−2), vapor pressure deficit (hPa), wind speed
(m s−1), normalized vegetation index (NDVI), enhanced veg-
etation index (EVI), soil adjusted vegetation index (SAVI),
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Figure 6. Global maps (at 10 km resolution) of the largest weight (a) and the top two weight difference values for specific PTF (b) at a matric
potential of −0.33 bar (0–5 cm depth) delivered based on the soil composition database of SoilGrids through AutoML-Ens.

land surface temperature during the day (daytime land sur-
face temperature (LST), K), diurnal range of LST (◦C), and
water stress factor (0–1) from the RS-WBPM model (Bai
et al., 2018) representing meteorological drought. After data
checking and filtering, a total of 83 621 records were used for
ensembles and evaluations. Moreover, the lowest absolute er-
rors between the daily scale latent heat flux (LE) observations
and the corresponding estimates from individual ET models
were used to label the optimal physically based ET prediction
in the AutoML-Ens workflow.

3.2.2 Advantage of an AutoML-based workflow

Similar to the previous example results, AutoML-Ens per-
formed much better than conventional approaches (i.e.,
MEAN, BMA) for assembling multiple physically based ET
models, as it yielded larger R2 and smaller RMSE (Fig. 7a–
b). Taking the MEAN ensemble as the benchmark, AutoML-
Ens was superior on the overall data with the largest posi-
tive R2 difference value of 0.15 (improved by 21.4 % from
0.70 to 0.85) and the lowest negative RMSE difference
value of −7.98 W m−2 (reduced by 32.8 % from 24.36 to
16.38 W m−2). These results again suggested the importance
of assigning varying weights for an ensemble because the six
physically driven ET models exhibited much more complex
capabilities (taking KGE as the criterion) under different en-
vironmental gradients (see Fig. 7c–m). However, some re-
peated evaluation results to demonstrate AutoML-Ens were
omitted here. Instead, another point worth noting in this ex-
ample was why the ML-based ensembles (i.e., MLP and
AutoML-Ens) using almost identical datasets and procedures
presented considerable differences in terms of accuracies. As
introduced by Bai et al. (2021), four different ML classi-
fiers, namely k-nearest neighbors (KNN), MLP, random for-
est (RF), and support vector machine (SVM), were utilized to
assemble ET models. These classifiers have different mech-
anisms and various schemes, thus resulting in different effi-
ciencies among each other. On the one hand, it indicated that
if other advanced ML algorithms were adopted as classifiers,

MLP might not be further recognized as the best. However,
on the other hand, it is too challenging to manually select the
best ML classifier, which needs the assistance of AutoML in
complex pipelines. Moreover, the ranking of 32 models in-
volved in the AutoML-Ens workflow with regard to the mean
per class error and the corresponding performance metrics of
their ensemble predictions are presented in Table 1. As can
be seen, the best model in terms of lowest classification error
was selected to be the stacked ensemble based on all mod-
els, followed by the stacked ensemble based on the best of
family, XRT, DRF, GBM, XGBoost, and DNN, as well as
their variants with different hyperparameters. However, the
ranking of performance metrics for the final ensemble pre-
dictions differs from the classification accuracy of individual
classifiers. While the top classifier, Stacked_Ensemble_All_
Models, demonstrates high predictive performance, the XG-
Boost_grid_1_model_8 classifier achieves the best ensem-
ble prediction, with an R2 value of 0.87 and an RMSE of
15.03 W m−2. This result further confirms the primary objec-
tive of AutoML-Ens, which is not solely focused on achiev-
ing optimal classification results but rather on finding the op-
timal utilization and combination of ML algorithms to obtain
better predictive performance. Consequently, this example
demonstrated and emphasized another unique feature of the
proposed AutoML-Ens framework, that is, taking full advan-
tage of the AutoML-assisted workflow. As such, AutoML-
Ens, which better incorporates the capacities of diverse bio-
physical mechanisms and environmental variables, has the
potential to improve the estimations of global cropland ET.

3.2.3 Perspective on combining ML and physical
modeling

Furthermore, since ML regression algorithms have been
widely applied in various geoscience domains and H2O-
AutoML provides P-AutoML-Ens mentioned above based
on a stacking process for assembling these algorithms, it
is interesting to address the following two questions. (1)
How does the predictive capability of AutoML-Ens compare
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Figure 7. Difference in performance metrics (R2 (a) and RMSE (b)) between MEAN and all 10 models, including six physically based
ET models and four ensembles (in bold font) for training and testing data. A positive R2 or negative RMSE difference means that the
model yields a larger R2 or smaller RMSE, indicating the better performance of the model than MEAN (considered the benchmark). KGE
(c–m) when ET estimates from the 10 models were compared against observations (including all training and testing data) under various
environmental conditions (11 variables) that were represented by predictors for AutoML-Ens.

with those of P-AutoML-Ens? (2) What causes the differ-
ences between the performance exhibited by AutoML-Ens
and P-AutoML-Ens? To this end, we additionally built two
P-AutoML-Ens workflows, taking either the observed daily
scale LE or Rn−H −G directly as labels for predicting ET
as regression tasks (i.e., P-AutoML-Ens_LE and P-AutoML-
Ens_Rn_H_G). Note that Rn denotes net radiation; H and
G represent sensible heat flux and ground heat flux, respec-
tively; and in terms of theory, “LE = Rn−H −G”. How-
ever, due to the widely acknowledged energy balance closure
problem, LE is not equal but highly relevant to Rn−H −G

for most flux observations, with an R2 (RMSE) value of
0.76 (26.5 W m−2) obtained in this study. The environmen-
tal conditions (i.e., predictors) for the two workflows were
the same as those for AutoML-Ens. The comparison re-
sults are presented in Fig. 8. As shown in the left part of

Fig. 8a–b, ET estimates from any of the conventional ensem-
ble methods (i.e., MEAN and BMA), the ML classifier-based
ensembles with dynamic weights (i.e., MLP and AutoML-
Ens), or P-AutoML-Ens_LE presented better performance
metrics than any single physically based ET model com-
pared against LE observations. However, it is worth not-
ing that the performance measures of different ET models
and ensemble approaches may vary depending on the fo-
cused regions, ecosystem types, temporal scale of validation,
testing strategies, and so on. Moreover, P-AutoML-Ens_LE
performed better than AutoML-Ens with slightly larger R2

and smaller RMSE, indicating that the simple regression-
based P-AutoML-Ens could replace AutoML-Ens with com-
plex physics constraints. However, this was proven to be
an illusion when we further inspected the predictive capa-
bilities of these two types of ensemble approaches. It was
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Table 1. Ranking of the 32 models involved in the AutoML-Ens workflow with respect to the mean per class error and their corresponding
performance metrics (R2 and RMSE) of their ensemble predictions.

Rank Model∗ Mean per class error R2 RMSE (W m−2)

1 Stacked_Ensemble_All_Models 0.5890107 0.8502772 16.37276
2 Stacked_Ensemble_Best_Of_Family 0.5901575 0.8433838 16.74402
3 XRT_1 0.5990940 0.8238412 17.80632
4 DRF_1 0.6000693 0.8254552 17.72398
5 GBM_grid_1_model_1 0.6152126 0.8594122 15.88430
6 GBM_4 0.6156997 0.8050057 18.74331
7 XGBoost_grid_1_model_4 0.6175429 0.7896317 19.48109
8 XGBoost_grid_1_model_7 0.6182065 0.7919117 19.37204
9 GBM_5 0.6196878 0.7930434 19.32466
10 XGBoost_grid_1_model_9 0.6214154 0.7940143 19.26547
11 XGBoost_grid_1_model_8 0.6220251 0.8742440 15.02540
12 XGBoost_grid_1_model_1 0.6235140 0.7981535 19.07374
13 XGBoost_grid_1_model_3 0.6243140 0.7928134 19.33150
14 GBM_3 0.6248937 0.7836964 19.76815
15 XGBoost_grid_1_model_5 0.6252402 0.8135903 18.31214
16 XGBoost_grid_1_model_6 0.6272789 0.7797398 19.94857
17 GBM_grid_1_model_5 0.6288796 0.7789381 20.00014
18 XGBoost_2 0.6301792 0.8286823 17.52763
19 XGBoost_1 0.6313061 0.7974012 19.11246
20 GBM _2 0.6322671 0.7731042 20.27247
21 GBM_grid_1_model_3 0.6356704 0.7716974 20.34037
22 GBM_1 0.6371586 0.7708355 20.38789
23 XGBoost_grid_1_model_2 0.6444023 0.7593128 20.89775
24 GBM_grid_1_model_4 0.6470411 0.7791697 20.04830
25 XGBoost_3 0.6479244 0.7657713 20.60219
26 GBM_grid_1_model_2 0.6526127 0.8525492 16.26434
27 DeepLearning_grid_1_model_2 0.6851248 0.7089920 23.09232
28 DeepLearning_grid_1_model_1 0.6976690 0.7178891 22.38846
29 DeepLearning _1 0.7208075 0.7084561 23.11835
30 DeepLearning_grid_3_model_1 0.7247005 0.6777100 24.45820
31 DeepLearning_grid_2_model_1 0.7263856 0.7061923 23.29444
32 GLM_1 0.7417848 0.7102180 23.17610

∗ The same ML model with different number signs indicates their variants with different hyperparameters.

found that AutoML-Ens showed comparable performances
when validated with either the observed LE or Rn-H-G se-
ries; that is, it conserved the energy balance or followed
physical constraints. In contrast, significant discrepancies in
performance metrics existed between the two P-AutoML-
Ens workflows, even when the estimations from P-AutoML-
Ens_Rn_H_G were compared with the observed Rn-H-G se-
ries. This suggested that an internal deficiency existed in
these P-AutoML-Ens; that is, they cannot precisely conserve
the energy budget, limiting their extrapolation and out-of-
sample generalization capacities (also discussed in Zhao et
al., 2019). Therefore, comparisons of AutoML-Ens with P-
AutoML-Ens should not be limited to a performance per-
spective, leading to false conclusions. Here, we prefer to em-
phasize the potential of the AutoML-Ens framework, since it
not only provides an effective alternative for solving various
geoscientific model ensemble problems but is well controlled

by fundamental physics in geosciences. Overall, it is worth
adding here as recent studies suggested (e.g., Jia et al., 2021;
Karpatne et al., 2017; Reichstein et al., 2019) that physically
based models and ML models will not be mutually incom-
patible. Instead, combining ML and physical modeling might
yield a more promising but equally demanding solution.

4 Conclusions

The past few decades have witnessed unprecedented im-
provements in geoscientific modeling solutions, from statis-
tical and box models to Earth system models. However, ex-
isting models frequently utilize a few environmental factors
to constrain physical processes that cannot capture fully their
nonlinear nature, which changes greatly across spatiotempo-
ral domains. This is particularly true in regions with dynamic
changes under the joint impact of climate change and hu-
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Figure 8. Performance metrics (R2 (a) and RMSE (b)) when ET estimates from a total of 12 models, including six individual physically
based ET models and their four ensembles (i.e., MEAN, BMA, MLP, and AutoML) and two pure AutoML-based ensembles taking either the
observed daily scale LE or Rn−H −G as labels (i.e., P-AutoML-Ens_LE or P-AutoML-Ens_Rn_H_G) in regression tasks, were compared
against observations (LE (a) and Rn−H −G (b)) of the training and testing data.

man activity. In this study, we introduced an AutoML-Ens
framework to address this issue, which could help to max-
imize the strengths of individual models and the ability of
the unique environmental variables utilized in these models
to better characterize processes. The findings lead to the fol-
lowing conclusions.

1. The two illustrative applications of AutoML-Ens com-
prehensively demonstrated its better potential to im-
prove estimations. Compared to conventional ensem-
ble approaches, AutoML-Ens produced a larger R2 and
KGE and smaller RMSE, for example, in estimating soil
water retention parameters and cropland ET.

2. Assigning dynamic weights to each candidate member
under wide environmental conditions is essential for
a better ensemble than the conventional ensemble ap-
proaches (e.g., MEAN and BMA), which usually pro-
vide fixed weights according to several statistical crite-
ria. Specially, we proposed a novel and general strat-
egy, i.e., mapping between ML classifier-derived prob-
abilities and dynamic weights, in the framework. While
other approaches, e.g., the known kriging methods, can
also provide such probabilities, and they can be re-
garded as possible extensions of the framework.

3. Similarities within a multi-model ensemble are respon-
sible for poor ML classification accuracy. Efforts could
be devoted to reducing these similarities to obtain a
higher classification accuracy. A good classification
also indicates a more evident linkage between the pre-
dictors and the label in AutoML-Ens, which can, in
turn, help improve these ensemble members accord-
ingly. However, this is another critical issue that needs

further exploration and is not the overarching objective
of AutoML-Ens.

4. Although the assignment of dynamic weights could help
improve the ensembles, they are primarily based on the
efficiency of ML classifiers, which require substantial
human interventions for, e.g., hyperparameter tuning, if
done manually. Thus, taking full advantage of AutoML-
assisted workflow, also one of the distinctive features of
AutoML-Ens, provides a good example to guide future
research in the area.

5. Pure AutoML-based (or data-driven) ensembles may
appear largely inconsistent with known physics (e.g.,
conservation of energy or mass), leading to an illusion
of superiority in model performance. Specifically, we
call for the combination of data-driven approaches with
physics constraints when resolving various geoscientific
model ensemble issues.

Code and data availability. Processed data and source code
have been made available at https://doi.org/10.6084/m9.figshare.
21547134.v3 (Chen, 2022). Global maps (with 10 km resolution)
of field capacity and permanent wilting point at different soil
depths (i.e., 0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm)
derived from the hierarchical multimodel ensemble (HME) and
the proposed AutoML-Ens can be downloaded online (from
https://doi.org/10.6084/m9.figshare.17098487.v1, Chen, 2021).

Supplement. The supplement related to this article is available on-
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