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Abstract. Potential evapotranspiration (PET) represents the
evaporative demand in the atmosphere for the removal of wa-
ter from the land and is an essential variable for understand-
ing and modelling land–atmosphere interactions. Weather
generators are often used to generate stochastic rainfall time
series; however, no such model exists for the generation of a
stochastically plausible PET time series. Here we develop a
stochastic PET generator, stoPET, by leveraging a recently
published global dataset of hourly PET at 0.1◦ resolution
(hPET). stoPET is designed to simulate realistic time se-
ries of PET that capture the diurnal and seasonal variability
in hPET and to support the simulation of various scenarios
of climate change. The parsimonious model is based on a
sine function fitted to the monthly average diurnal cycle of
hPET, producing parameters that are then used to generate
any number of synthetic series of randomised hourly PET
for a specific climate scenario at any point of the global land
surface between 55◦ N and 55◦ S. In addition to supporting
a stochastic analysis of historical PET, stoPET also incorpo-
rates three methods to account for potential future changes
in atmospheric evaporative demand to rising global temper-
ature. These include (1) a user-defined percentage increase
in annual PET, (2) a step change in PET based on a unit in-
crease in temperature, and (3) the extrapolation of the his-
torical trend in hPET into the future. We evaluated stoPET
at a regional scale and at 12 locations spanning arid and

humid climatic regions around the globe. stoPET generates
PET distributions that are statistically similar to hPET and an
independent PET dataset from CRU, thereby capturing their
diurnal/seasonal dynamics, indicating that stoPET produces
physically plausible diurnal and seasonal PET variability. We
provide examples of how stoPET can generate large ensem-
bles of PET for future climate scenario analysis in sectors
like agriculture and water resources with minimal computa-
tional demand.

1 Introduction

Potential evapotranspiration (PET) is the representation
of the atmospheric demand for evaporation from a well-
watered, vegetated land surface (Allen et al., 1998). It is
paramount for determining the water balance within hydro-
logical models and is routinely used in water management
for agriculture to determine crop water demand and irriga-
tion scheduling. PET is also a crucial input in climate change
impact studies which, for example, aim to provide actionable
information on water scarcity (Raziei and Pereira, 2013; Liu
et al., 2019; Tasumi, 2019; Zhou et al., 2020; Quichimbo et
al., 2021). However, the estimation of PET is limited by the
availability and quality of meteorological data at the spatial
and temporal resolution appropriate to the purpose of a given
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study and by uncertainty in future climate. Differences be-
tween PET calculation methods influence the output of hy-
drological models, so the ability to simulate multiple reali-
sations of PET under different scenarios of climate change
via a single estimation method is vital to quantify uncertain-
ties in the water balance due to changes in the evaporative
demand from the atmosphere (Valipour, 2017; Dallaire et al.,
2021). In studies that compare different methods of PET es-
timation (Tukimat et al., 2012; Li et al., 2016; Valipour et al.,
2017), the Penman–Monteith (PM) equation is used as a ref-
erence against which other methods are compared. Though
the PM equation is the most common and accepted method
of choice for PET estimation, it is highly data intensive, re-
quiring many input variables (Allen et al., 1998; Grismer et
al., 2002; Mohawesh, 2011; Ravazzaniv et al., 2012; Lee
and Cho, 2012; Tukimat et al., 2012). This limits its utility
and relevance, particularly for the many data-sparse regions
across the globe (Yadeta et al., 2020). The lack of adequate
local meteorological data necessitates reliance on empirical
methods of PET estimation, which require intensive calibra-
tion (Kingston et al., 2009), and can in turn limit the accuracy
of resulting PET products.

While some global climate models do not include PET ex-
plicitly (e.g. COSMO-CLM; Will et al., 2017), most global
climate models (e.g. ERA5-Land) do provide some of the
outputs of climatic variables used to estimate PET. However,
they do not directly output PET itself, which would support
more detailed, impact-based modelling of climate change.
Climate models focus on predicting the effects of green-
house gas emissions on global water and energy transfer, and
thus they output climate variables (e.g. temperature, radia-
tion, surface pressure, wind speed, and rainfall). Without ex-
plicit data on PET, high computational resources are required
to estimate the PET for large areas from climate model out-
put variables, and the spatial and temporal scales of these
outputs are typically too coarse for detailed impact analyses.
These scaling considerations may make climate model out-
put unsuitable for computing PET. This is especially true for
an application to certain water balance applications in which
diurnal changes in PET are important for a specific location
or for which there are large spatial differences in PET. Down-
scaling techniques are commonly used to generate the param-
eters needed to estimate PET from global climate models by
the PM method (or other methods) at the appropriate reso-
lution, but this increases the computational resource require-
ment (Tukimat et al., 2012) and adds additional uncertainty
to PET calculations.

Another challenge for PET estimation is how to charac-
terise the evaporative demand under climate change scenar-
ios, which is an important need for assessing possible future
climate change impacts (Xu et al., 2014). Temperature is one
of the major climate variables influencing PET (Allen et al.,
1998). Therefore, with increasing temperature under climate
change for most of the globe, there is a need to simulate his-
torical and future PET in a consistent and spatially explicit

way. Simulating changes in evaporative demand associated
with changes in temperature would be particularly useful for
assessing the potential impacts of meeting/not meeting the
1.5 ◦C target of the Paris Agreement (Kriegler et al., 2018)
or for addressing any future global temperature target. Ad-
ditionally, it would be powerful to be able to simulate step
changes and trends in PET according to user-defined specifi-
cations, giving the user a flexible tool for generating a range
of PET time series for various applications.

Given the inherent uncertainty in climatic drivers on the
terrestrial water balance and the need to incorporate cur-
rent and future PET trends in hydrological and other climate
change impact models, stochastic PET simulation provides a
flexible and useful tool to fill this research gap. While sev-
eral stochastic weather generators exist and are used to gen-
erate physically consistent time series of rainfall (Fatichi et
al., 2011; Peleg et al., 2017; Singer et al., 2018; De Luca et
al., 2020), no similar model exists for generating stochastic
PET time series. Although PET calculations are sometimes
included within hydrological models, these require user spec-
ification of the input climate variables used in the calculation
and a specification of the calculation method. In these cases,
PET is internally calculated to close the water balance, but
it is not typically provided as an output variable. Ultimately,
there is no existing method for obtaining internally consistent
simulations of PET at high spatial and temporal resolution
for the entire global land surface. This paper addresses this
gap and introduces a new stochastic PET generator, stoPET,
for simulating hourly time series of PET at 0.1◦ spatial res-
olution for the global land surface. stoPET enables the user
to characterise the uncertainty in PET for historical and fu-
ture climate scenarios. It supports the generation of unlim-
ited unique realisations of PET in a computationally efficient
way. To support analyses of climate change, stoPET incor-
porates different methods to account for potential changes in
atmospheric evaporative demand in response to rising global
temperature, supporting flexibility in simulating various cli-
mate scenarios. The importance of including options to sim-
ulate multiple future PET time series emanates from the un-
predictability of future climate and the need to assess the im-
pacts of climatic changes on the water balance.

Below we provide a comprehensive description of the
stoPET model and its potential application for predicting the
evolution of water resources in drylands by either estimating
future crop water demand, assessing flash flood potential, or
providing actionable information on expected climatic im-
pacts on the water balance. Section 2 describes the concept
and design of the model, with a brief note about its imple-
mentation. Section 3 describes the model verification at re-
gional and point scale. Section 4 describes the methods used
to incorporate PET changes due to temperature changes in
the stoPET model. The paper concludes with a discussion of
the potential application of stoPET (Sect. 5). A user manual
for stoPET is included as a Supplement, and all the model
scripts and input parameters are freely available on Figshare
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(https://doi.org/10.6084/m9.figshare.19665531, Asfaw et al.,
2023).

2 Model concept and design

2.1 Concept

The stoPET model generates hourly PET values based on
sine function parameters estimated from hPET (Singer et al.,
2021), an hourly PET dataset that was recently created from
ERA5-Land climatic variables (Muñoz Sabater, 2019) us-
ing the Penman–Monteith (PM) method (Allen et al., 1998).
The resulting PET generated from stoPET retains the diurnal
and seasonal variations in PET contained within the hPET
dataset, but notably, stoPET injects randomness (stochastic-
ity) in the simulated series via a noise factor. In other words,
stoPET does not recreate hPET but rather uses hPET to gen-
erate new randomised sequences of PET based on the diurnal
and seasonal variability in the hPET dataset. The develop-
ment of stoPET begins by using the entire hPET dataset as
an input from which we create a generalised functional form
for diurnal PET and a noise factor to inject stochasticity ac-
cording to the following steps, each of which is outlined in
more detailed in subsequent sections below:

1. Estimate the average diurnal cycle of PET for each
month using a sine function.

2. Fit a skewed normal distribution to the difference be-
tween all hourly values for the diurnal curve and the
average diurnal curve of each month to generate a ran-
domised noise ratio.

3. Generate stochastic PET time series for a particular
month by multiplying that month’s average diurnal cy-
cle with a sequence of draws from the corresponding
skewed normal distribution.

2.2 Model implementation

The overall stochastic PET generation model, stoPET, can be
expressed as follows:

Stochastic PET= (average diurnal cycle of PET using

a sine function× a random noise ratio)
+ user-defined annual PET variability.

Each of the three components is described in detail in the
subsequent sections.

2.2.1 Sine function parameter estimation

The stoPET model is based on fitting a sine function to the
average diurnal cycle calculated from hPET for each month
and for each grid cell. The sine function, defined in Eq. (1),
provides the following four parameters required to represent

the characteristic of hourly PET for each month at each grid
cell:

Y = A sin (B × t + C) +D, (1)

where A represents the diurnal amplitude (mm h−1), B is the
frequency (h−1), C is the phase shift (–), and D is the vertical
shift (mm h−1). t is time (h), and Y is the new PET value
(mm h−1) generated from the sine function.

The monthly sine fit is based on the average of values of
hPET for all diurnal curves for all days of that month over the
period of record (1981–2020 for this application). The sine
fit is only done based on values for daylight hours (sunrise to
sunset), as we assume nighttime PET values are zero. In re-
ality, PET is not always zero at night, but it typically ranges
from small positive to small negative values (representing
condensation) within hPET. For example, nighttime PET is
relatively higher in arid regions (median PET value is be-
tween 0.001 and 0.076 mm h−1) compared to humid regions
(median PET value is between −0.014 and 0.002 mm h−1;
Figs. S1 and S2 in the Supplement). Nevertheless, the im-
pact of nighttime PET in core applications such as crop and
hydrological modelling is expected to be minimal; hence we
set nighttime PET values to zero in stoPET.

An example of the sine function representing hPET
data for a single grid location (Wajir in Kenya; −1.73◦ N,
40.09◦ E) for the month of January is shown in Fig. 1. The
grey shaded area represents the range of the hourly PET ob-
tained from all days of January within the 40-year record of
hPET data, while the black dotted line shows the average of
those hPET values. This average diurnal cycle is used to fit
the sine function (red solid line based on Y in Eq. 1) for each
month of the year. The four parameters from Eq. (1) are es-
timated at each 0.1◦ grid location for each month and then
saved as input for simulating synthetic sequences of PET.
Figure 2 shows, for illustration, the spatial variability in pa-
rameters across the globe for January. For each month of the
year, all four parameters, plus the sunrise and sunset hours
(which are required to identify daytime and nighttime peri-
ods) for any pixel across the global land surface (Fig. 2), are
provided as an input file to be run with the model script.

2.2.2 Random noise estimation

PET shows variability within each month (Fig. 1), which is
represented stochastically in stoPET using a noise ratio pa-
rameter (N ; Eq. 2):

N(h,d,m)=
PET(h,d,m)

PET(h,m)
, (2)

where PET (h,d,m) is the PET for every hour (h) and day
(d) of each month (m), and PET(h,m) is the average PET
of each hour over all days of the month. A skewed normal
distribution is then fitted to noise ratios of each month cal-
culated using Eq. (2). The fitted skewed normal distribution
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Figure 1. An example of a sine function curve fitted over the aver-
age hourly PET values for January at a location in Wajir (Kenya).
The black dotted line is the average from hPET, and the red solid
line represents the fitted sine function. The grey shaded area is the
range across all January days in the 40-year record for hPET. Av-
erage sunrise and sunset times are shown in green vertical dashed
lines.

parameters (skewness, location, and scale), defined at each
grid cell and month, are used as input to stoPET to generate
stochastic variability around the sine function by sampling
from this skewed distribution. Figure 3 shows the values of
the three noise ratio parameters over the entire spatial domain
of stoPET, as estimated for the month of January.

By way of a working example, Fig. 4a shows the monthly
distribution of the noise ratio for a single location in Wajir
(Kenya), while Fig. 4b shows the randomly generated noise
ratio array for January and the parameters representing it.
The steps followed to create these noise ratio values were
as follows:

1. Calculate the average hourly PET for each month from
the 40-year hPET data – this gives a characteristic di-
urnal curve from which we can determine the average
hourly PET value for each month (the black line in
Fig. 1).

2. Divide each hourly PET for every day in each month
(e.g. 1 January) by its average from step 1 – this gives
the noise ratio array (Fig. 4a).

3. Fit a skewed normal distribution to the noise ratio array
based on Eq. (2) for each month and save the parameters
(Fig. 4b).

2.2.3 Generating stochastic hourly PET

stoPET generates simulated stochastic PET values for a par-
ticular month by multiplying the respective sine function

Figure 2. The sine function parameters estimated for January over
the spatial domain of the stoPET model (global land surface lat-
itudes between 55◦ N and 55◦ S). The parameters are described in
Eq. (1), where (a) the amplitude (mm h−1), (b) the frequency (h−1),
(c) the phase shift, (–) and (d) the vertical shift (mm h−1) are shown.

(Fig. 1) by the noise ratio sampled from the corresponding
skewed normal distribution (Fig. 4b). For instance, for a par-
ticular simulation of January PET, stoPET will generate 31
random noise ratios, producing 31 diurnal cycles of PET that
amplify (or dampen) the mean diurnal PET sine wave for the
month. Synthetic PET for any climate scenario can then be
generated for the entire month and for as many years as the
user chooses.

3 Model verification

3.1 Verification of stoPET against hPET dataset

3.1.1 Regional representation

stoPET is set up to generate synthetic plausible hourly PET
time series within any defined spatial area between 55◦ N and
55◦ S. High-latitude areas were not included because some
months do not have clear sunset and sunrise times during
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Figure 3. The parameters representing the noise ratio (a) skewness,
(b) location, and (c) scale for the month of January over the spatial
domain of the stoPET model.

summertime, creating potential errors in the sine function fit-
ting. We have evaluated the stoPET model against hPET (the
only globally available dataset at hourly resolution; Singer
et al., 2021) and against the Climate Research Unit’s (CRU)
daily average PET dataset generated by the PM method at
monthly temporal resolution (presented as a daily average for
the month) over the period 1901–2018 at 0.5◦ grid resolution
(https://crudata.uea.ac.uk/cru/data/hrg/, last access: January
2023; Harris et al., 2020). We carried out these evaluations
for selected humid and arid regions on six continents (North
America, South America, Europe, Africa, Asia, and Aus-
tralia; the Australia subcontinent also includes the Oceania
region). As an illustration of the visual comparison to hPET,
Fig. 5 shows the average annual PET climatology for Africa
over 5 years of simulated PET from stoPET (Fig. 5a), against
5 randomly selected years from the hPET dataset, where we
have also removed the nighttime PET values (Fig. 5b), since
stoPET considers the nighttime PET to be zero. Figure 6
shows a similar comparison for Europe (stoPET, Fig. 6a, and
hPET, Fig. 6b). These comparisons indicate that stoPET es-
timates annually averaged PET values from hPET with only
an average percentage difference of ∼±5 % (see Figs. S3 to
S8 in the Supplement). The results of this comparison, albeit
qualitative, suggest a strong similarity in globally distributed
values between the simulated and historical data in most re-
gions of the world, which supports the use of stoPET for
representing the annual PET over large regions. The figures
for the remaining continents are provided in the Supplement

(Figs. S3 to S8), along with the contrast between stoPET an-
nual PET and the hPET dataset when the nighttime values
are included (Figs. S9 to S14).

3.1.2 Single-point representation

To verify the performance of stoPET more quantitatively, an
analysis was carried out on 12 points across six continents
chosen to be representative of both humid and arid climates
across the global land surface (Fig. 7). A total of 10 en-
sembles, each comprising 20 years of synthetic PET data,
were generated using stoPET and compared against the hPET
dataset over the period 2001–2020, substituting the nighttime
(zero) PET values of stoPET with nighttime values of hPET.
Next, the hourly PET values from stoPET and hPET were ag-
gregated to daily average PET values for each month at the
12 locations for evaluation of stoPET (again, including the
nighttime values) against the CRU PET dataset developed by
the PM method (see above).

We carried out the following three statistical analyses on
the monthly aggregated, daily averaged values of stoPET
compared to hPET and CRU: (a) pBias (Eq. 3), which in-
dicates whether the stochastically generated values overesti-
mate or underestimate the comparable values of hPET and
CRU, (b) the normalised root mean square error (NRMSE;
Eq. 4), a so-called scatter index, which measures the similar-
ity of stoPET compared to hPET and CRU datasets (NRMSE
is normalised by the mean of each dataset), and (c) a two-
sample Kolmogorov–Smirnov test, which compares the full
distributions of two datasets of monthly average PET values
against each other (Helsel et al., 2020). The equations for
pBias and NRMSE are as follows:

pBias=
∑m=n

m=1(Ym− Xm)∑m=n
m=1Xm

× 100% (3)

NRMSE=

√∑m=n
m=1(Ym−Xm)2

n

1
n

∑m=n
m=1Xm

, (4)

where Xm represents the monthly average PET of hPET or
CRU for each month, Ym is the monthly average PET esti-
mated by stoPET, and n is the number of months.

Based on these tests, first we find that PET estimated by
stoPET is statistically comparable to hPET historical data
(Figs. 8 and 9). This result was encouraging, if not un-
expected, since stoPET was designed to create plausible
stochastic realistic simulations of hourly PET using hPET
as a template for diurnal and seasonal variations in PET.
The pBias values between stoPET and hPET range between
0.49 % to 9.68 %, indicating that stoPET is not systemati-
cally overestimating or underestimating PET values relative
to hPET (Table 1). The NRMSE values range from 0.02 to
0.1 for humid and 0.02 to 0.04 for arid sites, and NRMSE val-
ues are small (< 0.1) for all locations, indicating low scatter
between hPET and stoPET. The Kolmogorov–Smirnov test
also shows that stoPET and hPET have statistically similar
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Figure 4. (a) Noise ratio box plot for a single location in Wajir (Kenya). The box plots indicate that the noise ratio is variable over each
month, with the green triangle showing the mean, and the red line in the box plot indicating the median. (b) A histogram for the January
noise ratio is shown in blue shaded bars, with the fitted skewed normal distribution shown as a red solid line. The corresponding distribution
parameters are indicated in the top left of the plot.

Figure 5. Average annual PET for 5 randomly selected years. (a) stoPET. (b) hPET with nighttime PET removed for Africa.

distributions (p values at all locations are greater than the
threshold 0.05; Table 1). Finally, stoPET produces PET val-
ues that are comparable to hPET in terms of capturing the
seasonal cycle and variability (Figs. 8 and 9).

Previously, CRU PET estimates were found to be com-
parable to hPET values (Singer et al., 2021). Here we
directly compare the stochastically generated PET values
from stoPET against estimated independent PET values from
CRU to evaluate whether stoPET captures the seasonality
and mean behaviour within CRU. The comparison between
stoPET and CRU indicates that, except in two humid loca-
tions (H2 and H6), stoPET values are statistically similar to
the independent CRU PET values (Table 1). Even though

the pBias and NRMSE values from comparisons between
stoPET and CRU are higher than for the hPET comparisons,
the p values of the Kolmogorov–Smirnov test show that
stoPET has a similar statistical distribution as CRU for most
of the comparisons (except for two humid sites, H2 and H6,
which had lower and higher CRU PET values, respectively,
within overall narrow distributions). Additionally, stoPET
captures the seasonality of the CRU PET well (Figs. 8 and
9). These evaluation steps give us confidence that stoPET is
generating PET (on a monthly timescale) that is largely con-
sistent with existing data products and can therefore be con-
sidered to be a useful simulator of PET at the global scale.
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Figure 6. Average annual PET for 5 randomly selected years. (a) stoPET. (b) hPET with nighttime PET removed for Europe.

Figure 7. Single-point locations selected for global evaluation for
humid and arid climate locations based on the aridity index data
from the Consultative Group on International Agricultural Research
(CGIAR; Trabucco and Zomer, 2018).

Table 1. The pBias, NRMSE, and Kolmogorov–Smirnov (KS) test
values between stoPET and hPET, as well as between stoPET and
CRU, for the humid and arid locations on six continents as indicated
in Fig. 7.

pBias (%) NRMSE (–) KS stat p value

hPET CRU hPET CRU hPET CRU hPET CRU

H1 3.44 −5.27 0.04 0.08 0.17 0.17 1.00 1.00
H2 4.31 31.64 0.05 0.32 0.50 0.92 0.10 0.00
H3 1.96 −5.37 0.03 0.10 0.08 0.17 1.00 1.00
H4 1.58 5.56 0.02 0.06 0.25 0.33 0.87 0.54
H5 2.48 −0.22 0.05 0.11 0.17 0.17 1.00 1.00
H6 9.68 −21.95 0.10 0.25 0.42 0.75 0.26 0.00
A1 0.87 −12.45 0.02 0.15 0.08 0.25 1.00 0.87
A2 1.86 −16.29 0.03 0.17 0.17 0.25 1.00 0.87
A3 0.77 −14.10 0.04 0.18 0.17 0.25 1.00 0.87
A4 0.49 −3.91 0.03 0.10 0.17 0.33 1.00 0.54
A5 1.89 −9.40 0.02 0.14 0.17 0.25 1.00 0.87
A6 0.84 −4.43 0.02 0.08 0.08 0.17 1.00 1.00

We carried out additional analyses to evaluate hourly
stoPET values against to the native resolution of hPET. Here
we only show the results from a single location (point A1 in
Fig. 7) as an example; however, the results and plots of the
other locations are provided in the Supplement (Figs. S15
to S25). The scatterplot (Fig. 10a) indicates that stoPET
generates hourly PET values that are comparable to hPET
(R = 0.83). The box plots (Fig. 10b) show that stoPET also
produces a comparable mean (green triangle in Fig. 10b) and

median (red line in Fig. 10b) to hPET and captures the overall
variability in the hPET distribution. Figure 11 shows the den-
sity plots of the hPET and stoPET data, which indicates that
the randomly generated stoPET values represent the hPET
data well for the arid location in North America (and other
locations; see the Supplement). Additionally, we investigated
how well stoPET captures the diurnal cycle contained within
hPET. Figure 12 shows an hourly time series for 15 d of
stoPET and hPET over several diurnal cycles, demonstrating
good consistency with the timing of peaks and troughs but
with clear evidence of the desired stochasticity in the simu-
lated series.

4 Incorporating future climate change in stoPET

The future atmosphere is predicted to be warmer due to an-
thropogenic forcing (Hoegh-Guldberg et al., 2018; IPCC,
2021). This increased atmospheric temperature should lead
to higher evaporative demand, which can have substantial
impacts on the water balance. stoPET incorporates three
methods to account for changes in atmospheric evaporative
demand to climate change, supporting flexibility in simulat-
ing various climate scenarios. The three methods, described
below with examples, provide choices for users to explore
what fits their study goals.

4.1 Method descriptions

4.1.1 Method 1: user-defined percentage step change in
annual PET

For some applications, it may be useful to assess the im-
pact of a percentage change in the evaporative demand on
the water balance. Method 1 consists of the user providing
a percentage, corresponding to the desired fractional change
in annual PET relative to the historical baseline series (user-
defined percentage value – U ). This then influences the gen-
eration of hourly PET in stoPET as follows:

1. Generate a stoPET series based on historical baseline
climate and calculate the annual sum of the simulated
series (PETannual).

https://doi.org/10.5194/gmd-16-557-2023 Geosci. Model Dev., 16, 557–571, 2023
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Figure 8. The seasonal PET and box plots for three datasets over North America, South America, and Europe for the (a) humid and (b) arid
locations, as shown in Fig. 7. The box plots show the distribution of each dataset over the 20-year period. The box indicates the interquartile
range (IQR; 25th–75th), while the upper whiskers are set to (75th + 1.5× IQR), and the lower whiskers are set to (25th −1.5× IQR).

Figure 9. The seasonal PET and box plots for three datasets over Africa, Asia, and Australia (including the Oceania region) for (a) humid
and (b) arid locations, as shown in Fig. 7. The box plots show the distribution of each dataset over the 20-year period. The box indicates the
IQR (25th–75th), while the upper whiskers are set to (75th + 1.5× IQR), and the lower whiskers are set to (25th −1.5× IQR).

2. Estimate the annual PET change (1PETannual) using
Eq. (5):

1PETannual = PETannual×U. (5)

3. Divide 1PETannual into monthly changes by multiply-
ing with the average monthly percentage contribution
to PETannual, which is already generated within stoPET
for historical climatology.

4. Divide the monthly change by the number of days in
each month to obtain a daily adjustment of the stoPET
series.

5. Divide the daily PET change using the percentage con-
tribution of daytime hours, which is calculated within
stoPET for each month.

6. Adjust hourly PET based on the summation of PET
from step 1 and the hourly changes in PET from step
5.

4.1.2 Method 2: step change in PET based on a
user-defined change in atmospheric temperature

Climate change is often characterised in terms of a spec-
ified rise in atmospheric air temperature (Randalls, 2010),

which may vary for different locations across the globe but
is typically communicated as a global mean temperature
change (e.g. 1.5 ◦ of warming based on the Paris Agreement;
Kriegler et al., 2018). We fully acknowledge that PET (es-
pecially based on the PM method of calculation) is not only
driven by temperature changes but also by changes in solar
radiation, wind speed, and humidity (Xu et al., 2014). Nev-
ertheless, to isolate the influence of temperature alone, we
created within stoPET a method to calculate temperature-
based changes in PET, with all other non-temperature-related
variables remaining unchanged. This is simply implemented,
transparent, and aligns directly with global climate discus-
sions and policies (IPCC, 2013; Blunden and Arndt, 2020;
NOAA, 2021). Method 2 accounts for a user-defined tem-
perature change and its propagation into hourly PET, which
works as follows within stoPET:

1. We recalculated hPET globally with uniform homoge-
nous air temperature increments of 0.5 ◦C (e.g. 0.5, 1.0,
1.5, 2.0, and 2.5 ◦C) for every hour, with all other non-
temperature-related variables remaining unchanged.

2. hPET, which was calculated based on the current tem-
perature with no adjustment, was subtracted from newly
calculated PET values containing the temperature ad-
justment. This step revealed that the rate of change in
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Figure 10. (a) Scatterplot between hPET and stoPET daytime values. (b) Box plots for hPET and stoPET daytime data (green triangle shows
the mean and the red solid line indicates the median) over the period 2001–2020 (for A1 in Fig. 7).

Figure 11. Density plots for hPET and stoPET for the arid location
in North America (for A1 in Fig. 7). The data represent the daytime
hourly PET from 2001 to 2020.

Figure 12. Time series of hPET and stoPET data for the last 15 d
of 2020 (for A1 in Fig. 7). The figure indicates that stoPET capture
the diurnal cycle of PET, and the difference among each day is an
expression of the stochasticity of the model.

the PET increase is uniform on average (Fig. 13); hence,
we can use the rate of change in PET and the user-
defined temperature change as a multiplicative factor to
represent the change in annual PET.

Figure 13 shows an example of annual PET change com-
puted for Wajir, Kenya, where the temperature is raised in
increments of 0.5 ◦C from the current temperature. The fig-

ure shows a linear relationship between the annual change in
PET and change in temperature (R2

= 0.998), as an exam-
ple, where every increase by 0.5 ◦C yields∼ 55 mm of annual
PET change for the specified location. stoPET then provides
the global annual PET change based on 1 ◦C of warming de-
rived from 20 years of climatology (Fig. 14). These annual
PET changes are used as input and multiplied by the user-
defined temperature factor to determine the amount of annual
PET change at each grid cell.

Method 2 adjusts simulated hourly PET generated by
stoPET in similar ways to Method 1 (i.e. steps 3–6 are the
same as Method 1), but the first two steps are altered as fol-
lows:

1. Generate an hourly stoPET time series for 1 year and
take the annual sum.

2. Multiply the annual change in PET associated with a
1 ◦C temperature increase (Fig. 14) by a user-defined
temperature change (1T ).

4.1.3 Method 3: progressive change in PET based on
the historical trend in hPET

In some cases, it may be desirable to evaluate the potential
impacts if currently observed trends in PET continue into
the future. To support this type of analysis, Method 3 com-
putes the historical trends in hPET for each pixel of the globe
and then applies this trend within the stoPET series for every
location, leading to the progressive change in the simulated
PET. stoPET simulates PET via Method 3, sharing the same
steps as Method 1 from step 3 onwards. The first two steps
are as follows:

1. Generate stoPET for 1 year and take the annual sum.

2. Estimate the annual PET change using the slope of the
linear trend to historical hPET (Eq. 6). stoPET computes
this trend and uses its slope (s; Fig. S26) as an input
parameter applied over the number of years of the sim-
ulation (x) to adjust the simulated series from stoPET
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Figure 13. Annual PET change when estimated by progressively
increasing the atmospheric air temperature. The changes are refer-
enced to hPET, which is calculated using the historical temperature.
This example is for a single location (Wajir, Kenya). The red line in-
dicates the regression line, with a coefficient of determination (R2)
of 0.998.

Figure 14. The global climatological step change in annual PET due
to a unit temperature increase. The results were obtained by taking
the difference between the PET, calculated with increased tempera-
ture, and hPET, which is calculated using the current temperature.

that would be generated based on a no-climate-change
scenario.

1PETannual = sx. (6)

4.2 Examples of stoPET-generated PET under climate
change by the three methods

As a demonstration of these methods, we simulated PET un-
der climate change for the arid and humid locations used for
model evaluation (Fig. 7). Specifically, we present time se-
ries of annual PET for a 5 % (user-defined percentage) in-
crease in PET (Method 1), a user-defined 1.5 ◦C increase
in temperature (Method 2), and by imposing the historical
trend from hPET into the future (Method 3; Figs. 15 and
S27 to S31). These plots demonstrate the built-in flexibility
in stoPET for simulating changes to evaporative demand un-
der climate change. For example, they illustrate that, under
Method 1, there is simply an elevated simulated time series
of PET, while the higher values for Method 2 result from

propagating a temperature increase through the calculation
of PET, and Method 3 shows a clear trend that departs from
the historical mean (Fig. 15).

5 Discussion

As the global community works to determine the poten-
tial impacts of climate change, it is critical to address how
changes to atmospheric evaporative demand will affect the
water balance and associated water resource availability.
Here, we have presented a novel stochastic PET generator
(stoPET), which fills a gap in current capabilities to simu-
late multiple realisations of historical and future evaporative
demand across the globe. stoPET is a parsimonious, flexi-
ble, and computationally efficient way of generating plau-
sible hourly PET time series anywhere on the Earth’s land
surface for various climatic forcing scenarios. stoPET has
the potential to improve climate-related impact studies on the
water balance for applications including, but not limited to,
ecology, ecohydrology, agriculture, and water resources in a
wide range of environments across the globe.

The water balance is very sensitive to atmospheric evapo-
rative demand, so the characterisation of diurnal and seasonal
variability in PET across the globe is a critical component
for a wide range of climate impact studies. stoPET is par-
ticularly relevant for the prediction of water resource avail-
ability, estimation of future crop water demand, assessment
of flash flood risk, and provision of actionable information
on expected climatic impacts on the water balance. Given
the inherent uncertainties in climatic drivers of the water bal-
ance (rainfall and PET), simulated assessments of the water
balance under potential future climate change would be best
framed in a probabilistic way. Stochastic weather generators
may provide projections of rainfall and temperature (Chen et
al., 2012; King et al., 2015; Steinschneider et al., 2019), but
there is currently no standardised method to simulate plausi-
ble time series of PET under a range of future scenarios. It
is also not currently possible to retrospectively assess the im-
pact of climate forcing on the historical water balance based
on PET. This information gap for PET undermines efforts to
drive hydrological, agricultural, and land surface models. We
provide a few potential applications of stoPET in this context
below.

PET significantly influences the partitioning of the long-
term water balance into different stores and fluxes that vary
over time and space (Bai et al., 2016; Quichimbo et al.,
2021). Key water balance components, including groundwa-
ter storage, evapotranspiration, runoff, and streamflow are
challenging to assess without accurately constraining evap-
orative demand (Bowman et al., 2016; Condon et al., 2020).
An obvious example is flood hazard, which is especially sen-
sitive to antecedent moisture conditions within a drainage
basin based on the prevailing PET over the period between
rainstorms, which affects the subsequent partitioning of rain-
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Figure 15. Annual PET estimated using stoPET with the three climate change methods for (a) a humid location (H1) and (b) an arid location
(A1) in North America (see Fig. 7).

fall between infiltration and runoff, the downslope flow of
both surface and subsurface water, and correspondingly, the
magnitude of flood waves in channels. These influences im-
pact the strength of the watershed response to rainfall events
and corresponding flood hazard (Zoccatelli et al., 2019) in a
range of environments. stoPET-derived PET will thus sup-
port more realistic analyses of the water balance for the
purposes of assessing flood hazard (and potential mitigation
measures).

Hydrological and land surface models require PET to close
the water and energy balance and to resolve its key com-
ponents (e.g. a parsimonious distributed hydrological model
for DRYland Partitioning – DRYP; Quichimbo et al., 2021;
PARallel Flow – ParFlow; Maxwell and Miller, 2005). Such
models are often assessed in terms of the uncertainty in the
spatiotemporal rainfall used to drive them, but there is ad-
ditional uncertainty in PET that is typically unconstrained,
especially for scenarios of future climate change (van Os-
nabrugge et al., 2019). stoPET can generate multiple reali-
sations of PET, supporting the assessment of uncertainty in
atmospheric demand and providing key information on PET
to support forecasting and risk assessment associated with
water availability and agricultural water demand, especially
for a wide range of meteorological conditions (Dimitriadis
et al., 2021). The stoPET model fills this gap by providing
physically realistic PET time series that vary in space and
honour the inherent diurnal and seasonal variability.

Water availability to plants is not only one of the limiting
constraints for crop production and food security (Funk et al.,
2008; Funk and Brown, 2009; Kang et al., 2009; Ayyad and
Khalifa, 2021) but also for the health and functioning of the

vegetative ecosystem in natural settings (Mayes et al., 2020;
Sabathier et al., 2021; Warter et al., 2021). Forecasts of crop
water requirement and irrigation demand for major crops
like maize, barley, and wheat (Ewaid and Abded, 2019) are
paramount for preparing advisory reports related to the tim-
ing of planting, crop choice, and irrigation scheduling, espe-
cially in arid and semi-arid regions, where high atmospheric
evaporative demand and erratic rainfall make farming a risky
economic activity (Nyakudya and Stroosnijder, 2011). Crop
models require estimates of PET to quantify how much water
can be lost to the atmosphere over the diurnal cycle and over
the entire season of crop growth. In natural settings, PET is
necessary to predict both water availability to plants and the
timing of plant phenology, including the timing of green-up
and senescence cycles, which have broader implications for
ecosystem functioning in a range of environments. In this
context, stoPET can be used to simulate the PET and thus
assess the hourly availability of water in the soil and its vari-
ation over the growing season for a wide range of plants. Our
new model also supports analyses of future climatic changes
and their impact on natural and agricultural plants, as well as
irrigation demand, for major crops.

Finally, stoPET can potentially be used in concert with
rainstorm generators such as the STOchastic Rainstorm
Model (STORM; Singer et al., 2018), wherein rainfall and
interarrival times are simulated to obtain inputs to other mod-
els. Rainfall and PET may be straightforwardly interlinked
such that PET in stoPET is reduced (due to cloud cover and
high humidity) on any simulated rainy day in STORM, thus
lowering evapotranspiration losses during rainy periods. In
this way, STORM and stoPET would provide consistent se-
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quences of raw data required to close the water balance in
terms of key climatically derived variables.

In these and other applications, stoPET presents a new
and useful tool to support decision-making. For a range
of practical situations ranging from water resource plan-
ning to agriculture to disaster risk reduction, it would
be useful to explore the plausible range of variability
in PET and its impact on the water balance for any
region. For example, the Horn of Africa drylands re-
gion is currently experiencing its fifth consecutive sea-
son (October–November–December 2020, March–April–
May 2021, October–November–December 2021, March–
April–May 2021, and October–November–December 2022)
of drought in which atmospheric temperatures are elevated
(FEWS NET, 2022a). A sixth failed rainy season is pre-
dicted for the upcoming long rainy season (March–April–
May 2023; FEWS NET, 2022b). Once a temperature forecast
is issued for the region, then this information could be used to
create multiple stochastic series of PET from stoPET, which
could then be used with rainfall forecasts to drive hydro-
logical models. Thus, one could examine what impact these
elevated temperatures, alongside forecasted rainfall deficits,
would have on water resources, crop yields, and available
pasture lands for millions of rural people. The output from
such this modelling could then support forecast-based financ-
ing decisions and the planning of disaster response across
this vulnerable region.

Other future improvements in the model that we envisage
may be to incorporate other variables, apart from temperature
change, that are likely to be non-stationary and affect PET,
such as radiation and wind speed. Additionally, the noise fac-
tor sampling used to perturb the stochastic PET is currently
independent of adjacent grid points, so there is essentially no
spatial autocorrelation, which may be undesirable. The im-
pact of this on the realism of the output is not known a priori.
Therefore, applying spatial smoothing to the stoPET output
across a grid of simulated values might be a potential future
improvement in the model.

In summary, stoPET generates stochastic hourly PET
across the globe at a high spatial resolution and can estimate
future PET under a range of potential future climate changes.
The model can be used to evaluate different land surface and
water balance models, which are used to predict water avail-
ability and other metrics related to the impacts of climate on
sectors like agriculture and water use.

Code availability. The stoPET-v1.0 model Python script,
the required input files, and the user manual are available
as open-access software and documentation on Figshare
(https://doi.org/10.6084/m9.figshare.19665531; Asfaw et al.,
2023).

Data availability. The data used in this study are freely available.

– hPET data can be downloaded from
https://doi.org/10.5523/bris.qb8ujazzda0s2aykkv0oq0ctp
(Singer et al., 2020).

– The CRU PET data can be downloaded from https://crudata.
uea.ac.uk/cru/data/hrg/ (last access: January 2023; Harris et al.,
2020).

– stoPET model and required data can be downloaded from
https://doi.org/10.6084/m9.figshare.19665531 (Asfaw et al.,
2023).
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