
Geosci. Model Dev., 16, 5539–5559, 2023
https://doi.org/10.5194/gmd-16-5539-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

Comparing the Performance of Julia on CPUs versus GPUs and
Julia-MPI versus Fortran-MPI: a case study with
MPAS-Ocean (Version 7.1)
Siddhartha Bishnu1,2,�, Robert R. Strauss1,3,�, and Mark R. Petersen1

1Computational Physics and Methods Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
3Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
�These authors contributed equally to this work.

Correspondence: Siddhartha Bishnu (siddhartha.bishnu@gmail.com)

Received: 18 January 2023 – Discussion started: 15 February 2023
Revised: 11 August 2023 – Accepted: 16 August 2023 – Published: 5 October 2023

Abstract. Some programming languages are easy to develop
at the cost of slow execution, while others are fast at runtime
but much more difficult to write. Julia is a programming lan-
guage that aims to be the best of both worlds – a development
and production language at the same time. To test Julia’s util-
ity in scientific high-performance computing (HPC), we built
an unstructured-mesh shallow water model in Julia and com-
pared it against an established Fortran-MPI ocean model, the
Model for Prediction Across Scales–Ocean (MPAS-Ocean),
as well as a Python shallow water code. Three versions of
the Julia shallow water code were created: for single-core
CPU, graphics processing unit (GPU), and Message Passing
Interface (MPI) CPU clusters. Comparing identical simula-
tions revealed that our first version of the Julia model was 13
times faster than Python using NumPy, where both used an
unthreaded single-core CPU. Further Julia optimizations, in-
cluding static typing and removing implicit memory alloca-
tions, provided an additional 10–20× speed-up of the single-
core CPU Julia model. The GPU-accelerated Julia code was
almost identical in terms of performance to the MPI paral-
lelized code on 64 processes, an unexpected result for such
different architectures. Parallelized Julia-MPI performance
was identical to Fortran-MPI MPAS-Ocean for low proces-
sor counts and ranges from 2× faster to 2× slower for higher
processor counts. Our experience is that Julia development
is fast and convenient for prototyping but that Julia requires
further investment and expertise to be competitive with com-

piled codes. We provide advice on Julia code optimization
for HPC systems.

1 Introduction

A major concern in computer modeling is the trade-off
between execution speed and code development time. In
general, programs in scripting languages like Python and
MATLAB are faster to develop due to their simpler syn-
tax and more relaxed typing requirements but are limited
by slower execution time. On the other end of the spectrum,
we have compiled languages like C/C++ and Fortran, which
have been extensively used in scientific computing for many
decades. Programs in such languages are blessed with faster
execution time but are cursed with stricter and more cumber-
some syntax, leading to slower development time. The Ju-
lia language strikes a balance between these two categories
(Perkel, 2019). It is a compiled language with execution
speed similar to C/C++ or Fortran if carefully written with
strict syntax (Lin and McIntosh-Smith, 2021; Gevorkyan
et al., 2019). It is also equipped with more convenient syn-
tax and features, such as dynamic typing, to accelerate code
development in prototyping. To this day, the majority of sci-
entific computing models are programmed in compiled lan-
guages, which execute fast but can take can take years to de-
velop – for example, the first version of the Model for Predic-

Published by Copernicus Publications on behalf of the European Geosciences Union.

5540 S. Bishnu, R. R. Strauss, et al.: Julia for geophysical fluid dynamics

tion Across Scales–Ocean (MPAS-Ocean) required 3 years
(Ringler et al., 2013). In this paper, we investigate the feasi-
bility of writing Julia codes for computational physics simu-
lations, since a Julia program can ensure not only high per-
formance but also less development time in the initial stages.
We develop a shallow water solver in Julia and compare its
performance to an equivalent Fortran code.

An additional complication in choosing the best language
is that layers of libraries have been added to C/C++ and For-
tran to accommodate evolving computer architectures. For
the past 25 years, computational physics codes have largely
used the Message Passing Interface (MPI) to communicate
between CPUs on separate nodes that do not share mem-
ory and OpenMP to parallelize within a node using shared-
memory threads. With the advent of heterogeneous nodes
containing both CPUs and graphics processing units (GPUs),
scientific programmers have several new choices: writing
kernels directly for GPUs in CUDA (Bleichrodt et al., 2012;
Zhao et al., 2017; Xu et al., 2015), adding OpenACC prag-
mas for the GPUs (Jiang et al., 2019), or calling libraries such
as Kokkos (Trott et al., 2022) and YAKL (Norman et al.,
2022) that execute code optimized for specialized architec-
tures on the back end, while providing a simpler front-end
interface for the domain scientist. All of these require addi-
tional expertise and add to the length and complexity of the
code base. Julia also provides an MPI library for paralleliza-
tion across nodes in a cluster and a CUDA library to par-
allelize over GPUs within a node. We have written shallow
water codes in Julia that adopt each of these parallelization
strategies.

In recent years, shallow water solvers have been devel-
oped in Julia by Oceananigans.jl (Ramadhan et al., 2020)
and ShallowWaters.jl (Klöwer et al., 2022). These codes em-
ploy structured rectilinear meshes to discretize their spa-
tial domain. Spearheaded by the Climate Modeling Alliance
alongside independent contributors, Oceananigans has pro-
gressively matured into an accessible and versatile software
suite designed for executing finite-volume simulations per-
taining to incompressible fluid dynamics. This software is
equipped with capabilities to operate on graphics processing
units (GPUs), thereby offering enhanced computational per-
formance. It is also capable of solving both nonhydrostatic
and hydrostatic Boussinesq equations. On the other hand,
ShallowWaters.jl emphasizes type flexibility and is compati-
ble with 16-bit numerical formats in its shallow water model-
ing approach. This application additionally offers the benefits
of mixed-precision computation and optimized communica-
tion through reduced precision. In this paper, we conduct a
comparison on unstructured-mesh models using the Fortran
code MPAS-Ocean (Ringler et al., 2013) as a point of ref-
erence. MPAS-Ocean employs unstructured near-hexagonal
meshes with variable-resolution capability and is parallelized
with MPI for running on supercomputer clusters. We devel-
oped a Julia model employing the same spatial discretization
of MPAS-Ocean, which is capable of running in serial mode

on a single core or in parallel mode on a supercomputer clus-
ter or a graphics card. We discuss the subtle details of our im-
plementations, compare the speed-ups attained, and describe
the strategies employed to enhance performance.

The structure of this paper is arranged as follows. Section 2
presents a comprehensive introduction to the Julia program-
ming language, the primary subject of our experiments in this
paper. This section elucidates how Julia’s innovative com-
piler, employing its just-in-time (JIT) compilation approach
and dynamic type inference, equips the language with the
capability to rival the performance of statically typed lan-
guages such as Fortran and C/C++. We highlight some key
features of Julia, which are not only fundamental to our re-
search, but also provide valuable insights for researchers new
to Julia, aiding their understanding of Julia’s unique con-
cepts and terminologies. In Sect. 3, we delineate the pro-
cess of creating three versions of the Julia model: Julia-CPU,
Julia-GPU, and Julia-MPI. We also provide details on an
equivalent Python-CPU code and the Fortran-based MPAS-
Ocean, both of which serve as comparative yardsticks for
assessing Julia’s performance in the ensuing section. Addi-
tionally, we offer an explicit account of the hardware con-
figurations and toolchain specifications used in the process.
Section 4 provides the findings from our performance com-
parison tests, including an explanation of how we fine-tuned
our preliminary model to generate the reported results. This
is accompanied by an in-depth discussion and analysis of
our experimental results. This section serves as a benchmark
for contrasting the proficiency of Julia and Fortran in high-
performance computing (HPC) applications. In Sect. 5, we
share insights and provide guidance to HPC developers on
how to effectively utilize Julia, with an emphasis on the nec-
essary steps to attain performance on par with that of For-
tran and C/C++. This is informed by our experiences and the
lessons learned throughout this experiment. Finally, Sect. 6
concludes the paper, encapsulating our findings and provid-
ing instructions on how to replicate our results.

2 Julia in a nutshell

Julia is a high-level, just-in-time (JIT) compiled dynamic
programming language, which was developed with the inten-
tion of marrying the speed of compiled languages like For-
tran or C/C++ and the usability of interpreted languages like
Python or MATLAB. Conceived in 2012 by Shah, Edelman,
Bezanson, and Karpinski at MIT (Bezanson et al., 2017), Ju-
lia has rapidly grown in popularity thanks to its innovative
features and design.

As a relatively new addition to the world of programming
languages, Julia benefits from the ability to incorporate the
best aspects of established languages while avoiding their
less convenient attributes. It provides the speed of a compiled
language (owing to just-in-time compiling) and the simplic-
ity of an interpreted language, making it highly appealing for

Geosci. Model Dev., 16, 5539–5559, 2023 https://doi.org/10.5194/gmd-16-5539-2023

S. Bishnu, R. R. Strauss, et al.: Julia for geophysical fluid dynamics 5541

developers. The language also includes a REPL (read–eval–
print loop) environment that interprets code lines as they are
written, enhancing convenience for programmers.

Specifically designed for technical and scientific users, Ju-
lia is versatile and boasts an extensive library of mathemati-
cal functions and numerical accuracy. It also facilitates seam-
less interoperability with other programming languages, en-
abling direct calls to Fortran, C/C++, Java, or Python.

Compatible with a range of operating systems, including
Windows, MacOS, and Unix, Julia has recently been gaining
ground in domains requiring algebraic and numerical com-
puting, data science and machine learning, artificial intelli-
gence, distributed and parallel computing, and even web ap-
plication development due to its math-friendly syntax and
impressive speed.

In the upcoming subsections, we succinctly delve into
some of Julia’s fundamental attributes, including just-in-
time (JIT) compilation, multiple dispatch, and type hierar-
chy. These salient characteristics are not only pertinent to our
study but will also be instrumental in elucidating our model
and interpreting the results. We then explore the intricacies of
type inference in Julia, considering situations where it might
falter, potentially resulting in reduced code execution speed.
We wrap up this section with an explanation of Julia structs, a
discourse on the diminished computational performance as-
sociated with abstract fields in these structs, and viable solu-
tions to mitigate these challenges.

2.1 Just-in-time compilation

Julia’s high performance can be attributed to one of its key
features: LLVM-based (LLVM: low-level virtual machine)
on-the-fly or just-in-time (JIT) compilation, which is a com-
bination of ahead-of-time (AOT) compilation and interpreta-
tion. Here is a breakdown of how it works.

a. When a function is first run in Julia, the interpreter con-
verts the high-level code into an intermediate represen-
tation.

b. The compiler then uses this intermediate representation
to generate optimized machine code tailored to the spe-
cific types in use.

c. This machine code is executed, and the results are re-
turned.

d. Most importantly, the machine code for the specific
function and type combination is cached. So, if the same
function is called with the same types later on, Julia
can bypass the compilation step and directly execute the
pre-optimized machine code.

This JIT compilation enables Julia to match the perfor-
mance of statically typed compiled languages such as For-
tran and C/C++, while preserving the flexibility of dynamic

languages like Python. However, it also introduces a delay re-
ferred to as “time to first plot” or compilation latency on the
initial run of a function. Subsequent calls are significantly
faster due to the cached machine code.

2.2 Function, method, and multiple dispatch

In Julia, a function is a named sequence of statements that
performs a computation. A method is a specific implementa-
tion of a function for particular types of arguments. A func-
tion definition starts out with a single method. But when ad-
ditional definitions are provided with different combinations
of argument types, the function accrues more methods. This
concept is intimately tied to Julia’s support for multiple dis-
patch, which means that the version of the function (i.e., the
method) that gets called is determined by the types of all ar-
guments. This can provide a flexible and powerful way to
express program behavior.

The traditional form of multiple dispatch in Julia is dy-
namic or runtime dispatch. When a function is called, Julia
examines the types of all arguments and chooses the most
specific method that can apply to these types. The benefit of
this approach is that it allows for polymorphism and code that
adapts based on the types it encounters during execution.

Although not a separate dispatch mechanism, static or
compile-time dispatch occurs when Julia’s compiler knows
the types of all arguments to a function call at compile time.
In such cases, the compiler can select the appropriate method
to call right away instead of deferring the decision to runtime.
This is an optimization that can result in more efficient code,
but it requires the compiler to have enough information about
types, which is not always possible in dynamically typed lan-
guages like Julia.

2.3 Type hierarchy

The type hierarchy in Julia is a system that organizes all pos-
sible types into a tree-like structure, allowing for the catego-
rization of types and subtypes.

At the top of the type hierarchy tree is the Any type, which
is a supertype of all other types. When a variable is defined
as Any, it can hold a value of any type. This is useful in
certain scenarios where maximum flexibility is required, but
it can also potentially slow down the code. This is because
Julia needs to figure out at runtime which specific type it is
dealing with and then dispatch to the correct method. This
introduces overhead from both dynamic dispatch and the po-
tential omission of compile-time optimizations that would be
clear with concretely defined types.
Abstract types serve a similar role as interfaces in other

languages. They are nodes in the tree that can have subtypes
but cannot be instantiated themselves. In other words, they
define a kind of protocol or set of behaviors, but one cannot
create objects of these types. They are only used for organiz-
ing other types into a hierarchy. Abstract types encounter

https://doi.org/10.5194/gmd-16-5539-2023 Geosci. Model Dev., 16, 5539–5559, 2023

5542 S. Bishnu, R. R. Strauss, et al.: Julia for geophysical fluid dynamics

challenges similar to the Any type: missed compiler opti-
mizations due to the lack of specific type information and
additional overhead from dynamic dispatch.

Finally, concrete types form the leaves of the tree and rep-
resent types that can actually be instantiated, but they cannot
have subtypes themselves. Examples of concrete types are
Int, Float64, and String. Types like arrays are con-
sidered concrete only when their element type is explicitly
defined as a concrete type and their number of dimensions is
specified. For example, Array{Float64, 2} is deemed
concrete. Each concrete type is a subtype of one or more ab-
stract types. While concrete types in Julia lead to enhanced
computational efficiency through potential compile-time op-
timizations including static dispatch, they trade off some of
the flexibility offered by Abstract and Any types and re-
quire more extensive coding.

The type hierarchy is crucial in Julia because it enables the
powerful feature of multiple dispatch, allowing functions to
behave differently depending on the types of all their argu-
ments.

2.4 Type inference

In statically typed languages, such as Fortran, C/C++, or
Java, the programmer needs to declare the type of a variable
when it is defined. This allows the compiler to generate ef-
ficient code because it knows exactly what types it is deal-
ing with. However, Julia is designed to be easy to use like a
dynamically typed language (such as Python or MATLAB),
where it is not necessary to declare the types of variables.
But unlike most dynamically typed languages, Julia can still
produce very efficient code thanks to its JIT compilation and
aggressive type inference system, which allows the compiler
to determine the type of a variable or expression without the
programmer explicitly mentioning it. The compiler infers the
type based on the values assigned or the operations used on
the variable. However, type inference in Julia can fail or be
suboptimal in a few different scenarios. Here are some of the
most common ones.

a. Functions with insufficient information about argu-
ments: in some cases, a function might not have enough
information about what arguments it will receive. This
can make it hard for the compiler to infer the types.

b. Global variables: using global variables can lead to per-
formance issues because the global scope can change,
which in turn prevents the compiler from inferring a sta-
ble type.

c. Type instability: in Julia, type instability refers to a sit-
uation where the type of a variable cannot be inferred
consistently by the compiler at compile time. This usu-
ally happens when the type of a variable changes within
a function or when a function’s return type depends on
the values (not the types) of its arguments.

d. Containers with multiple data types: in Julia, contain-
ers are data structures used for storing collections of
data. These can include arrays (an ordered collection
of elements, indexed by integers), tuples (an ordered
collection of elements, similar to an array, but im-
mutable), dictionaries (an unordered collection of key-
value pairs), and sets (an unordered collection of unique
elements), among others. If containers are used to store
different types of data, the compiler may not be able to
precisely infer their types.

Even when type inference fails or is suboptimal, the Ju-
lia code should still run correctly (assuming it does not have
other types of errors), but it may run slower due to the ad-
ditional overhead of runtime type checking. To improve per-
formance, it is generally a good practice to try to write type-
stable code and provide the compiler with as much type in-
formation as possible.

2.5 Struct

In Julia, a struct, short for structure, is a composite data type,
similar to a class in object-oriented languages. However, Ju-
lia’s struct itself is not object-oriented and has no methods
directly attached to them. A struct is used to encapsulate a
few related values together into a single entity, and those val-
ues are stored in fields.

Structs with abstract types or containers as fields can
slow down Julia code, since they prevent the compiler from
producing highly optimized, type-specific machine code. In
other words, the lack of concrete type information at compile
time forces the compiler to generate less efficient, generic
code that can accommodate any potential subtype, resulting
in performance penalties from dynamic dispatch and missed
optimization opportunities.

While one approach to improving the performance of Julia
structs with abstract types or containers is to specify concrete
types for all fields, this could reduce the flexibility of Julia’s
powerful type abstraction and potentially lead to repetitive
code. An alternative technique involves the use of function
barriers, where abstract fields are unpacked within a function
that then calls an inner function, effectively passing concrete
types. This strategy leverages Julia’s ability to generate ef-
ficient machine code based on the specific types of function
arguments. However, a more elegant solution could be the
use of parametric structs. With parametric structs, the type of
the field is determined at the time of struct instance creation
rather than at the struct definition. This approach allows the
Julia compiler to generate highly optimized machine code
tailored to the precise, concrete type used for each instance,
significantly reducing the performance overhead typically as-
sociated with handling abstract types.

Geosci. Model Dev., 16, 5539–5559, 2023 https://doi.org/10.5194/gmd-16-5539-2023

S. Bishnu, R. R. Strauss, et al.: Julia for geophysical fluid dynamics 5543

3 Methods

With an exploration of the relevant key features of Julia in
the preceding section, we are now set to shift our focus to the
details of the shallow water equations that we aim to solve,
including their numerical discretization and implementation
across various architectures.

3.1 Equation set and TRiSK-based spatial
discretization

Our Julia model solves the shallow water equations
(Cushman-Roisin and Beckers, 2011) in vector-invariant
form. This is sufficiently close to the governing equations for
ocean and atmospheric models to be used as a proxy to test
performance with new codes and architectures. The equation
set is

ut + qhu
⊥
=−∇ (gη+K), (1a)

ηt +∇ · (hu)= 0, (1b)

where u is the horizontal velocity vector, u⊥ = k×u, h is
the layer thickness, η is the surface elevation or sea sur-
face height (SSH), K = |u|2/2 is the kinetic energy per unit
mass, and g is the acceleration due to gravity. If b repre-
sents the topographic height and H the mean depth, then
η = h+ b−H . Moreover, if f denotes the Coriolis param-
eter and ζ = k · ∇ ×u the relative vorticity, then the abso-
lute vorticity ωa = ζ + f and the potential vorticity (PV)
q = ωa/h. The term qhu⊥ is the thickness flux of the PV
in the direction perpendicular to the velocity, rotated coun-
terclockwise on the horizontal plane. Ringler et al. (2010)
refer to it as the nonlinear Coriolis force since it consists of
the quasi-linear Coriolis force fu⊥ and the rotational part
ζu⊥ of the nonlinear advection term u ·∇u. We spatially dis-
cretize the prognostic equations in Eq. (1) using a mimetic
finite-volume method based on the TRiSK scheme, which
was first proposed by Thuburn et al. (2009) and then general-
ized by Ringler et al. (2010). This method was chosen to hor-
izontally discretize the primitive equations of MPAS-Ocean
while invoking the hydrostatic, incompressible, and Boussi-
nesq approximations on a staggered C-grid. Since this hor-
izontal discretization guarantees conservation of mass, PV,
and energy, it makes MPAS-Ocean a suitable candidate to
simulate mesoscale eddies.

Our spatial domain is tessellated by two meshes, a regular
planar hexagonal primal mesh and a regular triangular dual
mesh. Each corner of the primal-mesh cell coincides with a
vertex of the dual-mesh cell and vice versa. A line segment
connecting two primal-mesh cell centers is the perpendicu-
lar bisector of a line segment connecting two dual-mesh cell
centers and vice versa. Regarding our prognostic variables,
the scalar SSH η is defined at the primal cell centers, and
the normal velocity vector ue is defined at the primal cell
edges. The divergence of a two-dimensional vector quantity
is defined at the positions of η, while the two-dimensional

gradient of a scalar quantity is defined at the positions of ue
and oriented along its direction. The curl of a vector quan-
tity is defined at the vertices of the primal cells. Finally, the
tangential velocity u⊥e along a primal cell edge is computed
diagnostically using a flux-mapping operator from the primal
to the dual mesh, which essentially takes a weighted average
of the normal velocities on the edges of the cells sharing that
edge. Interested readers may refer to Thuburn et al. (2009)
and Ringler et al. (2010) for further details on the mesh spec-
ifications.

At each edge location xe, two unit vectors ne and te are
defined parallel to the line connecting the primal-mesh cells
and in the perpendicular direction rotated counterclockwise
on the horizontal plane such that te = k×ne. The discrete
equivalent of the set of Eq. (1) is

(ue)t −F
⊥
e q̂e =−

[
∇ (gηi +Ki)

]
e, (2a)

(hi)t =−[∇ ·Fe]i, (2b)

where Fe = ĥeue and F⊥e represent the thickness fluxes per
unit length in the ne and te directions, respectively. The layer
thickness hi , the SSH ηi , the topographic height bi , and the
kinetic energy per unit mass Ki are defined at the centers xi
of the primary mesh cells, while the velocity ue is defined at
the edge points xe. The symbol (̂.)e represents an averaging
of a field from its native location to xe. The discrete mo-
mentum in Eq. (2a) is obtained by taking the dot product of
Eq. (1b) with ne, which modifies the nonlinear Coriolis term
to

ne · q̂eĥeu
⊥
= q̂eĥene · (k×u)= q̂eĥeu · (ne× k)

=−q̂eĥeu · te =−q̂eĥeu
⊥
e =−F

⊥
e q̂e. (3)

Given the numerical solution at time level tn = n1t , with
1t representing the time step and n ∈ Z≥0, the Julia model
first computes the time derivative or tendency terms of
Eq. (2) as functions of the discrete spatial and flux-mapping
operators of the TRiSK scheme. Then it advances the numer-
ical solution to time level tn+1 using the forward–backward
method:

un+1
= un+1tF

(
un,hn

)
, (4)

hn+1
= hn+1tG

(
un+1,hn

)
, (5)

where F and G represent the discrete tendencies of the nor-
mal velocity and the layer thickness in functional form, and
the subscripts representing the positions of these variables
have been dropped for notational simplicity.

The following sections introduce the new codes that were
created for this study. Three versions of the Julia code were
written (Strauss, 2023): the base single-core CPU version,
an altered version for GPUs with CUDA, and a multi-node
CPU implementation with Julia-MPI. These were compared
against the existing Fortran-MPI and single-core Python ver-
sions of shallow water TRiSK models. All use a standard

https://doi.org/10.5194/gmd-16-5539-2023 Geosci. Model Dev., 16, 5539–5559, 2023

5544 S. Bishnu, R. R. Strauss, et al.: Julia for geophysical fluid dynamics

MPAS unstructured-mesh file format that specifies the ge-
ometry and topology of the mesh and includes index vari-
ables that relate neighboring cells, edges, and vertices. All
models have an inner (fastest-moving) index for the vertical
coordinate and were tested with 100 vertical layers to mimic
performance in a realistic ocean model.

3.2 Single-core CPU Julia implementation

The serial-mode implementation on a single core involves
looping over every cell and edge of the mesh to (a) compute
the tendencies, i.e., the right-hand-side terms of the prognos-
tic equation (Eq. 2), and (b) advance their values to the next
time step. The tendencies can be functions of the dependent
and independent variables as well as spatial derivatives of
the dependent variable. The serial version of our model is the
simplest one from the perspective of transforming the numer-
ical algorithms into code.

In order to highlight differences in formulation, we pro-
vide a Julia code example for the single tendency term from
Eq. (2) for the SSH gradient −g∇η, which is discretized as
−
[
g∇ηi

]
e. We then add a vertical index k to mimic the per-

formance of a multilayer ocean model, but each layer is triv-
ially redundant. In a full ocean model this SSH gradient term
would be the pressure gradient and would involve the compu-
tation of pressure as a function of depth and density. For the
single-core CPU version, the Julia function to compute the
SSH gradient is given in Listing 1. For a given edge where the
normal velocity tendency is computed, cellsOnEdge rep-
resents the indices of the adjoining cells, while dcEdge in-
dicates the distance between their centers. In the actual code
all the tendency terms are computed within this function, but
here we only show the SSH gradient as a brief sample.

3.3 SIMD GPU Julia implementation

GPUs are exceedingly efficient for SIMD (single instruction,
multiple data) computations, leveraging their thousands of
independent threads to execute the same operation simulta-
neously on different input values. As we are solving the same
prognostic equation for (a) the SSH at every cell center xi
and (b) the normal velocity at every edge xe of the mesh,
a GPU naturally emerges as a powerful asset for our com-
putations. By assigning subsets of cells and edges to distinct
GPU threads, we can conduct the tendency computations and
update the prognostic variables concurrently in parallel. This
approach stands in stark contrast to looping over every cell
and edge, an operation that would scale linearly with the size
of the mesh, thereby significantly impacting the wall-clock
time in large-scale computations.

To harness the power of an Nvidia GPU, we crafted CUDA
kernels using the CUDA.jl library (Besard et al., 2018, 2019),
specifically for calculating the tendencies and updating the
prognostic variables to the subsequent time step. One of the
remarkable features of working with GPUs and CUDA.jl is

the relative ease of code transition from a single-core to a
multi-threaded GPU context. Primarily, it involved replacing
the for loop, which iterated over cells and edges, with a
more GPU-friendly design where the computation is carried
out independently for each cell or edge, as shown in List-
ing 2.

In our implementation, each cell and edge of the mesh are
assigned to a distinct thread on the GPU. Thus, computa-
tions for a single cell or edge are carried out on a solitary
thread, with a dedicated CUDA method enabling the map-
ping of thread indices to the corresponding indices of the
cell (i) or edge (e) where the prognostic variable is being
updated. To ensure the method’s execution across all threads
on the GPU, we employ a CUDA macro to invoke our kernel,
specifying the number of threads to be equal to the number
of cells or edges within the mesh. It is important to under-
score that the core computation of sshGradient remains
identical in both CPU and CUDA kernel codes, demonstrat-
ing the ease of porting computational logic from a CPU to
GPU context.

3.4 CPU/MPI Julia implementation

Instead of cycling through each cell or edge of the mesh,
we can optimize the simulation by employing multiple pro-
cessors and apportioning a segment of the mesh to each
one, a process referred to as domain decomposition. How-
ever, to compute certain spatial operators, we need data from
the outermost cells of neighboring processors. This necessi-
tates inter-processor communication to exchange these criti-
cal pieces of information. To streamline this communication,
we introduce an additional “halo” layer, consisting of rings
of cells encircling the boundary of each processor’s assigned
region, which overlaps with the adjacent processors’ regions.
Since computation is typically much cheaper than communi-
cation, it is standard practice to perform this “halo exchange”
after at least a few time steps.

As previously mentioned, we are applying a mimetic
finite-volume method based on the TRiSK scheme in our cal-
culations. Consequently, the computation of spatial operators
such as the gradient, divergence, curl, and flux-mapping op-
erators (used for diagnostically computing the tangential ve-
locities) only requires the values of the prognostic variables
at the cell centers and edges of adjacent cells. Thus, to com-
pute the spatial operators that constitute the tendencies of the
prognostic variables defined at the center and edges of a spe-
cific cell, we need to consider just one small ring of cells
around the cell and the values of the prognostic variables at
the center and edges of each cell within this ring. The outer
intersection of these small rings around each boundary cell of
the assigned region of a processor forms the innermost ring
of its halo layer. When using a time-stepping method involv-
ing k tendency computations within a time step and executing
the halo exchange after m time steps, the number of rings in
the halo layer is set to n= km. For the qth stage of the pth

Geosci. Model Dev., 16, 5539–5559, 2023 https://doi.org/10.5194/gmd-16-5539-2023

S. Bishnu, R. R. Strauss, et al.: Julia for geophysical fluid dynamics 5545

Listing 1. Julia example for serial CPU.

Listing 2. Julia example for GPU with CUDA.

time step, with 1≤ p ≤m and 1≤ q ≤ k, we compute the
tendencies on the assigned region of the processor, as well as
on (m−p+1)k−q rings of the halo layer, starting from the
innermost one. This process is repeated, progressively “peel-
ing off” the outermost ring after each tendency computation,
until after m time steps, we update the values of the prog-
nostic variables within the mk rings of the halo layer via
communication with adjacent processors. In our work, we
are using a forward–backward method with k = 1 and per-
forming the halo exchange after every time step, resulting in
m= p = 1. While we acknowledge that this may not be the
most efficient choice, our primary concern here is ensuring
equivalent computational and communicative workload be-
tween the Fortran and Julia MPI models. So, as long as this
parity is maintained, we consider our methodology satisfac-
tory.

As shown in Listing 3, implementing this parallelization
approach using the mpi.jl library (Byrne et al., 2021) neces-
sitates a few significant modifications. For instance, we ad-
just the simulation methods so that each process (or rank)

performs computations only for its assigned cells or edges.
We utilize the MPI communication channel (comm) to re-
ceive the updated values of the prognostic variables in a pro-
cessor’s halo region from the adjacent processors that ad-
vance these variables. Conversely, we transmit the updated
values of the prognostic variables from the outermost region
of the processor under consideration to the neighboring pro-
cessors, where these variables reside in the halo regions. Here
myCells and myEdges are the lists of cells and edges in
the local domain, owned by the rank running this code, plus
its halo.

3.5 CPU/MPI Fortran implementation

The baseline comparison code for this study is the Model
for Prediction Across Scales (MPAS-Ocean) (Ringler et al.,
2013; Petersen et al., 2015), which is written in Fortran with
MPI communication commands. It is the ocean component
of the Energy Exascale Earth System Model (E3SM, https:
//e3sm.org/, last access: 11 August 2023) (Golaz et al., 2019;
Petersen et al., 2019), the climate model developed by the US

https://doi.org/10.5194/gmd-16-5539-2023 Geosci. Model Dev., 16, 5539–5559, 2023

https://e3sm.org/
https://e3sm.org/

5546 S. Bishnu, R. R. Strauss, et al.: Julia for geophysical fluid dynamics

Listing 3. Julia example for CPU with MPI.

Department of Energy. In this study, the code is reduced from
a full ocean model solving the primitive equations to simply
solving for velocity and thickness (Eq. 1). Thus the majority
of the code is disabled, including the tracer equation, vertical
advection and diffusion, the equation of state, and all param-
eterizations. In order to match the Julia simulations, we em-
ploy a forward–backward time-stepping scheme, exchange
one-cell-wide halos after each time step, compute 100 layers
in the vertical array dimension, and use the identical Carte-
sian hexagon-mesh domains (Petersen et al., 2022).

MPAS-Ocean is an excellent comparison case for Julia be-
cause it is a well-developed code base that uses Fortran and
MPI, which have been standard for computational physics
codes since the late 1990s. The highest-resolution simula-
tions in past studies used over 3 million horizontal mesh cells
and 80 vertical layers, scale well to tens of thousands of pro-
cessors (Ringler et al., 2013), and have been used for detailed

climate simulations (Caldwell et al., 2019). MPAS-Ocean in-
cludes OpenMP for within-node memory access and is cur-
rently adding OpenACC for GPU computations, but these
were not used for this comparison to Julia-MPI on a CPU
cluster.

3.6 Single-core CPU Python implementation

Apart from MPAS-Ocean, we examine the performance of
the Julia shallow water code relative to a single-core, object-
oriented Python code (Bishnu, 2022) that utilizes NumPy.
This Python code employs two types of spatial discretiza-
tions to solve the rotating shallow water system of equa-
tions: the TRiSK-based mimetic finite-volume method used
in MPAS-Ocean and a discontinuous Galerkin spectral el-
ement method (DGSEM). Moreover, it supports various
predictor–corrector and multistep time-stepping methods, in-

Geosci. Model Dev., 16, 5539–5559, 2023 https://doi.org/10.5194/gmd-16-5539-2023

S. Bishnu, R. R. Strauss, et al.: Julia for geophysical fluid dynamics 5547

cluding those previously scrutinized for ocean modeling in
Shchepetkin and McWilliams (2005).

The Julia shallow water code was first written by trans-
lating this Python code into Julia syntax. While the Julia
code was subsequently optimized for parallelization and en-
hanced performance, the Python code continued to evolve
as a platform to conduct a suite of shallow water test cases
for the barotropic solver of ocean models. Each test case
in the Python code verifies a specific subset of terms in
the prognostic momentum and continuity equations, such as
the linear SSH gradient term, linear constant or variable-
coefficient Coriolis and bathymetry terms, and nonlinear ad-
vection terms. Bishnu et al. (2022) and Bishnu (2021) of-
fer an in-depth exploration of these test cases, discussing
the numerical implementation, time evolution of the numer-
ical error for both spatial discretizations and a subset of the
time-stepping methods, and the results of convergence stud-
ies with refinement in both space and time, only in space, and
only in time. However, for the purposes of the present study,
only the linear coastal Kelvin wave and inertia-gravity wave
test cases were implemented in the Julia code.

Though not leveraged in this study, several libraries ex-
ist for enhancing Python performance across various archi-
tectures, including Numba and PyCuda for GPUs, mpi4py
for CPU clusters, and Cython for single-CPU acceleration.
Numba, an open-source Anaconda-sponsored project (Lam
et al., 2015), serves as a NumPy-aware optimizing JIT com-
piler. It translates Python functions into swift machine code
at runtime, employing the robust LLVM compiler library. Py-
CUDA (Klöckner et al., 2012), which is structured in C++
(at its foundational layer) and Python, facilitates access to
Nvidia’s CUDA parallel computation API within Python.
Lastly, mpi4py (Dalcín et al., 2005, 2008) offers Python
bindings for the universally recognized Message Passing In-
terface (MPI) standard.

Another option involves “cythonizing” an existing Python
code by introducing static type declarations and class at-
tributes, which can subsequently be converted to C/C++
code and to C-extensions for Python. Cython is an op-
timizing static compiler designed to yield C-like perfor-
mance from Python code with supplemental C-inspired syn-
tax. Once cythonized, these codes can further be accelerated
on GPUs using Nvidia’s HPC C++ compiler and the C++
standard parallelism (stdpar) for GPUs (Srinath, 2022). How-
ever, the effort required for such extensive modifications and
enhancements to bring GPU-accelerated C++ algorithms to
Python may not always justify the time investment. As we
will illustrate in subsequent sections, a serial Julia code al-
ready rivaling the performance of fast compiled languages re-
quires fewer modifications for GPU or multicore paralleliza-
tion. This makes Julia a more convenient choice for high-
performance scientific computing applications compared to
Python.

3.7 Hardware and compiler specifications

Multicore CPU and GPU simulations were conducted on
Perlmutter at the National Energy Research Scientific Com-
puting Center (NERSC). In June 2022 Perlmutter achieved
70.9 PFLOPS using 1520 compute nodes and was ranked
seventh on the top-500 list (Top 500, 2022). Perlmutter is
based on the HPE Cray Shasta platform. It is a heterogeneous
system comprised of both CPU-only AMD “Milan” nodes
and GPU-accelerated “Ampere” nodes, as detailed in Ta-
ble 1. The Ampere’s Nvidia A100 GPU is appropriate for this
study because it is designed for HPC workloads and double-
precision calculations. The Julia-MPI and Fortran-MPI tests
were both run with up to 64 ranks per node.

The software toolchain is as follows. Both Fortran and
Julia use the MPICH implementation of the Message Pass-
ing Interface (MPI). The Fortran compiler was GNU ver-
sion 11.2.0, with MPICH 3.4, which is packaged on
Perlmutter with the modules PrgEnv-gnu/8.3.3 and
cray-mpich/8.1.24. Multi-threading was disabled (no
OpenMP).

When running on a single node (up to 64 processes), we
experimented with both block and cyclic distributions (run
command srun - -distribution=block:block
versus srun - -distribution=cyclic:cyclic).
Note that a space was added for clarity, but the actual com-
mand uses two consecutive dashes. The block distribution
would be expected to reduce communication time because it
restricts processes to a single socket for 1 to 32 processes.
The cyclic distribution could speed computations because
processes are distributed equally across the two sockets.
In practice, there was little difference between the two
distributions. The figures show the block distribution. On
multi-node tests, we use 64 processes per node.

The Julia version is 1.8.3 with MPICH 4.0.2. The nec-
essary Julia packages are listed in Manifest.toml and
Project.toml. These packages can be installed by ex-
ecuting the following lines in the Julia console (opened by
running the Julia binary with no arguments) in the root direc-
tory of the MPAS_Ocean_Julia repository.

]activate .
instantiate

Subsequently, when running Julia with the flag
- -project=. in the root directory of the
MPAS_Ocean_Julia repository, all the necessary pack-
ages for the environment will be loaded in their appropriate
versions.

4 Results and discussion

We now present the results of the verification and perfor-
mance tests for our Julia model. The verification tests encom-
pass convergence plots for the spatial operators and the nu-
merical solution. Performance tests, on the other hand, reveal

https://doi.org/10.5194/gmd-16-5539-2023 Geosci. Model Dev., 16, 5539–5559, 2023

5548 S. Bishnu, R. R. Strauss, et al.: Julia for geophysical fluid dynamics

Table 1. Technical specifications for NERSC Perlmutter CPU and GPU nodes (NERSC, 2023).

CPU nodes GPU nodes

Overview 2× AMD EPYC 7763 (Milan) CPUs Single AMD EPYC 7763 (Milan) CPU
64 cores per CPU 64 cores per CPU
AVX2 instruction set Four NVIDIA A100 (Ampere) GPUs

Memory 512 GB of DDR4 memory total 256 GB of DDR4 DRAM

Communication 204.8 GB s−1 memory bandwidth per CPU 204.8 GB s−1 CPU memory bandwidth
40 GB of HBM per GPU with
1555.2 GB s−1 GPU memory bandwidth
12 3rd gen NVLink links between pairs of GPUs
25 GB s−1 direction for each link

PCIe 4.0 NIC-CPU connection PCIe 4.0 NIC-CPU connection
PCIe 4.0 GPU-CPU connection

1× HPE Slingshot 11 NIC 4 HPE Slingshot 11 NICs

Performance 39.2 GFlops per core (FP64) 19.5 GPU TFlops (FP32)
2.51 TFlops per socket (FP64) 9.7 GPU TFlops (FP64)
4 NUMA domains per socket (NPS = 4) 155.9 GPU TFlops (TF32, tensor)

311.9 GPU TFlops (FP16, tensor)
19.5 GPU TFlops (FP64, tensor)

Power 280 W thermal design power per CPU 400 W thermal design power per GPU

the speed-up attained by initially transforming the bench-
mark Python-CPU code into Julia-CPU code, performing ad-
ditional optimization on the Julia-CPU code, and ultimately
transitioning to the Julia-GPU code. We evaluate and com-
pare the performance metrics of the Julia-GPU code, the
Julia-MPI code, and the Fortran MPAS-Ocean code run on
a single node. Lastly, we provide scaling plots comparing the
Julia-MPI code with Fortran MPAS-Ocean, examining the
variation of the wall-clock times with the processor count for
two scenarios: strong scaling (maintaining the overall prob-
lem size constant) and weak scaling (preserving a constant
problem size per processor).

For Julia-GPU and Julia-MPI computations, we sequen-
tially measure wall-clock times for six samples, each com-
prising 10 time steps. Although not a pragmatic approach,
we execute the halo exchange for Julia-MPI (as detailed in
Sect. 3.4) and the GPU-to-CPU transfer for Julia-GPU af-
ter every time step. For 10 time steps, this leads to 10 al-
ternating computations and 10 MPI exchanges or GPU-to-
CPU data transfers per sample. Given the compilation la-
tency attributable to Julia’s just-in-time (JIT) compilation
and caching of machine code (for subsequent use) during
the initial function call (as elaborated in Sect. 2.1), the wall-
clock time for the first sample is significantly larger, as an-
ticipated. Consequently, we disregard the first sample as an
outlier, utilizing only the succeeding five samples to com-
pute the average wall-clock time. It is worth reiterating that
in a realistic ocean model, an adequately large halo layer is
designed to reduce the frequency of halo exchanges and min-
imize communication overhead. Similarly, when running an

ocean model on a GPU, GPU-to-CPU data transfers are re-
quired only when solution outputs are written to disk files.

4.1 Model verification

Both serial and parallel implementations of the shallow wa-
ter model, as discussed in the preceding section, were ver-
ified for accuracy through convergence tests against exact
solutions. We were able to achieve the anticipated second-
order convergence of the various TRiSK-based spatial op-
erators on a uniform planar hexagonal MPAS-Ocean mesh.
These operators included gradient, divergence, curl, and the
flux-mapping operator used to interpolate the tangential ve-
locities from the normal velocities (Fig. 1). These operators
are formulated as shown in Figure 3 of Ringler et al. (2010).
Once the operator tests were complete, the linearized shal-
low water equations were verified against exact solutions for
the coastal Kelvin wave and inertia-gravity wave cases, as
described in Bishnu et al. (2022) and Bishnu (2021). With
refinement in both space and time, we observe the expected
first-order convergence of the numerical solution (Fig. 1),
spatially discretized with the second-order TRiSK scheme
and advanced with the first-order forward–backward time-
stepping method (Bishnu, 2021).

4.2 Acceleration of Julia with typing optimizations

The first comparisons were made between the Julia serial
CPU version and the reference Python CPU code, as outlined
in Tables 2 and 3. The initial serial development and testing
were conducted on an Intel Cascade Lake platform equipped

Geosci. Model Dev., 16, 5539–5559, 2023 https://doi.org/10.5194/gmd-16-5539-2023

S. Bishnu, R. R. Strauss, et al.: Julia for geophysical fluid dynamics 5549

Figure 1. The first two rows show convergence plots of the TRiSK-based spatial operators for the newly developed Julia code. Tests were
run with both CPU and GPU implementations, and identical results were obtained. The slope of −2 indicates the expected second-order
convergence. The third row shows a snapshot of the inertia-gravity wave test case and the convergence plot of the numerical solution with
refinement in both space and time.

https://doi.org/10.5194/gmd-16-5539-2023 Geosci. Model Dev., 16, 5539–5559, 2023

5550 S. Bishnu, R. R. Strauss, et al.: Julia for geophysical fluid dynamics

Table 2. Wall-clock duration (seconds) of performing 10 time steps
with 100 layers on an Intel Cascade Lake CPU.

128× 128 256× 256 512× 512

Python, CPU 3.08× 103 1.31× 104 4.96× 104

Julia, CPU-serial 2.25× 102 8.64× 102 3.86× 103

(unoptimized)
Julia, CPU-serial 1.12× 101 7.43× 101 3.33× 102

(optimized)

with an Intel Xeon processor. The performance tests detailed
in this section and subsequent ones involve advancing the lin-
ear shallow water equations on a planar hexagonal mesh with
100 vertical layers. These equations incorporate the coastal
Kelvin wave’s exact solution to specify the initial and bound-
ary conditions. All codes use double-precision (8-byte) real
numbers, and performance tests do not include the time for
initialization, input/output, or generating plots.

In its primary state, the single-core CPU Julia code, even
without specific optimizations, outperformed Python by a
factor of 13. Despite both Julia and Python being dynami-
cally typed, Julia gains a notable computational edge through
its ability to infer types at runtime, perform JIT (just-in-
time) compilation, and cache and directly manipulate ma-
chine code (Sect. 2.1).

Following the initial development phase in Julia, further
effort was put into optimization, which led to a 10–20×
speed-up for the CPU-serial code. These enhancements in-
volved optimization for memory management by identi-
fying and curtailing unnecessary allocations that substan-
tially increased runtime, along with minimizing Any and
Abstract types in favor of concrete types in function defi-
nitions (Sect. 2.3), and specifying or parameterizing the types
of fields within structs. Detailed explanations of some of
these improvements, accompanied by illustrative code snip-
pets, can be found in Sect. 5.

In order to effectively compare CPU and GPU times, one
must first decide which architectures can provide a fair com-
parison. We chose to conduct tests on Perlmutter, with single-
node CPU performance using 64 cores compared to the as-
sociated single-node GPU performance on the same ma-
chine. The results depicted in Fig. 2 indicate similar wall-
clock times, with Julia-GPU times being 2–3 times slower
than Julia-MPI times. Fortran-MPI speeds were comparable
to Julia-GPU for larger problem sizes but faster for smaller
domains. The similarity of the full-node CPU and GPU tim-
ings is rather surprising, given the architectural differences.
The listed performance for the A100 is 9.7 TFlops for 64-bit
floats, while the AMD EPYC 7763 delivers 39.2 GFlops per
core, resulting in a total of 2.5 TFlops for 64 cores. Based on
these manufacturer specifications, we would expect the A100
to perform faster.

Table 3. Increase in runtime compared to the optimized CPU-serial
Julia version at the same resolution.

128× 128 256× 256 512× 512

Python, CPU 274 177 149
Julia, CPU-serial 20 12 12
(unoptimized)
Julia, CPU-serial 1 1 1
(optimized)

4.3 Julia-MPI versus Fortran-MPI

Julia and Fortran codes were compared on multi-node CPU
clusters, where both used MPI for communication between
processors. Comparisons were made with domains of 128,
256, and 512 squared grid cells solving the shallow water
equations. All timing tests were conducted for 10 time steps
and repeated 12 times on each processor count, spanning 2
to 2048 processors by powers of 2. The vertical dimension
included 100 layers to mimic ocean model arrays and pro-
vide sufficient computational work on each processor. Sep-
arate timers report on computational work versus MPI com-
munication within the time-stepping routine. The I/O, initial-
ization, and finalization time is excluded.

We compared the Julia and Fortran models with both
strong and weak scaling. In strong scaling, the same problem
size (the mesh size and number of time steps to simulate)
is run with a varying degree of parallelization. In weak scal-
ing, the problem size scales with the degree of parallelization
such that the problem size allotted to each process is con-
stant. In both, the duration of time it takes to complete the
simulation is the dependent variable and the number of pro-
cessors used for the simulation is the independent variable.
This is additionally separated out into three columns: the to-
tal time to simulate the problem, the time spent on just the
computation (the mathematical implementation of the equa-
tion set), and the time spent on just communicating the nec-
essary data between processes.

The strong scaling for hexagonal meshes of 128× 128,
256× 256, and 512× 512 cells is shown in Fig. 3. In strong
scaling, we expect a downwards trend of computation time
with the number of processors, often giving way to a flat-
ter behavior at high enough processor counts where commu-
nication time dominates. We indeed observe this trend with
both the Julia and Fortran implementations. In the total time
column, we see that Julia and Fortran match very closely
at lower processor counts, taking almost identical time to
run. In the middle range of processor counts (16–128), For-
tran takes more time than Julia. At higher processor counts,
particularly with the 128× 128 and 256× 256 meshes, Ju-
lia tends to become slower than Fortran, no longer scaling as
efficiently. In the computation-only column, we see that Ju-
lia is actually faster than Fortran across the board. But due to
the necessary communication time (which is the dominant ef-

Geosci. Model Dev., 16, 5539–5559, 2023 https://doi.org/10.5194/gmd-16-5539-2023

S. Bishnu, R. R. Strauss, et al.: Julia for geophysical fluid dynamics 5551

Figure 2. Wall-clock time comparison between single-node GPU and single-node CPU (64 cores) on Perlmutter for six resolutions. Panel
(a) shows total simulation time, and (b) shows time spent on computation only. Panel (c) shows time spent on communication between
MPI processes for MPI runs or between CPU and GPU for the GPU run. Error bars show the minimum and maximum number of collected
samples.

fect at higher process counts where insufficient work is being
done by each processor) the Julia implementation is not as
efficient at high processor counts as the communication time
does not decrease with greater parallelization like it does for
Fortran (right column.)

The weak scaling with 64, 128, and 256 cells per process is
shown in Fig. 4. The rows here do not represent distinct mesh
resolutions like in Fig. 3. Mesh size instead varies with the
number of processors (resolution changes along the x axis).
In weak scaling, we expect an initially increasing trend of
computation time increasing with the number of processors
due to the more communication required with more proces-
sors, giving way to a flat behavior as the communication time
reaches its maximum and computation is constant. Indeed,
we observe a very flat behavior in the computation-only col-
umn. Julia again is better across the board, while Fortran is
slower in the middle range of process counts. In communica-
tion, we see Julia and Fortran increase as expected, although
Fortran communication time levels out sooner, while Julia is
slower at communication with higher process counts, like we
observed in strong scaling.

For both languages computation time scales well, decreas-
ing at close to perfect scaling with the processor count, while
communication time does not and so progressively requires
a much larger fraction of time at higher processor counts
(Fig. 5). Once computations are optimized, communication,
which is fixed by the interconnect speed, will remain a bot-
tleneck regardless of the language (see, e.g., Koldunov et al.,
2019).

As another way of measuring scaling, we keep the compu-
tational resources constant, using one node (64 processes) to
compare simulation time of various mesh sizes (as shown in
Fig. 2). Here it is appropriate to also compare the GPU imple-
mentation with Julia since this represents a fixed-size com-
putational resource. We observe an increasing trend for the

Julia-MPI, Fortran-MPI, and Julia-GPU implementations,
which we expect for an increasing problem size with con-
stant computational power. In the middle plot, Julia-MPI and
Fortran-MPI closely align, but Julia-GPU takes more time at
smaller mesh sizes before eventually matching the MPI mod-
els. Launching a GPU kernel incurs some time cost. Unlike
MPI, the GPU does not need to communicate data between
threads, relying instead on shared memory. However, at some
stage, the data generated by the computation must be trans-
ferred back to the main memory to utilize the results, whether
for writing them to disk or further processing. Therefore, we
measure this memory movement and contrast it with MPI
time. It is vital to recognize that the frequency of this mem-
ory movement can vary significantly depending on the ap-
plication. Unlike the regular MPI communication, required
every few time steps to exchange information in the halo lay-
ers, this transfer might only occur infrequently. If only the
final state of the model is crucial and intermediate steps do
not necessitate recording, this communication time could be
bypassed, potentially rendering the GPU more efficient for
such scenarios.

It is notable that a mass-parallel shared-memory-based ar-
chitecture such as a GPU is similar to communication-based
CPU parallelization over a full node, as shown in Fig. 2. For
higher resolutions with sufficient work, both the compute
time (middle panel) and communication time (right panel)
are 2–3 times slower for Julia-GPU than Julia-MPI. Based
on the technical specifications in Table 1, the computational
time on the GPU would be expected to be nearly 4 times
less than a CPU node. The GPU has a reported performance
of 9.7 TFlops for 64-bit floating-point operations, while the
CPU is 2.51 per CPU core (39.2 GFlops per core, with 64
cores). Likewise, the memory bandwidth for the GPUs is
nearly 8 times faster (1555.2 GB s−1 for the GPU versus
204.8 GB s−1 for the CPU). Identifying the exact reasons be-

https://doi.org/10.5194/gmd-16-5539-2023 Geosci. Model Dev., 16, 5539–5559, 2023

5552 S. Bishnu, R. R. Strauss, et al.: Julia for geophysical fluid dynamics

hind the slower-than-anticipated performance of our Julia-
GPU code is challenging, but several potential factors may
be at play.

a. Shared-memory communication with MPI: when using
MPI within a single multicore node, shared memory can
be leveraged for communication, bypassing the com-
plexity of network protocols. Unlike OpenMP, which
automatically shares data between threads, MPI main-
tains private memory for each process. Transferring data
between processes requires explicit message passing.
However, shared-memory communication on the same
node can be substantially faster, as it reduces protocol
overhead and limits memory copies. Moreover, commu-
nication within a single node typically exhibits lower
latency, minimizing the time taken to initiate and com-
plete communication events.

b. GPU transfer overheads: GPU computing, on the other
hand, requires every host-to-device or device-to-host
transfer to proceed over the Peripheral Component In-
terconnect Express (PCIe) bus, introducing overheads
and bandwidth limitations that can become bottlenecks,
especially for frequent, small transfers. Therefore, it
is plausible that frequent data transfers between MPI
processes within a single node may be more efficient
than equivalent transfers between a host and a GPU
device. Given the same number of host–device and
inter-process communications, the additional overhead
of host–device transfers in the GPU code can accumu-
late.

c. GPU computation overheads: the computational phase
on the GPU could be hampered by the overhead associ-
ated with launching GPU kernels. For a smaller problem
sizes, this overhead becomes more pronounced, poten-
tially underutilizing the GPU if some cores remain idle.

d. Unstructured-mesh memory layout: if the code involves
scattered memory accesses or neglects memory coa-
lescing (where consecutive threads access consecutive
memory locations), it can hinder efficient use of mem-
ory bandwidth, decelerating the computation signifi-
cantly. Unstructured meshes inherently have a noncon-
tiguous memory layout for neighboring elements. Such
irregular and unpredictable memory access patterns can
hinder the efficient use of the GPU’s memory hierarchy.

e. Optimization challenges with Julia-GPU code: crafting
optimal GPU code using CUDA in Julia demands a deep
grasp of the GPU hardware architecture, the CUDA pro-
gramming paradigm, and Julia’s GPU programming ca-
pabilities. The standard methods in our code may not
fully harness the GPU’s potential, leaving room for fur-
ther performance optimization.

In summary, a combination of these factors could be in-
fluencing the observed performance dynamics between our
CPU and GPU codes.

5 Optimization tips for Julia developers

Julia serves the dual purpose of a prototyping language and
a production language. It allows for the creation of code that
is quick to write but slower in performance, although it is
still considerably faster than other interpreted languages, as
evidenced by our comparison with Python, for conceptual
demonstration. Additionally, with a bit more time invest-
ment and thoughtful construction, it is possible to develop
highly optimized code that achieves performance compara-
ble to compiled languages like Fortran.

In Julia, it is the types of objects, not their values, that
the compiler leverages to construct efficient machine code.
This means, barring a few specific scenarios (as outlined in
Sect. 2.4), that Julia can carry out extensive type inference
and generate highly optimized code without requiring ex-
plicit type declarations for variables.

Nevertheless, there are situations where type declarations
can significantly enhance performance. A prime example is
a struct containing fields with abstract types or containers.
A more efficient approach in such cases, however, would be
to transform these structs into parametric ones, a process de-
tailed in Sect. 2.5. Let us consider an example in the context
of our Julia-CPU and Julia-GPU codes.

In the first (unoptimized) iteration of the CPU code, we
omitted specific array type declarations, allowing Julia to as-
sign the default Any type.

struct MPAS_Ocean
layerThickness
normalVelocity
...

end

By subsequently modifying these variables to be explicitly
typed as two-dimensional arrays of floating-point numbers,
we witnessed a substantial boost in performance.

struct MPAS_Ocean
layerThickness::Array{Float64, 2}
normalVelocity::Array{Float64, 2}
...

end

In the process of parallelizing our code for GPU execu-
tion, we employed a different array type, CUDA.CuArray,
specifically designed for GPU workloads. Our first ap-
proach was to create an abstract array type that could
encapsulate both CPU and GPU data types. This al-
lowed CUDA.CuArrays and regular Arrays to be used
interchangeably, enabling the model to operate on ei-
ther the GPU or CPU as required. Additionally, we

Geosci. Model Dev., 16, 5539–5559, 2023 https://doi.org/10.5194/gmd-16-5539-2023

S. Bishnu, R. R. Strauss, et al.: Julia for geophysical fluid dynamics 5553

Figure 3. Strong scaling plots for three resolutions: 1282, 2562, and 5122 (rows). Panels (a, d, g) show total simulation time, (b, e, h) show
time spent on computation only, and (c, f, i) show time spent on communication between MPI processes. Error bars show the minimum and
maximum number of collected samples.

https://doi.org/10.5194/gmd-16-5539-2023 Geosci. Model Dev., 16, 5539–5559, 2023

5554 S. Bishnu, R. R. Strauss, et al.: Julia for geophysical fluid dynamics

Figure 4. Weak scaling plots, where the problem size per processor is held fixed at 64, 128, and 256 cells (rows). Panels (a, d, g) show total
simulation time, (b, e, h) show time spent on computation only, and (c, f, i) show time spent on communication between MPI processes.
Error bars show the minimum and maximum number of collected samples.

imposed a parametric constraint on the array contents
(F <: AbstractFloat), signifying that any subtype of
the abstract floating-point type could be passed at runtime.

struct MPAS_Ocean{F <: AbstractFloat}
layerThickness::AbstractArray{F, 2}
normalVelocity::AbstractArray{F, 2}

...
end

While this strategy may appear efficient because types are
declared before runtime, the use of abstract types, akin to the
Any type, can actually hinder execution speed (Sect. 2.3).
At runtime, these types could be different subtypes of the
abstract type, like CUDA.CuArray or Array. This means

Geosci. Model Dev., 16, 5539–5559, 2023 https://doi.org/10.5194/gmd-16-5539-2023

S. Bishnu, R. R. Strauss, et al.: Julia for geophysical fluid dynamics 5555

Figure 5. Comparison of the proportion of time spent on computation (blue) versus communication (red) in Julia-MPI (a) and Fortran-
MPI (b) on the 512×512 hexagonal mesh with 100 layers. The relative time spent in communication increases dramatically at high processor
counts since the computation time decreases with more parallelization.

that the specific methods to be used for these types cannot be
determined at compile time, leading to missed optimizations,
additional dynamic dispatch, and diminished performance.

An alternative would be creating two distinct struct defini-
tions depending on whether we are targeting GPUs or CPUs.

struct MPAS_Ocean_CUDA{F <: AbstractFloat}

layerThickness::CUDA.CuArray{F, 2}
normalVelocity::CUDA.CuArray{F, 2}
...

end

struct MPAS_Ocean{F <: AbstractFloat}
layerThickness::Array{F, 2}
normalVelocity::Array{F, 2}
...

end

In this approach, we are explicitly defining the types of
the arrays which can contribute to significant performance
enhancement. However, this rigid struct definition sacrifices
the flexibility of dynamically switching between CPU and
GPU execution and also requires additional lines of code for
each struct definition.

A superior solution involves parameterizing both the array
type and its element type within the struct definition. This
empowers the compiler to infer the concrete type of fields
at compile time and optimize the code accordingly for the
specific array and element types.

struct MPAS_Ocean{A<:AbstractArray
{<:AbstractFloat, 2}}

layerThickness::A
normalVelocity::A

...
end

We discovered that either of these modifications resulted
in a computation speed-up by a factor of 34.

The aforementioned examples underscore the importance
of parametric structs in Julia, which enable greater type flex-
ibility and optimize computational performance. Julia’s just-
in-time compiler processes functions individually, compil-
ing each for specific input types upon initial invocation and
subsequently recompiling for novel types. Despite potential
type instability in higher-level code, type stability is achieved
within the numerical kernels, the computation-intensive core
of the code, as specific types become increasingly defined.
This is where parametric structs play a crucial role. By en-
capsulating variables of undefined types within nested func-
tion calls, they carry type uncertainty all the way down the
call stack, thereby preserving type flexibility until the point
of actual computation. Thus, the struct’s type can adapt as
necessary for the specific computational context it is used
within. This functionality allows parametric structs to en-
hance both code flexibility and runtime efficiency, key ad-
vantages of Julia’s multi-paradigm design.

A pivotal strategy in enhancing the performance of Julia
code, we discovered, lies in minimizing memory allocations.
Excessive memory allocation can drastically impede code
execution, and it is often not readily apparent when seem-
ingly trivial operations are the culprits of unnecessary mem-
ory allocation. To illustrate, consider the act of extracting a
pair of values from a two-column array.

cell1Index, cell2Index = cellsOnEdge
[:,iEdge]

https://doi.org/10.5194/gmd-16-5539-2023 Geosci. Model Dev., 16, 5539–5559, 2023

5556 S. Bishnu, R. R. Strauss, et al.: Julia for geophysical fluid dynamics

Surprisingly, this operation can lead to considerable mem-
ory allocation. In one particular test, this single line – re-
current throughout the simulation – was found to allocate as
much as 408 KiB. This is due to the creation of a tuple rather
than a direct extraction of each column into the respective
scalar variables. By dividing the operation into two distinct
lines, thus bypassing tuple or array creation,

cell1Index = cellsOnEdge[1,iEdge],
cell2Index = cellsOnEdge[2,iEdge],

we successfully reduce memory allocations to zero. This
modification causes the operation to be nearly instantaneous,
reducing the total time spent on the entire tendency calcula-
tion by 50 %, from 198 to 99 µs.

One’s Julia code can potentially harbor many such covert
operations, contributing significantly to slower performance.
Additionally, even a single struct with abstract types or con-
tainers as fields can notably hamper execution speed. For-
tunately, Julia provides the @code_warntype tool for
quickly identifying such memory-intensive lines.

@code_warntype calculate_normal_
velocity_tendency!(mpas)

It color-codes non-concrete types and memory allocations
in red, thereby directing users precisely to the lines and
fields that require optimization. This singular feature ele-
vates Julia’s utility for high-performance applications, sub-
stantially accelerating the development time needed to opti-
mize a model’s performance.

Another valuable tool in the Julia optimization arsenal is
- -track-allocations, a command line option that
can be appended to any Julia execution.

$ julia - -track-allocations=user
./anyJuliascript.jl

This generates a new file at
./anyJuliascript.jl.XXX.mem (where XXX
represents a unique identifier). This file presents each line
of the script, prefixed by the amount of memory alloca-
tions generated by that line, providing a comprehensive
line-by-line overview of where allocations occur.

6 Conclusions

As new programming languages and libraries become avail-
able, it is important for model developers to learn new tech-
niques and evaluate them against their current methods. This
is particularly true as computing architectures continue to
evolve, and long-standing languages such as C/C++ and For-
tran require additional libraries to remain competitive on new
supercomputers.

In this work, we created three implementations of a shal-
low water model in Julia in order to compare ease of de-
velopment and performance to standard Fortran and Python

implementations. The three Julia codes were designed for
single-CPU, GPU, and parallelized multicore CPU architec-
tures. Julia-MPI speeds were identical to Fortran-MPI at low
core counts, 2 times faster for midrange, and 2 times slower
at higher core counts. Julia-MPI exhibited better scaling than
Fortran-MPI for computation-only times and more variabil-
ity for communication times.

Julia-GPU performed very similarly to Julia-MPI, despite
these implementations being based on not only vastly dif-
ferent architectures but also entirely different parallelization
paradigms (shared memory versus communication). Based
on the hardware specifications, we expected the GPU ver-
sion to run faster than the full-node CPU version. The lower-
than-expected performance of the Julia-GPU code on a sin-
gle node can be ascribed to several intrinsic factors, such
as shared-memory utilization with MPI, overheads in GPU
computation and transfer, and noncontiguous memory lay-
outs in unstructured meshes. GPU codes are particularly
challenging for applications with large domains. Once sim-
ulations run on multiple nodes, the constraining factor is the
inter-node (MPI) communication. This is true whether the
computations within each node are mostly on the CPU or
GPU. For high-resolution applications, the primary goal of
GPU-enabled codes is to offload the majority of the com-
putations to the GPUs to take advantage of the computing
power in GPU-based architectures, even if total throughput
is limited by MPI communication.

The shallow water equations are simple enough for rapid
development and verification yet contain the salient features
of any ocean model: intensive computation of the tendency
terms, a time-stepping routine, and, for the parallel version,
interleaved halo communication of the partition boundary.
Indeed, this layout and the lessons learned here apply to al-
most all computational physics codes.

This work specifically tests unstructured horizontal
meshes, as opposed to structured quadrilateral grids. Un-
structured meshes refer to a neighbor’s index using additional
pointer arrays, so they require an extra memory access for
horizontal stencils. In structured grids, the physical neigh-
bors are also neighbors in array space (i+ 1, j + 1, etc.),
which leads to more contiguous memory access patterns that
are easier for compilers to optimize. Our results show that un-
structured meshes do not present any significant challenge in
either Fortran or Julia. The use of a structured vertical index
in the innermost position and testing with 100 layers provide
sufficient contiguous memory access for cache locality.

In the end, we were impressed by our experience with Ju-
lia. It did fulfill the promise of fast and convenient proto-
typing, with the ability to eventually run at high speeds on
multiple high-performance architectures – after some effort
and lessons learned by the developers. The Julia libraries for
MPI and CUDA were powerful and convenient. E3SM does
not have plans to develop model components with Julia, but
this study provides a useful comparison to our Fortran and

Geosci. Model Dev., 16, 5539–5559, 2023 https://doi.org/10.5194/gmd-16-5539-2023

S. Bishnu, R. R. Strauss, et al.: Julia for geophysical fluid dynamics 5557

C/C++ codes as we move towards heterogeneous, exascale
computers.

Code and data availability. Three code repositories were used for
the performance comparisons in this study. These are publicly avail-
able on both GitHub and Zenodo.

1. Julia shallow water code for serial CPU, CUDA-GPU, and
MPI-parallelized CPU

– GitHub: https://github.com/robertstrauss/MPAS_Ocean_
Julia (last access: 11 August 2023) (license: GNU General
Public License v3.0)

– Zenodo: https://doi.org/10.5281/zenodo.7493064 (Strauss,
2023) (license: Creative Commons Attribution 4.0 Interna-
tional)

2. Python Rotating Shallow Water Verification Suite

– GitHub: https://github.com/siddharthabishnu/Rotating_
Shallow_Water_Verification_Suite.git (last access:
11 August 2023) (license: LANL/UCAR*)
This study used the specific code version
https://github.com/siddharthabishnu/Rotating_Shallow_
Water_Verification_Suite/tree/v1.0.1 (last access: 11 Au-
gust 2023) (license: LANL/UCAR, https://github.com/
MPAS-Dev/MPAS-Model/blob/master/LICENSE).

– Zenodo: https://doi.org/10.5281/zenodo.7421135 (Bishnu,
2022) (license: BSD 3-Clause “New” or “Revised”)

3. Fortran-MPI MPAS shallow water code with Coastal Kelvin
wave initial condition (Petersen et al., 2022)

– GitHub: https://github.com/MPAS-Dev/MPAS-Model
(last access: 11 August 2023) (license: LANL/UCAR,
https://github.com/MPAS-Dev/MPAS-Model/blob/
master/LICENSE, last access: 11 August 2023)
This study used the specific code version
https://github.com/mark-petersen/MPAS-Model/releases/
tag/SW_julia_comparison_V1.0 (last access: 11 Au-
gust 2023).

– Zenodo: https://doi.org/10.5281/zenodo.7439134 (Pe-
tersen et al., 2022) (license: Creative Commons Attribu-
tion 4.0 International)

The planar hexagonal MPAS-Ocean meshes used in this study
for the numerical simulations and convergence tests of the coastal
Kelvin wave and the inertia-gravity wave can be obtained from the
Zenodo release of the Python Rotating Shallow Water Verification
Suite meshes at https://doi.org/10.5281/zenodo.7421135 (Bishnu,
2022).

In order to reproduce the figures in this paper, follow the instruc-
tions below.

1. Download the code for this project from (1)
above. Acquire the necessary mesh files from
https://doi.org/10.5281/zenodo.7421135 (Bishnu, 2022),
extract the zip file, and copy the following.

(a) “MPAS_Ocean_Shallow_Water_Meshes/MPAS_Ocean
_Shallow_Water_Meshes_Julia_Paper/InertiaGravity
WaveMesh/” directory into the MPAS_Ocean_Julia repos-
itory at path “MPAS_Ocean_Julia/”

(b) “MPAS_Ocean_Shallow_Water_Meshes/MPAS_Ocean
_Shallow_Water_Meshes_Julia_Paper/CoastalKelvinWave
Mesh/ConvergenceStudyMeshes/” directory
into the MPAS_Ocean_Julia repository at path
“MPAS_Ocean_Julia/MPAS_O_Shallow_Water/”

2. Reproduce the figures in this paper as follows.

(a) Figure 1: run the Jupyter notebooks “/Opera-
tor_testing.ipynb” to generate the data for the con-
vergence tests of the spatial operators and “/opera-
tor_convergence_plotting.ipynb” to create plots from this
data at “/output/operator_convergence/<operator>
/Periodic/<figure>.pdf”. Run the notebook “./Iner-
tiaGravityWaveConvergenceTest.ipynb” to generate
the numerical solution and convergence plot of the
inertia-gravity wave test case at “./output/simula-
tion_convergence/inertiagravitywave/Periodic/CPU/”.

(b) Figures 2, 3, 4, and 5: on a cluster with at least
128 nodes and 64 processes per node, use the script
“./run_scaling_16x_to_512x.sh” to run the perfor-
mance scaling tests on each mesh resolution starting
from 16× 16 all the way up to 512× 512. The
results will be saved in “./output/kelvinwave/reso-
lution<mesh size>/procs<maximum number of pro-
cessors>/steps10/nvlevels100/”. Run the notebook
“/GPU_performance.ipynb” on a node with an NVIDIA
graphics card to initiate the performance tests on the GPU.
Run the notebook “./scalingplots.ipynb” or the Julia script
“./scalingplots.jl” to generate the plots in the paper at
“/plots/<type>/<figure>.pdf”.

(c) Tables 2 and 3: run “./serial_julia_performance.jl” with
Julia to generate the timing data of the optimized Julia-
CPU code. Download the unoptimized version of the code
from https://github.com/robertstrauss/MPAS_Ocean_
Julia/tree/unoptimized or MPAS_Ocean_Julia-unopt.zip
from https://doi.org/10.5281/zenodo.7493064 (Strauss,
2023). Run the Julia script “./serial_julia_performance.jl”
in the directory of the unoptimized code. The re-
sults will be saved in text files at “./output/serial-
CPU_timing/coastal_kelvinwave/unoptimized/steps_10/
resolution_<mesh size>/” in the unop-
timized directory and “./output/serial-
CPU_timing/coastal_kelvinwave/steps_10/resolution_<
mesh size>/” in the main/optimized directory.

Author contributions. Code development, testing, and timing were
conducted by all authors. SB led the test case design and verifica-
tion. RRS led the data analysis and Julia optimization. The paper
was written cooperatively by all authors. MRP conceptualized the
project and acquired funding.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

https://doi.org/10.5194/gmd-16-5539-2023 Geosci. Model Dev., 16, 5539–5559, 2023

https://github.com/robertstrauss/MPAS_Ocean_Julia
https://github.com/robertstrauss/MPAS_Ocean_Julia
https://doi.org/10.5281/zenodo.7493064
https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite.git
https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite.git
https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite/tree/v1.0.1
https://github.com/siddharthabishnu/Rotating_Shallow_Water_Verification_Suite/tree/v1.0.1
https://github.com/MPAS-Dev/MPAS-Model/blob/master/LICENSE
https://github.com/MPAS-Dev/MPAS-Model/blob/master/LICENSE
https://doi.org/10.5281/zenodo.7421135
https://github.com/MPAS-Dev/MPAS-Model
https://github.com/MPAS-Dev/MPAS-Model/blob/master/LICENSE
https://github.com/MPAS-Dev/MPAS-Model/blob/master/LICENSE
https://github.com/mark-petersen/MPAS-Model/releases/tag/SW_julia_comparison_V1.0
https://github.com/mark-petersen/MPAS-Model/releases/tag/SW_julia_comparison_V1.0
https://doi.org/10.5281/zenodo.7439134
https://doi.org/10.5281/zenodo.7421135
https://doi.org/10.5281/zenodo.7421135
https://github.com/robertstrauss/MPAS_Ocean_Julia/tree/unoptimized
https://github.com/robertstrauss/MPAS_Ocean_Julia/tree/unoptimized
https://doi.org/10.5281/zenodo.7493064

5558 S. Bishnu, R. R. Strauss, et al.: Julia for geophysical fluid dynamics

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The authors extend their gratitude to the
anonymous reviewers, whose valuable insights and constructive
feedback were instrumental in elevating the quality and clarity of
this paper. Additionally, the authors recognize the beneficial in-
teractions with the CliMA team at Caltech and MIT, especially
Simon Byrne, Milan Klöwer, Valentin Churavy, Gregory Wag-
ner, Christopher Hill, Simone Silvestri, Navid Constantinou, An-
dre Souza, and Raffaele Ferrari, alongside the E3SM team spread
across multiple national laboratories within the United States. Their
significant input has enriched the manner in which the paper has
been articulated.

Financial support. Siddhartha Bishnu was supported by Scientific
Discovery through the Advanced Computing (SciDAC) projects
LEAP (Launching an Exascale ACME Prototype) and CANGA
(Coupling Approaches for Next Generation Architectures) under
the DOE Office of Science, Office of Biological and Environmen-
tal Research (BER). Robert R. Strauss received support from the
US Department of Energy (DOE) through the Los Alamos National
Laboratory (LANL) LDRD program and the Center for Nonlinear
Studies for this work. Mark R. Petersen was supported by the En-
ergy Exascale Earth System Model (E3SM) project, also funded by
the DOE BER.

This research used computational resources provided by the Dar-
win test bed at LANL, which is funded by the Computational
Systems and Software Environments sub-program of LANL’s Ad-
vanced Simulation and Computing program (NNSA/DOE); the
LANL Institutional Computing Program, which is supported by the
DOE National Nuclear Security Administration under contract no.
89233218CNA000001; and the National Energy Research Scien-
tific Computing Center, a DOE Office of Science User Facility sup-
ported by the Office of Science of the DOE under contract no. DE-
AC02-05CH11231.

Review statement. This paper was edited by Sylwester Arabas and
reviewed by two anonymous referees.

References

Besard, T., Foket, C., and De Sutter, B.: Effective Extensible Pro-
gramming: Unleashing Julia on GPUs, IEEE T. Parall. Distr., 30,
827–841, https://doi.org/10.1109/TPDS.2018.2872064, 2018.

Besard, T., Churavy, V., Edelman, A., and De Sutter, B.: Rapid soft-
ware prototyping for heterogeneous and distributed platforms,
Adv. Eng. Softw., 132, 29–46, 2019.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A
fresh approach to numerical computing, SIAM Rev., 59, 65–98,
2017.

Bishnu, S.: Time-Stepping Methods for Partial Dif-
ferential Equations and Ocean Models, Zenodo,
https://doi.org/10.5281/zenodo.7439539, 2021.

Bishnu, S.: Rotating Shallow Water Verification Suite, Zenodo
[code], https://doi.org/10.5281/zenodo.7421135, 2022.

Bishnu, S., Petersen, M., Quaife, B., and Schoonover,
J.: Verification Suite of Test Cases for the
Barotropic Solver of Ocean Models, under review,
https://doi.org/10.22541/essoar.167100170.03833124/v1,
2022.

Bleichrodt, F., Bisseling, R. H., and Dijkstra, H. A.: Accelerating a
barotropic ocean model using a GPU, Ocean Model., 41, 16–21,
https://doi.org/10.1016/j.ocemod.2011.10.001, 2012.

Byrne, S., Wilcox, L. C., and Churavy, V.: MPI. jl: Julia bindings for
the Message Passing Interface, in: Proceedings of the JuliaCon
Conferences, 1, 68, https://doi.org/10.21105/jcon.00068, 2021.

Caldwell, P. M., Mametjanov, A., Tang, Q., Van Roekel, L. P., Go-
laz, J. C., et al.: The DOE E3SM Coupled Model Version 1: De-
scription and Results at High Resolution, J. Adv. Model. Earth
Sy., 11, 4095–4146, https://doi.org/10.1029/2019MS001870,
2019.

Cushman-Roisin, B. and Beckers, J.-M.: Introduction to geophys-
ical fluid dynamics: physical and numerical aspects, Academic
press, ISBN 9780080916781, 2011.

Dalcín, L., Paz, R., and Storti, M.: MPI for Python, J. Parallel Distr.
Com., 65, 1108–1115, 2005.

Dalcín, L., Paz, R., Storti, M., and D’Elía, J.: MPI for Python: Per-
formance improvements and MPI-2 extensions, J. Parallel Distr.
Com., 68, 655–662, 2008.

Gevorkyan, M. N., Demidova, A. V., Korolkova, A. V., and
Kulyabov, D. S.: Statistically significant performance testing of
Julia scientific programming language, J. Phys Conf. Ser., 1205,
012017, https://doi.org/10.1088/1742-6596/1205/1/012017,
2019.

Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen,
M. R., Tang, Q., Wolfe, J. D., Abeshu, G., Anantharaj, V.,
Asay-Davis, X. S. and Bader, D. C.: The DOE E3SM Cou-
pled Model Version 1: Overview and Evaluation at Stan-
dard Resolution, J. Adv. Model. Earth Sy., 11, 2089–2129,
https://doi.org/10.1029/2018MS001603, 2019.

Jiang, J., Lin, P., Wang, J., Liu, H., Chi, X., Hao, H., Wang, Y.,
Wang, W., and Zhang, L.: Porting LASG/IAP Climate System
Ocean Model to Gpus Using OpenAcc, IEEE Access, 7, 154490–
154501, https://doi.org/10.1109/ACCESS.2019.2932443, 2019.

Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., and Fasih,
A.: PyCUDA and PyOpenCL: A Scripting-Based Approach to
GPU Run-Time Code Generation, Parallel Comput., 38, 157–
174, https://doi.org/10.1016/j.parco.2011.09.001, 2012.

Klöwer, M., Hatfield, S., Croci, M., Düben, P. D., and Palmer,
T. N.: Fluid Simulations Accelerated With 16 Bits: Approach-
ing 4x Speedup on A64FX by Squeezing ShallowWaters.jl
Into Float16, J. Adv. Model. Earth Sy., 14, e2021MS002684,
https://doi.org/10.1029/2021MS002684, 2022.

Koldunov, N. V., Aizinger, V., Rakowsky, N., Scholz, P., Sidorenko,
D., Danilov, S., and Jung, T.: Scalability and some opti-
mization of the Finite-volumE Sea ice–Ocean Model, Ver-
sion 2.0 (FESOM2), Geosci. Model Dev., 12, 3991–4012,
https://doi.org/10.5194/gmd-12-3991-2019, 2019.

Lam, S. K., Pitrou, A., and Seibert, S.: Numba: A llvm-based
python jit compiler, in: Proceedings of the Second Workshop on
the LLVM Compiler Infrastructure in HPC, November 2015, 1–
6, https://doi.org/10.1145/2833157.2833162, 2015.

Geosci. Model Dev., 16, 5539–5559, 2023 https://doi.org/10.5194/gmd-16-5539-2023

https://doi.org/10.1109/TPDS.2018.2872064
https://doi.org/10.5281/zenodo.7439539
https://doi.org/10.5281/zenodo.7421135
https://doi.org/10.22541/essoar.167100170.03833124/v1
https://doi.org/10.1016/j.ocemod.2011.10.001
https://doi.org/10.21105/jcon.00068
https://doi.org/10.1029/2019MS001870
https://doi.org/10.1088/1742-6596/1205/1/012017
https://doi.org/10.1029/2018MS001603
https://doi.org/10.1109/ACCESS.2019.2932443
https://doi.org/10.1016/j.parco.2011.09.001
https://doi.org/10.1029/2021MS002684
https://doi.org/10.5194/gmd-12-3991-2019
https://doi.org/10.1145/2833157.2833162

S. Bishnu, R. R. Strauss, et al.: Julia for geophysical fluid dynamics 5559

Lin, W.-C. and McIntosh-Smith, S.: Comparing Julia to Perfor-
mance Portable Parallel Programming Models for HPC, in: 2021
International Workshop on Performance Modeling, Benchmark-
ing and Simulation of High Performance Computer Systems
(PMBS), IEEE, St. Louis, MO, USA, 15 November 2021, 94–
105, https://doi.org/10.1109/PMBS54543.2021.00016, 2021.

NERSC: Perlmutter architecture specification, https://docs.nersc.
gov/systems/perlmutter/architecture/ (last access: 16 June 2023),
2023.

Norman, M., Lyngaas, I., Bagusetty, A., and Berrill, M.: Portable
C++ Code that can Look and Feel Like Fortran Code with Yet
Another Kernel Launcher (YAKL), Int. J. Parall. Prog., 51, 209–
230, https://doi.org/10.1007/s10766-022-00739-0, 2022.

Perkel, J. M.: Julia: come for the syntax, stay for the speed, Na-
ture, 572, 141–142, https://doi.org/10.1038/d41586-019-02310-
3, 2019.

Petersen, M. R., Jacobsen, D. W., Ringler, T. D., Hecht,
M. W., and Maltrud, M. E.: Evaluation of the Arbi-
trary Lagrangian–Eulerian Vertical Coordinate Method
in the MPAS-Ocean Model, Ocean Model., 86, 93–113,
https://doi.org/10.1016/j.ocemod.2014.12.004, 2015.

Petersen, M. R., Asay-Davis, X. S., Berres, A. S., Chen, Q.,
Feige, N., Hoffman, M. J., Jacobsen, D. W., Jones, P. W., Mal-
trud, M. E., Price, S. F., Ringler, T. D., Streletz, G. J., Turner,
A. K., Van Roekel, L. P., Veneziani, M., Wolfe, J. D., Wol-
fram, P. J., and Woodring, J. L.: An Evaluation of the Ocean
and Sea Ice Climate of E3SM Using MPAS and Interannual
CORE-II Forcing, J. Adv. Model. Earth Sy., 11, 1438–1458,
https://doi.org/10.1029/2018MS001373, 2019.

Petersen, M. R., Bishnu, S., and Strauss, R. R.: MPAS-
Ocean Shallow Water Performance Test Case, Zenodo [code],
https://doi.org/10.5281/zenodo.7439134, 2022.

Ramadhan, A., Wagner, G. L., Hill, C., Campin, J.-M., Chu-
ravy, V., Besard, T., Souza, A., Edelman, A., Ferrari, R., and
Marshall, J.: Oceananigans.jl: Fast and friendly geophysical
fluid dynamics on GPUs, J. Open Source Softw., 5, 2018,
https://doi.org/10.21105/joss.02018, 2020.

Ringler, T. D., Thuburn, J., Klemp, J. B., and Skamarock, W. C.:
A unified approach to energy conservation and potential vortic-
ity dynamics for arbitrarily-structured C-grids, J. Comput. Phys.,
229, 3065–3090, 2010.

Ringler, T. D., Petersen, M. R., Higdon, R. L., Jacobsen, D., Jones,
P. W., and Maltrud, M.: A multi-resolution approach to global
ocean modeling, Ocean Model., 69, 211–232, 2013.

Shchepetkin, A. F. and McWilliams, J. C.: The regional
oceanic modeling system (ROMS): a split-explicit, free-surface,
topography-following-coordinate oceanic model, Ocean Model.,
9, 347–404, 2005.

Srinath, A.: Accelerating Python on GPUs with
nvc++ and Cython, https://developer.nvidia.com/blog/
accelerating-python-on-gpus-with-nvc-and-cython/ (last
access: 13 December 2022), 2022.

Strauss, R. R.: Layered Shallow Water Model in Julia, Implemen-
tation on CPU, GPU, and Cluster Hardware, and Performance
Tests, Zenodo [code], https://doi.org/10.5281/zenodo.7493064,
2023.

Top 500: Top 500 the list, https://www.top500.org/lists/top500/
2022/06 (last access: 16 June 2023), 2022.

Thuburn, J., Ringler, T. D., Skamarock, W. C., and Klemp, J. B.:
Numerical representation of geostrophic modes on arbitrarily
structured C-grids, J. Comput. Phys., 228, 8321–8335, 2009.

Trott, C. R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang,
V., Ellingwood, N., Gayatri, R., Harvey, E., Hollman, D. S.
and Ibanez, D.: Kokkos 3: Programming Model Extensions
for the Exascale Era, IEEE T. PARALL. Distr., 33, 805–817,
https://doi.org/10.1109/TPDS.2021.3097283, 2022.

Xu, S., Huang, X., Oey, L.-Y., Xu, F., Fu, H., Zhang, Y., and
Yang, G.: POM.gpu-v1.0: a GPU-based Princeton Ocean Model,
Geosci. Model Dev., 8, 2815–2827, https://doi.org/10.5194/gmd-
8-2815-2015, 2015.

Zhao, X.-D., Liang, S.-X., Sun, Z.-C., Zhao, X.-Z., Sun,
J.-W., and Liu, Z.-B.: A GPU accelerated finite vol-
ume coastal ocean model, J. Hydrodyn., 29, 679–690,
https://doi.org/10.1016/S1001-6058(16)60780-1, 2017.

https://doi.org/10.5194/gmd-16-5539-2023 Geosci. Model Dev., 16, 5539–5559, 2023

https://doi.org/10.1109/PMBS54543.2021.00016
https://docs.nersc.gov/systems/perlmutter/architecture/
https://docs.nersc.gov/systems/perlmutter/architecture/
https://doi.org/10.1007/s10766-022-00739-0
https://doi.org/10.1038/d41586-019-02310-3
https://doi.org/10.1038/d41586-019-02310-3
https://doi.org/10.1016/j.ocemod.2014.12.004
https://doi.org/10.1029/2018MS001373
https://doi.org/10.5281/zenodo.7439134
https://doi.org/10.21105/joss.02018
https://developer.nvidia.com/blog/accelerating-python-on-gpus-with-nvc-and-cython/
https://developer.nvidia.com/blog/accelerating-python-on-gpus-with-nvc-and-cython/
https://doi.org/10.5281/zenodo.7493064
https://www.top500.org/lists/top500/2022/06
https://www.top500.org/lists/top500/2022/06
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.5194/gmd-8-2815-2015
https://doi.org/10.5194/gmd-8-2815-2015
https://doi.org/10.1016/S1001-6058(16)60780-1

	Abstract
	Introduction
	Julia in a nutshell
	Just-in-time compilation
	Function, method, and multiple dispatch
	Type hierarchy
	Type inference
	Struct

	Methods
	Equation set and TRiSK-based spatial discretization
	Single-core CPU Julia implementation
	SIMD GPU Julia implementation
	CPU/MPI Julia implementation
	CPU/MPI Fortran implementation
	Single-core CPU Python implementation
	Hardware and compiler specifications

	Results and discussion
	Model verification
	Acceleration of Julia with typing optimizations
	Julia-MPI versus Fortran-MPI

	Optimization tips for Julia developers
	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

