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Abstract. This study enhances an existing global hydrolog-
ical model (GHM), Xanthos, by adding a new water man-
agement module that distinguishes between the operational
characteristics of irrigation, hydropower, and flood control
reservoirs. We remapped reservoirs in the Global Reser-
voir and Dam (GRanD) database to the 0.5◦ spatial reso-
lution in Xanthos so that a single lumped reservoir exists
per grid cell, which yielded 3790 large reservoirs. We im-
plemented unique operation rules for each reservoir type,
based on their primary purposes. In particular, hydropower
reservoirs have been treated as flood control reservoirs in
previous GHM studies, while here, we determined the op-
eration rules for hydropower reservoirs via optimization that
maximizes long-term hydropower production. We conducted
global simulations using the enhanced Xanthos and validated
monthly streamflow for 91 large river basins, where high-
quality observed streamflow data were available. A total of
1878 (296 hydropower, 486 irrigation, and 1096 flood con-
trol and others) out of the 3790 reservoirs are located in the
91 basins and are part of our reported results. The Kling–
Gupta efficiency (KGE) value (after adding the new water
management) is ≥ 0.5 and ≥ 0.0 in 39 and 81 basins, re-
spectively. After adding the new water management mod-
ule, model performance improved for 75 out of 91 basins and
worsened for only 7. To measure the relative difference be-
tween explicitly representing hydropower reservoirs and rep-
resenting hydropower reservoirs as flood control reservoirs

(as is commonly done in other GHMs), we use the normal-
ized root mean square error (NRMSE) and the coefficient
of determination (R2). Out of the 296 hydropower reser-
voirs, the NRMSE is > 0.25 (i.e., considering 0.25 to rep-
resent a moderate difference) for over 44 % of the 296 reser-
voirs when comparing both the simulated reservoir releases
and storage time series between the two simulations. We
suggest that correctly representing hydropower reservoirs in
GHMs could have important implications for our understand-
ing and management of freshwater resource challenges at
regional-to-global scales. This enhanced global water man-
agement modeling framework will allow the analysis of fu-
ture global reservoir development and management from a
coupled human–earth system perspective.

1 Introduction

Reservoirs are pivotal in fulfilling various societal needs, in-
cluding irrigation, hydropower production, flood control, do-
mestic water supply, and navigation, to list a few (Belletti
et al., 2020; Biemans et al., 2011; Grill et al., 2019). There
are 6862 large reservoirs (≥ 0.1 km3) globally, with a cumu-
lative storage capacity of 6197 km3 in the Global Reservoir
and Dam (GRanD) dataset (Lehner et al., 2011). Many of
these reservoirs serve multiple purposes. However, if we par-
tition reservoirs into categories based on their primary pur-
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poses, 1789 are irrigation reservoirs, with a total storage ca-
pacity of ∼ 1100 km3; 1541 are hydropower reservoirs, with
a total storage capacity of ∼ 3880 km3; 542 are flood con-
trol reservoirs, with a total storage capacity of ∼ 509 km3;
and the rest are water supply, navigation, or recreation reser-
voirs. Water storage and release in any given reservoir are
managed, based on the reservoir’s purposes. It is, therefore,
important in global hydrological models (GHMs) to repre-
sent how management strategies differ across reservoirs with
different purposes in order to more accurately simulate wa-
ter balances and explore the implications of alternative water
management strategies. It is particularly important to distin-
guish the behavior of hydropower reservoirs from others be-
cause hydropower production represents the primary purpose
for nearly 63 % (based on GRanD) of the total global reser-
voir storage capacity.

Hanasaki et al. (2006) proposed a generic reservoir sim-
ulation scheme for use in GHMs that has been widely used
(denoted hereinafter as the Hanasaki scheme). This scheme
categorizes all reservoirs into only two types, based on their
primary purposes, namely irrigation and non-irrigation reser-
voirs. All non-irrigation reservoirs are essentially simulated
as flood control reservoirs. The Hanasaki scheme determines
reservoir release in two stages. First, the provisional release
is estimated. For irrigation reservoirs, the provisional release
is estimated as a function of the demand for water placed on
the reservoir, while provisional release from non-irrigation
reservoirs is the long-term mean inflow. The provisional re-
lease is then adjusted based on the reservoir’s degree of reg-
ulation (i.e., the ratio of reservoir storage capacity to inflow).

Most existing GHMs (see Table 1) adopt the Hanasaki
classification and treat reservoirs as irrigation or non-
irrigation (Burek et al., 2020; Hanasaki et al., 2008; Pokhrel
et al., 2012; Schaphoff et al., 2018; Müller Schmied et al.,
2021; Sutanudjaja et al., 2018; van der Knijff et al., 2010;
Wisser et al., 2010; Zhou et al., 2020). Several GHM studies
have employed this scheme with some modifications, includ-
ing H08 (Hanasaki et al., 2008), MATSIRO-TRIP (Pokhrel
et al., 2012), WaterGAP2 (Müller Schmied et al., 2021),
WBMplus (Wisser et al., 2010), and LPJmL4 (Schaphoff
et al., 2018). For example, some studies have modified the
technique for estimating the parameters for irrigation reser-
voirs (i.e., water demand and spatial extent of the dependent
area of a specific reservoir; Biemans et al., 2011). LPJmL4
(Schaphoff et al., 2018) and PCR-GLOBWB (Sutanudjaja et
al., 2018) estimate irrigation reservoir release based on wa-
ter demand, and for all other primary purposes, these models
use a default strategy, where they release a pre-determined
value (e.g., average discharge) while maintaining levels be-
tween a minimum and maximum storage. LISFLOOD (van
der Knijff et al., 2010) and CWatM (Burek et al., 2020) do
not classify reservoirs based on their purposes. Instead, they
use three pre-determined releases based on storage, namely
minimum outflow, non-damaging outflow, and normal out-
flow.

Most GHMs, however, still largely follow the Hanasaki
scheme in treating all non-irrigation reservoirs as flood con-
trol reservoirs. In the Hanasaki scheme, the inflow, minimum
pool level, maximum static full level, and water stored at
the beginning of the hydrological year are the only signifi-
cant factors controlling the magnitude and timing of water
release (Hanasaki et al., 2006; Yassin et al., 2019). In reality,
among non-irrigation reservoirs, hydropower reservoirs are
typically operated differently from flood control reservoirs
(Turner et al., 2017; Loucks et al., 2017). An essential dif-
ference between them is that hydropower reservoirs mostly
operate with the objective of storing water over certain tar-
get levels to maximize releases through turbines (Loucks et
al., 2017). The minimum and maximum releases correspond-
ing to the minimum and maximum storage levels are also
pre-determined. Furthermore, in large storage hydropower
reservoirs with a large degree of regulation, storage levels
may vary significantly over the course of a year (between
the minimum and maximum storage levels) to avoid sig-
nificant spillage and enable reliable hydropower generation
throughout the year. Conversely, an essential feature of flood
control reservoirs is to provide a reliable capacity to retain
a predicted or unforeseen future flooding event by empty-
ing existing reservoir storage. The objective of flood control
reservoirs is to reduce peak flow magnitude, and the storage
level is only a concern when there is an incoming flood event
(Votruba and Broza, 1989). Therefore, treating hydropower
reservoirs as flood control reservoirs can significantly un-
derestimate their operational benefits (Turner et al., 2017;
Loucks et al., 2017).

The model performance implications of representing
reservoirs as flood control versus hydropower reservoirs are
evident at the individual reservoir level. However, there re-
mains a gap in the literature regarding the regional-to-global
model performance implications of the representation of hy-
dropower reservoirs, given that GHMs are designed for ap-
plications at this spatial scale but have not yet explored this
question surrounding the representation of hydropower (Best
et al., 2011; Döll et al., 2009; Hanasaki et al., 2008; Pokhrel
et al., 2012; Schaphoff et al., 2018; Wisser et al., 2010;
Voisin et al., 2013). This study overcomes the aforemen-
tioned limitation by demonstrating an enhancement to how
water management is employed in Xanthos, a global hydro-
logical model. Xanthos is a relatively lightweight model de-
signed to interact with the components of the Global Change
Intersectoral Modeling System (GCIMS), which includes the
Global Change Analysis Model (GCAM; Hejazi et al., 2013,
2014; Li et al., 2017) at its core, along with a broader suite of
interacting energy, water, and land models. GCAM is an in-
tegrated tool for exploring the multisector dynamics of cou-
pled human–earth systems and the response of these sys-
tems to global changes (Calvin et al., 2019). Aided by Xan-
thos, GCAM enables an internally consistent evaluation of
time-evolving water supply (i.e., surface water, groundwater,
and desalinated water) and demand dynamics across multi-
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Table 1. List of global hydrological models with reservoir representations. The domain column indicates the spatial scale at which the model
has been applied. The representations column describes how each reservoir class (from the reservoir classification column) is simulated. In
all cases, the reservoirs are integrated into the models. The reservoir classification column shows how the reservoirs were represented.

Model Domain Reservoir
classification

Representations Reference Websites (last access:
1 August 2023)

H08 Global Irrigation or
non-irrigation

Irrigation, where release is based on
demand; non-irrigation, treated as flood
control, where releases are adjustments
to the mean annual inflow based on
storage

Hanasaki et al. (2008),
Boulange et al. (2021),
Yoshida et al. (2022)

http://h08.nies.go.jp/
h08/index.html

WaterGAP Global Irrigation or
non-irrigation

Modified Hanasaki et al. (2006) Döll et al. (2009),
Müller Schmied et
al. (2021)

http://www.watergap.
de/

WBMplus Global Irrigation or
non-irrigation

Modified Hanasaki et al. (2006) Wisser et al. (2010),
Grogan et al. (2022)

https://wsag.unh.edu/
wbm.html

PCR-GLOBWB Global Irrigation or
non-irrigation

This model uses a default strategy
aimed at passing the average discharge,
while maintaining levels between a
minimum and maximum storage. For ir-
rigation, release based on downstream
water demand is possible for an elabo-
rate release strategy

Sutanudjaja et al. (2018),
Shen et al. (2022)

https://
globalhydrology.
nl/research/models/
pcr-globwb-2-0/

LISFLOOD Europe, Global No classification based
on the purpose

This model uses a simple general reser-
voir operation scheme, simulated as an
outflow function between three storage
limits, namely minimum outflow, non-
damaging outflow, and normal outflow

De Roo et al. (2000), van
der Knijff et al. (2010),
Hirpa et al. (2018)

https://ec-jrc.github.
io/lisflood-model/3_
03_optLISFLOOD_
reservoirs/

MATSIRO Global Irrigation or
non-irrigation

Modified Hanasaki et al. (2006) Pokhrel et al. (2012,
2015), Telteu et al. (2021)

http://hydro.iis.
u-tokyo.ac.jp/~sujan/
research/models/
matsiro.html

LPJmL4 Global Irrigation or
non-irrigation

Irrigation, which is assumed to release
water proportionally to gross irriga-
tion water demand. Other purposes (hy-
dropower, flood control, etc.) are that it
is assumed to be designed for releasing
a constant volume throughout the year

Schaphoff et al. (2018),
Telteu et al. (2021)

http://www.
pik-potsdam.
de/research/
projects/activities/
biosphere-water-modelling/
lpjml

CWatM Global No classification based
on the purpose

This model adopts the LISFLOOD
generic reservoir operation method.
Reservoirs are simulated as outflow
functions between three storage limits
(conservative, normal, and flood) and
three outflow functions (minimum, nor-
mal, and non-damaging)

Burek et al. (2020) https://cwatm.iiasa.ac.
at/modeldesign.html

MOSART-WM Global Irrigation or flood
control or a combina-
tion of both and others

The operating rules are determined
based on historical long-term mean
monthly inflow, reservoir characteris-
tics, and reservoir purpose

Zhou et al. (2020) https://github.
com/IMMM-SFA/
mosartwmpy

ple sectors. As such, GCAM and Xanthos have been used in
combination to study issues such as the relative contributions
of humans and climate change to future global water scarcity
(Graham et al., 2020), regional water scarcity (Birnbaum et
al., 2022), and sub-national water scarcity (Khan et al., 2020;
Wild et al., 2021b, c), as well as climate impacts on the fu-
ture evolution of hydropower and the broader power sector
(Arango-Aramburo et al., 2019; Santos da Silva et al., 2021).
Nevertheless, the existing version of Xanthos, denoted here
as Xanthos-original, focuses only on representing the natu-

ral global water balance without human interventions such
as reservoirs (Hejazi et al., 2013; Liu et al., 2018; Vernon et
al., 2019). Accounting for water management in the way we
propose will ensure that the crucial role of reservoirs is repre-
sented in regulating streamflow by mediating water availabil-
ity and demand (Wan et al., 2018, 2017; Zhang et al., 2020,
2019, 2018).

The specific objectives of this study are 3-fold: (1) to en-
hance Xanthos by adding a new water management module,
where irrigation, hydropower, and flood control reservoirs
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are treated differently (this enhanced Xanthos is denoted
as Xanthos-enhanced); (2) to evaluate the performance of
Xanthos-enhanced in terms of reproducing observed stream-
flow variability; and (3) to understand the impacts of differ-
entiating between flood control and hydropower reservoir op-
erations on regional-to-global-scale water balance. The first
two objectives represent improvements to Xanthos and, thus,
potential improvements to a broad array of coupled human–
earth system studies that rely on linkages between GCAM
and Xanthos. The third objective has the potential to in-
form future improvements to a diverse array of GHMs (see
Table 1) because our study is the first, to our knowledge,
to explore the GHM performance improvements that can
be gained by treating the operational characteristics of hy-
dropower dams as distinct from those of irrigation and flood
control dams.

2 Methodology

Xanthos is a distributed global hydrological model with a
spatial resolution of 0.5◦. Xanthos is a framework that en-
ables users to create customized configurations of potential
evapotranspiration estimation, runoff generation and concen-
tration, routing, and post-processing modules (https://github.
com/JGCRI/xanthos, last access: 1 August 2022). By ac-
counting for reservoir operation and local water withdrawal,
Xanthos-enhanced enables exploring the influence of water
management (Fig. 1). This section focuses on the water man-
agement module but first briefly summarizes the runoff and
river-routing components for completeness. For more details
on the runoff and river-routing components, please refer to
Li et al. (2017), Liu et al. (2018), and Vernon et al. (2019).

2.1 Runoff-generation module

Runoff generation in Xanthos-original is based on the abcd
model. First developed by Thomas (1981), abcd is a sim-
ple water balance model effective for capturing key hydro-
logic processes, and their interactions, in diverse climatic and
landscape settings (Martinez and Gupta, 2010, 2011). Liu
et al. (2018) introduced the abcd model into Xanthos as its
runoff module for simulating direct runoff, baseflow, evapo-
transpiration, and soil moisture at a monthly time step. The
sum of direct runoff and baseflow is denoted as total runoff,
which feeds into the river-routing module. The five parame-
ters in the abcd model are described in Table 2. Parameters a
and b pertain to runoff characteristics, while c and d relate to
shallow soil moisture and deeper groundwater storage. The
fifth parameter is a snowmelt coefficient, denoted as m. Since
Xanthos-original is a distributed model, each grid cell has its
own set of abcd parameters, though these parameters can op-
tionally have the same values for all grid cells within a given
river basin. Xanthos classifies the global water system into
235 large water basins.

2.2 River-routing module

In Xanthos, the routing of water through river networks is
simulated using a simple cell-to-cell river-routing scheme, a
modified version of the river transport model (Branstetter and
Erickson, 2003) and hereinafter denoted as MRTM. MRTM
is essentially based on the linear reservoir-routing method.
The channel flow rate is estimated as a function of channel
water storage, channel velocity, and flow distance from one
grid cell to another (Zhou et al., 2015). MRTM uses spatially
variable but temporally constant channel velocities, which
were derived by averaging the long-term channel velocity
simulations from Li et al. (2015). The flow distance values
were derived by tracing the natural dominant river channel
between grid cells to account for the meandering nature of
rivers (Wu et al., 2011). Here we add a channel velocity ad-
justment coefficient (Table 2) to account for the uncertainties
in our channel velocity field. For more details about MRTM,
please refer to Zhou et al. (2015).

2.3 Water management module

To enhance Xanthos, we add a water management module
on top of the river-routing module. The water management
module represents the two most common surface water man-
agement activities of local surface water extraction and reser-
voir operation. Local surface water extraction is water that
is locally consumed within a particular grid cell. For exam-
ple, some fraction of the water applied to irrigated agricul-
tural land may evaporate and effectively become unavailable
for use in a given grid cell. This local consumptive water
use is subtracted from the total runoff produced by the abcd
model. The remaining runoff is discharged into the chan-
nels and routed downstream using MRTM. If the consump-
tive water use is greater than the total runoff in a grid cell,
then the remaining runoff is zero. In such a case, the grid
cell is considered to have unmet water demand or access to
supply from other external sources, such as desalination or
groundwater pumping, which are not currently represented
in Xanthos. If there is a reservoir in a grid cell, then local
runoff (after removing water consumption) and upstream in-
flow are first intercepted and stored in the reservoir. Reser-
voir operation is then invoked to estimate the release from
the reservoir to the downstream grid cells. Note that a grid
cell can contain only one reservoir. That is, if there are multi-
ple individual reservoirs co-located in the same grid cell, we
first lump these individual reservoirs into a single reservoir
with a storage capacity equivalent to all the combined reser-
voirs. The primary purpose of this lumped reservoir within
a given grid cell is determined in the following two steps:
(1) sum up the storage capacities of the individual reservoirs
in four categories based on their primary purposes (irrigation,
hydropower, flood control, and other); and (2) in each cate-
gory, sum up the reservoir storage capacities. The aggregated
reservoir’s primary purpose is assigned to the category with
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Figure 1. A detailed schematic of the river-routing and reservoir management module in Xanthos-enhanced.

Table 2. List of model parameters, description, and ranges. The parameters a, c, d ,m, β, and α are dimensionless, and the unit for parameter
b is meters. The value of α is fixed at 0.85, following Hanasaki et al. (2006).

Parameter Description Range Type

a Propensity of runoff to occur before the soil is fully saturated 0–1 Runoff
b Upper limit on the sum of evapotranspiration and soil moisture storage 0–8 Runoff
c Degree of recharge to groundwater 0–1 Runoff
d Release rate of groundwater to baseflow 0–1 Runoff
m Snowmelt coefficient 0–1 Runoff
β Velocity adjustment coefficient 0–10 Routing
α Reservoir capacity reduction factor 0–1 Reservoir

the largest summed storage capacity, while the volume of the
single lumped reservoir is equivalent to the sum of all indi-
vidual reservoir storage capacities across all purposes. The
reservoir operation rule is defined for each lumped reservoir
based on its primary purpose. For reservoir purposes, if the
estimated release is unavailable or less than 10 % of the mean
annual inflow, then the monthly release is set to the mini-
mum environmental flow requirement (i.e., 10 % of the mean

annual inflow; Tennant, 1976; Hanasaki et al., 2008; Müller
Schmied et al., 2021). Next, we provide more details on the
operating rule for each reservoir type (Fig. 1).

2.3.1 Irrigation reservoirs

Irrigation reservoirs are represented by adapting the widely
adopted Hanasaki et al. (2006) approach, which determines

https://doi.org/10.5194/gmd-16-5449-2023 Geosci. Model Dev., 16, 5449–5472, 2023
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the reservoir release based on the upstream inflow and the
total water demand from the downstream areas. More specif-
ically, for each irrigation reservoir, the provisional release is
given as

R′m,y =

{
imean

2 ·
(

1+ dm,y
dmean

)
dmean ≥ 0.5 · imean

imean+ dm,y − dmean dmean < 0.5 · imean
, (1)

where R′my is the provisional monthly reservoir release
(m3 s−1) in monthm and year y; dm,y is the monthly mean to-
tal water demand from the downstream areas that are depen-
dent on this reservoir (m3 s−1); dmean is the long-term mean
monthly water demand from the downstream areas (m3 s−1);
and imean is the mean annual inflow from upstream (m3 s−1).
Both the magnitude of long-term average water demands and
the monthly timing of demands are used as inputs, so re-
leases are responsive to the timing of typical demands. The
Hanasaki scheme has an allocation coefficient, which is a co-
efficient for grid cells with more than one reservoir upstream,
but here it is assumed to be one and is thus not shown in
Eq. (1). This is because, in this study, the dependent areas of
reservoirs on the same stream do not overlap.

Though deterministic by nature, the provisional release
equation for irrigation reservoirs is demand-driven. dm,y is
calculated based on the delineated downstream-dependent
grid cells. If dmean is greater than or equal to 50 % of the
mean annual inflow imean, then 50 % of imean is continually
released as a baseline, while seasonal release dynamics are
determined by the ratio of monthly demand to dmean. If dmean
is less than 50 % of imean, then the provisional release can be
estimated as the mean annual inflow modified by the seasonal
demand variation around the mean annual demand.

The provisional release is further adjusted based on the
degree of regulation (γ ), initial storage at the beginning of
yth operational year (Sfirst,y), and reservoir capacity reduc-
tion factor (α). The degree of regulation is the ratio of reser-
voir storage capacity (C) to the annual total inflow in cubic
meters per year (Imean). The reservoir capacity reduction fac-
tor is a non-dimensional constant that reduces the total reser-
voir capacity reported in GRanD to account for surcharge
storage and storage reduction due to sediment accumulation.
It ranges between 0–1, where a lower value means the reser-
voir capacity may have been significantly reduced by sedi-
ment accumulation, and at 0, the reservoir is not operational.
The final release is estimated as follows:

Rm,y =
(
Sfirst,y
αC

)
·R′m,y γ ≥ 0.5( γ

0.5

)2
·

(
Sfirst,y
αC

)
·R′m,y +

(
1−

( γ
0.5

)2)
im,y 0≤ γ < 0.5,

(2)

where Rm,y is the monthly release (m3 s−1); im,y is the
monthly inflow (m3 s−1); and Imean is the annual inflow
(m3 yr−1).

The GRanD reservoirs can be classified into relatively
large and small storage reservoirs, based on the degree of

regulation. If a reservoir’s total storage capacity is less than
50 % of its mean annual inflow, then it is considered a hy-
drologically small reservoir, whereas greater than 50 % in-
dicates a hydrologically large reservoir. In relatively large
reservoirs (upper part of Eq. 2), releases are relatively in-
dependent of their monthly inflows, while in relatively small
reservoirs (lower part of Eq. 2), releases are dependent on
their monthly inflows (Hanasaki et al., 2006).

The total water demand for each reservoir is estimated
by summing up the water demand values from grid cells
within the reservoir’s downstream-dependent area. The
reservoir-dependent area is determined, following Hanasaki
et al. (2006), Haddeland et al. (2006), and Biemans et
al. (2011). Specifically, the downstream spatial extent of
reservoir dependency along the main stem is determined
based on an average stream velocity and the study’s tem-
poral interval (monthly). Assuming an average velocity of
0.5 m s−1, the total travel distance of water in 1 month is
0.5 m s−1

× (30× 24× 3600 s per month)× (0.001 km m−1)
= 1296 km per month. Therefore, the dependent downstream
grid cells along the main stem are roughly 20 grid cells
(0.5× 0.5◦; about 55 km along each direction) downstream.
If other reservoirs are located within this travel distance, then
we assume that the dependency on the current reservoir stops
and is taken over by the other reservoir (the allocation coef-
ficient in Hanasaki et al. (2006) is set to one for this reason).
We then delineate a buffer zone within ranges of four grid
cells from each side of the main stem. Finally, assuming wa-
ter movement is by gravity only, those grid cells with a mean
elevation that is lower than that of the reservoir are identified
as the reservoir’s dependent grid cells within the buffer zone.

2.3.2 Hydropower reservoirs

We represent the operation of hydropower reservoirs using a
stochastic dynamic programming (SDP) approach (Loucks et
al., 2017; Turner et al., 2017). The SDP approach extends the
dynamic programming approach to account for the uncertain
nature of reservoir inflows explicitly (Loucks et al., 2017). It
executes sequential decisions for temporal stages with non-
linear objectives, while considering reservoir inflows as ran-
dom variables (Loucks et al., 2017). For a known inflow
im,y and hydrologic state variables in the current period (Ste-
dinger et al., 1984), the SDP formulation estimates the ben-
efit function fm,y , resulting from each release decision Rm,y
as

fm,y
(
Sm,y, im,y

)
=max

Rm,y
E
{
Bm,y

(
Sm,y, im,y,Rm,y

)
+fm+1, y

(
Sm+1, y, im, y

)}
∀Sm,y im,y m ∈ {1, . . .,T } , (3)

where T is the current system period (T = 12 for a monthly
operating scheme). The reservoir state at each decision-
making time step, i.e., monthm in the year y, is described by
the storage Sm,y and the current inflow im,y . For each state
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and time step, the release decision Rm,y is selected to max-
imize the immediate benefit Bm,y

(
Sm,y, im,y,Rm,y

)
plus fu-

ture benefit function fm+1,y
(
Sm+1, y, im, y

)
, which depends

on the resultant state of the system at time step m+ 1, i.e.,
the succeeding month.

The method for simulating the hydropower reservoir op-
eration is adopted from “reservoir”, an R package that con-
tains several reservoir release decision-making tools, includ-
ing the SDP techniques described above (Turner, 2016). The
same method was also employed in a global-scale study of
hydroelectric plants’ vulnerability to climate change (Turner
et al., 2017). We integrated the SDP approach from this pack-
age (Turner, 2016; Turner et al., 2017) into Xanthos for hy-
dropower release simulation. Here the SDP approach is first
trained using the naturalized inflow to each reservoir to rep-
resent hydrological uncertainty, which we obtain by running
MRTM without the water management option. The objec-
tive function is set to maximize hydropower production over
the long term. The SDP procedure is executed to develop an
energy-maximizing release policy for each month as a func-
tion of storage levels (see Fig. 1).

The working concept for the SDP algorithm we imple-
mented is summarized as follows. Power (P in kilowatts)
generated by a hydropower plant is given by P = ηρg ·R ·H ,
where ρg is the specific weight of water (kN m−3), R is tur-
bine flow (m3 s−1), H is the turbine head (m), and η is effi-
ciency (a constant value of 0.9 is used in this study). ρg term
is a constant term and hence the power-generation variability
is a function of R ·H . Thus, maximizing the R ·H translates
to maximizing power production. The following four steps
are used to identify an optimal policy (i.e., a hydropower-
maximizing policy) from a given reservoir inflow realiza-
tion. First, we discretize the maximum turbine flow (i.e., the
maximum allowable flow rate through the turbine) into 10
increments (i.e., between 0 to maximum turbine flow) and
the storage capacity into 1000 (i.e., between 0 to storage ca-
pacity) increments. Discretization of decision and state vari-
able space is a common practice in implementing dynamic
programming-based methods (Piccardi and Soncini-Sessa,
1991; Zeng et al., 2019). Second, we developed a depth–
volume relationship, based on an assumed reservoir shape.
Here we assume a wedge reservoir shape for all reservoirs
globally in the absence of any global datasets to support more
heterogeneous representations. The storage–volume relation-
ship is employed to estimate storage depth (y) correspond-
ing to 1000 discretized storage volume levels. The turbine
head at each storage level was obtained from the sum of y
and intake elevation. The intake elevation is computed as the
maximum turbine head (i.e., the difference between reservoir
pool level and turbine elevation) minus the maximum storage
depth (equal to dam height in this study). Using the power
equation, the maximum turbine head is computed from the
plant-installed capacity and maximum turbine flow. Third,
we have an array of releases and turbine heads from the dis-
cretization; multiplying them as a matrix yields a 1000× 10

matrix of RH (i.e., 10 possible RH values for each storage
level). In the present study, we select the policy that maxi-
mizes power generation. The best policy for each month (i.e.,
January to December) at all 1000 storage levels is obtained
through backward recursive iterations (i.e., from December
to January); this yields what we call the release policy, with
a matrix with a size of 1000 (storage levels) ×12 (months).
Last, during streamflow simulation, the storage volume and
month are used to look up the optimal release policy table
(i.e., the 1000× 12 table), and the corresponding optimal re-
lease is determined. When a storage level is at the reservoir’s
maximum storage capacity, the release equals the maximum
turbine flow that generates power at the power plant’s in-
stalled capacity.

While the online integration of SDP with hydrological
models brings considerable advantages, it also presents cer-
tain challenges. One such challenge is managing the uncer-
tainties in the inflow data, as these directly influence the
reservoir’s operational policy. The effects of inflow uncer-
tainty can lead to potential operational deviations, such as
preemptive release of water due to overestimated inflows
or undue conservation based on underestimated inflows. To
lighten this challenge, a careful parameter selection process
is implemented (see Sect. 2.4). The initial stage of this pro-
cess prioritizes achieving a reliable long-term water balance
that aligns closely with observations. By focusing on this bal-
ance, we aim to minimize the uncertainties inherent in the
inflow data, thereby improving the reliability of operational
decisions derived from the SDP model.

2.3.3 Flood control and other purpose reservoirs

The primary purpose of flood control reservoirs is to redis-
tribute the floodwater from a flood season to a non-flood sea-
son. The operation of flood control reservoirs is also esti-
mated, following Hanasaki et al. (2006).

Rm,y =
(
Sfirst,y
αC

)
· imean γ ≥ 0.5( γ

0.5

)2 ( Sfirst,y
αC

)
· imean+

(
1−

( γ
0.5

)2)
im,y 0≤ γ < 0.5

, (4)

where Rm,y is the monthly release (m3 s−1); and im,y is the
monthly inflow (m3 s−1). In this study, release from reser-
voirs categorized as “others” is also determined as a function
of inflow and storage characteristics only and is thus simi-
lar to flood control reservoirs. The logical reasoning for the
equations employed here is in line with Eq. (2). For instance,
as with irrigation reservoirs, the α and γ parameters are used
to adjust the behavior of flood control reservoirs.

2.4 Model parameter determination strategy

In total, Xanthos-enhanced now includes seven parameters
for the runoff and routing or water management modules.
Typically, there are two strategies for determining the param-
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eter values in a hydrologic model, namely calibration and es-
timation a priori (i.e., without calibration; Beven, 2012). Pa-
rameter calibration requires thousands of model runs and is
only feasible for computationally inexpensive models. Fea-
sibility can be compromised by parameter calibration efforts
that require refactoring a model to run more efficiently, the
budget required to scale simulations via high-performance
computing resources, and the time needed for a comprehen-
sive run. Furthermore, most hydrological models are subject
to concerns surrounding equifinality, since the number of pa-
rameters, in most cases, far exceeds the number of observa-
tional variables available for calibration (Beven, 2006). Al-
ternatively, parameter estimation a priori requires each pa-
rameter to be physically meaningful and have robust rela-
tionships with the existing climate or landscape information.
These relationships are usually not readily available and have
to be identified via sound prior knowledge (e.g., Li et al.,
2015) or machine learning techniques (e.g., Abeshu et al.,
2022; Li et al., 2021).

This study proposes a new, two-stage parameter determi-
nation strategy (described in Fig. 2) that seeks to overcome
existing limitations by (1) screening out parameter sets that
are not physically meaningful and (2) significantly reducing
the overall computational burden associated with identifying
optimal parameter sets. We seek to determine seven Xanthos
parameters in total, namely five from the runoff module and
two from the routing module, including water management.
We determine runoff parameters in the first stage and rout-
ing parameters in the second stage. The runoff module runs
separately from the routing and water management modules
and is relatively lightweight, taking a standard personal com-
puter less than 2 h to execute it at a global scale for one mil-
lion simulations covering a 20-year duration. Meanwhile, the
routing and water management modules are much more com-
putationally intensive because they run at a 3 h time step to
ensure numerical stability (Li et al., 2011, 2015). The first
stage takes advantage of the lightweight runoff module to
exhaustively explore the runoff parameter space before hand-
ing off favorable subsets of parameters to the second stage,
which then limits its focus to the more computationally in-
tensive search for the remaining two (routing) parameters.
We describe the parameterization strategy in detail in the re-
mainder of this section, whereas the results of implementing
the strategy using a particular set of global data are detailed
in Sect. 3.2. This strategy is designed based on the character-
istics of the Xanthos modules, but we suggest that it has the
potential to be useful in diverse global hydrological modeling
contexts.

In the first stage, we determine the optimal values for
the five parameters in the runoff-generation module (see Ta-
ble 2) in four steps. (1) We generate 1 million runoff parame-
ter combinations using a Latin hypercube sampling (LHS)
scheme (McKay et al., 1979; Fig. S1 in the Supplement).
LHS is a statistical method for multidimensional parameter
space sampling. The stratified sampling strategy employed

by LHS ensures that all portions of the sampling space are
represented (McKay et al., 1979). The user decides on the re-
quired number of parameter combinations and the upper and
lower bounds of the individual parameters. Based on that,
LHS simultaneously stratifies all input dimensions. (2) For
each runoff parameter combination, we execute the runoff
module to produce the simulated monthly total runoff time
series at each grid cell in the study period. In this study,
we uniformly apply the same parameter values to all the
grid cells in a basin to generate a monthly runoff time se-
ries at each grid cell. Parameter values vary among basins,
just not across grid cells within a basin. (3) We calculate
the simulated annual runoff depth at each grid cell. We
then take the spatial average across the grid cells within the
upstream drainage area of a gauge station where observed
streamflow data are available; this is denoted as Qsim_annual
(mm yr−1). (4) At the river gauge station, we calculate the
long-term mean of observed streamflow and divide it by the
drainage area, Qobs_annual (mm yr−1). We then select the top
100 runoff parameter combinations that produce the small-
est normalized root mean square error (NRMSE) between
Qsim_annual (the annual water consumption) and Qobs_annual.

Before these 100 runoff parameter combinations are
passed onto the second stage, the runoff generated by the
top 100 parameters is further evaluated at the mean monthly
scale to confirm that the selected parameter combinations
yield reasonable runoff simulations in terms of timing. For
this purpose, we compare the peak time of the simulated
mean monthly runoff (i.e., the calendar month in which the
mean monthly runoff is highest; hereafter denoted as sim-
ulated peak runoff time) with that of Global Runoff Data
Center (GRDC) mean monthly flow (i.e., the calendar month
when the mean monthly flow is highest; hereafter denoted
as observed peak flow time; Fig. S2). Note that the mean
monthly runoff employed here is a simple spatial average
with no channel routing. Therefore, a reasonable simulated
peak runoff time is expected to be earlier than the observed
peak flow time by 0–3 months. The range of 0–3 months
is estimated by applying a 1.0 m s−1 travel velocity to the
longest river in the world, the Nile River, which yields a total
travel time between 2.0 and 3.0 months.

The selected 100 parameter combinations are then passed
on to the second stage, where we determine the final optimal
parameter set in four steps. (1) We set the reservoir capacity
reduction factor (α) to a value of 0.85, following Hanasaki et
al. (2006). (2) The channel velocity adjustment coefficient
(β) is sampled in a relatively uniform manner within the
range of 0.1–10.0. In total, there are 19 possible β values
to be considered (i.e., β = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, and 10.0). (3) For
each of the 100 selected runoff parameter combinations, we
use the corresponding simulated runoff time series as the in-
puts and run the river and water management modules 19
times (each time corresponds to one of the 19 β values and
α = 0.85) at a 3 h time step. (4) We validate the simulated

Geosci. Model Dev., 16, 5449–5472, 2023 https://doi.org/10.5194/gmd-16-5449-2023



G. W. Abeshu et al.: Enhancing the representation of water management in GHMs 5457

Figure 2. Runoff and routing parameters selection strategy for Xanthos-enhanced. Each component of the process is categorized as one of
the following: (1) sampling, wherein parameter combinations are sampled; (2) downselection criteria, which are applied to downsample a
larger parameter set into a smaller, more favorable subset; (3) outputs, which describes model outputs; and (4) modules, which describes
Xanthos model methods (or sections of code).

streamflow time series at the grid cell (where the gauge sta-
tion is located) against the observed monthly streamflow time
series. From step (3), there are 1900 simulations for each
basin, each corresponding to a combination of five runoff pa-
rameters and one routing parameter (a, b, c, d ,m, and β). The
final optimal parameter set is the one that produces the best
model performance (per the performance metrics discussed
in the following Sect. 2.5). Note that within each basin, we
held the set of parameters constant across the cells, which is
a reasonable simplification since, typically, there is no suffi-
cient observational data to effectively capture the spatial het-
erogeneity of these parameters within each basin.

This new strategy has several benefits. First, it largely alle-
viates the equifinality issue by effectively sampling the whole
parameter space. Our experimental design covers the full the-
oretical value range for each of the six parameters. Second,
it reduces the computational burden to a reasonable level.
Our suggested approach includes 1 million model runs for
the runoff module at the monthly time step for each river
basin and another 1900 runs for the river-routing and wa-

ter management modules at the 3 h time step. We suggest
that this new strategy applies to those hydrologic modeling
frameworks where (1) some module(s) is (are) computation-
ally much cheaper than the others, and (2) these modules
must run sequentially instead of simultaneously. A demon-
stration of this parameter determination strategy is provided
in Sect. 3.

2.5 Metrics for model assessment

To evaluate model performance, we use the Kling–Gupta ef-
ficiency (KGE; Gupta et al., 2009), which is given by

KGE= 1−

√
(r − 1)2+

(
σSim

σObs
− 1

)2

+

(
µSim

µObs
− 1

)2

, (5)

where σsim,σobs, µsim, and µobs are the standard deviation
of streamflow value for a given simulation, the standard de-
viation of observed streamflow, the simulated mean, and the
observed mean values, respectively. A higher KGE indicates
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a better degree of agreement between the simulated and ob-
served variables, and a KGE value of 1.0 indicates perfect
agreement. The KGE value is−0.41 if the simulated monthly
flow equals the observed long-term mean flow for all months
(Knoben et al., 2019).

While KGE is a useful means of evaluating the skill of a
particular set of model parameters in reproducing observed
streamflow, we also wish to directly compare simulation out-
puts against one another across multiple model configura-
tions and parameterizations for both reservoir storage and
reservoir release. To enable this comparison, we employ the
following indices that capture key aspects of the regulation
behavior of reservoirs.

– Reservoir impact index (RII). RII is the ratio of a reser-
voir storage capacity (C) in meters cubed to annual
mean flow (Qmean; López and Francés, 2013; Wang et
al., 2017). RII is similar to the Hanasaki scheme’s de-
gree of regulation term, except that RII is computed at
the GRDC site instead of the reservoir site. Low and
high values of RII indicate that the stream is lightly and
heavily regulated, respectively.

RII=
C

Qmean
, (6)

where Qmean is the observed annual mean flow at the
GRDC site (in m3 yr−1).

– Seasonality index (SI). SI represents the degree of vari-
ability in the monthly release or storage within a year
and is computed with the Walsh and Lawler (1981)
method.

SI=
1
X̄

12∑
m=1

∣∣∣∣Xm− X̄

12

∣∣∣∣ , (7)

where Xm is the mean monthly value for the month m,
and X̄ is the annual mean value. SI ranges between
0 and 1.833, indicating uniform distribution over the
12 months and a single-month occurrence, respectively.
When applying this equation, use units that represent a
measure of water quantity over a month, such as depth
(e.g., millimeters per month) or volume (e.g., meters
cubed per month).

– Coefficient of variation (CV). CV is the ratio of standard
deviation to mean and is employed here to depict the
extent of interannual variability in storage and release.

No reliable global observational datasets exist for reservoir
storage levels and releases, so it is difficult to establish
whether the metric values (for RII, SI, and CV) from one
model configuration versus another are closer to reality. De-
spite this limitation, comparing metric values across simula-
tions is still useful for understanding the effects of model-
ing assumptions (e.g., representing hydropower reservoirs as

such instead of as flood control reservoirs). To enable com-
parison, we measure the difference or closeness between two
alternative time series, representing two alternative model
configurations or parameterizations, using normalized root
mean square error (NRMSE) and coefficient of determina-
tion (R2). NRMSE typically captures the magnitude differ-
ence between two time series, while R2 measures the pro-
portion of the variance explained (Moriasi et al., 2007).

2.6 Metrics for sensitivity analysis

As we have discussed, equifinality is a crucial issue when
calibrating a hydrological model that is highly parameter-
ized. To assess model robustness, it is important to evaluate
how sensitive the model’s performance is to each model pa-
rameter. The sensitivity analysis approach we propose here
is moderately different from traditional methods, since we
implement a novel parameter determination strategy (see
Sect. 2.4). The sensitivity analysis aims to identify the most
and least influential model parameters. Such an understand-
ing can help identify priorities of parameter estimation in
future works and simplify or improve the model structure.
Two separate sensitivity analyses are performed. The first
sensitivity analysis is performed before the parameter selec-
tion, using results from all 1 million parameter sets. Here, an
NRMSE for each of the 1 million parameter sets was com-
puted between simulated annual runoff and observed annual
runoff. The annual runoff is observed as annual streamflow
converted to an equivalent depth over the upstream contribut-
ing basin area. The simulated annual runoff is calculated by
subtracting the basin’s annual water consumption from the
total runoff. The correlation coefficient was then computed
between an array of the computed NRMSE and each runoff
parameter to evaluate the correlation between the change in
parameter values and model performance. We computed five
correlation coefficients from the 1 million runs (i.e., between
model performance and the five runoff parameters for each
basin).

After applying the new parameter selection strategy, the
second sensitivity analysis is carried out on 1900 samples
(i.e., samples generated from combining the 100 samples
from the first stage with 19 discretized β values). Each sam-
ple includes the five runoff parameters and the velocity ad-
justment coefficient employed for streamflow simulation dur-
ing the second stage. Here, the model performance (KGE)
is computed between the monthly observed and simulated
streamflow. We switched to KGE for the monthly time se-
ries evaluation, as we are interested in metrics that reflect the
agreement in both magnitude and patterns of monthly flow.
The correlation coefficient is computed between the KGE
and each parameter. We obtain six correlation coefficient val-
ues for each basin, corresponding to the five abcd model pa-
rameters and the routing parameter (i.e., β). As with its inter-
pretation in stage 1 of the sensitivity analysis, here a higher
correlation coefficient between a parameter’s values and the
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corresponding performance metric (in this case, KGE) sug-
gests that the variance in model simulation outcomes is more
strongly related to the changes in the target parameter and
hence more sensitive to this parameter.

3 Global application and results

We apply Xanthos-enhanced over the global domain at a
0.5◦ resolution and monthly time step. The study period is
1971–1990, based on the availability of forcing and observed
streamflow data over all the basins. We divide the study pe-
riod into a calibration period, 1971–1980, and a validation
period, 1981–1990.

3.1 Data and numerical experiments

For this study, we obtain gridded global monthly climatic
data, including precipitation, maximum temperature, and
minimum temperature, from the WATer and global CHange
(WATCH; Weedon et al., 2011) dataset, which covers the pe-
riod 1971–2001. We obtain global reservoir data from the
GRanD dataset (Lehner et al., 2011; Fig. 3a). Monthly water
demand and consumptive water use data for various sectors at
a 0.5◦ resolution are from Huang et al. (2018b, a), which are
available from 1971 to 2010 (Fig. 3c). Observed streamflow
data for model parameter identification and validation are ob-
tained from the GRDC (https://www.bafg.de/GRDC, last ac-
cess: 1 August 2022). We begin by comparing Xanthos’ cor-
responding MRTM upstream area (after locating each gauge
station within a Xanthos grid cell) with the GRDC gauge
contributing area. If the drainage area difference is larger
than±20 %, then we look for an option to readjust the station
to one of the eight neighboring grid cells. Here, only gauges
within±20 % in area difference (3097 GRDC gauges) are re-
tained for further use in this study. Temporal filtering of these
gauges with the availability of 20 years (1971–1990) of con-
tinuous data reduced the number of stations to 1178. These
gauge stations are located within 91 of the 235 Xanthos
basins. For model validation purposes, we select the GRDC
gauge with the largest upstream area within each basin, i.e.,
91 GRDC gauges in total (Fig. 3b).

The GRanD database we use here only considers reser-
voirs with storage capacity values greater than 0.1 km3. We
also exclude reservoirs with missing storage capacity values
and those identified with purposes such as tide control, which
reduces the total GRanD reservoirs from 6862 to 6847. For
any grid cell with more than one reservoir, we aggregate all
of the reservoirs located locally (i.e., within the grid cell) into
a single reservoir with a storage capacity equivalent to that
of the local reservoirs combined. The purpose of the com-
bined storage is determined by the two steps described in
Sect. 2.3. As a result of this process, the 6847 GRanD reser-
voirs are remapped into 3790 reservoirs. Among the 3790
reservoirs, 1095, 598, and 2097 are categorized as irriga-

tion, hydropower, and flood control and others, respectively
(Fig. 1). Furthermore, out of the 3790 global reservoirs, only
1878 of them are located within the 91 basins simulated in
this study. Out of these 1878 reservoirs, the primary purpose
is hydropower for 296, irrigation for 486, and flood control or
others for 1096. The reservoirs across these 91 basins make
up approximately 66 % of the total dams within the GRanD
dataset. The construction years of these dams pose a critical
factor in deciding the starting year of the calibration. Here,
we found that ∼ 69.5 % of these dams were constructed be-
fore 1971, and an additional ∼ 17.2 % were built between
1971 and 1981. We considered it reasonable to include all
dams, regardless of their construction year, in the calibration
starting from 1971, mainly for the following two reasons:
(i) incrementally aggregating dams built during this period
over time, in addition to the dams built before 1971, would
significantly complicate the modeling process; and (ii) dams
constructed before 1981 account for approximately 84 % of
the total storage within these basins.

With the aforementioned data, we carry out three global
simulations to explore the performance of the Xanthos-
enhanced (see Table 3). These include (1) a simulation
with Xanthos-original, denoted Xanthos-original-sim, where
the simulated flow is obtained by routing-calibrated runoff
data generated by Liu et al. (2018) with calibrated abcd
model parameters but no water management; (2) a simu-
lation with Xanthos-enhanced, denoted Xanthos-enhanced-
sim, where we run the runoff, river-routing, and water man-
agement modules with the final optimal parameter values de-
termined, following the new strategy as outlined in Sect. 2.4;
(3) a simulation similar to Xanthos-enhanced-sim but one
that treats all the hydropower reservoirs as flood control
reservoirs (denoted Xanthos-enhanced-sim2). By compar-
ing Xanthos-enhanced-sim with Xanthos-original-sim, we
demonstrate the overall improvement of model performance
from Xanthos-original to Xanthos-enhanced, due to a combi-
nation of the new parameter determination strategy and new
water management module. Note that in Liu et al. (2018),
the traditional, brute-force calibration strategy was invoked,
since Xanthos-original only consists of a monthly runoff-
generation module and runs very quickly. By compar-
ing Xanthos-enhanced-sim with Xanthos-enhanced-sim2, we
isolate the net difference between simulating hydropower
reservoirs based on Eq. (3) and the traditional approach em-
ployed by GHMs (i.e., treating hydropower reservoirs as
flood control reservoirs, based on Eq. 4).

3.2 Parameter determination outcomes

We apply the two-stage model parameter determination strat-
egy described in Sect. 2.4, using the global datasets described
in Sect. 3.1. The LHS generates a parameter set using defined
bounds (see Fig. S1 in the Supplement). Here, we describe
the results from the implementation of the two-stage strategy,
using the Amazon basin as an example. A subset of 100 good
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Figure 3. Global data used in this study. (a) Global distribution of 6862 reservoirs from the GRanD database classified, based on the primary
reservoir purpose. (b) GRDC stream gauge stations in 91 basins where data were of sufficient length, quality, and upstream watershed
contributing area for use in this study. (c) Basin mean monthly water demand in those same 91 river basins.

parameter sets (filtered) are identified among the 1 million
parameter sets (raw; see Fig. S2a in the Supplement). The
mean monthly runoff generated with the subset and the ob-
served mean monthly runoff (see Fig. S2b in the Supplement)
showed that the simulated runoff peak time is earlier than the
streamflow peak time and within the 1–3-month range estab-
lished in Sect. 2.4. The model’s integrity is contingent upon
the theoretical expectation of the streamflow peak trailing the

runoff peak by a span of days to months. Any set of param-
eters resulting in a reversed pattern, where the runoff peak
occurs later, is deemed unacceptable due to possible anoma-
lies within the model.

The peak time differences (i.e., the difference between
GRDC mean monthly peak flow time minus simulated runoff
peak flow time) corresponding to the selected sets of pa-
rameters are among the best of the 1 million samples when
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Table 3. Types of modeling experiments performed in this study.

Scenario name Description

Xanthos-original-sim Simulated flow is obtained by routing-calibrated runoff data generated by Liu et al. (2018). No wa-
ter management components (Vernon et al., 2019) are implemented. Routing is performed using the
optimal velocity adjustment coefficient obtained after stage 2 parameter filtering.

Xanthos-enhanced-sim Simulated result from Xanthos-enhanced. Simulated streamflow is obtained by routing runoff generated
with optimal parameter sets determined, following a new parameter determination strategy (described
in Sect. 2.4). Water management components (i.e., reservoirs and water consumption) are included.
Reservoirs are classified into hydropower, irrigation, and flood control category types. A unique opera-
tion scheme is applied for each reservoir type (Fig. 2).

Xanthos-enhanced-sim2 Similar to Xanthos-enhanced-sim; however, reservoirs are classified into two types only (irrigation and
flood control). All hydropower reservoirs are merged into the flood control category. Comparison with
the Xanthos-enhanced-sim experiment reveals the value of representing hydropower as a unique class
of reservoir behavior, which is a key contribution of this paper.

ranked in an ascending order, based on an absolute value of
the peak time difference (see Fig. S2c in the Supplement).
The robustness of the implemented procedure is justified by
the presence of a range of parameter values between their
upper and lower bounds (see Fig. S2d in the Supplement),
indicating that the selected parameters are not concentrated
within a specific parameter space. These characteristics have
also been observed in most of the basins evaluated for this
study (figure not shown). We select one parameter combina-
tion for each basin that results in the best KGE value. The
spatial maps of the final optimal parameter values are shown
in Fig. S3 in the Supplement. In most cases, optimal values
for parameter a are close to the upper bound, while those of
parameter d are closer to the lower bound. Parameter b is low
in basins in the high-latitude sub-region; to some degree, this
may be attributed to the fact that, in general, evapotranspi-
ration decreases towards most of the high-latitude regions.
Parameter c seems to be lower in the eastern hemisphere and
has relatively no distinct pattern in the western hemisphere
basins. The snowmelt parameter m is only above zero in re-
gions with significant snow contributions. The parameter β is
higher in high-latitude basins. β was only introduced to read-
just the global velocity data after noticing bias in the monthly
flow timing at many sites; hence, applications of our method-
ology that use more reliable velocity data should consider
setting β to a value of 1. The high values of β in the higher-
latitude basins could be attributed to the original velocity es-
timation approach’s systematic bias in cold regions (Li et al.,
2015).

3.3 Global evaluation

Overall, Xanthos’ performance has improved after adding
the water management module. Figure 4 shows violin plots
of KGE between the GRDC monthly observed stream-
flow and those simulated from the Xanthos-original-sim and
Xanthos-enhanced-sim simulations for the 91 basins during

the calibration (Fig. 4a) and validation (Fig. 4b) periods, re-
spectively. In most cases, during both calibration and vali-
dation periods, the Xanthos-enhanced-sim simulation’s KGE
values are consistently higher than those of the Xanthos-
original-sim simulation. For the Xanthos-enhanced-sim sim-
ulation, the KGE value is no less than 0.5 and 0.0 for 59 and
89 basins during the calibration period and 39 and 81 basins
during the validation period, respectively.

Figure 5 provides a comprehensive comparison of the
Xanthos-enhanced-sim and Xanthos-original-sim, emphasiz-
ing the impact of water management integration. This is il-
lustrated both spatially, through a map depicting KGE dif-
ferences, and temporally, via time series plots for selected
basins. Overall, by incorporating this element, improvements
are noticeable in the KGE values of 75 basins, thus indicating
a better simulation accuracy for these basins. The increase
in KGE values is substantial and exceeds 0.05 when com-
pared to those of the Xanthos-original-sim. However, it is
also crucial to note that the water management integration
negatively affected the KGE values (i.e., KGE values de-
creased by more than 0.05) in seven basins. In the remaining
nine basins, KGE did not significantly change. For basins in
which performance worsened, the decrease in performance is
likely due to factors such as the uncertainties in the climate
forcing data and GRDC streamflow observations (Moges et
al., 2021) and the lack of spatial heterogeneity in the esti-
mated parameters at the sub-basin scale (i.e., the parameters
are uniform across all grid cells in a given basin). The distri-
bution and operational patterns of reservoirs, particularly in
relation to their closeness to gauge stations, could also repre-
sent a nontrivial contributing factor to this issue.

To further examine Xanthos’ performance in more detail,
Fig. 5 also shows the monthly time series of simulated and
observed streamflow at the 12 GRDC stations (out of the 91
evaluated here) with relatively higher average annual water
demand in their geographical region (see Fig. 3c) and hence
stronger water management effects. The 12 basins are the

https://doi.org/10.5194/gmd-16-5449-2023 Geosci. Model Dev., 16, 5449–5472, 2023



5462 G. W. Abeshu et al.: Enhancing the representation of water management in GHMs

Figure 4. Box plots of the KGE values for the Xanthos-original-sim and Xanthos-enhanced-sim simulations during (a) the calibration period
(1971–1980) and (b) the validation period (1981–1990). In this plot, the outliers (KGE values lower than −1) are not shown. For Xanthos-
original-sim, 77 basins in calibration and 70 basins in validation are shown. For Xanthos-enhanced-sim, 91 basins during calibration and 89
during validation are shown.

Figure 5. Spatial maps of basin-specific difference between the KGE values from Xanthos-enhanced-sim and those from Xanthos-original-
sim for the calibration period 1971–1980 (map at center), where a value greater than zero indicates improved performance from the addition
of water management features to Xanthos. The time series plots are simulated and observed monthly streamflow for basins with the highest
water demand in different global regions during the validation period (1981–1990). KGEcal is the KGE during the calibration period, while
KGEval is the KGE during the validation period.

Rhine, Po, Siberia north coast, Ziya He interior, Ganges–
Brahmaputra, Chao Phraya, Murray–Darling, South Africa
south coast, Uruguay–Brazil South Atlantic coast, east Brazil
South Atlantic coast, California basin, and mid Atlantic.
Compared to Xanthos-original, Xanthos-enhanced-sim bet-
ter captures the seasonal variations in the streamflow, more

closely matching the observed streamflow during the high-
flow and low-flow periods. This highlights the importance of
the reservoir regulation effect (e.g., attenuating high flows
and augmenting low flows) that Xanthos-original has not
captured.
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3.4 Parameter sensitivity analysis

To identify which parameters are most critical (i.e., con-
tribute most to the variance in key model outputs), we evalu-
ate the sensitivity of the model’s performance to the changes
in a, b, c, d, m, and β, as shown in Fig. 6. Note that we fix
the value of α at 0.85, following Hanasaki et al. (2006), in
this study. We first carry out the sensitivity analysis on the
runoff parameters based only on the first-stage parameter de-
termination results (Fig. 6a). The results show a significant
sensitivity (correlation coefficient> |±0.4|) only for param-
eters a (which represents the propensity of runoff to occur
before the soil is fully saturated) and b (which represents an
upper limit on the sum of evapotranspiration and soil mois-
ture storage). The correlation between parameter a and the
model performance is negative, indicating that it is inversely
related to the NRMSE computed from annual observed and
simulated runoff. Parameter a controls the volume of runoff
generation when soil is undersaturated, and the relationship
suggests that annual runoff is estimated better when satura-
tion excess runoff is not the primary process. Parameter b
controls the soil saturation level. Hence, it is responsible for
the memory of the basin. Therefore, the positive correlation
indicates that the difference between simulated and observed
annual runoff increases as the basin memory increases.

A similar analysis is made for the set of parameters gen-
erated by combining the 100 best abcd model parameter sets
with the velocity adjustment parameter (β; Fig. 6b). Here, it
appears that β has a stronger influence on model performance
than the other parameters. This is expected because the dif-
ferences among the 100 selected runoff parameter combina-
tions are supposed to be small (e.g., see Fig. S2a (filtered) in
the Supplement for the Amazon basin). For β, the sensitiv-
ity corresponds to an adjustment in the flow timing, leading
to improved KGE. Note that this parameter can be avoided
with a better estimate of spatially and temporally varying
flow velocity. Considering these observations, it becomes
evident that an enhanced parameterization of this variable,
along with the other variable used to estimate the grid’s wa-
ter residence time (i.e., channel length), warrants increased
attention. Hence, in the future, proper generation and in-
tegration of these components are crucial for boosting the
model’s accuracy and robustness, given their pivotal role in
the MRTM-flow-routing process.

3.5 Hydropower reservoirs

Among the 91 basins we studied here, 51 have one or more
hydropower reservoirs included in GRanD and hence in our
simulations. Recall that these reservoir counts reflect our
lumping of multiple reservoirs together within any given
grid cell, so 296 reservoirs in our methodology reflect 433
actual reservoirs. At each of the 296 reservoirs, the simu-
lated release and storage time series from Xanthos-enhanced-

sim2 are compared with those from Xanthos-enhanced-sim
to identify the benefit of capturing hydropower operations.

Figure 7 compares Xanthos-enhanced-sim and Xanthos-
enhanced-sim2 with regard to intra-annual (Fig. 7a and b)
and interannual (Fig. 7c and d) variability. The seasonality
index (SI) summarizes the intra-annual variability; weak sea-
sonality (i.e., low SI) indicates that most months contribute
significantly to the annual magnitude, and strong seasonality
(i.e., high SI) indicates that very few months contribute to the
annual flux magnitude. Although SI showed more difference,
both the SI and coefficient of variation (CV; which summa-
rizes interannual variability) for release fall on the 1 : 1 line
for most reservoirs (Fig. 7a and c), indicating that in most
cases, the two scenarios have less impact on the intra- and
interannual variability in the release. On the other hand, both
SI and CV values for storage at most reservoirs show a signif-
icant difference, indicating that the two experiments signifi-
cantly disagree in terms of the interannual and intra-annual
variability in the storage. We emphasize that the significant
takeaway from this comparison is not that one experiment’s
storage and release simulations are more variable than the
other but that the two experiments led to substantially differ-
ent seasonal and annual patterns. This highlights the draw-
backs of representing hydropower reservoirs as flood control
reservoirs.

Figure 8 summarizes the reservoir storage and release
comparisons between Xanthos-enhanced-sim and Xanthos-
enhanced-sim2 with an empirical cumulative distribution
function (CDF) that plots R2 (and/or NRMSE) values across
all 296 hydropower reservoirs, according to their rank-
ordered exceedance probabilities. The spatial map for the
comparisons is also shown in Fig. S4. Recall that a high
NRMSE value means a significant magnitude difference be-
tween the two different time series, and a lowR2 value means
a significant timing difference. Of the 296 reservoirs, the
simulated reservoir releases differ significantly between the
two model configurations in ∼ 45 % of reservoirs in terms of
magnitude (if we set a threshold at NRMSE > 0.25; Fig. 8b)
and at only∼ 28 % in terms of timing (if we set a threshold at
R2 < 0.5; Fig. 8a). According to Fig. 8a and b, treating hy-
dropower reservoirs as flood control reservoirs does not sig-
nificantly impact the model simulated reservoir releases from
most reservoirs, which partly supports the lack of differen-
tiation between hydropower and flood control reservoirs in
previous studies. However, the simulated reservoir storages
are significantly different for ∼ 44 % of the 296 reservoirs in
terms of magnitude (NRMSE> 0.25; Fig. 8b) and ∼ 90 % in
terms of timing (R2 < 0.5; Fig. 8a). Treating hydropower as
flood control reservoirs thus has much more impact on the
simulation of reservoir storage than release, particularly in
terms of timing. The NRMSE and R2 values in Fig. 8 do not
appear to relate to the reservoir sizes (figure not shown).

To explore the dynamics responsible for these broad pat-
terns in Fig. 8, we select the Yenisey basin here to study them
in more detail. Here, the Yenisey basin is selected for demon-
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Figure 6. Parameter sensitivity analysis for Xanthos-enhanced in the form of the Pearson correlation coefficient (Pearson r) (a) between
runoff parameters (i.e., 1 million parameter sets) and their corresponding normalized root mean squared error (NRMSE) computed with
annual runoff; and (b) between streamflow simulation parameters (i.e., the combination of the top 100 runoff parameter sets and sampled
routing parameter) and KGE computed from streamflow simulated at monthly scale. A higher Pearson r implies that the model performance
is more sensitive to the parameter. For instance, (a) Pearson r less than zero indicates a decrease in annual runoff NRMSE as the parameter
value increases, while Pearson r greater than zero indicates a positive association between annual runoff NRMSE and parameter value. Note
that out of the 91 basins, only half of the basin labels (i.e., the x-axis labels) appear on the first panel, and the other half appears on the second
panel, but all labels apply to both panels.

stration because it has a mix of only flood control and hy-
dropower reservoirs and has just six reservoirs upstream of
the GRDC site. In the Yenisey basin, the upstream area of
the GRDC station is dominated by hydropower reservoirs,
i.e., four hydropower reservoirs and two flood control, as
shown in Fig. S5a in the Supplement. Note that one of the
two flood control reservoirs is located downstream of the
hydropower reservoirs (Fig. S5a). This spatial arrangement
allows us to evaluate the effects of simulating hydropower
reservoirs as flood control reservoirs without interference
from the third purpose (i.e., in cases where an irrigation reser-
voir is located downstream of a hydropower reservoir). Fig-
ure S5b (see the Supplement) shows the total simulated stor-
age (sum of all six reservoirs) from Xanthos-enhanced-sim2
and Xanthos-enhanced-sim. The difference in the magnitude
of total simulated storage between the two simulations is
very significant (KGE between them is 0.44). In Xanthos-
enhanced-sim2, where all reservoirs are simulated as flood
control, the storage is relatively more variable from month
to month, while Xanthos-enhanced-sim changes are more

smooth, likely because the release aims to maintain mean an-
nual flow in Xanthos-enhanced-sim2, which leads to releases
that exceed inflow during the drier seasons and quick fill-up
during the wet seasons. The streamflow comparison at the
GRDC site (Fig. S5c in the Supplement) indicates that the
difference in the simulated reservoir releases is also signifi-
cant. The KGE values drop from 0.366 to 0.152 during the
calibration period (1971–1980) and from 0.293 to 0.008 dur-
ing the validation period (1981–1990) when simulating the
hydropower reservoirs as flood control.

For those basins where hydropower reservoirs serve a sec-
ondary purpose compared to irrigation, flood control, or other
types of reservoirs, there is no significant difference in the
KGE values between Xanthos-enhanced-sim2 and Xanthos-
enhanced-sim, suggesting that treating hydropower reser-
voirs as flood control reservoirs will not lead to a signif-
icant difference in streamflow simulations at the regional
or basin level. Figure 9 depicts the RII of the hydropower
reservoirs on flow at GRDC stations for basins with one or
more hydropower reservoirs (i.e., 51 of the 91 basins). The
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Figure 7. Comparing intra-annual and interannual variability in the storages and releases simulated with the hydropower reservoirs of
Xanthos-enhanced-sim and Xanthos-enhanced-sim2 experiments distributed over the 91 basins. (a) Seasonality index (SI) for release, (b) sea-
sonality index for storage, (c) coefficient of variation (CV) for release at the annual scale, and (d) coefficient of variation (CV) for storage at
the annual scale. The red line is a 1 : 1 line, where both scenarios are equal.

RII, shown here, corresponds to a hydropower reservoir with
the largest storage within the basin. Figure 9 also shows a
time series plot of the relative difference between Xanthos-
enhanced-sim2 and Xanthos-enhanced-sim storage and re-
lease for 10 basins with relatively higher RII within different
geographic regions.

The time series plots in Fig. 9 show the storage rela-
tive difference (S-RD) and release relative difference (R-
RD) between the two scenarios. S-RD represents Xanthos-
enhanced-sim storage minus Xanthos-enhanced-sim2 stor-
age scaled by the mean of the two storages. Similarly, R-RD
is the scaled difference in the simulated releases. From the
time series plots of S-RD, one can see that, in some exam-
ple basins, S-RD is > 0 (Fig. 9). This characteristic implies
that when a reservoir is simulated as a hydropower reser-
voir, it generally maintains high storage with less variation
than when simulated as a flood control reservoir. This can be
attributed to our release policy for hydropower simulation,
which targets maximum long-term revenue, where reservoir

storage level is an essential component. Out of the 296 reser-
voirs, about 150 of them demonstrate this type of behavior
for at least 50 % of the study period (1981–1990).

Flow downstream of hydropower reservoirs is also in-
fluenced by the change in the reservoir purpose from hy-
dropower to flood control (Fig. S5c in the Supplement). Sim-
ilarly, a comparison of simulated releases (Fig. S6 in the
Supplement) shows the difference between the simulated
monthly releases in the peak and low-flow periods. On the
one hand, the release from the flood control reservoirs is high
during peak flow periods because they aim to create excess
storage capacity to attenuate inflow during the next flood
event. On the other hand, the release from the hydropower
reservoirs can only go up to the maximum turbine flow plus
spillover. The Hanasaki et al. (2006) approach readjusts the
mean annual flow, depending on the reservoir’s degree of reg-
ulation (i.e., capacity ratio to mean annual inflow). Therefore,
in Xanthos, given that the readjusted mean annual flow is
greater than the environmental flow (10 % of the mean annual
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Figure 8. Empirical cumulative distribution function (CDF) of reservoir storage and release R2 (a) and NRMSE (b) between Xanthos-
enhanced-sim and Xanthos-enhanced-sim2 monthly simulations across all hydropower reservoir sites. The R2 CDF plot demonstrates that
we produce very different storage and release patterns by accounting explicitly for hydropower reservoir functionality in Xanthos-enhanced-
sim, although the difference in magnitude, as indicated by NRMSE CDF, is small. A higher R2 of 1.0 and NRMSE of 0.0 represent a perfect
agreement between the two simulations, indicating that distinguishing between the representation of hydropower and flood control behavior
was less important for basins with those values. The CDF plot is made of 296 hydropower reservoirs distributed across 51 basins. The labels
on the plots (HP-1, HP-2, HP-3, and HP-4) correspond to hydropower reservoirs located upstream of the Yenisey basin’s GRDC site (see
Fig. S5 in the Supplement), as discussed in Sect. 3.5. The markers for these labels are similar for both panels (a) and (b).

Figure 9. The difference between reservoir storage and release monthly time series between Xanthos-enhanced-sim and Xanthos-enhanced-
sim2 simulations at hydropower reservoirs demonstrates the value added by explicitly accounting for hydropower reservoir functionality in
Xanthos-enhanced-sim. The reservoir impact index (RII) is the ratio of reservoir storage capacity (in cubic meters) to annual mean flow (in
cubic meters). Low and high values of RII indicate that the stream is lightly and highly regulated, respectively. For instance, RII> 1.0 shows
the reservoir’s capacity to shift the downstream flow below the annual mean flow. The map at the center of the figure displays the RII for
the hydropower reservoir with the largest RII in each basin. In other words, each basin is represented by one hydropower reservoir with the
largest impact on flow at the GRDC site. The times series plots show the storage relative difference (S-RD) and release relative difference
(R-RD) between the two scenarios. For example, S-RD represents Xanthos-enhanced-sim storage minus Xanthos-enhanced-sim2 storage
scaled by the mean of the two storages.
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flow), release remains constant during the low-flow periods.
For hydropower reservoirs, low-flow releases are determined
by a release policy intended to maximize revenue. Because
of the changes in reservoir purpose, downstream reservoir
releases are also modified.

Taken together, Figs. 7–9 and Figs. S4–S6 (in the Sup-
plement) suggest that individual hydropower and flood con-
trol reservoirs behave very differently under the same climate
and upstream conditions, particularly in terms of the simu-
lated reservoir storage variations. Regarding regional-scale
simulations, treating hydropower reservoirs as flood control
leads to noticeably different simulated streamflow only in
the basins, where hydropower reservoirs dominate over the
other types of reservoirs. For instance, for the lower Col-
orado (RII= 1.92), Caspian Sea southwest coast (RII= 1.2),
Yenisey (RII= 1.02), Hudson Bay coast (RII= 1.32), and
São Francisco (RII= 0.67) basins, KGE improvement was
> 0.1 over the calibration period. The indicated RII corre-
sponds to the total effect of hydropower reservoirs located
upstream of the basin’s GRDC site. This observation will
have critical implications in studies for which freshwater
storage is the core interest, since reservoir storage is a criti-
cal component of terrestrial freshwater storage. For instance,
the number of hydropower reservoirs in many global basins
is rapidly increasing (Zarfl et al., 2015). Hence, the potential
of simulating them in GHMs is vital, as the water use char-
acteristics in many of these basins with hydropower reser-
voirs could change in the next decade or two if hundreds of
new dams are built. Furthermore, the observed distinct char-
acteristics between hydropower and flood control reservoir
storages have substantial implications for reservoir sedimen-
tation, which is another essential feature that the GHMs are
increasingly looking to capture.

The results in this paper highlight some promising po-
tential outcomes from accounting explicitly for hydropower
objectives and operational behavior in GHMs. However, we
note that it is premature to conclude from the above analysis
that treating hydropower reservoirs as flood control leads to
poor hydrological simulations, and vice versa. Many reser-
voirs, particularly large ones, serve multiple purposes, so
their behavior is controlled by multiple factors. This study
takes the same simplification strategy adopted by all existing
GHMs, i.e., treating each reservoir as having a single pur-
pose. Overcoming this simplification in a GHM setting is be-
yond the scope of this study and is left for the future.

4 Discussion and conclusions

This study adds a new water management module into
the Xanthos model to improve its representation of global
hydrological systems. The new water management mod-
ule enhances Xanthos mainly by introducing reservoir reg-
ulation and local surface water withdrawal. We represent
unique reservoir operation behavior for each reservoir based

on its primary purpose, which can fall into the following
three categories: irrigation, hydropower, and flood control
and others. In particular, hydropower reservoirs have been
treated as flood control reservoirs in previous GHM stud-
ies, while here we determined the operation rules for hy-
dropower reservoirs via optimization that maximizes long-
term hydropower production. We apply the enhanced Xan-
thos (Xanthos-enhanced) globally at a 0.5◦ spatial resolution
and monthly time step. Validation against observed stream-
flow in 91 river gauge stations demonstrates improved perfor-
mance over the original Xanthos (Xanthos-original) version.
At the individual reservoir level, we show that hydropower
and flood control reservoirs indeed behave quite differently,
particularly in terms of reservoir storage variations. At the
regional level, we show that treating hydropower reservoirs
as flood control reservoirs leads to a noticeable impact on the
simulated streamflow only in the basins where hydropower
reservoirs are dominant. The model’s performance improved
by more than the KGE of 0.1 for some of the basins with a
significant reservoir impact index (RII; e.g., the lower Col-
orado basin, the Caspian Sea southwest coast basin, Yenisey
basin, and the Hudson Bay coast). The RII value corresponds
to the total effect of hydropower reservoirs located upstream
of a basin’s GRDC site. Adding this new hydropower reser-
voir module can improve the analysis of finer-scale energy–
water–land dynamics within frameworks capable of ingest-
ing Xanthos outputs to capture water sector supply–demand
dynamics (e.g., Graham et al., 2020; Khan et al., 2020; Birn-
baum et al., 2022; Wild et al., 2021c, b). The benefits of dis-
tinguishing the unique behavior of hydropower reservoirs in
GHMs may become more prominent if hydropower expan-
sion in the coming decades occurs as planned (Zarfl et al.,
2015).

There are several opportunities to improve Xanthos-
enhanced further. First, in this study, we only determine op-
timal parameters for Xanthos-enhanced in 91 out of 235
large river basins globally, due to the availability of observed
streamflow data, and we assume each set of basin parameter
values is uniform across grid cells within a basin. For future
global applications of Xanthos-enhanced, one candidate ap-
proach for estimating the parameter values in the remaining
river basins is to simply use average parameter values from
the 91 basins that are gauged. Another possible approach is
to estimate the parameters over these ungauged basins by in-
voking a hydrologic parameter regionalization strategy; i.e.,
estimating the parameter values a priori from existing cli-
matology and landscape data based on multivariable regres-
sion techniques (Ye et al., 2014) or machine learning meth-
ods (Abeshu et al., 2022). Second, the groundwater storage
(both above and below confined aquifers) could be repre-
sented more explicitly, in line with advancements in the rep-
resentation of groundwater made by other GHMs (Gleeson
et al., 2021), which will enable a more realistic representa-
tion of water supply with groundwater pumping as an ad-
ditional source and potentially better streamflow simulation.
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Third, natural lakes should be represented in the model in
addition to reservoirs. Lakes are an essential source of water
supply, although they are not as heavily managed as reser-
voirs. They also have important impacts on the regional cli-
mate through their water and energy exchanges with the at-
mosphere. Fourth, hydrologically small reservoirs (i.e., those
with a storage capacity less than 0.1 km3; Lehner et al., 2011)
are currently not accounted for due to data limitations, but
they potentially play an important role in the regional and
global water supply. Last, but not least, the representation of
reservoirs could be enhanced by accounting for reservoir sed-
imentation, given that reservoir storage is being lost globally
at a rate of 0.5 % yr−1 (Mahmood, 1987; White, 2001). Rel-
atively simple empirically based approaches to capture these
dynamics for reservoirs globally have been shown to be ef-
fective and can be borrowed from other open-source model-
ing frameworks (e.g., Wild et al., 2021a).

While our current two-stage calibration framework pro-
vides substantial insights, we anticipate its evolution towards
a more comprehensive multigauge calibration approach. The
existing framework, which relies on a single gauge per basin
(typically the most downstream one), could potentially be
expanded to a multigauge calibration. Theoretically, this
process would calibrate the model parameters using mul-
tiple gauges scattered throughout the basin and accommo-
date the spatial variability inherent in these parameters. Such
an expansion could incorporate hierarchical and multiobjec-
tive optimization methods into the present two-stage frame-
work. The hierarchical approach initiates calibration with the
smaller, upstream sub-basins. The parameters determined at
these stages subsequently inform the calibration of the larger,
downstream basins, continuing in this fashion until the cali-
bration of the most downstream gauge. This method capital-
izes on the detailed information accessible at smaller scales,
thereby assuring the consistency of large-scale simulations
with those on smaller scales. Incorporating multiobjective
optimization, with objectives set at multiple gauges, is an-
other approach that could augment the fidelity of the simu-
lation within the two-stage calibration framework. This ap-
proach could mitigate discrepancies between simulated and
observed discharges at multiple gauges simultaneously. Con-
sequently, the model could represent a comprehensive array
of hydrological behaviors across space, especially in large
and heterogeneous basins where significant spatial variabil-
ity in hydrological processes is common.

Even with the above limitations, the water management
module we introduce here offers a more realistic representa-
tion of river systems in global hydrological models like Xan-
thos. The model has the potential to provide insight into the
competition between changes in water availability (primarily
affected by climate variability) and water demand (controlled
mainly by human activities) at regional or global scales and
support scientific analysis and planning in a complex socioe-
conomic system setting under various future climate change
and management scenarios.
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xanthos-wm/tree/updatev1 (last access: 1 August 2023) and
https://doi.org/10.5281/zenodo.7581990 (Abeshu, 2023c),
and the steps for reproducing the model results and figures
in the paper are available at https://github.com/gutabeshu/
Abeshu-etal_2023_GMD/tree/v1.01 (last access: 1 August 2023)
and https://doi.org/10.5281/zenodo.7557380 (Abeshu, 2023b).
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