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Abstract. Systematic biases and coarse resolutions are ma-
jor limitations of current precipitation datasets. Many deep
learning (DL)-based studies have been conducted for precip-
itation bias correction and downscaling. However, it is still
challenging for the current approaches to handle complex
features of hourly precipitation, resulting in the incapability
of reproducing small-scale features, such as extreme events.
This study developed a customized DL model by incorporat-
ing customized loss functions, multitask learning and physi-
cally relevant covariates to bias correct and downscale hourly
precipitation data. We designed six scenarios to systemati-
cally evaluate the added values of weighted loss functions,
multitask learning, and atmospheric covariates compared to
the regular DL and statistical approaches. The models were
trained and tested using the Modern-era Retrospective Anal-
ysis for Research and Applications version 2 (MERRA2) re-
analysis and the Stage IV radar observations over the north-
ern coastal region of the Gulf of Mexico on an hourly time
scale. We found that all the scenarios with weighted loss
functions performed notably better than the other scenarios
with conventional loss functions and a quantile mapping-
based approach at hourly, daily, and monthly time scales as
well as extremes. Multitask learning showed improved per-
formance on capturing fine features of extreme events and ac-
counting for atmospheric covariates highly improved model
performance at hourly and aggregated time scales, while the
improvement is not as large as from weighted loss functions.
We show that the customized DL model can better down-
scale and bias correct hourly precipitation datasets and pro-
vide improved precipitation estimates at fine spatial and tem-

poral resolutions where regular DL and statistical methods
experience challenges.

1 Introduction

Precipitation is a major component of the hydrological cycle
and is fundamentally important for many applications, such
as water resources planning and management, disaster risk
management, and agriculture, amongst many others. Due to
the limited coverage of ground-based rain gauges, numerous
gridded precipitation datasets have been developed over the
past decades, including gauge-based, satellite-based reanal-
ysis products, and merged products (Beck et al., 2019a; Sun
et al., 2018). These datasets are different in terms of data
sources, coverage, spatial and temporal resolution, and al-
gorithms (see Sun et al., 2018 for a review), which provide
a potential source of information to regions where conven-
tional in situ precipitation measurements are lacking (Sun et
al., 2018).

Gridded precipitation datasets have proven to be useful
across a wide range of research fields, including climate
trends and extreme precipitation (Bhattacharyya et al., 2022;
DeGaetano et al., 2020; Fischer and Knutti, 2016; Kim et
al., 2019; King et al., 2013), droughts and floods monitor-
ing (Aadhar and Mishra, 2017; Peng et al., 2020; Suliman
et al., 2020; Zhong et al., 2019), and driving hydrologi-
cal models (Raimonet et al., 2017; Xu et al., 2016). How-
ever, many studies have identified that these gridded precip-
itation datasets include substantial biases in certain aspects
compared to in situ observations (Aadhar and Mishra, 2017;
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Ashouri et al., 2016; Bitew and Gebremichael, 2011; Caval-
cante et al., 2020; Jiang et al., 2021; Jury, 2009; Rivoire et
al., 2021; Sun et al., 2018; Tong et al., 2014; Xu et al., 2016;
Yilmaz et al., 2005). For example, Ashouri et al. (2016) eval-
uated the performance of NASA’s Modern-era Retrospective
Analysis for Research and Applications (MERRA) precip-
itation reanalysis dataset and found that MERRA tends to
overestimate the frequency at which the 99th percentile of
precipitation is exceeded and underestimate the magnitude
of extremes, especially over the Gulf Coast regions of the
USA. Furthermore, spatial resolution for most of these grid-
ded precipitation datasets is relatively coarse for local scale
applications (mostly above 0.25◦, Sun et al., 2018). There-
fore, the gridded precipitation datasets require bias correc-
tion and downscaling (Duethmann et al., 2013; Emmanouil
et al., 2021; Mamalakis et al., 2017; Seyyedi et al., 2014).

Bias correcting and downscaling gridded precipitation
data is challenging due to its complex characteristics (e.g.,
highly skewed unbalanced features, and complex spatiotem-
poral structure). Various approaches have been developed
to tackle this issue, including traditional quantile mapping
(QM)-based bias correction and downscaling methods (e.g.,
Cannon et al., 2015; Panofsky and Brier, 1968; Thrasher et
al., 2012; Wood et al., 2002) and recent machine learning-
based approaches such as random forests (X. He et al., 2016;
Legasa et al., 2022; Long et al., 2019; Mei et al., 2020;
Pour et al., 2016), support vector machines (Tripathi et al.,
2006) and artificial neural networks (Schoof and Pryor, 2001;
Vandal et al., 2019). Recently, advances in deep learning
have made a significant impact on many fields and have
been proven superior to traditional machine learning meth-
ods because of their powerful abilities to learn spatiotem-
poral feature representation in an end-to-end manner (Ham
et al., 2019; Reichstein et al., 2019; Shen, 2018). In partic-
ular, deep learning (DL) with convolutional neural network
(CNN) types of approaches have achieved notable progress
in modeling spatial context data (LeCun et al., 2015) and
have been used for bias correcting and downscaling low spa-
tial resolution data (Kumar et al., 2021; Sha et al., 2020a, b;
Vandal et al., 2018b; Wang et al., 2021; Xu et al., 2020), cli-
mate model outputs (François et al., 2021; Liu et al., 2020;
Pan et al., 2021; Rodrigues et al., 2018; Wang and Tian,
2022), reanalysis products (Baño-Medina et al., 2020; Sun
and Tang, 2020), and weather forecast model outputs (Harris
et al., 2022; Li et al., 2022). While these studies have in-
dicated many promising strengths and advantages over tra-
ditional downscaling and bias correction approaches, most
of them have difficulties capturing local small-scale features
such as extremes for an unseen dataset. For example, Baño-
Medina et al. (2020) designed different DL configurations
with a different number of plain CNN layers to bias correct
and downscale daily ERA5-Interim reanalysis from 2◦ spa-
tial resolution to 0.5◦, and the overall performance is still
marginal compared with simple generalized linear regression
models and highly underestimated precipitation extremes.

Harris et al. (2022) developed a generative adversarial net-
works (GANs) architecture to bias correct and downscale
weather forecast outputs and found that it is more challeng-
ing to account for forecast error (or bias) in a spatially coher-
ent manner compared to the pure downscaling problem (Ku-
mar et al., 2021; Sha et al., 2020a, b; Vandal et al., 2018b;
Wang et al., 2021; Xu et al., 2020). The reason for that may
be due to the sparsity of training data on extreme events.
Deep learning (DL) models, however, need large training
data in order to obtain a better regularization model for rare
events in the unseen dataset.

Customized DL models have been proposed to generate
physically consistent results and have better generalization
ability for out-of-pocket datasets in the earth and environ-
mental science field, which include incorporating customized
loss functions (Kashinath et al., 2021), inputs from phys-
ically relevant auxiliary predictors (i.e., covariates) (Li et
al., 2022; Rasp and Lerch, 2018), and customized multitask
learning (Ruder, 2017). For example, Daw et al. (2017) indi-
cated success in lake temperature modeling by incorporating
a physics-based loss function into the DL objective compared
to a regular loss function. Li et al. (2022) used a CNN-based
approach to postprocess numerical weather prediction model
output and found that the use of auxiliary predictors greatly
improved model performance compared with raw precipita-
tion data as the only predictor. A multitask model is trained
to predict multiple tasks that are driven by the same underly-
ing physical processes and thus has the potential to learn to
better represent the shared physical process and better predict
the variable of interest (Ruder, 2017). Multitask models have
proven effective in several applications, including natural
language processing (Chen et al., 2014; Seltzer and Droppo,
2013), computer vision (Girshick, 2015), as well as hydrol-
ogy (Sadler et al., 2022). In addition, most of the previous
bias correction and downscaling studies focused on the daily
time scale (Baño-Medina et al., 2020; François et al., 2021;
Harris et al., 2022; Kumar et al., 2021; Liu et al., 2020; Pan
et al., 2021; Rodrigues et al., 2018; Sha et al., 2020a; Vandal
et al., 2018b; Wang et al., 2021). However, the distribution of
hourly precipitation data within a day is more important than
daily or monthly aggregations for impacts and risks from
warming-induced precipitation changes (Chen, 2020). Tra-
ditional DL loss functions have difficulties handling hourly
precipitation data that are highly unbalanced with many ze-
ros and highly positively skewed for nonzero components.
Therefore, customized DL with a weighted loss function to
better balance nonzero components has the potential to im-
prove the DL model performance. Besides the primary task
of downscaling and bias correction, adding a highly relevant
classification task has the potential to improve DL model per-
formance on the primary task. Incorporating covariates se-
lected based on precipitation formation theory (cloud mass
movement and thermodynamics) also have the potential to
improve precipitation downscaling and bias correction.
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In this study, we will explore customized DL for precipi-
tation bias correction and downscaling, aiming to take a step
forward to address the current challenges described above.
We designed a set of experiments to address this hypothesis
using the Modern-Era Retrospective analysis for Research
and Applications Version 2 (MERRA2) reanalysis and the
Stage IV radar precipitation data. The structure of this pa-
per is organized as follows: Sect. 2 introduces data and study
area, Sect. 3 introduces the methodology, including the deep
learning architecture and experimental designs for different
scenarios, and a traditional bias correction approach as a
benchmark, Sect. 4 presents results, discussion and conclu-
sions are provided in Sects. 5 and 6, respectively.

2 Data and study area

MERRA2 is a state of the art global reanalysis product gener-
ated by the NASA Global Modeling and Assimilation Office
(GMAO) using the Goddard Earth Observing System version
5 (GEOS-5), and was introduced to replace and extend the
original MERRA dataset (Reichle et al., 2017). It incorpo-
rates new satellite observations through data assimilation and
benefits from advances in the GEOS-5 (Reichle et al., 2017).
There are 2 datasets available for hourly total precipitation
(P ) from the MERRA2 reanalysis product: the model ana-
lyzed precipitation computed from the atmospheric general
circulation model and the observation-corrected P (Reichle
et al., 2017). Both have a spatial resolution of 0.5◦ in latitude
and 0.625◦ in longitude (∼ 50 km). MERRA2 observation-
corrected precipitation has been used extensively in hydro-
climatological analysis and modeling (Chen et al., 2021;
Hamal et al., 2020; Xu et al., 2019, 2022). However, it still
suffers from substantial biases (e.g., Hamal et al., 2020; Xu et
al., 2019). This study bias corrects and downscales MERRA2
observation-corrected P using the Stage IV radar data (Lin
and Mitchell, 2005) from the National Centers for Environ-
mental Prediction (NCEP) as the observational reference.
The Stage IV radar data has a 4 km spatial and hourly tempo-
ral resolution and covers the period from 2002 until the near
present (2021 in this study). Stage IV radar was generated by
merging data from 140 radars and about 5500 gauges over
the continental USA (Lin and Mitchell, 2005; Nelson et al.,
2016). Stage IV provides highly accurate P estimates and
has therefore been widely used as a reference for evaluating
other P products (e.g., Aghakouchak et al., 2011, 2012; Beck
et al., 2019b; Habib et al., 2009; Hong et al., 2006; Nelson
et al., 2016; Zhang et al., 2018). The Stage IV dataset is a
mosaic of regional analyses produced by 12 River Forecast
Centers (RFCs) and is thus subject to the gauge correction
and quality control performed at each individual RFC (Nel-
son et al., 2016).

The bias correction and downscaling experiments were
performed in the rectangle coastal area of the Gulf of Mex-
ico covering the entire states of Alabama, Mississippi, and

Louisiana, and parts of neighbor states in the USA, ranging
from 94.375◦W to 85.0◦W in longitude and from 29.0◦ N to
35.0◦ N in latitude. The study area falls into the humid sub-
tropical climate and is highly influenced by extreme P events
such as convective storms and hurricanes.

3 Methodology

3.1 Customized DL approaches

This section first presents a brief description of a DL ap-
proach, namely, Super Resolution Deep Residual Network
(SRDRN). Then, multitask learning and customized loss
functions are introduced based on the SRDRN architecture
to construct customized DL approaches. Finally, we de-
signed different modeling experiments, which include dif-
ferent combinations of multitask learning, customized loss
functions, and P covariates as predictors, in order to evalu-
ate the added values of each component of the customized
DL approaches.

3.1.1 SRDRN model

The SRDRN model is an advanced deep CNN type architec-
ture and has been tested for downscaling daily P and tem-
perature through synthetic experiments (Wang et al., 2021)
and for bias correcting near-surface temperature simulations
from global climate models (Wang and Tian, 2022), consid-
erably outperforming the conventional approaches. Further-
more, it has been proved that the SRDRN is capable of cap-
turing much finer features than shallow plain CNN architec-
ture (Wang et al., 2021). Compared with the popular U-Net
architecture (Sha et al., 2020a; Sun and Tang, 2020), the SR-
DRN directly extracts features on the coarse resolution input
and thus can potentially decrease computational and memory
complexity.

Here we provide a brief description of the SRDRN algo-
rithm. For more details, the readers may refer to Wang et
al. (2021). The SRDRN algorithm was developed based on a
novel superscaling DL approach in the computer vision field
(Ledig et al., 2017). Basically, the SRDRN algorithm is com-
prized of residual blocks and upsampling blocks with convo-
lutional and batch normalization layers. For feature extrac-
tion, the convolutional layers apply filters to go through the
input data to build a local connection within nearby grids by
computing the element-wise dot product between the filters
and different patches of the input. The outcome is followed
by a nonlinear activation function, here parametric ReLU (He
et al., 2015) in this study. Batch normalization is a technique
to standardize the inputs to a layer for each mini-batch so that
the learning process can be stabilized and the training of the
model can be accelerated (Ioffe and Szegedy, 2015).

With convolutional and batch normalization layers, the
residual blocks are designed to extract fine spatial features
while avoiding degradation issues for the very deep neu-
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ral network. Compared to plain CNN architectures, resid-
ual blocks can improve the performance of extensively deep
networks (Silver et al., 2017) without suffering from model
accuracy saturation and degradation (K. He et al., 2016)
because residual blocks execute residual mapping and in-
clude skipping connections. In this study, the way that skip-
ping connection skips layers and connects the next layers is
through element-wise addition. A total number of 16 residual
blocks were used in the SRDRN architecture, which makes
the network very deep and able to extract fine spatial features.

The upsampling blocks are applied to increase the spa-
tial resolution for downscaling purposes. The upsampling
process is executed directly on the feature maps generated
from the residual blocks, and each upsampling block is com-
posed of one convolutional layer and one upsampling layer
followed by a parametric ReLU activation function. The de-
faulted nearest neighbor interpolation was chosen in the up-
sampling layers to increase the spatial resolution, and the ef-
fects of different interpolation methods were not explored in
this study. Each upsampling block sequentially and gradually
increases the input low-resolution feature maps by a factor of
2 or 3. In this study, the downscaling ratio (the ratio between
coarse resolution and high-resolution data) is 12, and thus we
used 3 upsampling blocks with 2 blocks having a factor of 2
and 1 block having a factor of 3.

3.1.2 SRDRN model with multitask learning

We included an additional P classification task in the SR-
DRN model. Besides bias correcting and downscaling con-
tinuous hourly P values as a primary task, we added another
task to bias correct hourly P categories. Studies have indi-
cated that a multitask DL model could learn to better repre-
sent the shared physical processes and better predict the vari-
able of interest (e.g., Sadler et al., 2022). As P categories and
actual values are highly relevant, adding a classification task
can potentially improve the DL model for bias correcting and
downscaling P .

Specifically, for the SRDRN with multitask learning, one
convolutional layer (256 filters and 3×3 kernels) follows the
last element-wise addition operation to summarize feature
maps, then the architecture splits into two sections (Fig. 1).
The first section with 2 additional convolutional layers (the
first one with 64 filters and the second with 4 filters) fol-
lowed by the Softmax activation (Goodfellow et al., 2016) is
used for bias correcting P categories as a multiclass classi-
fication task, and the other section with upsampling blocks
is used for the purpose of bias correcting and downscal-
ing hourly P . The classification task classifies the hourly
P at each grid into 4 categories: 0–0.1 mm h−1 as no rain,
0.1–2.5 mm h−1 as light rain, 2.5–10 mm h−1 as moderate
rain, and > 10 mm h−1 as heavy rain (Tao et al., 2016).
Due to radar sensors’ uncertainty in the very light rainfall,
0.1 mm h−1 is commonly used as a threshold to determine if
there is rain (Tao et al., 2016). As the classification task is ex-

ecuted on the feature maps at the coarse resolution, we aggre-
gated Stage IV P (namely, coarsened Stage IV in this study)
into the same spatial resolution as MERRA2 and classified
the upscaled P data into the four groups as target labels.

3.1.3 Customized loss functions

Precipitation data is highly skewed and unbalanced, espe-
cially at an hourly time scale, which could cause the deep
learning algorithm to focus more on no-rain events while ig-
noring heavy rain events if using regular loss functions. Here
we developed a weighted mean absolute error (MAE) loss
function (LMAE_weighted) to balance precipitation data where
weights change with precipitation values as shown by the
equation

LMAE_weighted =

∑n
i=1w1 ·

∣∣ypred− ytrue
∣∣

n
, (1)

where n is the total number of grids in a batch, w1 is the
weight for each absolute error between the model predicted
value ypred and the true value ytrue. The weight w1 changes
with the actual true value ytrue

w1 =

 MIN ytrue ≤MIN
ytrue MIN< ytrue <MAX
MAX ytrue ≥MAX

,

where MIN is the lowest threshold and MAX is the high-
est threshold for the weights. In other words, when the ytrue
value is below (above) MIN (MAX),w1 equals MIN (MAX),
otherwisew1 equals ytrue itself. Thus, the loss is weighted di-
rectly by the P value at the grid cell scale, which has been
proven to be more effective than weighted by P bins (Ravuri
et al., 2021; Shi et al., 2017). Note that all of the gridded
P data, including Stage IV and MERRA2, are logarithmi-
cally transformed [i.e., y = log(x+ 1)] in order to amplify
the normality and reduce the skewness of P data (Sha et al.,
2020a). In Eq. (1), ytrue and ypred are transformed P values.
MIN was set to log(0.1+1) and MAX was set to log(100+1),
where the maximum 100 mm h−1 was chosen as the highest
threshold before log transformation for robustness to spuri-
ously large values in the Stage IV radar (Ravuri et al., 2021)
and 0.1 mm h−1 is commonly used as a threshold to deter-
mine if there is rain for radar data (Tao et al., 2016).

For the four P categories, most data fall into the no rain
category (over 88 % in the coarsened Stage IV), and the mi-
nority of data fall into the heavy rain category (about 0.2 %
in the coarsened Stage IV). Thus, handling class imbalance
is of great importance in this situation, where the minority
class for the heavy rain category is the class of most interest
with respect to this learning task. The regular cross-entropy
loss function for the classification task could result in the un-
derestimation of the minority class (Fernando and Tsokos,
2021). Thus, we applied a weighted cross entropy as a loss
function (Lweighted Cross-entropy) for the classification task in
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Figure 1. The customized SRDRN architecture with multitask learning, which includes the classification of P categories as an auxiliary task
(task 1) in addition to downscaling and bias correcting actual P values (task 2). Note that this figure is modified from the SRDRN architecture
shown in Wang et al. (2021).

order to penalize more towards heavy rain category as fol-
lows

Lweighted Cross-entropy =−
∑n

i=1

∑k

j=1
w2,j ·p

(
yi,j

)
· log

(
q
(
yi,j

))
, (2)

where w2,j denotes the weight for the j th class, p
(
yi,j

)
rep-

resents the true distribution of the ith grid for the j th class,
and q

(
yi,j

)
represents the predicted distribution. k is the

number of classes (equals 4 in this study). w2,j was set to 1,
5, 15, and 80 for no rain, light rain, moderate rain, and heavy
rain classes, respectively, which is roughly based on the op-
posite percentage (i.e., 1, 5, 15, 80 are approximately from
the percentages of heavy, moderate, light and no rain cate-
gories, respectively) for each category of the coarsened Stage
IV. As the weights for categories with rain are relatively
larger than the no rain category, the loss Lweighted Cross-entropy
is relatively large when there are discrepancies between true
and predicted categories with rain, resulting in guiding the
training process towards decreasing these differences with
larger weights and thus better handling class imbalance is-
sues.

3.1.4 Experimental design

To comprehensively evaluate the added value of each com-
ponent of customized DL models, including weighted loss
function, multitask learning, and adding covariates, we de-

signed six scenarios (Scenario1–Scenario6 in Table 1). Sce-
nario1 is based on the basic SRDRN architecture with hourly
P from MERRA2 as coarse-resolution input, P from Stage
IV as high-resolution labelled data, and regular MAE as loss
function, which represents regular DL. Wang et al. (2021)
used regular mean squared error (MSE) as a loss func-
tion, which works well for downscaling daily precipitation
through synthetic experiments with no bias as the precip-
itation data were first coarsened and then downscaled into
the original fine scale. However, in this study the coarse-
resolution MERRA2 has substantial biases compared to
Stage IV radar data, and Stage IV radar data also includes
artifacts (e.g., large spurious values) (Nelson et al., 2016).
The previous study has shown that the MSE loss function is
more sensitive to radar artifacts than the mean absolute er-
ror (MAE) loss function (Ravuri et al., 2021). Therefore, we
chose MAE as a regular loss function in this study. Scenario2
is the same as Scenario1 except using weighted MAE loss
function (Eq. 1). The number of trainable parameters is the
same for Scenario1 and Scenario2. Scenario3 includes the
classification task, and the total loss is the combination of
Eqs. (1) and (2) with a weight λ (see Eq. 3), where λ was set
to 0.01 to ensure the two parts of the losses are in the same
magnitude. The trainable parameters for Scenario3 increase
by 30 % compared to Scenario1 and Scenario2.

L= LMAE_weighted+ λ ·Lweighted Cross-entropy. (3)
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Table 1. Deep learning (DL) experimental design.

Experimental runs (scenarios) Input Output Loss

Scenario1 Hourly precipitation (P ) P MAE
Scenario2 P P Weighted MAE
Scenario3 P P + categorical P Weighted MAE +λ· weighted cross-entropy
Scenario4 Covariates w/o P P Weighted MAE
Scenario5 Covariates w/ P P Weighted MAE
Scenario6 Covariates w/ P P + categorical P Weighted MAE +λ· weighted cross-entropy

As described in Sect. 1, studies have indicated that in-
cluding atmospheric covariates is helpful for estimating pre-
cipitation (e.g., Baño-Medina et al., 2020; Li et al., 2022;
Rasp and Lerch, 2018). The other three scenarios also con-
sider atmospheric covariates of P from MERRA2 as pre-
dictors, which include geopotential height, specific humid-
ity, air temperature, eastward wind, and northward wind at
three different vertical levels (250, 500, 850 hPa) (e.g., Baño-
Medina et al., 2020; Rasp and Lerch, 2018) as well as vertical
wind (e.g., Trinh et al., 2021) at 500 hPa (OMEGA500), sea
level pressure and 2 m air temperature in a single level (e.g.,
Panda et al., 2022; Rasp and Lerch, 2018) (see Table 2). We
chose these variables based on precipitation formation the-
ory (cloud mass movements and thermodynamics) as well
as findings from previous studies as already indicated. Com-
parable to a classical multiple linear regression problem, co-
variates are multivariable predictors, and hourly precipitation
is the only dependent variable. For each covariate listed in
Table 2, data normalization was executed as a data prepro-
cessing step. Specifically, each covariate was normalized by
subtracting the mean (µ) and dividing by the standard devia-
tion (σ ). Here µ and σ are scalar values that were calculated
based on the flattened variable for the training dataset. Dur-
ing the testing period, the model prediction was made from
the normalized MERRA2 with µ and σ calculated from the
testing period dataset to preserve nonstationarity. Scenario4
only included atmospheric covariates without using coarse-
resolution P as input and used Eq. (1) as the loss function
to test whether only covariates are sufficient for estimating
hourly P . The number of trainable parameters for Scenario4
is about 1 % more compared to Scenario1 and Scenario2.
Scenario5 is the same as Scenario4 except including P as
a predictor besides atmospheric covariates, and the number
of trainable parameters is very close to Scenario4. Scenario6
is the same as Scenario5 except including the classification
task with Eq. (3) as loss function and the number of trainable
parameters is similar to Scenario3 (31 % greater than scenar-
ios with no multitask learning).

The Adam optimization algorithm was applied to train the
6 DL scenarios with a learning rate of 0.0001 and other
default values. We found that the learning rate of 0.0001
worked stably in this study through a series of experiments.
The batch size for each epoch was set to 64, and the number

of epochs was set to 150 for each scenario listed in Table 1.
Each scenario was trained with approximately 2.5×105 iter-
ations. We frequently saved models and evaluated their per-
formance with a validation dataset in order to choose the best
model for prediction on the testing dataset. The training pro-
cess was executed using NVIDIA V100 GPU provided by
the NASA High-End Computing (HEC) Program through
the NASA Center for Climate Simulation (NCCS) at the
Goddard Space Flight Center (https://www.nccs.nasa.gov/
systems/ADAPT/Prism, last access: 18 November 2022).

At the time when we conducted this study, MERRA2 and
Stage IV hourly P data have a 20-year overlapping period
from 2002 to 2021. We used the first 14 years (2002–2015)
as the training dataset, the middle 3 years (2016–2018) as
the validation dataset, and the more recent 3 years (2019–
2021) as the testing dataset. Figure 2 shows the hourly mean
or climatology for MERRA2 and Stage IV for training and
testing datasets, as well as the mean differences between the
testing and the training periods. We can tell that there are
large climatology differences (or biases) between MERRA2
and Stage IV both for training and testing datasets, espe-
cially around the coastal area. Wetter conditions are ob-
served in most of the study area in the testing period (av-
erage 0.03 mm h−1) than in the training period, which is
due to a higher percentage of rain (with values greater than
0.5 mm h−1) during the testing period than during the train-
ing period based on analyzing the Stage IV data (Table S1 in
the Supplement). This allows us to assess the extrapolation
capabilities of the different methods, which is particularly
relevant in a changing climate.

3.2 Statistical approach

We used a widely accepted quantile delta mapping (QDM)
as a benchmark approach for P bias correction. The QDM
method corrects systematic biases at each grid cell in quan-
tiles of a modeled series with respect to observed values.
Compared to the regular quantile mapping method (Panofsky
and Brier, 1968; Thrasher et al., 2012; Wood et al., 2002),
QDM also applies a relative difference between historical
and future climate data (here, training and testing periods).
Thus it is capable of preserving the trend of the future cli-
mate (Cannon et al., 2015), which is critical for this study
as there are substantial differences between the precipitation
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Table 2. Selected atmospheric covariates for DL downscaling and bias correction.

NO Other variables Variable description Units

1 H250 Geopotential height at 250 hPa m
2 H500 Geopotential height at 500 hPa m
3 H850 Geopotential height at 850 hPa m
4 Q250 Specific humidity at 250 hPa kg kg−1

5 Q500 Specific humidity at 500 hPa kg kg−1

6 Q850 Specific humidity at 850 hPa kg kg−1

7 T250 Air temperature at 250 hPa K
8 T500 Air temperature at 500 hPa K
9 T850 Air temperature at 850 hPa K
10 U250 Eastward wind at 250 hPa m s−1

11 U500 Eastward wind at 500 hPa m s−1

12 U850 Eastward wind at 850 hPa m s−1

13 V250 Northward wind at 250 hPa m s−1

14 V500 Northward wind at 250 hPa m s−1

15 V850 Northward wind at 250 hPa m s−1

16 OMEGA500 Omega (vertical wind) at 500 hPa Pa s−1

17 SLP Sea level pressure Pa
18 T2M 2 m air temperature K

Figure 2. Climatology of hourly precipitation (in a unit of mm h−1) from MERRA2 and Stage IV during the training period (2002–2015;
first row) and their differences (second row) between the testing (2019–2021) and training periods.
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during the training (2002–2015) and testing (2019–2021) pe-
riods (see Fig. 2). This approach has been widely used to
bias correct climate variables, including P , which indicated
better performance compared to the other bias correction ap-
proaches (Cannon et al., 2015; Eden et al., 2012; Kim et al.,
2021; Tegegne and Melesse, 2021; Tong et al., 2021). To be
specific for QDM, the bias-corrected value x̂m,p (t) for mod-
eled data in the future projection at time t is given by apply-
ing the relative change 1m (t) multiplicatively to the histori-
cal bias corrected value x̂o:m,h:p (t),

x̂m,p (t)= x̂o:m,h:p (t) ·1m (t) , (4)

where x̂o:m,h:p (t)= F
−1
o,h
[
τm,p (t)

]
and 1m (t)=

xm,p(t)

F−1
m,h[τm,p(t)]

. xm,p (t) represents uncorrected modeled

data in the projection period and τm,p (t) is the percentile
of xm,p (t) in the empirical cumulative density function (F )
formulated by the modeled data in the projection period
over a time window around t . F−1

o,h
[
τm,p (t)

]
means applying

inverse empirical cumulative density function formulated
by the observed data in the historical period for τm,p (t) to
obtain a bias-corrected value [i.e., x̂o:m,h:p (t)]. Similarly,
F−1

m,h
[
τm,p (t)

]
denotes applying inverse empirical cumula-

tive density function formulated by the modeled data in the
historical period for τm,p (t). The time window to construct
the empirical cumulative density function around time t was
set to be 45 d to preserve the seasonal cycle. In this study, the
historical and projection periods correspond to the training
and testing data periods, respectively. The modeled and
observed data correspond to MERRA2 and coarsened Stage
IV data, respectively. For details about this method, readers
are referred to Cannon et al. (2015).

The QDM bias correction was performed at the spatial res-
olution of MERRA2. The QDM biased-corrected P data at
the coarse resolution was then bilinear interpolated into the
high resolution, the same as the spatial resolution of Stage
IV. This process of QDM and bilinear interpolation (He et
al., 2016b) is named QDM_BI in the following sections.

3.3 Evaluation approaches

We evaluated model performance in different temporal
scales, including hourly and aggregated (daily and monthly)
time scales. The agreements between the observed and es-
timated (i.e., bias-corrected and downscaled) P for the dif-
ferent scales and extremes were quantified using the Kling-
Gupta efficiency (KGE). The KGE is an objective perfor-
mance metric combining correlation, bias, and variability,
which was introduced by Gupta et al. (2009) and modified
by Kling et al. (2012). The KGE has been widely used for
evaluating different datasets with observations (e.g., Beck et
al., 2019b, a; Wang et al., 2021) and as the standard evalua-
tion metric in hydrology (Beck et al., 2017; Harrigan et al.,

2018, 2020; Lin et al., 2019). The KGE is defined as follows:

KGE= 1−
√
(r − 1)2+ (β − 1)2+ (γ − 1)2, (5)

where the correlation component r is represented by the cor-
relation coefficient, the bias component β is represented by
the ratio of estimated and observed means, and the variability
component γ is represented by the estimated and observed
coefficients of variation:

β =
µs

µo
and γ =

σs/µs

σo/µo
, (6)

where µs and µo denote the distribution mean for the esti-
mates and observations, and σs and σo denote the standard
deviation for the estimates and observations, respectively.
Note here that the variability component γ is not the ratio
of σs and σo to ensure that the bias and variability ratios are
not cross-correlated (Kling et al., 2012). KGE, r , β and γ
represent perfect agreement when they equal one. In addi-
tion to KGE, the root mean square error (RMSE) and mean
absolute error (MAE) metrics are also reported as they were
often used to evaluate model performance on bias correction
and downscaling (e.g., Maraun et al., 2015; Rodrigues et al.,
2018).

To understand the performance on capturing P extremes,
we assessed hourly P at 99th percentiles and annual max-
imum wet spell in hours, as well as an extreme hurricane
event that occurred during the testing period. These extreme
indices and events are highly relevant to flooding (Pierce et
al., 2014) and have a great environmental impact as well as
impacts on property and human life.

Moreover, we evaluated P classification results from Sce-
nario3 and Scenario6, the scenarios with multitask learning
for bias correcting P categories, by comparing them with the
four categories from the coarsened Stage IV observations.
The four categories from the coarsened Stage IV were gen-
erated manually based on the ranges of the four classes. We
also classified the results from QDM and raw MERRA2 into
four categories and compared the results with the categories
from the coarsened Stage IV. A widely used metric, namely,
intersection over union (IOU) (Li et al., 2021), is applied to
evaluate classification performance, which is defined by

IOU=
TP

TP+FP+FN
· 100, (7)

where TP represents true positives (prediction= 1, truth=
1), FP represents false positives (prediction= 1, truth= 0)
and FN represents false negatives (prediction= 0, truth= 1).
Taking the heavy rain category as an example, TP is an out-
come where the model correctly predicts the heavy rain class;
FP is an outcome where the model predicts it is a heavy rain
class, but the true label is not a heavy rain class; FN is an out-
come where the model predicts it is not a heavy rain category,
but the true label is a heavy rain class. The IOU ranges from 0
to 100 and specifies the percentage of the amount of overlap
between the predicted and ground truth bounding box.
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4 Results

In this section, we present the performance of the six DL
model scenarios and the benchmark approach QDM_BI on
bias correcting and downscaling hourly P , evaluated against
Stage IV precipitation data during the testing period from
2019 to 2021.

4.1 Overall agreement

The overall agreement between the observed and estimated
P was quantified with KGE (Eq. 5) as well as each com-
ponent of KGE, which were calculated on an hourly basis
for the entire testing period (2019–2021) and for all the grid
cells over the study region. Table 3 shows that Scenario2–
Scenario6 have much higher KGE than Scenario1, indicat-
ing that the weighted loss function improved model perfor-
mance through rebalancing hourly P data. Scenario1, how-
ever, highly overestimated the variability (i.e., γ is much
greater than 1) and underestimated the mean (i.e., β is much
smaller than 1), resulting in a negative KGE value. This in-
dicates that using a regular loss function (i.e., MAE) tends to
underestimate hourly P (relatively larger training loss than
other scenarios during training, see Fig. S1 in the Supple-
ment). The KGE values are comparable for all the scenar-
ios using the weighted loss function. The best KGE is ob-
tained by Scenario5, with Scenario4 and Scenario6 perform-
ing consistently well in terms of KGE, which indicates that
including atmospheric covariates as predictors further im-
proved the model performance. However, the DL and bench-
mark approaches performed considerably worse in terms of
the correlation component r of KGE than the other compo-
nents (i.e., β and γ ). The reason is that the correlation com-
ponent r was estimated based on all the hour-to-hour P data,
while the other two components (i.e., β and γ ) were calcu-
lated based on long-term climatological P statistics and were
relatively easier to estimate (Beck et al., 2019b). The bench-
mark QDM_BI, also highly overestimated the variability and
has a lower KGE score than Scenario4, Scenario5, and Sce-
nario6 of the DL approaches.

Table 3 also reports the results of RMSE and MAE, which
are widely used to evaluate model performance on bias cor-
rection and downscaling. However, these two metrics are in-
adequate for pixel-wise comparison, particularly when com-
paring two datasets with spatial biases, due to the well-
known “double penalty problem” (Harris et al., 2022; Rossa
et al., 2008). Specifically, for using RMSE or MAE metrics,
the model estimates that correctly capture the right amounts
of rain in slightly incorrect locations often score worse than
estimates of no rain at all. For example, Scenario1 has the
lowest RMSE and MAE, but it highly underestimated the
observed mean (i.e., β is much lower than 1), while it is the
worst one in all the scenarios, including QDM_BI in terms
of KGE scores. This illustrates the limitations of grid point-
based errors like RMSE and MAE as evaluation metrics.

4.2 Hourly climatology

Due to climate variability and change, the climatology of
hourly P over the testing period (2019–2021) is much higher
than the training period (2002–2015) (Fig. 2). We evalu-
ated the long-term mean (i.e., climatology) during the test-
ing period (Figs. 3 and 4a), which allows us to examine how
well the methods could capture the P climatology but also
the nonstationary changes of long-term P . Again, Scenario1
notably underestimated the climatology of observations (by
71 % on average) (Figs. 3 and 4a) due to the use of MAE
as a loss function. In general, all other DL scenarios and
QDM_BI provide satisfactory results in capturing hourly P
climatology. Scenario4 also slightly underestimated the cli-
matology of Stage IV (12 % on average, Fig. 4a). This sce-
nario only includes atmospheric covariates as model inputs
without using the corrected P of MERRA2, indicating the
information from covariates only is not sufficient to estimate
hourly P . The climatology of Scenario3, Scenario5, and Sce-
nario6 appears to match well with Stage IV in space, bet-
ter than QDM_BI. Relative differences of climatology av-
eraged over the study area between estimated and Stage IV
are 1.5 %, 1.8 % and 0.38 % for Scenario3, Scenario5, and
Scenario6, respectively, while it is 2.5 % for QDM_BI. Com-
pared to Scenario3 and Scenario5, Scenario2 underestimated
the climatology, particularly around the coastal area (Fig. 3).
Figure 4a shows that QDM_BI has a relative larger variance
and its KGE value is lower than the ones for Scenario2, Sce-
nario3, Scenario5, and Scenario6. Note that all the DL es-
timates appear to be more blurred than Stage IV, similar to
what has been found in previous studies (e.g., Ravuri et al.,
2021), while the QDM_BI estimates are even more blurred
than the DL estimates.

4.3 Daily and monthly P estimates

We aggregated the hourly P estimates into daily and monthly
time scales to evaluate the performance of daily total P
and monthly mean of hourly P . Overall, the KGE values
for the daily total P are considerably greater than those for
the hourly P (Table 3), which suggests that temporal ag-
gregation denoised the hourly precipitation data leading to
considerably higher correlation coefficients (r in Table 3),
mainly contributing to higher KGE. Similarly, The KGE
value for Scenario1 is the lowest as it highly underestimated
the mean of daily total P (lower β), overestimated the vari-
ability (higher γ ), and the correlation r is also lower com-
pared to the other scenarios. Scenario5 and Scenario6 have
relatively higher KGE scores than other DL scenarios and
QDM_BI for the daily total P . Daily total P from QDM_BI
has a comparable KGE score with the DL models while over-
estimating the variability (higher γ ) compared to most of the
DL scenarios.

Figure 5 shows the daily total P time series for each year
during the testing period for the Stage IV, the 6 DL scenarios,
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Table 3. Overall assessment for hourly, daily total, and monthly mean of hourly precipitation. KGE represents the modified Kling-Gupta
efficiency (KGE) and it includes three components (correlation component r , bias component β and variability component γ ). The correlation
component r is represented by the correlation coefficient, the bias component β is represented by the ratio of estimated and observed means,
and the variability component γ is represented by the estimated and observed coefficients of variation.

Temporal scales Scenarios∗ KGE r β γ RMSE (mm) MAE (mm)

Hourly precipitation Scenario1 −0.0584 0.267 0.288 1.28 1.20 0.189
Scenario2 0.218 0.297 0.958 0.660 1.25 0.258
Scenario3 0.203 0.278 1.02 0.664 1.28 0.269
Scenario4 0.250 0.331 0.883 0.682 1.21 0.240
Scenario5 0.283 0.358 1.02 0.682 1.22 0.248
Scenario6 0.262 0.356 1.00 0.639 1.20 0.247
QDM_BI 0.248 0.332 1.02 1.35 1.36 0.256

Daily precipitation Scenario1 0.0935 0.615 0.288 1.409 10.19 3.54
Scenario2 0.644 0.685 0.958 0.840 8.76 3.42
Scenario3 0.626 0.675 1.02 0.815 8.94 3.54
Scenario4 0.618 0.642 0.883 0.935 9.37 3.55
Scenario5 0.688 0.701 1.02 0.914 8.89 3.40
Scenario6 0.668 0.701 1.00 0.855 8.65 3.34
QDM_BI 0.644 0.689 1.02 1.17 10.50 3.42

Monthly mean of hourly precipitation Scenario1 0.0206 0.567 0.289 1.52 0.162 0.133
Scenario2 0.766 0.778 0.958 0.941 0.0721 0.0512
Scenario3 0.784 0.791 1.02 0.951 0.0713 0.0505
Scenario4 0.690 0.712 0.883 0.991 0.0835 0.0592
Scenario5 0.778 0.782 1.02 0.964 0.0734 0.0519
Scenario6 0.776 0.783 1.00 0.945 0.0719 0.0511
QDM_BI 0.717 0.777 1.02 1.17 0.0850 0.0553

∗ Scenarios have different settings: Scenario1 is with a regular MAE loss function and coarse precipitation as a predictor; Scenario2 is with a weighted MAE loss
and coarse precipitation as a predictor; Scenario3 is the same as Scenario2 except with a classification as an auxiliary task; Scenario4 is with a weighted loss
function and covariates as predictors; Scenario5 is the same as Scenario4 except also including coarse precipitation as predictors; Scenario6 is the same as
Scenario5 but including a classification as an auxiliary task.

and QDM_BI averaged over the study area. The results show
that the daily total P time series from the DL models closely
matched with the daily total P time series from Stage IV ex-
cept Scenario1. Again, Scenario1 highly underestimated the
daily total P with the lowest KGE value, suggesting the dif-
ficulties of MAE in handling the highly unbalanced feature
of P . The daily total P from all the other five DL scenarios
is much close to Stage IV with large KGE values (close to
or larger than 0.9). Scenario5 and Scenario6 perform better
than the other scenarios including QDM_BI, indicating in-
corporating covariates and corrected coarse resolution P fur-
ther improved daily total P estimates. The bias-corrected and
downscaled daily total P from QDM_BI, however, highly
overestimated the daily total P of Stage IV for almost all the
large precipitation events because the bias correction process
for QDM_BI was executed individually at each grid cell and
did not consider spatial dependencies and nonlinear relation-
ships between covariates and observations, resulting in un-
stable estimations (Wang and Tian, 2022).

Table 3 also summarizes the statistics of the monthly mean
of hourly P . The KGE values for the monthly mean of hourly
P are greatly increased, higher than the daily total P . Except
for Scenario1, the KGE values for the monthly mean are very

close to each other, with Scenario4 slightly lower than others
including QDM_BI. The monthly mean from QDM_BI had
relatively higher γ , indicating overestimations of variability.
Figure 6 presents the monthly mean time series of hourly
precipitation for each month during the testing period for
Stage IV, the six DL models, and QDM_BI, averaged over
the study area. Similar to the daily total P time series, the
monthly mean P from all the DL models closely matched
with the monthly mean time series from Stage IV (KGE
value greater than 0.9) except Scenario1, which highly under-
estimated the observations. Scenario4 had the lowest KGE
value and slightly underestimated the monthly mean, but all
the scenarios (Scenario2–Scenario6) are consistently better
than the KGE score from QDM_BI. These results indicate
that incorporating the weighted loss function (Scenario2–
Scenario6 compared to Scenario1) improved monthly mean
estimations, and the effects of the other customized compo-
nents were not obvious at the monthly time scale. Similarly,
the monthly mean from QDM_BI estimates has a relatively
larger variability than Stage IV, resulting in a lower KGE
value.
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Figure 3. Hourly precipitation climatology (in a unit of mm h−1) during the testing period (2019–2021), which includes MERRA2, Stage
IV, QDM_BI, and the six DL experimental runs (Scenario1–Scenario6).

4.4 Extremes

Table 4 summarizes the statistics of hourly P at the 99th
percentile and the annual maximum wet spell. The results
show that Scenario1 highly underestimated hourly P at the
99th percentile (lower β than 1) and overestimated variabil-
ity (higher γ than 1), resulting in a negative KGE score, sug-
gesting the inadequacy of using regular MAE loss function.
Scenario2 has the highest KGE score with a higher corre-
lation coefficient (higher r) than the other scenarios. This is
probably because the number of trainable parameters for Sce-
nario2 is the lowest, leading to a better regularization ability
with limited data for extremes. The KGE values were sim-
ilar for Scenario3, Scenario5, and Scenario6, and relatively
lower for Scenario4, suggesting the importance of incorpo-
rating observation-corrected P from coarse resolution as an
input. The benchmark approach QDM_BI highly overesti-
mated the variability of hourly P at the 99th percentile com-
pared to Stage IV, resulting in a lower KGE value than most
of the DL scenarios except Scenario1.

Figure 4b shows the boxplots of the relative difference be-
tween hourly P estimates and Stage IV observations at the
99th percentile. On average, Scenario1 underestimated the
99th percentile hourly P by over 60 %, while other DL sce-
narios underestimated by about 20 %, with Scenario5 and
scenerio6 much closer to Stage IV. The 99th percentile es-
timated by QDM_BI has a much higher variance (as indi-
cated by the distance between high 90 % and low 10 % bars
in the boxplot, as well as high γ in Table 4) compared to
DL models, while it has a lower mean difference (underes-
timated by about 10 %) due to bias correction through an
explicit adjustment at each percentile. Figure 7 shows the
spatial distribution of the hourly P at the 99th percentile for
MERRA2, Stage IV, QDM_BI, and the six DL models. We
can see that the 99th percentile of MERRA2 hourly P greatly
underestimated Stage IV by 40 % (spatial average 2.9 mm for
MERRA2 versus 4.8 mm for Stage IV). While the hourly P
at the 99th percentile from QDM_BI (area average 4.3 mm)
appears to be close to Stage IV, its spatial variability looks
very different from Stage IV, probably due to QDM_BI cor-
recting biases on a grid point basis. Scenario4 highly un-
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Figure 4. Boxplots showing hourly precipitation estimates minus Stage IV observations based on (a) climatology, (b) extreme at 99 %
percentile, and (c) annual maximum wet spell in hours during the testing period (2019–2021). Precipitation estimates are produced from the
QDM_BI approach and 6 DL experimental runs (Scenario1–Scenario6).

derestimated P values at the 99th percentile compared with
other scenarios except Scenario1, indicating that excluding
coarse-resolution P as an input is not reasonable.

The DL models treated each hourly P spatial data as a
2D image and did not explicitly account for temporal de-
pendence between images. We assumed that the DL models
could potentially preserve the temporal dependence of obser-
vations if the DL models well bias corrected and downscaled
each 2D image. The annual maximum wet spell is a widely
used extreme index for evaluating temporal dependence (e.g.,
Maraun et al., 2015). The wetness threshold for calculating
the annual maximum wet spell index was set to 0.1 mm h−1,
which is commonly used for hourly radar data (e.g., Tao et

al., 2016). Table 4 shows that Scenario2 and Scenario3 have
relatively higher KGE scores for the annual maximum wet
spell extreme index than the other DL scenarios, suggesting
the usefulness of more parsimonious models with weighted
loss function but without including atmospheric covariates
as additional inputs. Further incorporating multitask learn-
ing (Scenario3 and Scenario6), however, slightly decreased
the model performance compared to no multitask learning
scenarios (Scenario2 and Scenario5), probably due to the
increased parameters and decreased regularization ability.
While Scenario1 has the lowest KGE score than the other
DL scenarios, it is still much higher than QDM_BI, which
highly overestimated the mean of annual maximum wet spell
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Figure 5. Daily total precipitation during the testing period (2019–2021) from Stage IV, QDM_BI, and the 6 DL experimental runs
(Scenario1–Scenario6).

for Stage IV observations (β much higher than 1). Boxplots
in Fig. 4c show the difference between model estimates and
Stage IV observations for the annual maximum wet spell in
hours during the testing period. Scenario1 highly underes-
timated the annual maximum wet spell by about 10 h. Sce-

nario2 and Scenario3 have the lowest differences with Stage
IV in terms of the mean and variance of the annual maximum
wet spells. On average, Scenario4, Scenario5, and Scenario6
overestimated the annual maximum wet spell by about 10 h,
with Scenario4 and Scenario6 showing a relatively larger
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Figure 6. Monthly mean of hourly precipitation time series during the testing period (2019–2021) from Stage IV, QDM_BI, and 6 DL
experimental runs (Scenario1–Scenario6).

Table 4. Performance of extreme indices including hourly P at the 99th percentile and annual maximum wet spell in hours. KGE represents
the modified Kling-Gupta efficiency (KGE) and it includes three components (correlation component r , bias component β and variability
component γ ). The correlation component r is represented by the correlation coefficient, the bias component β is represented by the ratio of
estimated and observed means, and the variability component γ is represented by the estimated and observed coefficients of variation.

Extreme indices Scenarios∗ KGE r β γ RMSE MAE

99th percentile (mm) Scenario1 −1.306 0.352 0.358 3.12 3.150 3.101
Scenario2 0.367 0.415 0.806 1.14 1.049 0.946
Scenario3 0.243 0.264 0.828 1.04 0.978 0.876
Scenario4 0.204 0.242 0.763 1.06 1.255 1.153
Scenario5 0.255 0.284 0.863 1.15 0.858 0.744
Scenario6 0.245 0.271 0.845 1.12 0.922 0.800
QDM_BI 0.158 0.244 0.900 1.36 0.793 0.655

Annual maximum wet spell (hours) Scenario1 0.153 0.275 0.621 1.22 12.2 10.3
Scenario2 0.293 0.302 1.11 0.988 9.17 7.14
Scenario3 0.291 0.302 1.07 1.10 9.33 7.03
Scenario4 0.121 0.282 1.46 1.21 17.0 12.7
Scenario5 0.193 0.335 1.44 1.11 15.8 12.2
Scenario6 0.152 0.306 1.47 1.14 16.6 12.6
QDM_BI −0.209 0.173 1.88 1.09 26.6 22.2

∗ Scenarios have different settings: Scenario1 is with a regular MAE loss function and coarse precipitation as a predictor; Scenario2 is with a
weighted MAE loss and coarse precipitation as a predictor; Scenario3 is the same as Scenario2 except with a classification as an auxiliary
task; Scenario4 is with a weighted loss function and covariates as predictors; Scenario5 is the same as Scenario4 except also including coarse
precipitation as predictors; Scenario6 is the same as Scenario5 but including a classification as an auxiliary task.

variance. The benchmark approach QDM_BI has the largest
difference (on average over 22 h) and much larger variance
compared to Stage IV, resulting in a negative KGE score.
This is probably because QDM_BI corrected biases on a grid
basis, which failed to account for the spatial and temporal de-
pendence.

Figure 8 shows an extreme event that occurred from
19:00 to 20:00 on 29 August 2021 in the Universal Time
Coordinated (UTC) time zone when Hurricane Ida landed
in Louisiana State in the USA from MERRA2, Stage
IV, QDM_BI and the six DL scenarios. We can see that
MERRA2 highly underestimated this extreme event and did
not capture detailed features of Stage IV. While QDM_BI
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Figure 7. Spatial map of hourly precipitation extremes at the 99th percentile (in a unit of mm h−1) from raw MERRA2, Stage IV, QDM_
BI, and the 6 DL experimental runs (Scenario1–Scenario6).

estimates slightly enhanced the hourly P values, they still
failed to capture detailed features. Scenario1–Scenario3
gradually enhanced hourly P , but these three models had dif-
ficulties capturing the center of the hurricane. By including
atmospheric covariates, Scenario4–Scenario6 roughly cap-
tured the center of the hurricane, and Scenario6 also repro-
duced the cyclones surrounding the center. These results sug-
gest that the customized components improve the model per-
formance on bias correcting and downscaling specific ex-
treme events.

4.5 P categories

Table 5 shows that Scenario3 and Scenario6, the scenarios
with multitask learning for bias correcting P categories, have
larger IOU values (e.g., 19.63 % for Scenario3 and 19.91 %
for Scenario6 for moderate rain 2.5–10 mm) than QDM (but
15.30 % for moderate rain) particularly for the three cate-
gories with rain, indicating that the two DL models results
better matched with the wet categories of the coarsened Stage
IV observations than the QDM method. Furthermore, Sce-

nario6 has relatively larger IOU scores than Scenario3, in-
dicating incorporating atmospheric covariates improved the
classification accuracy. For example, 8.15 % of the heavy
rain category matched the coarsened Stage IV observations
for Scenario3, while for Scenario6, 11.07 % of the heavy
rain category matched the coarsened Stage IV observations.
These results suggest that the auxiliary classification task
incorporated in Scenario3 and Scenario6 of the DL model
can better estimate the four categories of hourly P during
the testing period than the traditional bias correction method
QDM.

5 Discussion

This study explored customized DL for bias correcting and
downscaling hourly P through a set of experiments with or
without customized loss functions, multitask learning, and
inputs from atmospheric covariates of precipitation. Sce-
nario1, which used regular MAE as a loss function, highly
underestimated P for all the temporal scales as well as ex-
tremes, showing the lowest performance. As most hourly P
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Figure 8. Hourly precipitation (in a unit of mm h−1) from 19:00 to 20:00 on 29 August 2021 in UTC time zone when Hurricane Ida landed
in Louisiana, including raw MERRA2, Stage IV, QDM_BI and the 6 DL experimental runs (Scenario1–Scenario6).

are no rain, the regular loss function very likely leads the
model to learn no rain events while neglecting rainy events.
Regular MAE has been used for downscaling daily precipi-
tation data with limited biases in previous studies (e.g., Sha
et al., 2020a), but to our knowledge there are no success-
ful cases using regular MAE for downscaling hourly precip-
itation data with large biases. However, the scenarios with
customized loss functions with weighted MAE (Scenario2–
Scenario6) consistently showed much better performance
than Scenario1. This result suggests that penalizing more to-
wards heavy P on a grid basis makes the optimization algo-
rithm focus more on the grids where rainfall occurred and,
therefore, inherently rebalance the hourly P for model train-
ing. While this study explored bias correcting and downscal-
ing hourly precipitation from climate reanalysis data, this al-
gorithm with customized loss function can be potentially in-
tegrated with precipitation data from the Global Precipitation
Measurement (GPM) mission to generate more accurate op-
erational precipitation data at a finer resolution.

The scenarios with multitask learning indicated limited
added values and performed worse than other scenarios with-
out multitask learning in terms of extreme indices. The rea-
son for that is probably because adding multitask learning
increased trainable parameters by 30 % while limited ex-
treme data decreased the model regularization ability. Baño-
Medina et al. (2020) designed a series of DL models with
plain CNN architecture and different model complexity (i.e.,
increasing the number of trainable model parameters) to
downscale the daily ERA5 reanalysis dataset and found
that increasing model complexity makes model performance
worse, particularly for extreme indices (98th percentile and
annual maximum wet spell), which is consistent with our
study.

Traditional methods (e.g., QDM_BI) mainly use coarse-
resolution P data as the only predictor for downscaling and
bias correction, which cannot fully utilize nonlinear rela-
tionships between covariates and observations (Rasp and
Lerch, 2018) during the bias correction and downscaling pro-
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Table 5. The intersection over union (IOU) comparing coarsened
Stage IV with raw MERRA2, QDM and two DL experimental runs
with classification task (Scenario3 and Scenario6).

cess. The DL models with covariates as auxiliary variables,
however, have indicated success in improving model perfor-
mance for postprocessing temperature and precipitation fore-
casts due to the capability of automatically learning nonlin-
ear relationships between covariates and response variables
(Li et al., 2022; Rasp and Lerch, 2018). Scenario4–Scenario6
incorporated physically relevant covariates of precipitation,
with only Scenario4 excluding the coarse-resolution P as
Baño-Medina et al. (2020) did for downscaling daily pre-
cipitation. The results indicate that incorporating auxiliary
predictors of atmosphere circulations and moisture condi-
tions can help improve P bias correcting and downscaling
skills (see Figs. 3–8). However, only using covariates with-
out coarse-resolution P (Scenario4) is not sufficient to esti-
mate hourly P , while using coarse-resolution P as additional
input (Scenario5 and Scenario6) showed improved perfor-
mance. This result is consistent with a recent study focusing
on CNN-based postprocessing of P forecasts from numer-
ical weather prediction models, showing total precipitation
itself is the most important predictor (Li et al., 2022). Note
that we did not explore the importance of rank among these
covariates in improving the model performance in this study,
which could be a potential avenue for future work. Further-
more, static variables, such as elevations, long-term clima-
tology (Sha et al., 2020a), soil texture, and land cover, could
be helpful for resolving local details. However, our study re-
gion has little topographic variations, and therefore including
elevation data cannot add any additional information to the
model.

Moreover, we compared the customized DL scenarios with
the traditional QDM_BI method and found that most of the
DL experiments remarkably outperformed QDM_BI in all

the temporal scales as well as extremes. The QDM_BI exe-
cuted bias correction at each grid point without considering
spatial dependencies and only used coarse-resolution P as a
predictor, and thus does not have the capability of capturing
spatial features (e.g., detailed spatial features for the Hurri-
cane Ida in Fig. 8) and accounting for the atmosphere and
moisture covariates of precipitation. Furthermore, the pro-
posed customized DL models are fully convolutional, and
the trained models can potentially be easily used to estimate
hourly P in other places through transfer learning where
high-resolution data are not available (e.g., Stage IV radar
coverage is limited in the western United States as a result
of the scarcity of the radar network and blockage from the
mountains, Nelson et al., 2016). There are many questions
that need to be explored under this topic about transferability
under various climate zones and the impact of spatial dis-
tance, which deserves a separate study. The trained models
also have the potential to generate high-resolution hourly P
estimates beyond the time range covered by Stage IV radars
(e.g., before 2002). Furthermore, the SRDRN architecture
can be further customized to downscale different gridded pre-
cipitation, including downscaling precipitation from GCM
projections, which can be a future study.

Due to the stochastic nature of DL models, we ran each
DL scenario for three additional times (four times in total)
to evaluate the effects of stochasticity compared with the
added value of each customized component of DL models
(see Tables S2 and S3 in the Supplement). The results show
that KGE values for each scenario are significantly different
at the p-value of 0.05 at the hourly time scale, which indi-
cates that the added value of each customized component is
not caused by model stochasticity. Scenario1 is significantly
worse than the other scenarios, including QDM_BI at hourly
and aggregated time scales as well as extreme indices, em-
phasizing the added value of the weighted loss function. Sce-
nario5 and Scenario6 are significantly better than other sce-
narios, including QDM_BI, in terms of KGE values at hourly
and aggregated time scales, and Scenario4 is significantly
worse at the monthly time scale. For the 99th percentile ex-
treme index, Scenario4 is significantly worse than Scenario3,
sceanrio5, and Scenario6. For the annual maximum wet spell
index, Scenario2 and Scenario3 are significantly better than
the other scenarios. All these stochastic significance evalua-
tion results are consistent with the findings in Sect. 4. Due to
computational requirements (20–22 h for running each sce-
nario once) and resource limits, we ran limited times for each
scenario to consider the stochasticity of DL models, and in-
corporating DL models with Bayesian inference is a potential
way to quantify systematic uncertainty caused by the model
itself as indicated by Vandal et al. (2018a).
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6 Conclusions

Various gridded precipitation (P ) data at different spatiotem-
poral scales have been developed to address the limitations
of ground-based P observations. These gridded P data prod-
ucts, however, suffer from systematic biases and spatial res-
olutions are mostly too coarse to be used in local scale ap-
plications. Many studies based on DL approaches have been
conducted to bias correct and downscale coarse-resolution
P data. However, it is still challenging for traditional ap-
proaches as well as current DL approaches to capture small-
scale features, especially for P extremes, due to the complex-
ity of P data (e.g., highly unbalanced and skewed), particu-
larly at a fine temporal scale (e.g., hourly). To address these
challenges, this study developed customized DL models by
incorporating customized loss functions, multitask learning,
and physically relevant atmospheric covariates. We designed
a set of model scenarios to evaluate the added values of each
component of the customized DL models. Our results show
that customized loss functions greatly improved model per-
formance compared to the model scenario with regular loss
function in all the temporal scales as well as extremes (on
average, improved by over 70 % for climatology and over
50 % at the 99th percentile). While multitask learning im-
proved model performance on capturing detailed features of
extreme events (e.g., Hurricane Ida), the scenarios with mul-
titask learning performed worse than other scenarios in terms
of extreme indices potentially due to the increased number
of trainable parameters. The added value of incorporating
atmospheric covariates is remarkable, likely because these
scenarios took full advantage of nonlinear relationships be-
tween large-scale covariates, precipitation, and fine-scale ob-
servations. The results also indicated that the role of coarse-
resolution P as a predictor is very important for improving
model performance despite the added values from the co-
variates. The DL scenario with customized loss function and
coarse-resolution P as the only predictor is the best model
at places where no covariate data are available. Moreover,
most of the DL scenarios with customized loss functions per-
formed much better in all the temporal scales as well as ex-
tremes than the benchmark approach QDM_BI, which is not
able to account for spatial dependence and nonlinear rela-
tionships. These results highlight the advantages of the cus-
tomized DL model compared with regular DL models as well
as traditional approaches, which provide a promising tool
to fundamentally improve precipitation bias correction and
downscaling, and better estimate P at high resolutions.
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