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Abstract. Several metrics have been proposed and utilized
to diagnose the performance of linear Bayesian and geo-
statistical atmospheric inverse problems. These metrics pri-
marily assess the reductions in the prior uncertainties, com-
pare modeled observations to true observations, and check
distributional assumptions. Although important, these met-
rics should be augmented with a sensitivity analysis to ob-
tain a comprehensive understanding of the atmospheric in-
version performance and improve the quality and confidence
in the inverse estimates. In this study, we derive closed-form
expressions of local sensitivities for various input parame-
ters, including measurements, covariance parameters, covari-
ates, and a forward operator. To further enhance our under-
standing, we complement the local sensitivity analysis with
a framework for a global sensitivity analysis that can appor-
tion the uncertainty in input parameters to the uncertainty as-
sociated with inverse estimates. Additionally, we propose a
mathematical framework to construct nonstationary correla-
tion matrices from a precomputed forward operator, which
is closely tied to the overall quality of inverse estimates.
We demonstrate the application of our methodology in the
context of an atmospheric inverse problem for estimating
methane fluxes in Los Angeles, California.

Copyright statement. © 2022 Jet Propulsion Laboratory, California
Institute of Technology. Government sponsorship acknowledged.

1 Introduction

In atmospheric applications, inverse models are frequently
used to estimate global- to regional-scale fluxes of trace gases
from atmospheric measurements (Enting, 2002). At a global
scale, data assimilation remains the primary inverse model-
ing framework, which assimilates observations sequentially
and updates the prior estimates of fluxes by utilizing an at-
mospheric model coupled with chemistry (for further details
on data assimilation, see Wikle and Berliner, 2007). At a re-
gional scale, inversions that assimilate all observations si-
multaneously by utilizing a precomputed forward operator
(Lin et al., 2003) that describes the relationship between ob-
servations and fluxes are commonly used (for details, see
Enting, 2002). This work focuses on the use of precomputed
forward operators for atmospheric inverse modeling and ad-
dresses the sensitivity analysis and correlation in the for-
ward operator in the context of Bayesian (e.g., Lauvaux et
al., 2016) and geostatistical inverse methods (e.g., Kitanidis,
1996).

The sensitivity analysis in this work is covered under local
and global themes. Primarily, we focus on local sensitivity
analysis (LSA), which measures the effect of a given input
on a given output and is obtained by computing the partial
derivatives of an output quantity of interest for an input fac-
tor (see Rabitz, 1989, and Turányi, 1990). Within the global
theme (designated as a global sensitivity analysis), we focus
on how uncertainty in the model output can be apportioned
to different model input parameters (Saltelli et al., 2008).

Overall, in atmospheric trace gas inversions, the LSA is
mostly performed. Within this context, the LSA assesses how
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sensitive the posterior estimates of fluxes are regarding the
underlying choices or assumptions, like the (1) observations
included, (2) model data error covariance, (3) input prior in-
formation and its error, and (4) forward operator (for a dis-
cussion, see Michalak et al., 2017). This task is sometimes
performed to arrive at a robust estimate of fluxes and their
uncertainties by running an inverse model multiple times,
while varying the input parameters and assessing their impact
on the estimated fluxes and uncertainties. Another comple-
mentary way to do the LSA is by computing the local partial
derivatives of input parameters that go into an inversion.

The LSA can be grouped with standard information con-
tent approaches such as an averaging kernel and degrees of
freedom for signal (DOFS; for details, see Sect. 2.2.1 of this
paper, Rodgers, 2000, and Brasseur and Jacob, 2017). How-
ever, the LSA is more informative than these approaches
alone, as it examines individual components (see Sect. 2.2)
that determine DOFS and quantifies the impact and relative
importance of various components of an inversion.

In this study, we focus on the quality of the inverse esti-
mates of the fluxes, which means providing diagnostic met-
rics to improve our understanding of the impact of input
choices on the inverse estimates of fluxes and thus improve
the quality of the inverse model. Specifically, in this tech-
nical note, we provide (1) closed-form expressions to con-
duct LSA by computing partial derivatives, (2) a scientifi-
cally interpretable framework for ranking thousands of spa-
tiotemporally correlated input parameters with the same or
different units of measurement, (3) a mathematical schema
for conducting a global sensitivity analysis (GSA), and (4)
a technique to assess the spatiotemporal correlation between
the forward operators of two or multiple observations, which
is tied to the overall diagnostics of the estimated fluxes and
can lead to improved representation of errors in the forward
operator.

2 Methods and derivation

In generic form, a linear inverse problem can be written as
follows:

z=Hs+ ε, (1)

where H is a forward operator that maps model parameters
(fluxes in the context of this work) to measurements z and en-
capsulates our understanding of the physics of the measure-
ments. The error ε in Eq. (1) describes the mismatch between
measurements and the modeled measurements (see Sect. 3).

In a typical linear atmospheric inverse problem (see
Fig. 1), the estimates of fluxes (box 8 in Fig. 1) are obtained
in a classical one-stage-batch Bayesian setup (for details, see
Enting, 2002; Tarantola, 2005). In this setup, the a priori term
(box 3 in Fig. 1) is based on a fixed flux pattern, and the errors
(box 6 in Fig. 1) are either assumed to be independent or are
governed by a predefined covariance structure (for details,

Figure 1. The schema for performing a linear atmospheric inver-
sion to obtain the estimates of the emissions of greenhouse gases.
The middle column (the box with a green background) lists all of the
input parameters that are required to perform an inversion, whereas
the right column (the box with an orange background) lists the mod-
eling process (box 7) and the output obtained after performing an
inversion (box 8). Note that this work focuses on understanding and
ranking the impact of the input parameters (boxes 3, 4, and 6) on
the estimates of fluxes (box 8) and developing correlation structures
from the forward operator (box 5).

see Gurney et al., 2003; Rödenbeck et al., 2003; Rödenbeck
et al., 2006).

Within the previously mentioned setup, the choice of the
input parameters, including the forms of error structures, pro-
foundly impacts the quality of the inverse estimates of fluxes.
Understanding the impact of these input parameters is critical
for evaluating the quality of the estimated fluxes. Thus, we
first (Sect. 2.1) utilize the understanding of the physics of the
measurements, encapsulated in H, to generate scientifically
interpretable correlation matrices (box 6 in Fig. 1). Second,
we assess and rank the importance of the input parameters
(Sect. 2.2) shown in the middle column (the box with a green
background ) in Fig. 1 (box 8 in Fig. 1), which is finally fol-
lowed by a methane (CH4) case study that demonstrates the
applicability of our methods (see Sect. 2).

2.1 Analysis of the forward operator

In inversions that assimilate all observations simultaneously,
a forward operator for each observation included in an inver-
sion is obtained from a transport model. These observations
can be obtained from multiple platforms, including an in situ
network of fixed locations on the surface, intermittent aircraft
flights, and satellites. In most situations, the spatiotemporal
coverage of these forward operators is visually assessed by
plotting an aggregated sum or mean of their values over a
spatial domain. However, the standard quantitative metrics
to evaluate their coverage and intensity in space and time re-
main absent. In this study, we present two metrics for this
assessment, which are defined below. These metrics are in
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Figure 2. A Venn diagram that defines IAOMI in terms of two hy-
pothetical forward operators F and G.

accordance with the triangular inequality and are distances
in their respective metric spaces.

Note that, in the published literature on trace gas inver-
sions, sometimes the forward operator obtained from a trans-
port model is referred to as a sensitivity matrix, Jacobian, or
footprint. Henceforth, we always refer to the Jacobian, sensi-
tivity matrix, or footprint as a forward operator to avoid mis-
interpretation. We show our application through forward op-
erators constructed by running a Lagrangian transport model.
However, the proposed methods can also be applied in the
Eulerian framework (see Brasseur and Jacob, 2017, for de-
tails).

2.1.1 Integrated area overlap measurement index
(IAOMI)

The integrated area overlap measurement index (IAOMI)
summarizes the shared information content between two for-
ward operators and hence indirectly between two observa-
tions. It is, therefore, a measure of the uniqueness of the flux
signal associated with an observation compared to other ob-
servations.

Intuitively, IAOMI can be better understood spatially. For
a given time point, consider two forward operators F and G
as the two vector-valued functions over an area. The IAOMI
index is the proportion of the common contribution of the
two forward operators for the intersected area with respect to
the overall contribution of the two forward operators. This
is demonstrated through a Venn diagram in Fig. 2. Thus,
IAOMI can be defined as follows:

νF,G =
6AF∩AG f1(F,G)
6AF∪AG f2(F,G)

, (2)

where, for any forward operator S, the corresponding set AS,
on which the forward operator is always positive, is defined

asAS = {x : S(x) > 0} and the two vector-valued functionals
f1 and f2 can be given as follows:

f1(F,G)=
{

min(F,G) on AF ∩AG
0 otherwise

and

f2(F,G)=

 max(F,G) on AF ∩AG
F on AF ∩A

c
G

G on AcF ∩AG

. (3)

Note that the IAOMI defined in Eq. (2) can also be writ-
ten as a ratio of the sum of minimums over the sum of the
maximums, as follows:

νF,G =
6AF∪AG min(F,G)
6AF∪AG max(F,G)

. (4)

IAOMI ν can also be thought of as a measure of the similarity
between two forward operators. It is evident from Eq. (4)
that this is a weighted Jaccard similarity index or Ruzicka
index (Cha, 2007), which describes the similarity between
two forward operators F and G. It follows that ν is closed and
bounded in [0,1] and accounts for both the spatiotemporal
spread and the intensity of the forward operator. A stronger ν
implies that there is a larger overlap of the intensity in space
and time, that it is analogous to finding the common area
within two curves, and that it is indicative of the magnitude
of overlapping information, knowledge which is beneficial
in the context of satellite observations with a higher potential
for sharing information content.

A dissimilarity measure can be obtained from ν and be de-
fined by 1−ν. The smaller the overlap or the larger the value
of 1− ν, the more significant the disparity. Note that the ν
metric is only indicative of the overlap in the spatiotemporal
intensity between two forward operators. To measure how
much of the shared intensity has come from either forward
operator, we use a metric υF|(F,G), which is defined as fol-
lows:

υF|(F,G) =
6AF∩AG f1(F,G)
6AF f3(F)

, (5)

where f3(F)= F onAF and 0 everywhere else. Similarly, we
can define υG|(F,G), which shows the proportional contribu-
tion of the forward operatorG on the shared intensity. Both ν
and υ can be computed from the observations taken from the
same or different platforms, at the same or different times, or
for two different in situ measurement sites over a specified
time interval.

2.1.2 Spatiotemporal area of dominance (STAD)

The spatiotemporal area of dominance (STAD) stems natu-
rally from IAOMI. For any two forward operators, F and G,
we can find the left over dominant contribution of F and G
by computing the quantities F−G and G−F that lead to the
determination of the areas where F or G is dominant.
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For two forward operators F and G, the STAD of F with
respect to G is defined as follows:

STADF(F,G)=

{
F−min(F,G) on AF ∩AG

F otherwise.

The IAOMI and STAD of any forward operator F, with re-
spect to the forward operators F and G, are linked by the
following equation:

νF,G6AF∪AGH2(F,G)+6AF∪AG STADF(F,G)=6AF F. (6)

Given a number of forward operators {F,G1,G2, · · ·}, the
STAD for any particular forward operator F with respect to
all other forward operators can be generalized from Eq. (6)
as FSTAD(F,Gmax), where Gmax =maxiGi on AG; AG =
∪kAGk

and AGk
is the set on which the forward operator

Gk is always positive (see Sect. 2.1.1 for its definition). The
STAD can be aggregated over any time period. Intuitively,
STAD determines areas in space–time in which one forward
operator dominates over other forward operators, and this is
especially useful for locating the primary flux sources that
influence an observation.

One can use 1−IAOMI or a distance metric like the
Jensen–Shannon distance (JSD; see Appendix B) matrix of
all pairwise forward operators as a representative distance
matrix for describing the correlations in model data errors
(i.e., R in Eq. 7). As JSD or 1−IAOMI matrices are real,
symmetric, and admit orthogonal decomposition, the entry-
wise exponential of such symmetric diagonalizable matrices
is positive semi-definite and can be incorporated in a model
data mismatch matrix R (see Ghosh et al., 2021). Further-
more, the IAOMI matrix itself is a positive semi-definite
(Bouchard et al., 2013) matrix and can also be directly in-
corporated in R as a measure of the correlation. This is an
example of how IAOMI or 1−IAOMI could be particularly
useful for satellite-data-based inversions with a higher degree
of spatial overlap of the forward operators. However, we do
not explore this area of research in this work.

2.2 Local sensitivity analysis (LSA) in inversions

For linear Bayesian and geostatistical inverse problems, the
solutions (see Tarantola, 2005, for the batch Bayesian and
Kitanidis, 1996, for the geostatistical case) can be obtained
by minimizing their respective objective functions. These ob-

jective functions can be given as follows:

L(s|y,sprior,H,Q,R)=
1
2
(z−Hs)tR−1(z−Hs)

+
1
2
(s− sprior)

tQ−1(s− sprior) (7)

L(s|y,H,Q,R,β)=
1
2
(z−Hs)tR−1(z−Hs)

+
1
2
(s−Xβ)tQ−1(s−Xβ), (8)

where lowercase symbols represent vectors, and uppercase
symbols represent matrices, and this exact representation is
adopted throughout the paper. In Eqs. (7) and (8), z is an (n×
1) vector of the available measurements, with the unit of each
entry being in parts per million (ppm). The forward operator
H is an (n×m) matrix (with the unit of each entry being
ppmµmol−1 m2 s). The matrix H is obtained from a transport
model that describes the relationship between measurements
and unknown fluxes. The unknown flux s is a (m× 1) vector
(with the unit of entries being µmolm−2 s−1). The covariance
matrix R of the model data errors is an (n× n) matrix (with
the unit of the entries being ppm2). The covariate matrix X
is an (m×p) matrix of known covariates related to s. The
unit of each of the entries in every column of the covariate
matrix X is the unit of its measurement, or if it is standardized
(e.g., subtract the mean from the covariate and divide by its
standard deviation), then it is unitless. For further discussion
on standardization and normalization, see Gelman and Hill
(2006). The units of the (p× 1) vector β are such that Xβ
and s have the same units. The prior error covariance matrix
Q is a (m×m) matrix that represents the errors between s
and Xβ (with the unit of the entries being (µmolm−2 s−1)2).

The analytical solutions for the unknown fluxes s in the
Bayesian case (denoted by subscript B) and the geostatistical
case (denoted by subscript G) can be obtained from Eqs. (9)
and (10), as given below.

ŝB = sprior+QHt
(
HQHt

+R
)−1 (

z−Hsprior
)

(9)

ŝG = Xβ +QHt
(
HQHt

+R
)−1

(z−HXβ) (10)

In the linear Bayesian and geostatistical inverse problems de-
scribed by Eqs. (7) and (8), the estimated fluxes can be ex-
pressed as the sum of the prior information and the update
obtained from the observations. In Eqs. (9) and (10), the sec-
ond term represents the observational constraint, while the
first term describes the prior information (in Eq. 9) and the
information about fluxes (through X in Eq. 10). When there
is no additional information, the solution corresponds to the
prior knowledge. Since the estimate of sG in Eq. (10) depends
on the unknown β, it requires a prior estimation of β before
obtaining ŝG. The solution for the β̂ can be obtained from
predetermined quantities, as described earlier in the context
of Eq. (8), and can be given as follows:

β̂ =�−1At9−1z. (11)
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Plugging β̂ into Eq. (10) leads to Eq. (12), where all symbols
have been defined previously, or in Eq. (13).

ŝG = X�−1At9−1z+QHt9−1
(
z−A�−1At9−1z

)
, (12)

where

A=HX,9 =
(
HQHt

+R
)
,�= (HX)t

(
HQHt

+R
)−1HX. (13)

Note that ŝB and ŝG in Eqs. (9) and (10) are essentially
functions that are represented by equations. This is the com-
monly adopted nomenclature that is used by researchers
working in the field of atmospheric inversions. We differen-
tiate Eq. (9), with respect to sprior, R, Q, and z, and Eq. (12),
with respect to X, R, Q, and z, to obtain local sensitivities.
There are two ways to differentiate ŝ with respect to z, X, H,
Q, and R. In the first case, every entry in z, X, H, Q, and R
can be considered to be a parameter that results in the dif-
ferentiation of ŝ with respect to these quantities. An “entry”
refers to each element of the matrix denoted by ij , where
i represents the row number, and j represents the column
number. On the other hand, if the structures of the covari-
ance matrices Q and R are determined by parameters, then ŝ
can be differentiated just with respect to these parameters. In
the former case, Eqs. (9) and (12) are used to differentiate ŝ
with respect to an entry at a time in z, X, H, Q, and R. Such
an approach of entry-by-entry differentiation is useful if the
computational cost in terms of the memory constraint is im-
portant, or if we would like to know the influence of a single
entry on ŝ. We provide both sets of equations in this work.

2.2.1 LSA with respect to observations, priors, scaling
factors, and forward operators

The local sensitivity of ŝ with respect to observations (z) can
be given as follows:

∂ ŝB

∂z
=QHt9−1 (14)

∂ ŝG

∂z
= X�−1At9−1

+QHt9−1
−QHt9−1A�−1At9−1, (15)

where all quantities are as defined earlier. The units of the
entries in ∂ ŝ

∂z
are in micromoles per square meter per second

per parts per million (µmol−1 m2 s−1 ppm−1), and the matri-
ces are of dimension (m× n). These units are the inverse of
the units of H. Local sensitivities with respect to an observa-
tion zi for both the Bayesian and the geostatistical case can
be written as a vector of sensitivities times an indicator for
the ith entry; i.e., ∂ ŝ

∂z
ei , where ei = ∂z

∂zi
is a vector of zeros

with the entry ith equal to 1.
Note that by utilizing ∂ ŝ

∂z
, we can also obtain an averaging

kernel (or model resolution matrix) and DOFS (see Rodgers,
2000). The averaging kernel matrix for any linear inverse
model can be written as follows:

V=
∂ ŝ
∂z
×H, (16)

where the V of dimension (m×m) is the local sensitivity of
ŝ with respect to the true unknown fluxes. Then the DOFS
can be computed by taking the trace of the averaging ker-
nel matrix V. The DOFS represents the amount of informa-
tion resolved by an inverse model when a set of observations
has been assimilated (for a detailed discussion, see Rodgers,
2000, and Brasseur and Jacob, 2017). Theoretically, the value
of the DOFS cannot exceed the number of observations (n)
in an underdetermined system and the number of fluxes (m)
in an overdetermined system.

We can directly compute the local sensitivity of ŝ with re-
spect to the prior mean flux sprior in the Bayesian case. In the
geostatistical case, the prior mean is modeled by two quanti-
ties, X and β. In this scenario, we need to find the sensitivi-
ties with respect to X and β. These local sensitivities can be
given as follows:

∂ ŝB

∂sprior
= I−CH (17)

∂ ŝG

∂X
=Kz⊗

(
I+

(
MAt −X�−1At −QHt

)
9−1H

)
+

(
X�−1

−M
)
⊗

(
Fz−KzAt9−1H

)
(18)

∂ ŝG

∂β̂
= X−CA, (19)

where A=HX, B=QHt , C= B9−1, �= At9−1A, Kz =

zt9−1A�−1, M= CA�−1, and Fz = zt9−1H. The symbol
⊗ represents the Kronecker product. The quantity ∂ ŝB

∂sprior
is of

the dimension (m×m), and its entries are unitless. The quan-
tity ∂ ŝG

∂β̂
is of dimension (m×p), and the units of the entries

in each column of ∂ ŝG
∂β̂

are of the form micromoles per square

meter per second (µmol−1 m2 s−1)× (unit of βi)−1. The sen-
sitivity matrix ∂ ŝG

∂X is of the dimension (m×mp), where ev-
ery ith block of the m columns ((i− 1)m+A : im) of ∂ ŝG

∂X
has units of the form micromoles per square meter per sec-
ond (µmol−1 m2 s−1) × (unit of Xi)−1. Note that the sensi-
tivity matrix ∂ ŝB

∂sprior
in Eq. (17) can also be considered to be a

proportion of the posterior uncertainty to that of the prior un-
certainty. In the context of the Bayesian case, a proportional
uncertainty reduction becomes the averaging kernel.

Sometimes, it is essential to know the influence of the prior
of any particular grid point or an area consisting of few grid
cells within ŝ. The local sensitivity of ŝ with respect to the
ith entry in sprior and β̂i is a matrix of dimension (m×1) and
can be written as ∂ ŝB

∂sprior
ei and ∂ ŝG

∂β̂
ei , respectively. However,

the entry-wise ∂ ŝG
∂Xij is more complex and can be given by the
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following:

∂ ŝG

∂Xij
= (I−CH)

((
I−X�−1XtHt9−1H

) ∂X
∂Xij

�−1Xt

+X�−1 ∂Xt

∂Xij

(
I−Ht9−1HX�−1Xt

))
Ftz, (20)

where ∂Xt
∂Xij
= Eij is a single entry matrix, with 1 for a Xij

for which the differentiation is performed and 0 anywhere
else. For z, an entry-by-entry differentiation can be easily
performed since both Eqs. (9) and (12) result from linear
models and are functions of the form 8z+n, where 8 and
n are independent of z. For example, 8 and n for Eq. (9) are
QHt

(
HQHt

+R
)−1 and sprior−QHt

(
HQHt

+R
)−1Hsprior,

respectively, and are independent of z. In this case, ∂ ŝB
∂zi

can
be written as 8ei, where ei is a single entry vector, with a
vector for a zi for which the differentiation is performed and
0 everywhere else. The local sensitivity ∂ ŝG

∂zi
can be defined

similarly for the respective 8. Here both quantities of ∂ ŝG
∂Xij

and ∂ ŝB
∂zi

are matrices of dimension (m× 1).
The local sensitivity of ŝ with respect to an entry in the

forward operator has units of the form square meters squared
per micromole squared per second squared per parts per mil-
lion or

(
µmol−1 m2 s−1)2 ppm−1. In the Bayesian case, this

sensitivity can be written as follows:

∂ ŝB

∂H
=Q⊗Pz−BPz⊗Ct −BCt ⊗Pz−Q⊗D

+BD⊗Ct +BCt ⊗D− sprior⊗Ct , (21)

where ∂ ŝB
∂H is a sensitivity matrix of dimension (m×mn). In

the geostatistical case, this sensitivity can be partitioned into

two components; that is, ∂β̂
∂H and ∂ε̂

∂H , as shown in Eq. (22),

where ∂β̂
∂H and ∂ε̂

∂H are obtained in an orderly sequence from
Eqs. (23) and (24).

∂ ŝG

∂H
= X

∂β̂

∂H
+
∂ε̂

∂H
, (22)

where

∂β̂

∂H
=−L⊗Gz−PtzA�

−1Xt ⊗KT
+GzHQ⊗Kt

+N⊗Gz+L⊗PTz −PTz HQ⊗Kt
−N⊗Ptz. (23)

∂ε̂

∂H
=Q⊗Pz−Cz⊗Ct −CHQ⊗Pz−XKtz⊗CT

−CA
∂β̂

∂H
(24)

The expanded form of some of the symbols in Eqs. (21)
through (24), which have not been expanded yet, can

be written as D=9Hsprior, Gz = zt9−1A�−1At9−1,
L=�−1Xt , N=�−1At9−1HQ, Pz =9−1z, and K=
9−1A�−1. The quantities ∂ ŝG

∂H , ∂β̂
∂H , and ∂ε̂

∂H are sensi-
tivity matrices of the dimensions (m×mn), (p×mn),
and (m×mn), respectively. The units of the entries of
∂ ŝ
∂H are of the form square meters squared per micro-
mole squared per second squared per parts per million or(
µmol−1 m2 s−1)2 ppm−1.

There might be times when we would like to know the
sensitivity of the transport (H) with respect to certain source
locations only. In this case, we can use ij form of Eqs. (21)
through (24) to obtain ∂ ŝB

∂Hij
in parts. In this formulation, ∂ ŝB

∂Hij

can be given as follows:

∂ ŝB

∂Hij
= C

∂H
∂Hij

(
C(Hsprior− z)− sprior

)
+ (Q−CHQ)

(
∂H
∂Hij

)t
9−1(z−Hsprior), (25)

∂ ŝG

∂Hij
= X

∂β̂

∂Hij
+

∂ε̂

∂Hij
, (26)

where

∂β̂

∂Hij
=

(
−Kt ∂H

∂Hij

(
XN−CAS+QHt

)
+KtHQ

∂Ht

∂Hij

(
9−1ASt − I

)
+�−1Xt

∂Ht

∂Hij

(
I−9−1AS

))
9−1z. (27)

∂ε̂

∂Hij
=

(
Q
∂Ht

∂Hij
−C

∂H
∂Hij

QHt
−CHQ

∂Ht

∂Hij

)

9−1
(
z−Aβ̂

)
−C

(
∂H
∂Hij

Xβ̂ +A
∂β̂

∂Hij

)
, (28)

where S= A�−1, and the matrix ∂H
∂Hij

is a single-entry ma-
trix, with 1 for a Hij entry for which the differentiation is
being performed and 0 everywhere else. The quantities ∂ ŝB

∂Hij
,

∂ ŝG
∂Hij

, ∂β̂
∂Hij

, and ∂ε̂
∂Hij

are sensitivity matrices of the dimen-
sions (m× 1), (m× 1), (p× 1), and (m× 1), respectively.
The units of ∂ ŝB

∂Hij
and ∂ ŝG

∂Hij
are the same as their Kronecker

product counterparts.

2.2.2 LSA with respect to error covariance matrices

In order to compute the local sensitivities of ŝ with respect
to Q and R, consider that they are parameterized as Q(θQ)
and R(θR), where θQ and θR are the parameter vectors. The
differentiation with respect to error covariance parameters in
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Q and R can be accomplished from Eqs. (29) through (32),
where the subscript i indicates the ith covariance parameter
for which differentiation is being performed.

∂ ŝB

∂θQi
= (I−CH)

∂Q
∂θQi

Ht9−1(z−Hsprior) (29)

∂ ŝG

∂θQi
=

(
−X�−1AT9−1H+ I−QHT9−1H

+QHT9−1A�−1AT9−1H
) ∂Q
∂θQi

HT9−1

(z−A�−1AT9−1z) (30)

∂ ŝB

∂θRi
=−C

∂R
∂θRi

9−1(z−Hsprior) (31)

∂ ŝG

∂θRi
= (−X�−1AT −B+CA�−1AT )9−1

∂R
∂θRi

9−1(z−A�−1AT9−1z
)

(32)

All of the quantities ∂ ŝB
∂θQi

, ∂ ŝG
∂θQi

, ∂ ŝB
∂θRi

, and ∂ ŝG
∂θRi

are sensitiv-
ity matrices of the dimension (m×1), and the units of the en-
tries of ∂ ŝ

∂θQi
and ∂ ŝ

∂θRi
are of the form micromoles per square

meter per second (µmol−1 m2 s−1) × (unit of θQi or θRi )
−1.

It is also possible to find ∂ ŝ
∂Q and ∂ ŝ

∂R directly, as shown in
Eqs. (33) through (36).

∂ ŝB

∂Q
=Ht9−1(z−Hsprior)⊗

(
I−Ht9−1Bt

)
(33)

∂ ŝG

∂Q
=
(
Gz− z

t
)
9−1H⊗

((
B−MAt +LtAt

)
9−1H− I

)
(34)

∂ ŝB

∂R
=9−1(z−Hsprior)⊗9

−1HQ (35)

∂ ŝG

∂R
=
(
Gz− z

t
)
9−1
⊗
(
B−MAt +LtAt

)
9−1 (36)

The first two quantities ∂ ŝB
∂Q and ∂ ŝG

∂Q , are the sensitivity ma-
trices of the dimension (m×m2). The second set of quanti-
ties, ∂ ŝB

∂R and ∂ ŝG
∂R , are the sensitivity matrices of the dimen-

sion (m× n2). Equations (33) through (36) are useful when
Q and R are fully or partially nonparametric. However, the
dimensions of these matrices can be quite large, and users
need to be careful when realizing the full matrix.

2.3 Global sensitivity analysis (GSA): a variance-based
approach

The GSA is a process of apportioning the uncertainty in
the output to the uncertainty in the input parameters. The
term “global” stems from accounting for the effect of all in-
put parameters simultaneously. This is different from LSA,
where the impact of a slight change in each parameter on
the functional output is considered separately, while keep-
ing all other parameters constant. Although quite significant,

a detailed GSA is challenging, as it requires knowledge of
the probabilistic variations in all the possible combinations
(also known as covariance) of the input parameters, which is
unavailable in most situations. However, sometimes it might
be possible to know the approximate joint variation in a
small subset of the input parameters (e.g., the covariance be-
tween Q and R parameters). In addition to the variance-based
method, derivative-based global sensitivity measures or the
active subspace technique (see Appendix A for a discussion)
can also be used to conduct a GSA. However, this work uses
the variance-based method, as it does not require sampling
and can leverage previously computed partial derivatives. It
uses a first-order Taylor approximation of the parameter esti-
mates to compute the global sensitivities. This technique has
been used in many research works, including environmen-
tal modeling (e.g., Hamby, 1994) and life cycle assessment
(Groen et al., 2017; Heijungs, 1996), among others.

Broadly, we can consider ŝ to be a function of the covari-
ates Q,R,H,X(or sprior), and z; i.e., ŝ= f(Q,R,H,X(or
sprior),z). We can then calculate how the uncertainties in the
individual components of f are accounted for in the overall
uncertainty of ŝ by applying the multivariate Taylor series
expansion of ŝ to its mean. The approximation up to the first-
order polynomial of the Taylor series expansion leads to the
following equation:

Var
(
ŝ
)
=

(
∂ ŝ
∂θ

t

Wθ

∂ ŝ
∂θ

)
θ=θ̂

+Error,

where θ =
(
θQ,θR,θH ,θX(or sprior),θz

)
is the vector of pa-

rameters, and W= Var(θ) is the covariance matrix of the pa-
rameters.

It is challenging to estimate covariance quantities such as
the cross-covariance between θR and θH or between θH and
θQ to obtain the best possible estimate of the total uncer-
tainty of ŝ. Assuming no cross-covariance between Q and R
and ignoring other parameters not related to the variance pa-
rameters, the diagonal of the variance of the posterior fluxes
can be approximated as follows:

Var(ŝi)=
L∑
j=1

(
∂ ŝ
∂θQj

)2

i

Var
(
θQj

)
+

M∑
k=1

(
∂ ŝ
∂θRk

)2

i

Var
(
θRk
) ∣∣∣
θ=θ̂

, (37)

where the subscript i on the right-hand side of Eq. (37) refers
to the ith entry of the derivative vector, which is a scalar, and
parameters θQj and θRk refer to the j th and kth parameters
of the sets θQ and θR , respectively. From Eq. (37), we can
see how the uncertainty in the flux estimate is apportioned
between the variance of θQ and θR . No normalization is nec-
essary for such a framework, as variance components on the
right-hand side of Eq. (37) are naturally weighted, resulting
in the same units of measurement. Once the two parts of Vŝi
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(i.e., Eq. 37) are computed, they can also be summed over
the solution space (e.g., number of grid cells × number of
periods) of ŝ and ranked to find the relative importance of the
parameters.

Even after simplification, the implementation of Eq. (37)
is complex, as it requires knowledge of the uncertainties as-
sociated with the parameters of Q and R that are generally
not known. We do not further discuss the GSA in the context
of the case study presented in this work, but we have shown
its application with respect to Q and R in MATLAB’s Live
Script.

Besides the variance-based method, there are many differ-
ent approaches for performing a GSA, as described in Ap-
pendix A. However, they are either computationally expen-
sive or assume the independence of the input parameters,
which is not the case in atmospheric inverse problems. We
do not pursue other approaches for quantifying the GSA as-
sociated with Q and R, as they would lead to similar results
and would not add anything substantial to the contributions
of this study.

2.4 Ranking importance of covariates, covariance
parameters, and observations from LSA

In atmospheric inverse modeling, we encounter two situa-
tions while ranking the importance of the parameters. This
involves ranking the parameters when they have the same or
different units. The situation of ranking parameters with the
same units arises when we want to study the influence of a
group of parameters, like observations with the same units.
Comparatively, the ranking of parameters with different units
occurs when we want to explore the impact of groups of pa-
rameters with dissimilar units of measurements, like obser-
vations in z in comparison to the variance of observations
in R. Both of these situations can be accounted for in the
GSA described in Sect. 2.3. However, the GSA in most sce-
narios in atmospheric inverse modeling cannot be performed
due to the reasons mentioned earlier. Therefore, in this work,
we adopt a regression-based approach to rank the importance
of the parameters. The proposed approach utilizes the output
from LSA, accounts for multicollinearity, and results in im-
portance scores that are bounded between 0 and 1. We define
the regression model for ranking as follows:

ŝ= Eγ + ξ, (38)

where ŝ are fluxes obtained from an inversion, and E is a
(m× number of derivatives) matrix of the previously esti-
mated sensitivities. The vector of the unknown coefficients
γ is of the dimension (number of derivatives× 1), and ξ is a
(m× 1) vector of unobserved errors associated with the re-
gression model. To exemplify, E in Eq. (38) can be arranged
as follows:

E=
[
∂ ŝ
∂z

∂ ŝ
∂Q

∂ ŝ
∂R
· ·

]
. (39)

In a regression-based approach, as described in Eq. (38),
the multicollinearity between independent variables in E can
pose a problem for determining the importance of the inde-
pendent variables in influencing 0. To avoid this problem,
we can compute the relative importance weights by using
the method outlined in Johnson (2000). These weights are
obtained by first deriving the uncorrelated orthogonal coun-
terparts of the covariates in E and then regressing ŝ on E to
obtain the importance weights for each covariate. The coeffi-
cient of determination then standardizes the weights, i.e., R2,
such that they range between 0 and 1, with the aggregated
sum of 1. The implementation of this method is included in
the Live Script submitted with this paper.

Note that the least absolute shrinkage and selection op-
erator (LASSO) or principal component analysis (PCA) can
also rank parameters under multicollinearity. However, both
of these methods result in unbounded weights. Furthermore,
an “inference after selection” approach is ambiguous for the
LASSO coefficients (see Berk et al., 2013, or Chap. 6 of
Hastie et al., 2015, for details). Consequently, interpreting
the LASSO coefficients as ranks may not be the best ap-
proach.

The regression-based approach described above can rank
parameters with the same and different units of measure-
ment. However, an additional normalization step is required
to obtain the overall rank of the parameters with varying
units of measure, as in z, Q, and R. To perform this nor-
malization, first, each column in every sensitivity matrix
(e.g., ∂ ŝ

∂z
, ∂ ŝ
∂Q , and so forth) that is to be ranked is normal-

ized (min–max normalization; see Vafaei et al., 2020) be-
tween 0 and 1. Thereafter, all columns for a sensitivity matrix
are summed and renormalized to vary between 0 and 1, re-
sulting in one column representing a sensitivity matrix for a
particular group. We denote this with the subscript “grouped”
(e.g., ∂ ŝ

∂z grouped) in latter sections.
Once the normalized sensitivity vectors are obtained for

each group, the regression methodology, as described above,
can be used to rank the importance of each group. The rank-
ing methodology proposed above does not account for the
nonlinear relationship between the estimates of the fluxes
and the derivatives. If this is a concern, then the strength of
the nonlinear relationship among the derivative vectors can
be first obtained by computing the distance correlation be-
tween the fluxes and the local derivatives of the parameters.
If necessary, variable transformation techniques such as the
Box–Cox transformation (see Sakia, 1992) can be used be-
fore adopting the regression methodology described above.

Note that in most batch inversion methods, the DOFS is
used to assess the information content provided by observa-
tions. DOFS= 0 in these inversions implies that no infor-
mational gain has happened. In this case, the estimated flux
reverts to the prior. In Eq. (38), this means that the γ coeffi-
cient that corresponds to Q would have the most significant
impact. Similarly, if DOFS is large, then the γ coefficients
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for z and R would be larger (and likely correlated). We show
this correspondence in Sect. 3.

Finally, all diagnostic methods applied in the context of
any regression-based model can be used to understand the
relationship between dependent and independent variables;
however, what covariates to include in E depends on the spe-
cific case study under consideration.

3 Results

To demonstrate the applicability of our methods, we utilize
data from our published work on CH4 fluxes in the Los Ange-
les megacity (see Yadav et al., 2019). In this previous work,
fluxes were estimated for South Coast Air Basin (SoCAB)
region (see Fig. 3) at 0.03◦ spatial (1826 grid cells) and 4 d
temporal resolution from 27 January 2015 through 24 De-
cember 2016. However, in the current work, we utilize input
data from 23 October 2015 through 31 October 2015, which
is a single inversion period, to contextualize the applicability
of our methods. This period overlaps with the beginning of
the well-studied Aliso Canyon gas leak (Conley et al., 2016).
As in previous work, R and Q are assumed to be diagonal,
with a separate parameter for each site in R and a single pa-
rameter that governs the scaling of errors in Q. Similarly, X
is a column vector consisting of the prior estimates of CH4
fluxes.

For each observation included in the case study, a forward
operator was obtained by using Weather Research Forecast-
ing stochastic time inverted Lagrangian model (see Yadav et
al., 2019). These forward operators are used to demonstrate
the application of the methodology for building IAOMI and
JSD-based correlation matrices in MATLAB’s Live Script.
They are also used with measurements and prior information
to estimate the fluxes and perform the LSA.

3.1 STAD from the forward operators

In this work, we identify STAD for the 4 d period dur-
ing which the inversion was performed. The spatial domain
of the study over this period is uniquely disaggregated by
STAD, as shown in Fig. 3. The STAD for different sites is
mostly spatially contiguous. Still, for some monitoring sites,
we found isolated grid cells that were not within the adja-
cent zones. We manually combined these with STAD for the
closest site to create a spatially continuous map, as shown
in Fig. 3. The discontinuous version of the STAD (shown in
Fig. 3) is included in the Live Script. The discontinuities in
the STAD result mainly from an unequal number of observa-
tions across sites and indicate that aggregation over a more
extended period is required to identify a noise-free STAD.
We do not investigate the period of this aggregation, as this
is beyond the scope of this work.

Overall, STAD for each site indicates the spatial regions
of fluxes over a period that contribute most to the observa-

Table 1. The importance scores and ranking of eight sites based on
the sensitivity of the estimated fluxes (ŝ) to observations (z).

Site Importance score Rank

GRA 0.26 1
ONT 0.24 2
COM 0.13 3
IRV 0.11 4
BND 0.10 5
CIT 0.07 6
FUL 0.07 7
USC 0.06 8

tional signal observed at a site, thus allowing us to associate
the change in fluxes with the specific area in the basin for
which reductions or increases in emissions are likely to have
occurred. Some information in the observational signal is
shared between observations from different sites. This shared
information (though not shown) can be computed as part of
STAD and forms part of the overall basin-scale estimates of
fluxes that combine measurements from all sites. Note that
STAD does not represent the network’s coverage (i.e., re-
gions of emissions constrained by observations). These re-
gions are shorter than STAD (see the gray outline in Fig. 3).
They are obtained before performing an inversion by iden-
tifying the areas of continuous spatiotemporal coverage, as
provided by atmospheric transport (Fig. 4), or by assessing
the model resolution after performing an inversion (for an
explanation, see Yadav et al., 2019).

3.2 Sensitivity analysis

One of the main goals of the sensitivity analysis after per-
forming an inversion is to identify the observations that had
the most influence on the flux estimates. Other than the ob-
servations, it is also essential to explore the importance of
the different input parameters to an inversion, like variance
parameters in R. We describe the process of performing this
analysis within the context of the case study mentioned in
Sect. 3, which discusses the relative importance of the input
quantities in influencing ŝ, by utilizing local sensitivities.

3.2.1 Comparison and ranking of the observations

The importance of individual measurements in influencing
ŝ, can be easily computed through the relative importance
methodology described in Sect. 2.4. Although all entries of
∂ ŝ
∂z

are in the same units of measurement, a direct ranking
of the observations or sites without employing the relative
importance technique can lead to misleading results, which
happens due to the presence of large negative and positive
values in ∂ ŝ

∂z
that are governed by the overall spatiotemporal

spread, the intensity of forward operators, and high enhance-
ments.
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Figure 3. Study area with county boundaries, measurement locations, and the spatiotemporal area of dominance of measurement locations.
The dotted black line shows the area constrained by observations, as shown in Yadav et al. (2019). Map data copyrighted by © OpenStreetMap
contributors 2023. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

Figure 4. Heatmap of the aggregated forward operators for the case
study period.

For the case study in this work, we find that the obser-
vations collected at the GRA site that is located nearest to
the source of the Aliso Canyon gas leak are most influential
in governing ŝ, as shown by site-based rankings in Table 1.
These rankings primarily show the importance of the obser-
vations from a site for influencing the estimated fluxes for
the period under consideration and are obtained by summing
the weights for each observation by employing the relative
importance methodology.

Outliers have a significant impact on these rankings. The
high weight associated with even one observation from a site
can make that site more important compared to other sites.
For example, if we remove the observation with the high-
est weight from each site, ONT is the most important site,

followed by GRA, CMP, IRV, CIT, FUL, BND, and USC.
As part of the sensitivity analysis, examining the influence
of the observations associated with high weights is crucial
because they are likely to have an enormous impact on the
flux estimates. Site-level importance should be judged not
only by examining the aggregated ranking, as presented in
Table 1, but also by looking at the distribution of weights
shown through the box plot in the Live Script associated with
Sect. 3.2. A site with evenly distributed weights is more im-
portant than one whose importance is just due to the presence
of a few observations with high weights.

The ranking of each observation in influencing the esti-
mates of fluxes can be obtained by examining the weights of
the column vectors of ∂ ŝ

∂z
and is provided in the Live Script.

To exemplify, this ranking of weights showed that the obser-
vation from the GRA site with the enhancement of 1.7 ppm
was most important, whereas an observation from the BND
site with an enhancement of 0.02 ppm was found to be least
important in influencing ŝ. Note this is not an observation
with the lowest enhancement but with the least influence
(Fig. 5).

3.2.2 Relative importance of Q,R,X,β and z

After the two-step normalization of ∂ ŝ
∂z

, ∂ ŝ
∂X , ∂ ŝ

∂H , ∂ ŝ
∂β

, ∂ ŝ
∂Q ,

and ∂ ŝ
∂R , as described in Sect. 2.4, the spatial plots of all

these grouped quantities that we call ∂ ŝ
∂z grouped, ∂ ŝ

∂X grouped,
∂ ŝ
∂H grouped, ∂ ŝ

∂β grouped
, ∂ ŝ
∂Q grouped

, and ∂ ŝ
∂R grouped can be created
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Figure 5. The sensitivities
(
∂ ŝ
∂zi

)
and forward operators of the most and least important observations are shown here. Panels (a) and (c)

depict the sensitivity of ŝ with respect to the most (a) and least (c) important observations, respectively, during the case study period. The
CH4 enhancement corresponding to these observations is shown in the bottom-left corner of panels (a) and (c) and is denoted by the symbol
zi . Panels (b) and (d) display the forward operators associated with the sensitivities shown in panels (a) and (c), respectively.

to explore the regions of the low and high weights (see Fig. 6)
at the grid scale.

Some of these quantities are correlated and should be seen
in conjunction. For example, R describes the errors in z,
among other errors, and implies that ∂ ŝ

∂R grouped and ∂ ŝ
∂z grouped

should be evaluated together to understand their importance
in the influence on flux estimates. Similarly, Q describes er-
rors in s−Xβ, implying that ∂ ŝ

∂Q grouped
and ∂ ŝ

∂X grouped should
be assessed together to understand their importance in the
influence on flux estimates. A larger value of ∂ ŝ

∂z grouped+

∂ ŝ
∂R grouped is likely to be found around in situ sites, due to

the increased model resolution. However, if ∂ ŝ
∂R grouped around

these locations is larger in comparison to ∂ ŝ
∂z grouped, then it

suggests that errors in R should be adjusted, and therefore,
observations should be more important in governing the flux
estimates around in situ sites. In this case study, this is due to
the large variability in the enhancement caused by the Aliso
Canyon gas leak and the presence of large point sources near
in situ sites. Overall, for the exact location, a larger ∂ ŝ

∂z groupedi
should be accompanied by a lower ∂ ŝ

∂R groupedi
, as confirmed

by the correlation in Fig. 7a and b.
The increased model resolution also results in the lower

importance of ∂ ŝ
∂X grouped and ∂ ŝ

∂Q grouped
around sites. How-

ever, the areas unconstrained by observations are likely

to have larger ∂ ŝ
∂X grouped+

∂ ŝ
∂Q grouped

, as seen in Fig. 6 for
∂ ŝ
∂X grouped and ∂ ŝ

∂Q grouped
quantities. If, in locations con-

strained by observations, ∂ ŝ
∂Q groupedi

is larger in compari-

son to ∂ ŝ
∂X groupedi

, then X in these locations is incorrect and

needs adjustment. Similarly, in the case of ∂ ŝ
∂R grouped, a larger

∂ ŝ
∂X groupedi

is generally accompanied by a lower ∂ ŝ
∂z groupedi

,
and vice versa, which is also visible in the correlation in
Fig. 7c and d. The quantity ∂ ŝ

∂β grouped
provides information

about the grid cells that are determining the value of β̂, and in
this case study, as expected, this is around the Aliso Canyon
gas leak for which Xi is being adjusted due to the larger flux
from that region. This can also be seen in Fig. 7e, where it is
positively correlated with ŝ.

4 Discussion

This study lays out the techniques for assessing the quality
of the inferred estimates of fluxes. A sensitivity analysis is
an important diagnostic tool for understanding the impact of
the choices made with respect to input parameters on the es-
timated fluxes. However, it is not a recipe for selecting the
proper forms of X or the structure of Q or R before per-
forming an inversion. Other tools or methods, such as the
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Figure 6. Grouped local sensitivities of the estimated fluxes (ŝ) with respect to z, R, X, Q, and β (from top left to bottom right, respectively).
Note that, in the case of ∂ ŝ

∂z grouped, ∂ ŝ
∂R grouped, and ∂ ŝ

∂X grouped, a two-step normalization is performed to generate the subplots associated
with these quantities. Derivatives with respect to (1) observations in z, (2) parameters in R, and (3) entries in X are normalized between 0
and 1. Then, after aggregating these for every grid cell, another min–max normalization is performed to limit their ranges between 0 and 1.
Only a single normalization is performed in the case of ∂ ŝ

∂Q grouped
and ∂ ŝ

∂β grouped
, as they consist of only one parameter.

Bayesian information criterion and variance inflation factor,
should be used to perform this task.

The case study in this work is designed only to demon-
strate the methodologies described in Sect. 2. We do not im-
pose nonnegativity constraints to obtain positive CH4 fluxes,

as was done in the original 2019 study (Yadav et al., 2019).
This is done because the posterior likelihood changes its
functional form under nonnegativity constraints that inval-
idate the analytical forms of the sensitivity equations pre-
sented in this work. Thus, some CH4 fluxes obtained in this
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Figure 7. Scatterplots of the relationships between ŝ and ∂ ŝ
∂z grouped, ∂ ŝ

∂R grouped, ∂ ŝ
∂X grouped, ∂ ŝ

∂Q grouped
, and ∂ ŝ

∂β grouped
. Note that, as in Fig. 6,

all of the derivatives are normalized to limit their range to between 0 and 1. The correlation coefficient of the relationships shown in each
scatterplot is reported in the top-left corner of the panels. The least square line of the best fit is shown with a solid red line in every panel.

study have negative values, as can be seen in the map of ŝ
in MATLAB’s Live Script. Even in these situations, assess-
ing sensitivity through an inversion without the imposition of
nonnegativity is helpful, as it provides insights into the role
of z, R, Q, and X in governing the estimates of nonnegative
ŝ.

Like z, the importance of Q and R parameters can be di-
rectly obtained when all parameters have the same units of
measurement, as in the case study presented in this study.
However, this is not guaranteed, as R can be a function of the
variance parameters and spatiotemporal correlation lengths
expressed in the distance units in space and time. Further-
more, a nonstationary error covariance R can have parame-
ters that have even more complicated units. This situation is
not only limited to R but also applies to the prior error covari-
ance, Q and X. Under these conditions, comparing the sen-
sitivity matrices is only possible after normalization. There-
fore, we recommend using a multiple linear-regression-based
relative importance method to rank these quantities for com-
parative assessment.

The overall importance of ∂ ŝ
∂z

is best explored by perform-
ing column-based normalization and then employing the rel-
ative importance method. Additionally, column-based nor-
malization can be augmented by row-based normalization to
assess and rank the influence of observations in governing
grid-scale estimates of ŝ. Qualitatively, column- and row-

based assessments increase our understanding of the spa-
tiotemporal estimates of ŝ, which is especially important
when point sources are the dominant sources of emissions.
Moreover, it provides insight into the temporal aggregation
error (e.g., Thompson et al., 2011), as the information en-
coded in an instantaneous measurement can become lost
over the coarser inversion period. This aggregation error also
manifests spatially and is determined by the resolution at
which fluxes are obtained. In many situations, these aggre-
gation errors are unavoidable, as the choice of the spatiotem-
poral resolution of the inversions is governed by the density
of the observations in space and time.

Other than the aggregation error, the aggregation of the
estimated fluxes also has profound implications, as it affects
the robustness of the estimated fluxes. It can be proved (see
Appendix C1) that the aggregation of ŝ in space and time
from an inversion conducted at a finer resolution leads to a
reduction in uncertainty. However, even though the ratio of
the observations to the estimated fluxes increases, the number
of fluxes uniquely resolved declines at a coarser resolution
(see Appendix C2).

The computational cost for calculating the analytical par-
tial derivatives is minimal, as it is a one-time operation and
is bounded by the computational cost to perform matrix mul-
tiplications, which at max is O(n3). For the case study pre-
sented, we can compute the analytical derivatives and rank

https://doi.org/10.5194/gmd-16-5219-2023 Geosci. Model Dev., 16, 5219–5236, 2023



5232 V. Yadav et al.: Metrics for linear atmospheric inverse problems

for approximately 4000 parameters in a few minutes on a
laptop. Computing the derivatives by using the Kronecker
form of the equations (Eqs. 18 and 21 through 24 and Eqs. 33
though 36) is faster for smaller problems. However, for large
problems, the storage costs associated with these equations
can become prohibitive. In these situations, we propose the
use of the ij form of the equations (Eqs. 20 and 25 through 28
and Eqs. 29 though 32) for assessment. Furthermore, com-
putational problems can also arise in ranking the input pa-
rameters if we have numerous derivatives (e.g., greater than
10 000), as the ranking method used in this work relies on
the eigenvalue decomposition that has O(n3) computational
complexity. To overcome this problem, we advise grouping
the derivatives to reduce the dimension of the problem.

Finally, the estimation of STAD and the importance of
sites can be influenced by data gaps; therefore, it is not ad-
vised in the presence of vast differences in the number of
observations between sites.

5 Conclusions

Our work makes novel and significant contributions that
can improve the understanding of linear atmospheric inverse
problems. It provides (1) a framework for post hoc analysis
of the impact of input parameters on the estimated fluxes and
(2) a way to understand the correlations in the forward op-
erators of an atmospheric transport model. The authors are
unaware of any work in which the local sensitivities with dif-
ferent units of measurement are compared to rank the im-
portance of input parameters in a linear atmospheric inverse
model.

Concerning forward operators, we provide mathematical
foundations for IAOMI and JSD-based metrics. These two
metrics can be used to construct a nonstationary error covari-
ance for the atmospheric transport component of the model
data mismatch matrix R. Furthermore, IAOMI-based assess-
ments can be extended to identify STAD from forward opera-
tors that can help to disaggregate the regions of influence for
the observations over a chosen temporal duration. This helps
us to understand the connection between the sources of flux
and observations from a particular measurement location.

The IAOMI and JSD-based metrics provide essential in-
sights into the two critical and only required components
for an inversion, namely observations and forward opera-
tors (e.g., the influence of the observation on the sources of
the fluxes through STAD), which can be accomplished be-
fore conducting an inversion and should be complemented
by post hoc LSA, which is necessary for understanding the
behavior of an inverse model. Overall, LSA can answer ques-
tions like in which locations and in what order of precedence
an observation was important for the influence on the esti-
mated fluxes. This kind of analysis is entirely different from
estimating uncertainty, which tells us the prior uncertainty
reduction due to observations.

LSA is not a replacement for statistical tests that check the
inverse models’ underlying assumptions and model specifi-
cations, nor is it a recipe for selecting input parameters to
an inverse model. However, as explained above, it has an es-
sential role that can lead to an improved understanding of an
atmospheric inverse model.

Appendix A: Review of previously employed methods to
conduct sensitivity analyses

Earlier, many methods have been proposed and utilized
to perform sensitivity analysis. These can be categorized
as global and local sensitivity analyses. Global sensitiv-
ity analysis (GSA) includes Morris’s (e.g., Morris, 1991)
one-step-at-a-time method (OAT), polynomial chaos expan-
sion (PCE; e.g., Sudret, 2008), Fourier amplitude sensitiv-
ity test (FAST; e.g., Xu and Gertner, 2011), Sobol’s method
(e.g., Sobol, 2001), and derivative-based global sensitiv-
ity measures (DGSM; e.g., Sobol and Kucherenko, 2010),
among others. These existing GSA methods (1) assume the
independence of parameters (e.g., FAST and OAT), (2) are
computationally expensive (e.g., Sobol’s method), or (3) re-
quire knowledge of the joint probability distribution of the
parameter space (e.g., DGSM and PCE). Therefore, these
traditional methods cannot be directly applied to linear at-
mospheric inverse problems, which consist of tens of thou-
sands of nonnormal, spatiotemporally correlated parame-
ters (including observations). Constantine and Diaz (2017)
proposed an active subspace-based GSA that uses a low-
dimensional approximation of the parameter space. But it is
still computationally expensive for problems with thousands
of parameters (see the case study in Constantine and Diaz,
2017).

Compared to GSA, a local sensitivity method, such as
Bayesian hyper-differential sensitivity analysis (HDSA; Sun-
seri et al., 2020), computes the partial derivatives regarding
the maximum a posteriori probability (MAP) estimates of a
quantity of interest. However, unlike Bayesian HDSA, we
do not generate samples from the prior estimate to compute
multiple MAP points, since we have limited knowledge of
the prior distribution of the spatiotemporally correlated pa-
rameters. We derive the functional form of the local sensitiv-
ity equations based on the closed-form MAP solution. Our
method is simple and amenable to tens of thousands of pa-
rameters. Note that, like all linear atmospheric inverse prob-
lems, one of the critical goals of this work is to study the
importance of thousands of spatiotemporally varying param-
eters by ranking them, and the computation of the local sen-
sitivities is a means to achieve that goal.
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Appendix B: Jensen–Shannon distance (JSD) for
forward operators

The dissimilarity between forward operators can also be
measured via entropy-based distances (for a definition, see
MacKay, 2003), which can capture differences between two
probability distributions. One such metric is the Jensen–
Shannon distance (JSD; Nielsen, 2019), which can be used
to compute the distance between two forward operators after
normalizing them by their total sum. For a forward operator
F , this can be given as

PFk =
Fk∑
kFk

, (B1)

where Fk denotes kth entry of F, resulting in the normal-
ized forward operator P . We can then use JSD to compute
the distance between two normalized forward operators from
Eq. (B2) as follows:

JSD(PF||PG)=

√
1
2
D(PF||M)+

1
2
D(PG||M), (B2)

where D stands for the Kullback–Leibler (KL) divergence
(see MacKay, 2003, for details). The KL divergenceD of any
probability distribution p, with respect to another probability
distribution q, is defined asD(p||q)=

∑
plog(p/q), andM

stands for 1
2 (PF+PG). The symbol || is used to indicate that

D(PF||M) andD(PG||M) are not conditional entropies (see
MacKay, 2003). JSD is closed and bounded in [0,1] when
the KL divergence is calculated with the base 2 logarithms.
Intuitively, JSD and 1− ν (i.e., 1− IAOMI) are comparable,
since both of them are measures of dissimilarity.

Appendix C: Uncertainty and model resolution under
aggregation

Here we show the proofs of two mathematical statements on
the robustness and quality of the estimated fluxes, as men-
tioned in Sect. 4. First, we show why the marginal variance of
the estimated fluxes (which is the diagonal of the covariance
matrix of ŝ) decreases when the estimated fluxes are post-
aggregated to a coarser scale or upscaled (Appendix C1).
Second, we show why, in such cases, the model resolution
(termed the total information resolved by the observations)
also decreases (Appendix C2). Note that the nomenclature
used in the Appendix C should not be confused with the
nomenclature introduced in Sect. 2. The abbreviations and
symbols used here are independent of what is used in Sect. 2.

C1 Proof of the reduction in the marginal variance of ŝ
when aggregation is performed

The post-inversion aggregation or upscaling of any flux field
s is equivalent to the pre-multiplication by a weight matrix

(in fact, a row stochastic matrix). This can be written as fol-
lows:

s̃= Jŝ, (C1)

where J is a row stochastic (i.e., row sums are all unity) k×m
weight matrix (k < m). The variance of s̃ can be written as
J6Jt , where var(s̃)= Jvar(ŝ)J t = J6Jt . The general struc-
ture of J is as follows:

J =


0 j12 j13 0 0 0
j21 0 j2r+1 j2r+2 0 0
...

...
. . .

. . .
...

...

0 0 0 jkm 0 0

=


jt1
jt2
...

jtk

 . (C2)

However, J is mostly sparse, with nonzero values in only a
few places. The rest of the entries are zeros. Essentially, J
can have any number of nonzero entries in a row that may
or may not be consecutive. This is because, although adja-
cent grids are averaged on a map, they may not be adjacent
upon vectorization. Moreover, the geometry of the map may
not be exactly square or rectangular. Therefore, depending on
the aggregation or upscaling factor and geometry, there may
or may not be any neighboring grid for averaging around a
particular grid. However, the rows are linearly independent,
as nearby grids are considered only once for averaging. The
properties of J are as follows:

1. J1= 1 or jti1= 1 ∀ i = 1,2, ·, ·,k

2. jti jr = 0 for i 6= r .

We can rearrange the columns of J and the rows of 6 ac-
cordingly without the loss of any structure, such that nonzero
entries are consecutive for each row of J. The matrix J6J′
under the column permutation can be written as follows:

J6Jt
= Jπ6πJtπ

=


lt1 0 · · · 0
0 lt2 · · · 0
.
.
.

.

.

.
. . .

.

.

.
0 0 · · · ltk


k×m



411 412 · · · 41k

421 422 · · ·

.

.

.

.

.

.
.
.
.

. . .
.
.
.

4k1
.
.
. . . . 4kk


m×m

l1 0 · · · 0
0 l2 · · · 0
...

...
. . .

...

0 0 · · · lk


p×k

(C3)

=

lt1411l1 . . . lt141klk
... lt2422l2 · · ·

ltk4k1l1 · · · ltk4kklk


k×k

, (C4)

where Jπ and 6π are the permuted J and 6, respectively.
However, for notational clarity, we use l and 4 as the sub-
vector and sub-block matrix of the Jπ and 6π , respectively.
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Note that any lti is a row vector with the dimension of (1,di),
and 4ii is a square matrix with the dimension of (di,di),
where

∑k
i=1di =m. Thus, the diagonal entry lti4ii li is a

scalar quantity. For any ith diagonal entry, the correspond-
ing scalar quantity can be written as

∑
jrl lij lir4jr . Through

symmetry of 4, this reduces to the following:

lti4ii li =
∑
r

l2ir4
2
lr + 2

∑
j>r

lij lir4jr . (C5)

Using the Cauchy–Schwarz inequality on 4jr , this can be
written as∑
r

l2irσ
2
lr − 2

∑
j>r

lij lirσjjσrr ≤
∑
r

l2irσ
2
rr

+ 2
∑
j>r

lij lijσjr ≤
∑
r

l2irσ
2
rr

+ 2
∑
j>r

lij lijσjjσrr (C6)

(
lir
√
σir −

∑
r≥2
lir
√
σir

)2

≤

∑
r

l2irσ
2
rr + 2

∑
j>r

lij lijσjjσrr

≤

(∑
ir

lir
√
σrr

)2

(C7)

minrσrr

(
lir −

∑
r≥2
lir

)2

≤

∑
r

l2irσ
2
rr + 2

∑
j>r

lij lijσjjσrr

≤maxrσrr

(∑
ir

lir

)2

. (C8)

This implies (by property 1 of the weight matrix J) that the
ith diagonal entry is bounded by the following:

min
r
σrr

(
lir −

∑
r≥2
lir

)2

≤ J′i6iiJi ≤max
r
σrr ≤

di∑
r=1

σrr , (C9)

where
∑di
r=1σrr is the sum of the marginal variance of the ith

block of the non-averaged ŝ. Thus, the sum of the marginal
variance of s̃, which is the sum of the i diagonal Jti6iiJi ,
is also smaller than or equal to the sum total of marginal
variance of ŝ. This implies that the marginal variance of the
posterior mean decreases as a result of the diagonal of the
variance matrix shrinking in magnitude upon averaging.

C2 Proof of the reduction in model resolution when
aggregation is performed

The aggregated forward operator H̃ can be written as follows:

H̃=HB, (C10)

where B is the upscaling matrix. The dimension of B has the
dimension of the transpose of J. The structural form of B is

similar to the form of J explained in Eq. (C2). Nonzero en-
tries of B are in the same place as J′, with the magnitude re-
placed by unity. This is evident from the fact that the forward
operator is summed instead of being averaged for aggrega-
tion. The properties of B are as follows:

1. B1= 1.

2. JB= diag(N)k×k , where N is the vector of the num-
ber of neighboring grid cells for any particular grid cell,
i.e., N = (N1, . . .,Nk).

3. BJ=


C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...

0
... · · · Ck


m×m

is a block diagonal matrix. Any block Ci of JA can
be expressed as a varying dimension (depending on the
number of neighboring grids of any particular grid cell)
matrix of the following form:

Ci =


1
Ni
· · ·

1
Ni

...
. . .

...
1
Ni
· · ·

1
Ni


Ni×Ni

=
1
Ni

11t . (C11)

4. BJ is symmetric and positive semi-definite.

The first three properties are simple observations from the
construction. So, here we provide proof of the fourth prop-
erty.

Proof. By construction, Det(BJ− λI)= Det(C1−
λI). . .Det(Ck− λI). So, eigenvalues of BJ are the list
of the eigenvalues of the block matrices. It can be
proved that 1 and 0 are the only two distinct eigen-
values of Ci for any i. Below is a brief argument
on that topic, where

(
1
Ni

11t
)

1= 1
Ni

1Ni = 1 · 1 im-
plies that one eigenvalue of Ci is 1. Observe that
rank

(
1
Ni

11t
)
= rank(1)= 1. Hence, the dimension of the

null space dim
(
N
(

1
Ni

11t
))
= k− rank

(
1
Ni

11t
)
= k− 1.

This implies that the other eigenvalue of Ci is 0, with
multiplicity of k− 1.

So, not only is Ci symmetric but also the eigenvalues of
Ci are always nonnegative. Consequently, all eigenvalues of
BJ are of a similar form i.e., BJ is a symmetric positive semi-
definite.

Finally, the model resolution matrix for the inversion can
be written as ∂ ŝ

∂z H, where H is the forward operator. The post-
inversion aggregated model resolution can be written as

∂ s̃
∂z

H̃= A
∂ ŝ
∂z

HB (C12)

by Eqs. (C1) and (C10).
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The question is then as follows: what happens to the
trace of the model resolution under the aggregated scenario?
We provide proof for the simple batch Bayesian case in
Lemma 1. The proof for the geostatistical case is similar and
is left to the enthusiastic reader.

Lemma 1.

Mres=QH′ψ−1H

Mresaggregated = JQH′ψ−1HB then

trace
(
Mresaggregated

)
≤ trace(Mres)

(C13)

Proof. The model resolution for the aggregated scenario
can be written as follows:

trace
(
Mresaggregated

)
= trace

(
JQH′ψ−1HB

)
= trace

(
BJQH′ψ−1H

)
= trace(WS) ,

where W= BJ,S=QH′ψ−1H, (C14)

where S and W are both of the dimension of (m×m). S is
a positive semi-definite matrix, since both Q and H′ψ−1H
are positive semi-definite. For the Wm×m and Sm×m posi-
tive semi-definite, the trace of their product can be bounded
by the following quantities (see Kleinman and Athans, 1968,
and the discussion in Fang et al., 1994):

λmin(W)trace(S)≤ trace(WS)≤ λmin(W)trace(S). (C15)

From property 4 of the weight matrix B, we know that
λmin(W)= 0 and λmax(W)= 1; hence, the above reduces
to 0≤ trace(WS)≤ 1 · trace(S). Therefore, the proof by
Eq. (C14) can be seen.
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