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Abstract. High-resolution (< 1 km) atmospheric modeling is
increasingly used to study precipitation distributions in com-
plex terrain and cryosphere–atmospheric processes. While
this approach has yielded insightful results, studies over
annual timescales or at the spatial extents of watersheds
remain unrealistic due to the computational costs of run-
ning most atmospheric models. In this paper we introduce
a high-resolution variant of the Intermediate Complexity At-
mospheric Research (ICAR) model, HICAR. We detail the
model development that enabled HICAR simulations at the
hectometer scale, including changes to the advection scheme
and the wind solver. The latter uses near-surface terrain pa-
rameters which allow HICAR to simulate complex topo-
graphic flow features. These model improvements clearly in-
fluence precipitation distributions at the ridge scale (50 m),
suggesting that HICAR can approximate processes depen-
dent on particle–flow interactions such as preferential depo-
sition. A 250 m HICAR simulation over most of the Swiss
Alps also shows monthly precipitation patterns similar to
two different gridded precipitation products which assim-
ilate available observations. Benchmarking runs show that
HICAR uses 594 times fewer computational resources than
the Weather Research and Forecasting (WRF) atmospheric
model. This gain in efficiency makes dynamic downscaling
accessible to ecohydrological research, where downscaled
data are often required at hectometer resolution for whole

basins at seasonal timescales. These results motivate further
development of HICAR, including refinement of parameter-
izations used in the wind solver and coupling of the model
with an intermediate-complexity snow model.

1 Introduction

Atmospheric models have seen remarkable improvements
over the past decades, spurred on by their importance to so-
ciety. Their usage within science ranges from climate and
weather predictions to downscaling atmospheric variables as
input to further geophysical models. Specific applications
have included generating forcing data over sparsely instru-
mented domains (Khadka et al., 2022), downscaling global
climate model output to study regional impacts (Spinoni
et al., 2018), and coupling with land surface models to better
simulate land–atmosphere feedbacks (Sharma et al., 2023).
The concept intrinsic to all of these applications is one of
scale. As model resolution increases, processes which were
previously parameterized can be explicitly resolved, and the
representation of the underlying terrain improves, allowing
for more accurate dynamics (Wyngaard, 2004; Chow et al.,
2019; Prein et al., 2013).

High-resolution (< 1 km) simulations of winter storms in
complex terrain have been used to augment our process-level
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understanding of particle–flow interactions such as prefer-
ential deposition (Lehning et al., 2008; Gerber et al., 2018;
Vionnet et al., 2017; Mott et al., 2010). Some of these simu-
lations aimed at very high resolutions of 25 m and below and
thus used stationary wind fields (Raderschall et al., 2008)
or a decomposition of wind field into a limited number of
dominating (stationary) patterns to enable simulations for
the length of a storm (Mott et al., 2010) to a full season
(Groot Zwaaftink et al., 2013). Coupled glacier–atmosphere
models have been developed and run at a range of spatial
scales, demonstrating an ability to better simulate surface–
atmosphere energy exchanges over glaciers (Collier et al.,
2013; Goger et al., 2022). And coupled snow–atmosphere
models have been developed which explicitly resolve snow–
atmosphere interactions (Vionnet et al., 2014; Sharma et al.,
2023). These studies have all demonstrated the ability of
high-resolution atmospheric modeling to improve estimates
of precipitation, wind speeds, and surface–atmosphere inter-
actions. However, all of them have focused on limited spa-
tial and temporal extents due to the huge computational de-
mand required for running modern atmospheric models at
hectometer resolution. In one study performing 50 m simula-
tions of winter precipitation using the Weather Research and
Forecasting (WRF) model, nearly 34 000 core hours were re-
quired to perform 1 d of simulation over a < 100 km2 do-
main (Kruyt et al., 2022). Any practical application of high-
resolution atmospheric modeling to questions concerning fu-
ture climate scenarios or downscaling for land surface mod-
els is currently limited by the computational demand of at-
mospheric models.

This issue is no news to the community, and idealized at-
mospheric models of orographic precipitation and mountain
waves have been developed and employed in the past (Smith,
1979; Smith and Barstad, 2004). Recently, the Intermediate
Complexity Atmospheric Research (ICAR) model was intro-
duced in Gutmann et al. (2016) (hereafter G16) to provide
an alternative to highly idealized models and modern, non-
hydrostatic, compressible atmospheric models. In their 2016
paper, Gutmann et al. demonstrated excellent agreement be-
tween ICAR and WRF when simulating mountain waves
and orographic precipitation over idealized terrain. Further
demonstration over real, complex terrain at a 4 km resolution
gave good agreement on precipitation between the two mod-
els during the winter months. Most importantly, the ICAR
simulations used 143 times fewer computational resources
than the WRF model. The ability of ICAR to simulate oro-
graphic precipitation at the kilometer scale has been repli-
cated in other studies (Horak et al., 2019). ICAR has since
occupied a niche in modeling studies where downscaling of
long time series would otherwise be limited by computa-
tional resources. These results motivate the design philoso-
phy behind ICAR that dramatic reductions in computational
time may justify modest reductions in model accuracy for
certain applications.

Such an approach is perfectly suited for high-resolution at-
mospheric modeling, where computational demands severely
limit the experimental design of studies. However, the dy-
namics and physics of the base ICAR model, namely linear
mountain wave theory and first-order upwind advection, are
not suitable when modeling at the hectometer scale. Here
we introduce a high-resolution variant of the ICAR model,
HICAR, which adapts the ICAR model to be suitable at res-
olutions below the kilometer scale. In the second section of
the paper, key parts of HICAR’s model development are de-
tailed, with a focus on the model’s wind solver, advection
scheme, and input/output (I/O) operations. In the third sec-
tion, information is given about other atmospheric models
and gridded datasets used in this study, as well as details
about model simulation setups. These models and datasets
are then compared in Sect. 4, where various demonstrations
of the HICAR model provide a limited validation and are
used to discuss the model performance. Lastly, a synthesis of
the paper and a concluding discussion about the utility of the
HICAR model are presented in Sect. 5.

2 Model development

In the original ICAR model, the 3D wind field can either
be generated through 3D interpolation between the coarse-
resolution forcing data and the high-resolution grid, or it
can be further modified using linear mountain wave theory
(Smith, 1979). This modification alone simulates the distur-
bance of the mesoscale flow field caused by mountain ranges,
namely the generation of mountain waves depending on the
atmospheric stability. These effects are the dominant influ-
ence of the terrain on the mesoscale flow from scales of tens
of kilometers down to the kilometer scale, which is the scale
range which ICAR was originally developed for. Increas-
ingly, output from kilometer-scale compressible, nonhydro-
static atmospheric models run by regional weather forecast-
ing offices are available (Benjamin et al., 2016; Seifert et al.,
2008; Seity et al., 2011). These models are expected to cap-
ture the dynamics approximated by linear mountain wave
theory. When using these models as forcing data for high-
resolution simulations with ICAR, it would thus be redun-
dant to run with the linear theory solution. Left with only an
interpolated kilometer-scale wind field for a 3D wind field,
we found it necessary to implement a new wind solver capa-
ble of capturing dynamics induced by the underlying high-
resolution terrain. These flow features should be necessary
to simulate particle–flow interactions which lead to hetero-
geneous snowfall patterns. In addition to changes to the wind
field, it was also necessary to modify the advection scheme
of ICAR and the input/output (I/O) routines. ICAR only of-
fers the first-order upwind advection scheme, which has been
shown to be highly diffusive, especially in complex terrain
(Schär et al., 2002). When simulating precipitation events, it
is important that heterogeneities in moisture and temperature
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are maintained and do not become too smooth. Finally, as
model resolution and speed increased, it became paramount
to be able to efficiently read and write large volumes of
data without significantly affecting runtime. The following
two subsections focus on new options for the wind solver in
HICAR, while the last two focus on changes affecting the
advection scheme and model input/output (I/O) (Fig. 1).

2.1 Direct adjustment of wind field

Taking a cue from existing statistical models of surface winds
in complex terrain (Winstral and Marks, 2002; Winstral et al.,
2017; Liston and Elder, 2006; Dujardin and Lehning, 2022),
we first develop corrections to the interpolated wind field
near the surface based on the underlying terrain. This is done
through terrain descriptors calculated at model initialization
and then applied to the wind field at runtime. Terrain descrip-
tors represent some qualitative information about the terrain
quantitatively, such as if a particular location is sheltered
from a particular wind direction. Parameterizations can then
be developed using these values, allowing nonlocal interac-
tions between the topography and winds to be accounted for
in a computationally efficient manner.

2.1.1 Terrain descriptors

Topographic position index (TPI)

When downscaling winds from coarse to high resolutions,
the representation of the model terrain can vary drastically.
What appears as a small depression in the terrain at a 1 km
resolution may actually be a steep valley when viewed at
a 100 m resolution. To find areas in the high-resolution do-
main where large differences with the coarse digital elevation
model (DEM) may affect wind fields, we use the topographic
position index (TPI, Jenness, 2006; Weiss, 2011). TPI is cal-
culated as the difference in elevation between a given terrain
element and the average terrain height within a given radius
around that terrain element:

TPI= zhi− z̄radius, (1)

where zhi is the high-resolution elevation and z̄radius is the
mean elevation of the high-resolution grid within a given ra-
dius around zhi. We set the search radius to be 4 km. The
chosen search radius will depend upon the resolutions of the
model and the forcing data being used. In general, larger
search radii lead to wider bands of positive and negative TPI,
while smaller radii select just the valley bottoms and tops of
peaks, resulting in a more heterogeneous distribution of TPI
(Weiss, 2011). TPI has previously been used as a variable
in other wind downscaling schemes (Winstral et al., 2017),
serving to highlight areas where winds are expected to be
higher, such as an exposed ridge. TPI was chosen as a terrain
descriptor instead of locally differencing the model and forc-
ing DEMs because it gives a description of exposure, which

is a nonlocal concept. For example, a hill in a valley may
have the same elevation on the high-resolution grid as on the
smoother, coarse-resolution forcing grid, and the terrain dif-
ference would be 0. However, if this hill is in a valley, it is
still relatively lower than the surrounding terrain, and this
would result in a negative TPI.

3D Sx

The Sx parameter was first introduced by Marks et al. (2002),
quantifying the maximum slope from a surface grid cell to a
terrain element in the upwind direction. The Sx parameter
was thus interpreted as a proxy for how sheltered a surface
grid cell was from incoming winds, as the upwind terrain
element was expected to disrupt the flow. Sx has since been
used in many parameterizations of surface wind (Marks et al.,
2002; Winstral et al., 2013; Grünewald et al., 2013). Impor-
tantly, the Sx parameter gives directional information about
terrain–wind interactions, which supplements the omnidirec-
tional TPI. Here we extend the original concept of Marks
et al. (2002) into three dimensions, calculating Sx not just for
the surface grid cells, but for all model grid cells in the ver-
tical dimension. The motivation behind this is that the shel-
tering effects provided by an upwind terrain element will be
felt above the surface as well as on the ground. The proce-
dure for calculating 3D Sx is similar to that for 2D Sx: it is
the maximum upwind slope between a grid cell (this time al-
lowed to be above the surface) and the largest upwind terrain
element. We add an important caveat that the largest upwind
terrain element must also have a positive TPI value. This is
done under the assumption that flow separation is more likely
to occur for exposed terrain elements (positive TPI). The fol-
lowing equation,

SxA,dmax(x,y,z)=

max

(
tan−1

(
DEM(xv,yv)−Z(x,y,z)√
(xv − x)2+ (yv − y)2

))
, (2)

gives the Sx value for a given azimuth angle A, calculated at
a specific point (x,y,z), using a search radius of dmax. DEM
is the high-resolution DEM (2D) and Z is the grid cell height
on the mass grid (3D). (xv,yv) represents the location of the
terrain element which Sx is being calculated against. dmax is
a namelist variable which the user can define. A qualitative
illustration of the 3D Sx parameter is given in Fig. 2.

2.1.2 Application of terrain descriptors

The two terrain descriptors, TPI and Sx, seek to highlight ar-
eas of the domain where direct adjustment to the interpolated
wind field is necessary. TPI indicates relative differences be-
tween the high-resolution terrain and a low-resolution repre-
sentation, which is to say areas where the interpolated, high-
resolution wind field is experiencing terrain features that the
forcing terrain’s lower-resolution DEM may not resolve. Be-
cause TPI is nondirectional, we only consider adjustments to
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Figure 1. Schematic of major changes to HICAR’s runtime loop compared to Fig. 1 of G16. The left side of the figure features the I/O
loop handled by I/O processes, while the right side features the runtime loop of HICAR, with a focus on the steps discussed in Sect. 2.2
and 2.3. Blue corresponds to I/O processes, green to steps of the wind solver, purple to steps of the physics integration loop, and red to
communication between I/O and compute processes. Within the wind solver and physics loop, downward arrows are implied between the
steps where not indicated.

the wind speed and consider increasing wind speeds at ar-
eas of positive TPI (HICAR terrain higher than forcing ter-
rain) and decreasing them at areas of negative TPI. Testing
showed that the wind solver discussed in Sect. 2.2 adequately
increases wind speeds over areas of positive TPI without a
direct TPI-based adjustment, so only adjustments in areas of
negative TPI are performed. This can be explained conceptu-
ally as reducing wind speeds in valleys deeper, and thus more
removed from mesoscale wind speeds, than the forcing ter-
rain suggests. This correction is only considered within the
first 200 m above the surface and is gradually decreased up
to this height. This height limit was chosen empirically after
testing multiple decay heights. Corrections based on TPI can
thus be formulated as

TPIcor =
TPI

TPImax

ztop− z

ztop
, TPI< 0, (3)

where TPI is the surface TPI computed at each grid cell and
z is the height of the grid cell in question. TPImax is a scaling
factor controlling the correction, and it was set to 200 in our
simulations. ztop controls the height at which the correction
goes to 0, in this case 200 m.

Corrections based on the Sx parameter are considered for
all grid cells with a negative Sx value. For these cells, a
threshold Sx angle, Sxthresh, is calculated at the surface.

N =

√
g

θ

dθ
dz

(4)

Ri =
N2(

du
dz

)2
+

(
dv
dz

)2 (5)

Sxthresh = 180◦min(max(0,Ri) ,0.25) (6)
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Here,N is the Brunt–Väisälä frequency, θ is potential tem-
perature, and Ri is the Richardson number. All vertical gra-
dients are calculated over the first 100 m above the surface.
This follows the methodology of Menke et al. (2019) where
the Richardson number used to classify stable and unstable
conditions for lee-side recirculation was calculated over the
first 100 m above the surface. Equation (6) says that for Ri
values greater than 0.25 [Stable], no sheltering effects occur,
and for negative Ri values [Unstable], the threshold Sx angle
is 0◦. Although Sxthresh is only calculated at the surface, it is
used throughout the column to apply the following correc-
tions in 3D. This threshold angle is then used to calculate an
Sx correction factor,

Sxcorr =
Sx−Sxthresh

φdef
, (7)

where Sx is the Sx angle for the given grid cell, Sxthresh is the
threshold angle calculated for that column, and φdef, a scaling
factor, is set to 30◦. Sxcorr is then applied to theU and V wind
vectors by divvying up the correction according to the slope
of the underlying topography. This is shown conceptually in
Fig. 2 and follows the equation

SLOPE=

√(
dz
dx

)2

+

(
dz
dy

)2

, (8)

Sxu,cor =−
dz
dx

Sxcor

SLOPE2

(
dz
dx
Um+

dz
dy
Vm

)
, (9)

Sxv,cor =−
dz
dy

Sxcor

SLOPE2

(
dz
dx
Um+

dz
dy
Vm

)
, (10)

whereUm and Vm are theU and V velocities staggered to the
mass grid, and SLOPE is the terrain slope. Vertical gradients
shown here are calculated over the grid cell. The net effect is
to apply a correction to the wind speed and to rotate the wind
vector about the slope tangent. Finally, the two correction
factors for TPI and Sx are applied as such.

U = U −Sxu,corr (11)
V = V −Sxv,corr (12)
U = U(1+TPIcor) (13)
V = V (1+TPIcor) (14)

We note that parameter values and correction formulations
used in this section are somewhat arbitrary. The logic be-
hind the corrections is explained above, and the exact val-
ues were reached through a sparse sampling of the parameter
space. The goal of the current study is to demonstrate the
potential of combining a preconditioning step, described in
the current section, with the diagnostic wind solver described
in the following section. The effects of this currently under-
constrained approach to correcting the wind field is discussed
further in Sect. 4.1, and these corrections will be further re-
fined in a future study by using observations of the 3D wind
field in complex terrain.

2.2 Mass-conserving wind solver

After adjusting the wind field according to terrain descriptors
or after ingesting any arbitrary wind field from forcing data,
the resultant wind field is not guaranteed to be divergence-
free. Because ICAR is an incompressible atmospheric model,
this would mean a violation of mass conservation. Thus,
some further correction to the 3D wind field must be applied
to ensure mass conservation. In the original ICAR model, this
is ensured by calculating the divergence for each model layer
and prescribing the grid-relative vertical velocity at the top of
each layer such that divergence is eliminated. This is some-
times referred to as the “kinematic method” of balancing the
winds (O’brien, 1970; Homicz, 2002). Unfortunately, this
method is known to produce excessive vertical motion even
for modest amounts of residual divergence (Goodin et al.,
1980). Figure 3 shows the strong vertical winds which are of-
ten observed in high-resolution simulations using the ICAR
model with the kinematic method for balancing the 3D wind
field. The strong vertical winds observed in the ICAR sim-
ulations are due to (a) large grid distortions in complex ter-
rain at high resolutions, (b) the use of high-resolution forc-
ing data from a compressible atmospheric model, and (c) the
kinematic solution for vertical wind itself (Eq. 9 in G16).
As the horizontal resolution is reduced, the magnitude and
variations of the vertical motions are reduced. As a result,
simulations with the ICAR model at coarser resolutions ex-
hibit less strong vertical motion than shown here. However,
such simulations still exhibit increasing vertical motion as a
function of height due to the use of the kinematic solution for
vertical velocity (O’brien, 1970). This results in excessively
strong vertical motion at the model top and explains the sen-
sitivity of ICAR to the height of the model top and choice of
upper boundary condition reported in Horak et al. (2019) and
Horak et al. (2021).

This issue alone motivates the implementation of a new
approach to balancing the 3D wind field. When using the em-
pirical adjustment of the 3D wind field described above, even
more divergence is introduced to the wind field, resulting in
entirely nonphysical vertical velocities. Clearly another tech-
nique for calculating vertical velocity is required for high-
resolution applications.

HICAR employs a method for calculating a mass-
conserving wind field which is based on a variational calcu-
lus technique. This technique has been developed over prior
decades of wind modeling and pollutant transport (Sasaki,
1958; Sherman, 1978; Ross and Fox, 1991), and it has been
adapted into a variety of wind models (Moussiopoulos et al.,
1988; Forthofer et al., 2014). Wind tunnel experiments and
field observations have routinely demonstrated the ability of
this technique to simulate speed-up and deflection of flow
around obstacles (Ross and Fox, 1991; Forthofer et al., 2014;
Wagenbrenner et al., 2016). The method works by solving an
optimization problem where two functions are reduced: the
divergence of the wind field and the total deviations of the
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Figure 2. A conceptual outline of the Sx sheltering process. Areas where a correction should be applied are first selected, as indicated in the
upper row. Only terrain elements with a positive TPI value are considered to be potential sheltering terrain elements. The smaller hill on the
left has no positive TPI values along its slopes, so it does not produce an area of reduced wind speeds in the lee. The hill on the right does
have a positive TPI value at its peak, so it is considered for sheltering. The Sx values in the lee side of the peak are examined and compared
to the threshold Sx value, Sxthresh, calculated in Eq. (6). Grid cells with Sx angles larger than this threshold angle experience a correction to
their U and V wind speeds, as detailed in the second row of the figure. We consider the maximum deflection of the lee-side vector to be a
rotation about the elevation gradient of the grid cell. This maximum correction is then applied to the initial vector with a correction factor,
Sxcorr, as calculated in Eq. (7). The resultant vector is thus a mixture between the initial vector and the maximum possible correction.

Figure 3. Comparison of vertical motion between ICAR and HICAR at 50 and 450 m resolutions for an arbitrary simulation time step. ICAR
is shown in the first row, HICAR in the second.

solution wind field from the initial wind field:

Div=
dρu
dx
+

dρv
dy
+

dρẇ
dż

, (15)

Diff= (ui− u)
2
+ (vi− v)

2
+α(wi−w)

2, (16)

where u and v refer to the eastward and northward wind
speeds, w refers to the vertical wind speed, and ẇ refers to
the contravariant, grid-relative wind speed. All of the xi vari-
ables indicate initial values. The distinction between w and
ẇ is necessary when the optimization is performed on a grid
with a vertical coordinate transformation such as sigma or
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SLEVE coordinates (Gal-Chen and Somerville, 1975; Schär
et al., 2002) and is further detailed in Ross et al. (1988). An
excellent overview of the math used to solve this optimiza-
tion problem and a discussion of various considerations is
given in Homicz (2002), and a general review is provided by
Ratto et al. (1994). Because an initial guess is required for
wi, HICAR allows the user to specify vertical motion as an
input variable. Otherwise, wi is taken to be 0 such that ver-
tical motion is minimized. In the above equations, the vari-
able α is used to control the relative weighting of changes
to horizontal or vertical motion. This allows the solution to
account for effects of atmospheric stability if one makes α a
function of atmospheric stability. For example, larger values
of α increase the weighting of changes to w from its initial
value relative to changes of u and v from their initial values.
This means that a better solution to the minimization would
be found by preferring changes to u and v over w when
eliminating divergence. The result of this is more deflection
around terrain and less vertical motion, which one would ex-
pect during stable atmospheric conditions. A demonstration
of the effects of different values of α is given in Fig. 4, show-
ing the wind field generated by the maximum (1.0) and min-
imum (0.1) values that α is allowed to take. For the stable
condition (α = 1.0) we see surface wind speeds approach-
ing 10 m s−1 over the ridge crest and blocking of flow up-
wind of the ridge. Correspondingly, vertical motion is around
±2 m s−1 over the ridge. For the unstable case (α = 0.1),
there is comparatively little deflection of the flow field up-
wind of the ridge and little speed-up over the ridge crest.
Vertical motion is significantly enhanced in the unstable case
versus the stable case. As such, α can be used to select dif-
ferent solutions to the optimization problem depending on
atmospheric stability.

In our implementation, the α variable is calculated at each
input time step and for each grid cell according to the atmo-
spheric stability at that location according to

α =

√
1− 0.5

√
1+ 4Fr4− 1

Fr4 (17)

Fr =
WS
L ·N

, (18)

where Fr is the Froude number, WS is the wind speed,
L is the scale length, and N is the Brunt–Väisälä fre-
quency (BVF). Equation (17) comes from Moussiopoulos
et al. (1988) and is straightforward, but the calculation of the
Froude number deserves further discussion. In order to cal-
culate α in 3D, the Froude number must also be calculated
in 3D. To do this, WS, L, and N are calculated for each grid
cell. The scale length, L, is the height difference between the
grid cell height and the largest downwind terrain element,
plus some constant to ensure a minimum value for L. L is
calculated for each grid cell and each wind direction at ini-
tialization so that it can be easily looked up at runtime. Some
search radius must be imposed when calculating L, which

we set to 4 km. The Brunt–Väisälä frequency is then calcu-
lated by considering the column of air above the grid cell for
which it is calculated. If there is a downwind obstacle, the
column of air extends from the current grid cell height up to
the altitude of the downwind obstacle. If there is no obstacle,
the BVF is calculated using a difference over the current grid
cell. The effect of these considerations is a Froude number
which describes the ease of lifting a parcel of air over a given
downwind obstacle. This approach of using a spatially and
temporally varying α differs from prior implementations of
the Sherman (1978) technique, where either α was set to 1.0
(Forthofer et al., 2014) or where α varied in time but not in
space (Moussiopoulos et al., 1988). Thus, our approach can
handle complex situations where flow blocking varies as a
function of height such that flow may be blocked at the foot
of a mountain but rise over the obstacle at higher altitudes.
The computational demands of this technique are relatively
small in comparison to other components of HICAR (advec-
tion, microphysics), since most of its calculations are per-
formed once at initialization, and the solutions of Eqs. (15)
and (16) are only performed when ingesting new input data
instead of at every physics time step.

2.3 Advection and physics parameterizations

The original ICAR model offers a first-order upwind advec-
tion scheme. Although this scheme is highly diffusive (Schär
et al., 2002), it has the advantage of low computational de-
mand, making it suitable for ICAR’s original development
purposes and target resolutions. For our application at higher
resolutions, and particularly with an interest in strongly het-
erogeneous precipitation patterns at the ridge scale, a less dif-
fusive advection scheme was required. The issue of numeri-
cal diffusivity in complex terrain has been well documented
(Westerhuis et al., 2021; Lundquist et al., 2012). Higher-
order advection stencils (odd-ordered up to fifth order) have
thus been implemented in the HICAR model. These schemes,
in combination with the SLEVE coordinate system (Schär
et al., 2002; Kruyt et al., 2022), reduce numerical diffusion in
HICAR simulations. To achieve larger physics time steps, a
pseudo-Runge–Kutta 3 (RK3) advection integration is added
to HICAR (Wicker and Skamarock, 2002). Lastly, the use
of RK3 time stepping required the addition of a monotonic
flux limiter for the standard advection scheme (Wang et al.,
2009).

Since the original publication of G16, numerous physics
parameterizations have been added to the model and will
be detailed in a future publication. It is of importance to
this paper that the Noah land surface model (LSM) (Ek
et al., 2003), Morrison microphysics scheme (Morrison et al.,
2009), RRTMG radiation scheme (Thompson et al., 2016),
and YSU PBL scheme (Hong et al., 2006) have all been
added to the model and will be used for the simulations
which follow in later sections.
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Figure 4. Demonstration of the two end-member solutions for HICAR’s wind solver under the two extreme stability conditions. The plan
view panels in the top row are centered on a ridge cutting horizontally across the figure. A vertical transect across this ridge is shown in (c)
and (d), with the location of the transect indicated in (a) and (b) by the dotted white line. Surface wind flow lines are overlaid on a topographic
base map in the upper panels, with flow line color corresponding to wind speed. The left column of the figure displays the maximum stable
condition, while the right column shows the maximum unstable condition.

2.4 Asynchronous I/O

As model efficiency increases, it is natural to push the model
to run for larger domains and larger time periods. Addition-
ally, as the simulation resolution increases, forcing data of a
higher resolution are needed. The cumulative effect of these
two points is that efficient, high-resolution models must out-
put and input large amounts of data (Prein et al., 2015). For
example, for the setup used in Sect. 4.2.1, 1 d of simula-
tion requires reading 11 GB of forcing data and outputting
14.5 GB of data, depending on output variables selected. To
avoid blocking I/O operations on the runtime loop and to fa-
cilitate a “many programs, one file” access pattern, an asyn-
chronous I/O strategy was adopted. This is shown in Fig. 1
via the blue elements on the left. Input and output are han-
dled by a few processes which are split from the simulation
processes at initialization. These I/O processes then coordi-
nate their file access through parallel NetCDF I/O, result-
ing in less demand on the file system and eliminating the
need for stitching together output files in post-processing.
These changes make the model faster by overlapping I/O
with physics processes and make it possible to directly use

simulation output to force one-way nested runs, as done in
Sect. 4.2.1.

3 Model setup and datasets

3.1 COSMO model

The Consortium for Small-scale Modeling (COSMO)
model is operationally run by the Swiss weather ser-
vice, MeteoSwiss, over a domain encompassing Switzer-
land (http://www.cosmo-model.org, last access: 25 April
2023). COSMO is a nonhydrostatic, compressible atmo-
spheric model capable of simulating the state of the atmo-
sphere over complex terrain such as the Swiss Alps. Pre-
dicted variables from COSMO such as temperature, humid-
ity, and wind speeds are made available by MeteoSwiss. Out-
put from the 1.1 and 2 km resolution COSMO simulations,
COSMO1 and COSMO2, respectively, are used in this study.
COSMO2 output is used to force the 1350 m WRF, ICAR,
and HICAR simulations discussed in Sect. 4.1 and 4.2.1,
while COSMO1 output is used to force the 250 m HICAR
simulation in Sect. 4.2.2 and 4.3, as well as the 450 m HICAR
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simulation in Sect. 4.4. The HICAR simulations are forced
with specific humidity, temperature, pressure, and the 3D
wind field (U , V ,W ) from the COSMO model. All COSMO
variables are bilinearly interpolated in 3D to the HICAR grid
using latitude, longitude, and vertical height. Then, specific
humidity and temperature are forced at the boundaries, while
pressure and winds are input for the full 3D grid, with the
winds being further modified using the downscaling scheme
described in Sect. 2.

3.2 WRF model

The Weather Research and Forecasting (WRF) model (Ska-
marock et al., 2008) is a nonhydrostatic and compressible
atmospheric model used widely in research and operational
forecasting (Benjamin et al., 2016). WRF has also been suc-
cessfully run at very high resolutions (50 m) over the com-
plex terrain of the Alps (Gerber et al., 2018, 2019; Goger
et al., 2022; Kruyt et al., 2022). For these reasons, we use
WRF in this study to demonstrate a “gold standard” for atmo-
spheric modeling in comparison to HICAR runs. All output
from the WRF model comes from prior simulations first pre-
sented in Gerber et al. (2018) and thus guided the choice of
spatiotemporal domain for some of the simulations presented
in Sect. 4. All WRF data presented are at a 50 m horizontal
resolution.

3.3 ICAR and HICAR setup

Simulations using the ICAR and HICAR models, introduced
in Sect. 2, are presented in Sect. 4. The HICAR simula-
tions utilize the YSU PBL scheme, Noah land surface model,
RRTMG radiation scheme, and Morrison two-moment mi-
crophysics scheme. The surface scheme implemented fol-
lows that detailed in Chen and Dudhia (2001). The Morri-
son microphysics scheme was chosen due to its demonstrated
efficacy in forecasting precipitation in complex terrain (Liu
et al., 2011) and use in the WRF simulations of Gerber et al.
(2018). Only the wind fields from the ICAR simulations are
analyzed, and because there is no physics–dynamics cou-
pling in either ICAR or HICAR, ICAR was not run with these
physics parameterizations enabled.

HICAR has been developed as a variant of the ICAR
model, as these models share a core code base. The HICAR
variant of ICAR can be turned on by passing “HICAR” to
the variant option of the namelist file. This switches on a
number of namelist options, ensuring that the configuration
is optimized for high-resolution runs in complex terrains.
Specifically, the namelist options which designate a run with
the HICAR model include terrain-following SLEVE coor-
dinates, a variational-calculus-based wind solver, and wind
modifications based on terrain descriptors.

3.4 Spatiotemporal domains

Section 4.1 and 4.2.1, as well as the figures presented in
Sect. 2, use the same 50 m domain introduced in Gerber et al.
(2018). It is roughly 10 km× 10 km, with the 50 m horizon-
tal resolution simulations covering a 24 h period over the day
of 5 March 2016. This domain covers the upper Dischma
Valley outside Davos, Switzerland. We adopt the terminol-
ogy “xx m simulation” to refer to the horizontal resolution
of a simulation. The 50 m HICAR and ICAR simulations for
this run are nested within 150, 450, and 1350 m simulations
of the same respective model, following the methodology of
Gerber et al. (2018) for their WRF runs. Importantly, ICAR–
HICAR allows the use of a coarser vertical grid than WRF
(Horak et al., 2021). As a result, the WRF simulations use
40, 40, 60, and 90 vertical levels for the 1350, 450, 150, and
50 m simulations, while ICAR–HICAR used only 20, 20, 60,
and 60.

Section 4.2.2 and 4.3 discuss results from a 250 m simula-
tion of HICAR covering most of the Swiss Alps from Lau-
sanne in the west to Val Müstair in the east for a roughly
280 km× 170 km domain. The simulation was run for the
month of January 2017.

Section 4.4 repeats a benchmarking setup from Kruyt et al.
(2022), running the HICAR model at a 50 m resolution for
5 d in March 2019 over a roughly 7.5 km× 7.5 km domain.
This 50 m domain is nested within a 450 m domain, follow-
ing the methodology of Kruyt et al. (2022).

High-resolution domain data for all simulations come
from Gerber and Lehning (2021), which provides ASTER
Global Digital Elevation Model V002 and Corine land use
data at a resolution of 1 arcsec (METI/NASA, 2009; Euro-
pean Environmental Agency, 2006). For the HICAR sim-
ulations, these terrain data were then upscaled to the de-
sired target resolution with no smoothing applied. In order
to run the WRF model at resolutions approaching 50 m, cer-
tain considerations must be applied to the model topography.
For the WRF simulations, to ensure model stability at rea-
sonably long time steps, the terrain for all high-resolution
simulations is smoothed using a 1–2–1 smoothing filter with
14 passes, and the terrain near the boundaries of the outer-
most domain is smoothed to match the COSMO topogra-
phy. Although this smoothing procedure is not required to
run ICAR and HICAR, the same smoothed terrain data as
the WRF simulation are used for one HICAR simulation pre-
sented in Sect. 4.2.1. This is done in order to enable a direct
comparison between WRF and HICAR for the same topogra-
phy. In a future publication, potential improvements of using
unsmoothed topography on wind speeds in HICAR will be
examined.

3.5 Gridded datasets

In Sect. 4.2.2, two gridded datasets for precipitation are used,
MeteoSwiss’s RhiresD product (MeteoCH, 2013) and the
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precipitation product produced by the SLF Operational Snow
Hydrology Service (OSHD) using an optimal interpolation
(OI) technique (Magnusson et al., 2014; Mott et al., 2023).
RhiresD is constructed by taking precipitation data from a
dense network of precipitation gauges distributed throughout
the Alps and then applying a climatological precipitation–
elevation gradient to extrapolate observations beyond gauges
using a version of the PRISM algorithm (Daly et al., 1994).
The OSHD precipitation product is obtained by first parti-
tioning RhiresD into solid and liquid precipitation and then
updating the snowfall fraction by assimilating snow station
data from 350 locations using optimal interpolation (Mag-
nusson et al., 2014). This allows for a higher station density
at higher elevations relative to RhiresD and minimizes un-
derestimates of precipitation during snowfall events due to
gauge undercatch. Of course, selecting for snow station sites
introduces other spatial biases in station representativeness
(Grünewald and Lehning, 2015). A full description of the OI
procedure used in the OSHD product can be found in Mott et
al. (2023).

4 Model demonstrations

4.1 Wind fields

In Sect. 2.2, the effects of the changes to the wind solver
were shown for comparison with ICAR (Fig. 3) and for a
demonstration of their ability to simulate atmospheric sta-
bility (Fig. 4). To discuss the wind solver of HICAR in the
context of existing atmospheric models, we present results
comparing HICAR to the WRF model. Figure 5 shows a
plan view of multiple model simulations at 50 m over com-
plex terrain in the upper Dischma Valley of Davos, Switzer-
land. As discussed in Sect. 2, the COSMO forcing data pro-
vided are expected to capture the effects of mountain waves
which the linear wind solver of ICAR is designed to cap-
ture, so this module of ICAR was turned off. As a result, the
ICAR simulation shown is composed of bilinearly interpo-
lated COSMO2 data. The surface flow field from ICAR is
quite homogenous as a result, with uniform southwesterly
flow over the domain and a narrow range of wind speeds
over the domain. This is in contrast to the WRF simula-
tion, which reports various modifications to the flow pat-
tern (blocking, cross-slope flow, terrain-induced speed-up),
as well as a larger range of wind speeds. This result is instruc-
tive in that ICAR alone is not suitable for high-resolution
simulations. WRF also reports higher wind speeds at ridge
crests than any of the HICAR simulations, but WRF has
been found to overestimate speed-up of winds over topogra-
phy (Gerber et al., 2018; Gómez-Navarro et al., 2015; Goger
et al., 2022; Umek et al., 2021).

For examining the effects of the wind solver detailed
above, we present two HICAR simulations: one with the em-
pirical adjustments based on terrain descriptors and one with-

out. The simulation without terrain descriptors uses a proce-
dure to diagnose its winds which is similar to that employed
by models like WindNinja (Forthofer et al., 2014) but with
the distinction of using a spatiotemporally varying value for
α (Eq. 17). This simulation already captures a wider range
of surface wind speeds than the base ICAR model and of-
fers some of the flow field deflection observed with the WRF
model. This is consistent with prior studies which have em-
ployed the technique from Sherman (1978). Once the terrain
descriptors are used, we see that certain features of the flow
field present in the WRF simulation also emerge in the full
HICAR run. Of note are the cross-slope flows and lee-side
reductions in wind speed. Due to the improved terrain repre-
sentation possible with the ICAR and HICAR models, these
flow features develop for secondary valleys not fully resolved
in the WRF topography. This demonstrates the added value
of this two-step approach to generating a diagnostic, mass-
conserving wind field.

The advantages of the terrain descriptors are shown in
Fig. 6 as well. This figure presents a vertical cross section
of modeled flow across the Sattelhorn ridge, which is in the
upper center of Fig. 5. The WRF model shows a large eddy
on the lee side of the ridge, with a long horizontal extent and
reduced wind speeds relative to the flow outside the lee. This
eddy also gives rise to up-slope flow at the surface of the lee
of the ridge. The HICAR run simulates a similar dynamic
structure. The eddy present in HICAR has a shorter hori-
zontal extent and is stronger, resulting in higher wind speeds
within the eddy and faster reverse flow at the surface of the
lee. Despite these differences in the properties of the eddy,
the ability of HICAR to predict the presence of such flow
features is a surprising result, since no prior applications of
the Sherman (1978) technique have reported such behavior.
We attribute this to our use of terrain descriptors, which pre-
dispose the solution of Sherman (1978) to generate an eddy
in the lee, all of which may be due to the sharper terrain rep-
resented by HICAR. It is easy to imagine how this approach
of preconditioning a wind field and then using a diagnostic,
mass-conserving solver could be used to parameterize other
dynamic effects and has previously been shown to yield rea-
sonable results when parameterizing thermally driven winds
(Forthofer, 2007). We also note that the calculation of the
terrain-descriptor-based corrections depends upon somewhat
arbitrary constants and could thus be adjusted to yield ed-
dies of varying horizontal extent. This tuning of the terrain-
descriptor-based adjustments will be done in a future study
using distributed observations of winds in complex terrain as
a basis for tuning and validation.

The differences in terrain representation between WRF
and ICAR–HICAR are also displayed in Figs. 5 and 6. WRF
and other models which prognostically solve for winds rely
on spatial gradients of pressure to calculate wind speeds. In
order to simplify the lower boundary condition, these models
also typically employ terrain-following coordinates where
model coordinate surfaces slope as the terrain does. This
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Table 1. Model configurations. For advection order, the number preceding H refers to the numeric order of the horizontal advection stencil
and the number preceding V to that of the vertical. n/a – not applicable

Resolution Wind solver Advection Terrain Microphysics PBL LSM
smoothing

Section 4.1, 4.2.1

WRF 50 m Navier–Stokes 5H , 3V Yes Morrison None (LES) Noah-MP
HICAR 50 m Variational solver

+ Sx and TPI
3H , 3V No Morrison YSU Noah-LSM

HICAR, No Sx+TPI 50 m Variational solver 3H , 3V No Morrison YSU Noah-LSM
HICAR, WRF-topo 50 m Variational solver

+ Sx and TPI
3H , 3V Yes Morrison YSU Noah-LSM

ICAR 50 m Interpolation 1H , 1V No n/a n/a n/a

Section 4.2.2, 4.3

HICAR 250 m Variational solver
+ Sx and TPI

3H , 3V No Morrison YSU Noah-LSM

Section 4.4

WRF 50 m Navier–Stokes 5H , 3V Yes Thompson–Eidhammer LES + (Shin and
Hong, 2015)

Noah-MP

HICAR 50 m Variational solver
+ Sx and TPI

3H , 3V No Morrison YSU Noah-LSM

ICAR 50 m Interpolation 1H , 1V Yes Thompson–Eidhammer (Hong and Pan,
1996)

Noah-LSM

means that high-resolution simulations will feature large co-
ordinate distortion, and pressure differences in the horizon-
tal may become quite large as one vertical cell surface ex-
ists at lower elevations than another. This may lead to large
pressure gradients which require very fine time steps to sta-
bly integrate. The model terrain is typically smoothed to al-
low for smaller grid distortions, smaller pressure gradients,
and thus larger time steps. Recent implementation of an im-
mersed boundary method in WRF allows this entire consid-
eration to be skipped, although such a domain discretization
comes with its own trade-offs (Lundquist et al., 2012).

The above discussion is valid for atmospheric models
which solve prognostic equations for momentum. Neither the
ICAR model nor the HICAR variant do this, opting for diag-
nostic solutions for the wind field instead. As a result, issues
of model stability arising from terrain steepness do not ex-
ist, and we can include model terrain without any artificial
smoothing or implicit numerical diffusion. This is apparent
in the elevation profile in Fig. 6 and, to a lesser extent, in the
DEM in Fig. 5. The difference in terrain used may lead to the
different lee-side dynamics when comparing the HICAR and
WRF simulations. This ability of ICAR and HICAR to rep-
resent the terrain without any artificial smoothing is a major
strength of both models. High-resolution atmospheric mod-
eling is assumed to yield more accurate forecasts, in part
through improved representation of the underlying terrain. If
HICAR can represent topography more accurately than WRF
at the same horizontal resolution and without explicit nu-
merical diffusion, it allows for model resolutions effectively
higher than WRF.

4.2 Precipitation distribution

4.2.1 Ridge scale

The above discussion of terrain representation also plays
an important role in precipitation distribution, as displayed
in Fig. 7. There are noticeable differences in the snowfall
transects of the two HICAR simulations, one using the un-
smoothed topography (HICAR) and the other using WRF’s
smoothed topography (HICAR, WRF-topo). This result sup-
ports the above point that HICAR’s improved terrain repre-
sentation leads to a higher effective model resolution, im-
pacting the simulation results. We also note a strong wet
bias over the domain for the WRF model, with precipitation
amounts nearly double what was recorded at a snow depth
station located in the domain (Fig. 7). This wet bias was at-
tributed to excessive orographically enhanced precipitation
in Gerber et al. (2018). The snowfall transects reveal ridge-
scale differences in precipitation for all model simulations,
with the windward (left) side of the ridge receiving approx-
imately 15 % more snowfall than the leeward (right) side in
the HICAR simulations. The WRF simulation shows a simi-
lar although more modest ridge-scale difference, with a pos-
itive snowfall anomaly (relative to the mean over the tran-
sect) beginning on the windward side and continuing until
just downwind of the ridge, followed by a steady decrease in
snowfall anomaly. The main difference between the HICAR
and WRF simulations is the magnitude of the windward and
leeward differences. This can be partly explained by the lee-
side dynamics simulated by both models. Taking the flow
profiles shown in Fig. 6 to be representative of the flow dif-
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Figure 5. Comparison of surface flow fields at a 50 m resolution between models and model setups for 5 March 2016 at 00:00 UTC+1. The
upper four panels show flow fields overlaid on model topography. Model topography is smoothed for the WRF run compared to the HICAR
and ICAR runs. Thickness of flow lines corresponds to wind speed, with thicker flow lines indicating higher wind speeds. The lower row of
panels displays the surface wind speeds of the various model runs. The sparser flow lines for the ICAR simulation are a plotting decision
to avoid redundancy and do not reflect a difference in the simulation setup. The orange arrow indicates the location of the Sattelhorn ridge,
which is shown in profile in Fig. 6.

ferences over the 24 h event, we note that HICAR has higher
wind speeds aloft on the lee side of the ridge due to the pres-
ence of the eddy. The peak in precipitation on the windward
side is likely due to blocking of the low-level flow and re-
duced wind speeds on this side of the peak (Fig. 6). We note
a positive anomaly in snow depth just downwind of the ridge,
which we attribute to the strong horizontal wind speeds aloft,
in line with previous studies of preferential deposition (Mott
et al., 2014; Wang and Huang, 2017). In fact, the HICAR
snow depth distributions show a similar windward and lee-
ward pattern to results obtained by Comola et al. (2019) us-
ing an LES model over ideal topography. This cumulative
effect of the flow field on snow depth can be realized intu-
itively by tracing the flow lines of Fig. 6 across the ridge and
imagining snow sedimentation given a constant sedimenta-
tion rate. The question of whether this flow pattern is accu-
rate for this particular event has not been demonstrated, but
given the proven accuracy of the HICAR advection scheme

(Wang et al., 2009), the resultant deposition pattern is cer-
tainly physically consistent with the given flow field. This
discussion demonstrates the research utility of HICAR: it can
be used to efficiently (Sect. 4.4) test different flow patterns at
the ridge scale and see how they affect particle–flow interac-
tions. A later validation of HICAR flow fields would deter-
mine how predictive the simulated deposition patterns are.

4.2.2 Range scale

Accurate high-resolution precipitation estimates in com-
plex terrain are a slippery target (Lundquist et al., 2019;
Bonekamp et al., 2018). Gauge-based gridded products are
subject to gauge undercatch and assumptions about the spa-
tial patterns used to interpolate them (Rasmussen et al., 2012;
Collados-Lara et al., 2018; Lundquist et al., 2010). Radar
products meanwhile suffer from occlusion when scanning in
complex terrain (Germann et al., 2022). As a result, high-
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Figure 6. Profile view of flow fields at a 50 m resolution between
models for 5 March 2016 at 02:00 UTC+1. Wind direction is in-
dicated by the flow lines, and line thickness corresponds to wind
speed, where thicker lines show higher wind speeds. Wind speed is
given by the background color. A profile of the underlying terrain
is shown in each panel, with the WRF simulation having smoother
terrain than the ICAR or HICAR simulations.

resolution comparisons of modeled versus observed precip-
itation in complex terrain deserve careful consideration to
offer any form of model validation. We spare any detailed
quantitative validation for a future study and instead offer
a comparison of different gridded precipitation products for
the sake of discussion.

Figure 8 shows accumulated precipitation for Jan-
uary 2017 from two gridded products and a 250 m HICAR
simulation. We first note that the majority of storms dur-
ing January 2017 came from the northwest, and our simula-
tion domain for HICAR extended slightly beyond the bound-
aries of the figure shown to just include the Swiss Plateau.
The HICAR simulation is forced with only water vapor from
COSMO1, so the microphysics require some time to “spin

up”, generating hydrometeors and thus precipitation. This
may explain some of the lower precipitation amounts along
the pre-Alps in the upper northwest of the figure relative to
both RhiresD and the OSHD precipitation product.

Overall, Fig. 8 shows remarkable agreement between
HICAR and the two gridded precipitation products for a
1-month winter period. The OSHD precipitation product
gives larger precipitation values at higher elevations than
RhiresD since it is generated by back-calculating precipi-
tation from snow water equivalent, avoiding gauge under-
catch during snowfall events (Magnusson et al., 2014). This
result suggests that the larger precipitation values obtained
from the HICAR simulation are possible. The inter-alpine
areas (center) of the domain, however, show less precipi-
tation in HICAR than either gridded product, especially in
the valleys. However, these differences between HICAR and
the other gridded products are comparable to differences ob-
served between the gridded products themselves. Lastly, we
note that the product using climatological averages for its in-
terpolation, RhiresD, returns a smoother field of precipita-
tion than either HICAR or the OSHD product. The OSHD
product yields stronger elevation gradients of precipitation,
which is likely due to its higher station density at higher el-
evations relative to RhiresD and its ability to capture unbi-
ased precipitation during snowfall events. This suggests that
the stronger gradients observed from HICAR are appropriate.
None of this discussion is to assert the accuracy of one prod-
uct over another, but is instead to demonstrate that HICAR’s
precipitation estimate is as consistent with existing precipi-
tation products as those products are with each other.

4.3 Cold air pooling

Figure 9 shows a cold air pooling event on the morning of
24 January 2017. We observe that, over the course of the
early morning hours, strong mesoscale winds recede from
over the valley, allowing a cool, stable boundary layer to
develop and for that cool air to migrate toward lower el-
evations. This surface layer is ultimately remixed as wind
speeds increase and surface cooling decreases around 09:00
local time. These results are somewhat surprising, as a pa-
rameterization of thermally driven flows is not yet included
in HICAR. Thus, the flow patterns shown are largely unaware
of the evolving thermal stratification of the valley. However,
the wind solver used in HICAR is designed to minimize
differences between its wind field and the wind field sup-
plied from the forcing data. The driving model, in this case
COSMO1, has been shown to simulate valley winds support-
ive of cold air pooling (Goger et al., 2018), so if the LSM
of HICAR simulates a cooling of the surface, cold air pool-
ing as shown in Fig. 9 is possible. This figure demonstrates
an important caveat of the HICAR model: its dependency
on physically consistent winds from forcing data. The sim-
ulation shown here was forced with COSMO1 data at the
boundaries, while the model runs in prior sections examin-
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Figure 7. Differences in snowfall over the upper Dischma Valley for a 24 h snowfall event on 5 March 2016. All terrain data displayed are
from the unsmoothed HICAR run. All values of snowfall are reported in centimeters, with the WRF and HICAR snowfall values converted
from mass to depth assuming a constant density of 100 kg m−3. Panel (a) shows a DEM of the area, with a dot in the valley indicating the
location of a snow depth sensor and an arrow indicating the location and direction (left–right) of the transect shown in the upper right panel.
This arrow points along the prevailing wind direction during the 24 h snowfall. Panel (b) shows snow depth transects across the Sattelhorn
ridge for three model simulations: WRF, HICAR, and HICAR run with the same smoothed topography as WRF. Mean snowfall is almost
twice as large in WRF as in HICAR, so snow depth is reported as a percentage of the mean snow depth along the transect in order to compare
the HICAR and WRF simulations on the same graph. Panels (c) and (d) show the spatial distribution of snow depth across the domain, with
the value recorded at the snow depth station over the 24 h period (20.3 cm) overlaid.

ing HICAR’s wind field were forced with COSMO2 data.
A test of HICAR’s sensitivity to the resolution of the driv-
ing model is needed but is beyond the scope of this study.
At present, only forcing data at resolutions where mountain
waves can be expected to be resolved have been used. Yet, as
noted in Sect. 2, regional forecasting offices are increasingly
providing model output at these resolutions.

4.4 Computational efficiency

The main reason why HICAR may be attractive as a model is
its computational efficiency relative to existing atmospheric
models such as WRF and COSMO. Aside from HICAR’s
improved representation of terrain, the model is not expected
to simulate physical phenomena better than more complex

models. Thus, understanding its computational demand is
central to establishing its utility. To quantify this demand,
we repeat a benchmarking setup described in Kruyt et al.
(2022). We run HICAR at a 50 m resolution over a roughly
7.5× 7.5 km domain for a 5 d period in March 2019, which
includes several winter storms. The model numerics and
physics setup is the same as those used for the above subsec-
tions for which results are shown. The results of the bench-
marking test are presented in Table 1, alongside the results
previously published in Kruyt et al. (2022). The main take-
away from this comparison is that HICAR uses 594 times
fewer computational resources than WRF for the same simu-
lation. Stated otherwise, a year of simulation over this do-
main with WRF would require a significant allotment of
computing time (∼ 350 000 node hours, assuming 36 cores
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Figure 8. Precipitation over the central and eastern Swiss Alps dur-
ing January 2017 at a 250 m resolution. All three plots of precipita-
tion have point data from the OSHD product overlaid as dots. Since
these mostly coincide with the same values for the OSHD product,
the dots are often indistinguishable from the background field in the
top panel.

per node). With HICAR, the same simulation represents a
fraction of a modest project allocation (∼ 590 node hours).

The more than 20-fold speed-up of HICAR relative to
ICAR is also somewhat surprising. This result is best ex-
plained by the switch from the GNU Fortran compiler to
the Cray compiler and aggressive optimization of the model
code outside of the physics parameterizations. Of these op-
timizations, one of the most effective at reducing runtimes
was moving to batched message passing between parallel
processes. Testing of Coarray Fortran, on which ICAR is
parallelized (Rasmussen et al., 2018), has revealed the Cray
compiler to have a faster implementation of this Fortran stan-
dard than GNU. Additionally, the high-performance com-
puting architecture used in this study is the Piz Daint com-
puter, featuring Cray XC40 compute nodes. The use of a na-

Table 2. Core hours per simulation day for benchmarking run.

WRF ICAR HICAR

Core hours 33 993 1336 57
Speed-up over WRF 1.0 25.4 594.3

tive compiler may contribute to speed-up as well. The WRF
runs here were performed with the Intel compiler and were
not rerun for this study with the Cray compiler due to con-
straints on computational resources. Prior studies using WRF
on the same computing architecture additionally recommend
the use of the Intel compiler (Gerber and Sharma, 2018).

5 Conclusions

In this paper we have introduced the high-resolution variant
of the ICAR model, HICAR. We detailed its primary modifi-
cations to adapt it for simulations over high-resolution com-
plex terrain. This consists primarily of a new approach to
solving for a 3D wind field which utilizes terrain descriptors,
TPI and Sx, to precondition the input wind field to approx-
imate some expected effects of the topography on the flow
field (Figure 2). These effects are parameterized simply and
rely on assumptions and somewhat arbitrary constants. The
model’s sensitivity to these constants will be further investi-
gated in a future study. After this correction step, the precon-
ditioned wind field is fed into an optimization routine, which
makes the resulting field mass-conserving while minimiz-
ing changes to the preconditioned field (Fig. 1). A novel ap-
proach to the diagnostic wind solver is adopted which allows
atmospheric stability to influence the solution as it varies in
time as well as space. This allows low-level flow blocking,
lee-side recirculation, and cross-slope flows to be simulated
by the model. These changes to the wind solver, in addition
to a new advection scheme and physics parameterizations,
enable the results demonstrated in Sect. 4.

We observe a marked improvement in the representa-
tion of wind fields in complex terrain over the base ICAR
model when comparing against the WRF atmospheric model
(Fig. 5). By avoiding the Navier–Stokes equations, HICAR is
also able to run stably over steeper terrain than WRF and may
thus resolve flow features induced by small-scale topography
which WRF cannot (Fig. 5). These improvements to the wind
field make HICAR capable of simulating heterogenous snow
deposition patterns in complex terrain, which show clear sig-
nals resulting from terrain–flow interactions (Figs. 6 and 7).
At larger scales, precipitation patterns in complex terrain are
represented to the same goodness as existing gridded pre-
cipitation products (Fig. 9). ICAR–HICAR also forgoes any
consideration of pressure gradients in its dynamics, allowing
it to be run without any smoothing of the underlying terrain.
Most importantly, all of these developments were done while
maintaining the orders-of-magnitude speed-up over WRF
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Figure 9. The development and diffusion of surface cooling for an alpine valley during dawn. The plot shows a small area of the 250 m Swiss
Alp domain introduced in Sect. 3.4. The local time is indicated on the y-axis label. Wind vectors are plotted for wind directions along the
transect. Thicker vectors indicate higher wind speeds, and winds below 0.2 m s−1 are not plotted.

which ICAR originally demonstrated. The result is a model
which is 594 times faster than WRF and can run at very high
resolutions (50 m), extending intermediate-complexity atmo-
spheric modeling into the resolutions typically used by land
surface modelers. HICAR’s ability to handle very steep ter-
rain, coupled with its computational speed, seems well suited
for modeling efforts over High-Mountain Asia, where testing
of various model configurations is already performed with
more computationally expensive models (Bonekamp et al.,
2018). HICAR’s computational efficiency also enables high-
resolution simulations over long timescales, supporting cli-

mate impact studies at the regional scale and seasonal studies
of coupled glacier–atmosphere or snow–atmosphere mod-
els at hectometer scales. This last point will be expanded
upon in future publications, where HICAR will be coupled
with an intermediate-complexity snow model to enable high-
resolution forecasting of winter snowpack and spring melt.
This will involve the addition of a thermal wind parame-
terization to improve surface flows over glaciers and snow
(Mott et al., 2020), with the goal of better resolving ad-
vective surface–atmosphere processes such as turbulent heat
exchange. As atmospheric models begin to regularly probe
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higher resolutions, HICAR enables rapid testing and iteration
of various model configurations with relatively little compu-
tational cost. This makes HICAR a powerful companion to
conventional atmospheric models.

Code and data availability. HICAR can be used for nonprofit pur-
poses under the GPLv3 license (http://www.gnu.org/licenses/gpl-3.
0.html, last access: 1 February 2023). Code for the model is avail-
able at https://github.com/HICAR-Model/HICAR (last access: 22
May 2023). The exact release (v1.1) used in this publication is avail-
able at https://doi.org/10.5281/zenodo.7920422 (Reynolds, 2023).
The model has dependencies for the NetCDF4-parallel Fortran and
PETSc libraries. Parallelization is achieved through Fortran Coar-
rays, which utilize different message-passing protocols depending
on the compiler used. For use with the GNU Fortran compiler,
OpenCoarrays is required.
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