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Abstract. This paper presents the automated plume detec-
tion and emission estimation algorithm (APE), developed
to detect CO plumes from isolated biomass burning events
and to quantify the corresponding CO emission rate. APE
uses the CO product of the Tropospheric Monitoring Instru-
ment (TROPOMI) on board the Copernicus Sentinel-5 Pre-
cursor (S5P) satellite, launched in 2017, and collocated ac-
tive fire data from the Visible Infrared Imaging Radiome-
ter Suite (VIIRS), the latter flying 3 min ahead of S5P. After
identifying appropriate fire events using VIIRS data, an au-
tomated plume detection algorithm based on traditional im-
age processing algorithms selects plumes for further data in-
terpretation. The approach is based on thresholds optimized
for data over the United States in September 2020. Subse-
quently, the CO emission rate is estimated using the cross-
sectional flux method, which requires horizontal wind fields
at the plume height. Three different plume heights were con-
sidered, and the ECMWF Reanalysis v5 (ERAS) data were
used to compute emissions. A varying plume height in the
downwind direction based on three-dimensional Lagrangian
simulation was considered appropriate. APE is verified for
observations over Australia and Siberia. For all fire sources
identified by VIIRS, only 16 % of the data corresponded to
clear-sky TROPOMI CO data with plume signature. Further-
more, the quality filters of APE resulted in emission estima-
tions for 26 % of the TROPOMI CO data with plume sig-
natures. Visual filtering of the APE’s output showed a true-
positive confidence level of 97.7 %. Finally, we provide an
estimate of the emission uncertainties. The greatest contribu-

tion of error comes from the uncertainty in Global Fire As-
similation System (GFAS) injection height that leads to emis-
sion errors < 100 %, followed by systematic errors in the
ERAS wind data. The assumption of constant emission dur-
ing plume formation and spatial under-sampling of CO col-
umn concentration by TROPOMI yields an error of < 20 %.
The randomized errors from the ensemble ERAS wind data
are found to be less than 20 % for 97 % of the cases.

1 Introduction

Carbon monoxide (CO) is an air pollutant and in high con-
centrations harms human health. It is an indirect greenhouse
gas as it alters atmospheric OH, thus leading to an increase
in the lifetime of methane (Spivakovsky et al., 2000). CO
is produced mainly by incomplete combustion, and Andreae
et al. (1988) and Watson et al. (1990) showed that biomass
burning is a significant source of atmospheric CO. Further-
more, Granier et al. (2011), Crippa et al. (2018), and Hoesly
et al. (2018) showed that there has been an increase in CO
emissions due to fossil fuel burning since 2000. CO emitted
by localized sources on the ground leads to a prominent foot-
print in the atmosphere due to its lifetime ranging from days
to several months (Holloway et al., 2000). These atmospheric
characteristics can be observed by satellites, which can pro-
vide essential information to improve our understanding of
the effect of CO on air quality and climate.
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The Tropospheric Monitoring Instrument (TROPOMI) on
board the Sentinel-5 Precursor (S5P) satellite, launched in
2017, monitors CO daily on a global scale (Borsdorff et al.,
2018) and with a high spatial resolution of 7 x 7km?, im-
proved to 5.5 x 7km? in August 2019. Due to the high spa-
tial resolution and daily coverage, CO emissions from cities
(Borsdorff et al., 2019a, 2020; Lama et al., 2020), forest fires
(Schneising et al., 2020; Li et al., 2020; Magro et al., 2021;
van der Velde et al., 2021), and industrial sources (Tian et al.,
2022) have been investigated and quantified. Rowe et al.
(2022) compared TROPOMI CO measurements with in situ
aircraft measurements for different biomass burning plumes
in 2018 and found differences of < 7.2 %, illustrating the po-
tential of TROPOMI CO measurements to quantify CO emis-
sions from these sources.

Most of the studies mentioned above estimated CO fluxes
on large regional scales (Schneising et al., 2020; Magro et al.,
2021; van der Velde et al., 2021) and mega-city scales (Bors-
dorff et al., 2019a, 2020; Lama et al., 2020). So far, the
single-point CO emissions estimated from the TROPOMI
CO data have received less attention. Tian et al. (2022)
showed CO emissions based on TROPOMI for single-point
industrial sources from India and China. They performed
a statistical study for 3 years, as the geo-location of the
industrial source is known. A similar analysis to quantify
emissions from single-point biomass burning (fires) using
TROPOMI CO data has not been shown in the literature.

Fire locations can be detected using the Visible Infrared
Imaging Radiometer Suite (VIIRS) 375 m thermal anoma-
lies/active fire product (Schroeder et al., 2014). The VIIRS
instrument is on board the joint NASA-NOAA Suomi Na-
tional Polar-orbiting Partnership (Suomi NPP) satellite and
flies in the same orbit as S5P, in loose formation with a tem-
poral separation of 3.5 min between them. This short time
difference allows us to collocate observations of TROPOMI
CO data and the VIIRS active fire product.

Different methods of estimating emissions are discussed in
the literature, namely inversion methods coupled with Gaus-
sian dispersion models (Krings et al., 2011; Nassar et al.,
2017; Lee et al., 2019), different chemical transport mod-
els (CTMs) (Brasseur and Jacob, 2017), cross-sectional flux
method (CFM) (White et al., 1976; Beirle et al., 2011; Cam-
baliza et al., 2014, 2015; Kuhlmann et al., 2020), and inte-
grated mass enhancement (IME) method (Frankenberg et al.,
2016). An inversion coupled with a Gaussian plume model
is used for flux inversions of an isolated single plume as-
suming steady and uniform wind conditions. This method
fits an analytically computed Gaussian plume to TROPOMI
CO column observations and can only be applied to observa-
tions under specific wind conditions (Varon et al., 2018). The
IME method relates the emissions and the integrated mass in
the observed plume, and Frankenberg et al. (2016) showed
that the relation is linear based on aircraft data for methane
plumes. However, no such relationship has been established
for CO measurements around fires. Hence, IME is not con-
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sidered for the present work. Inversion methods using CTMs,
such as the Weather Research and Forecasting model coupled
to Chemistry (WRF-Chem) (Grell et al., 2005) and GEOS-
Chem (Bey et al., 2001), can reduce uncertainties and thus
predict emissions more accurately. Although these methods
can be applied to complex emission events, the correspond-
ing simulations are complex, computationally expensive, and
difficult to automate, particularly for a large number of fires
with different geo-locations, which is the objective of this
study. The CFM is well suited to the present work, as it re-
quires less computational power and is easier to automate.
The CFM is based on the mass conservation of the pollutant
transport in the downwind direction of the plume. The emis-
sion is estimated from corresponding fluxes across differ-
ent planes perpendicular to the direction of the plume using
the wind velocity at the plume height. Brunner et al. (2019)
showed that the plume height depends on different aspects,
namely meteorology and emission height, and may not be ex-
plicitly available. Furthermore, the CFM breaks down when
diffusion is dominant, which is when the wind velocity is
<2ms~! (Varon et al., 2018).

The present work aims at developing an automated
scheme to detect single and spatially isolated emissions from
biomass burning events in TROPOMI observations and to es-
timate the corresponding CO emissions. For this purpose, we
employed and improved the CFM. First, VIIRS fire data and
satellite data were prepared for automated plume detection,
which is discussed in Sect. 2.1. The plume detection algo-
rithm from a single point source using VIIRS fire counts is
the subject of Sect. 2.2. Section 2.3 describes the emission
estimation using the CFM, where an appropriate choice of
the plume height and the wind fields is discussed. The results
of our study are discussed in Sect. 3, and finally, Sect. 4 con-
cludes our study and sets recommendations for future work.

2 Methodology

Figure 1 illustrates a high-level flow diagram of the auto-
mated plume detection and emission estimation algorithm
(APE), and the corresponding pseudo-code is given as Al-
gorithm B1 in Appendix B. APE is divided into three parts,
namely data preparation, automatic plume detection, and
emission estimation. The data preparation algorithm identi-
fies single-point fire sources from the VIIRS 375 m active
fire data product (Schroeder et al., 2014) and subsequently
selects and extracts TROPOMI CO data around every lo-
cated fire source. Thereafter, the plume detection algorithm
searches for a plume in the extracted CO data, and a detected
plume serves as an input for emission estimation. The emis-
sion estimation algorithm initially computes the background
CO, which is the usual observed CO concentration at that
location without any CO emissions from the fire. The back-
ground allows us to obtain the CO enhancement, which is
used by the CFM to estimate CO emissions. These three parts

https://doi.org/10.5194/gmd-16-4835-2023



M. Goudar et al.: TROPOMI CO

of the algorithm are discussed in detail in the following sec-
tions.

2.1 Data preparation
2.1.1 Selection of fire events

Fire events are inferred from the VIIRS 375 m active fire data
product (Schroeder et al., 2014), provided by the Fire Infor-
mation for Resource Management System (FIRMS). FIRMS
is operated by NASA’s Earth Science Data and Informa-
tion System (https://earthdata.nasa.gov/firms, last access: 5
February 2023). The data include various parameters such as
fire radiative power (FRP), temperature, and the time of mea-
surement defined in latitude—longitude coordinates. Each of
these coordinates corresponds to the centre of a 375 x 375 m?
ground pixel and is referred to in this paper as a fire count or a
VIIRS pixel. In most cases, a fire within a single VIIRS pixel
cannot create a CO signature spanning multiple TROPOMI
pixels due to the detection limit of the satellite. Only larger
fires with a cluster of VIIRS fire counts can lead to a de-
tectable CO plume in the TROPOMI observations. We used
the density-based spatial clustering of applications with noise
(DBSCAN) algorithm (Ester et al., 1996; Schubert et al.,
2017) from the scikit-learn library (Pedregosa et al., 2011)
to identify fire clusters. It separates areas that are densely
packed with fire counts from areas of low density and there-
fore has the ability to detect clusters of any shape. DBSCAN
takes two inputs: the first is the maximum search radius rmax
around a fire count, and the second is the minimum number
of fire counts within the area nmin. Fmax 1S set to 4 km which
is about half the size of the TROPOMI pixel. The minimum
number of fire counts has been empirically set to nyin = 10.
For further analysis, we converted each cluster into a sin-
gle point source using the fire radiative power (FRP) as the
weight of the individual fire counts. This single point source
will henceforth be referred to as a fire source and will be used
as input to the TROPOMI CO data preparation.

2.1.2 TROPOMI CO data preparation

For the VIIRS fire sources, the corresponding TROPOMI or-
bits (see Table B1 for the version of the L2 product) were
selected, and the orbit was corrected for stripes (see the fast
Fourier transformation algorithm of Borsdorff et al., 2019b).
Figure 2 shows an example of the collocated information
for a part of a TROPOMI orbit over Australia. Then, we
extracted a data granule of 41 x 41 TROPOMI CO pixels
centred on each fire source. The minimum granule size of
220km was chosen, as an air mass with an average velocity
of 5ms~! takes 6h to reach the edges of the granules from
the centre. After extraction, two data quality filters are ap-
plied.

— DP-1. The maximum TROPOMI CO pixel size due to
distortion in the swath direction is restricted to < 12 km
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to avoid large pixel size and its variation within the
granule.

— DP-2. For a data granule, 80 % of all CO data must meet
a data quality g, > 0.5 (Apituley et al., 2018), which
corresponds to clear-sky, clear-sky-like, and mid-level
cloud observations. Furthermore, we require 85 % of
the pixels in an area of 7 x 7 pixels centred on the fire
source to meet the above criterion. The more usable pix-
els around the source are, the better the plume can be
disentangled from the atmospheric background (see the
discussion in Sect. 2.3.1).

The threshold values are empirically determined for a ref-
erence dataset from September 2020 over the United States
and verified for two other datasets over Australia and Siberia
(see Table B1 in Appendix B for a detailed specification of
the datasets). Finally, the selected CO scene is passed on as
input to the plume detection algorithm.

2.2 Plume detection algorithm

The next step in APE is to identify the plumes within each se-
lected CO data granule. Kuhlmann et al. (2019) developed a
plume detection algorithm based on statistical methods, and
Finch et al. (2022) used machine learning to detect plumes.
In the present study, a machine learning approach is not con-
sidered mainly due to the unavailability of data containing
detected plumes and their sources for training. Instead, our
plume detection approach is based on traditional image pro-
cessing algorithms (van der Walt et al., 2014).

Using the extracted CO TROPOMI data, a plume is de-
tected by a region-based segmentation algorithm, where pix-
els with similar properties are clustered together to form a
homogeneous region. One of the most commonly used and
classic region-based segmentation algorithms is the “marker-
based watershed transform method” (Beare, 2006; Gao et al.,
2004). The CO column concentration metaphorically repre-
sents the altitude of a topographic map. Thus, the watershed
algorithm segments the regions into valleys and mountains
(CO enhancements) based on a given marker and a gradient
map. In the following paragraphs, we describe plume detec-
tion in more detail using an example.

The marker-based watershed algorithm in the scikit-image
package (van der Walt et al., 2014) takes two inputs to seg-
ment an image. One is the “gradient map” Igraq, which em-
phasizes changes in altitude and attenuates homogeneous re-
gions. The second input is a marker image I, that provides
the seed points for the algorithm, referenced by an integer la-
bel.

We start with the extracted CO TROPOMI granule of size
41 x 41 pixels I(i, j) with i, j =1,---,41. An example is
shown in Fig. 3a. First, the high-frequency components of the
CO image are reduced by a two-dimensional Gaussian filter
with a standard deviation of o = 0.5 pixels, chosen empiri-
cally. The smoothed image is called I. From this image, the
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Figure 1. High-level flow chart of the APE algorithm.
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Figure 2. The 49 detected fire sources represented by black “+” on
6 October 2019 overlapped with the TROPOMI Level-2 CO data for
orbit 10254. The dashed region represents a 41 x 41 pixel granule.

gradient map Igr,q is computed using a Sobel operator (Sobel
and Feldman, 2015; van der Walt et al., 2014), namely

IgradZ\/Gx'i‘Gya (D

with

1 0 -1
G, =2 0 =2 |xI

12 1
G,=[0 0 0 |+ (2
1 0 —1 |

-1 -2 -1

where * represents the convolution operator. Here, the gra-
dient Igrag emphasizes the edges of a plume, as shown in
Fig. 3b.

By default, the marker image (I, ) is initialized to zero,
and then two different seeds are defined. One seed indicates
regions without CO enhancements, and another refers to re-
gions with clear CO enhancements given by Inak (@, j) =1
and Iyark (i, j) = 2, respectively. The seeds are defined as fol-
lows.

1. The regions without CO enhancement. A pixel
Imark (i, j) does not have CO enhancement if it is be-
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low the median of Ig or below the mean of the 15 x 15
pixels centred at Is (i, j). The size of 15 x 15 pixels was
chosen to account for the background variability. Pixels
corresponding to no enhancement can be seen in Fig. 3¢
represented by the label “17, and the image is referred
to as a preliminary marker image.

2. The regions of CO enhancement. Using the preliminary
marker image with labels “0” and “1”, we identified all
connected pixels with the same marker value (hereafter
referred to as connected regions) using the “label” al-
gorithm (Fiorio and Gustedt, 1996) of the scikit-image
package (van der Walt et al., 2014). Each connected re-
gion is identified by a unique integer value per pixel (not
to be confused with the seed marker). Next, we zoomed
in on a 5 x 5 pixel area around the fire source and ex-
tracted all connected regions as potential plumes. Fur-
ther, the potential plumes were expanded by going to
15 x 15 pixels around the fire source using pixels with
the same label. Then, the labelled CO data in this area
were extracted, and a CO threshold was calculated as
their mean value. Lastly, all pixels within the 15 x 15
pixel area were marked with a label “2” if their CO
value was above this threshold. This yields the remain-
ing seed points which are defined in a 15 x 15 pixel area
around the fire source.

The above selection process is illustrated in Fig. 3c with the
different labels of the connected regions. The final marker
image is shown in Fig. 3d. Finally, the watershed algorithm
computes a segmented image for the entire domain using
the gradient map image Igaq and the marker image Iiark.
Figure 3e shows an example of a segmented image. Using
the gradient map, the watershed algorithm has decided that
the two areas of enhanced CO values are not connected and
therefore do not belong to the same plume. From the seg-
mented image, we extracted the correct plume, which should
originate from emissions at the source location. Therefore,
we consider only those labelled areas that overlap with the
centre 7 x 7 pixels. Figure 3f shows the detected plume. The
detected plume appears to be shorter in this case, but the tail
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Figure 3. Plume detection algorithm. An example showing different steps for a fire source on 6 October 2019 in Australia.

end of the plume, i.e. around < 143° E, will fail background
subtraction due to similar enhancements to the background.
This can also be seen in the gradient map, where no gradient
is detected at the top side of the plume.

Finally, the suitability of the extracted plume for further
processing is evaluated, and the length of the plume is cal-
culated. The plume is provided to the emission estimation
module if the following are met.

— PD-]. The plume length is > 25 km.

— PD-2. There are not more than nine non-clustered fire
counts or any other identified fire cluster within 0.05°
distance from or in the identified plume.

If the length of the plume is < 25km, then the detected
plume is flagged as a short plume and will be ignored for
further processing. The short plumes are difficult to quan-
tify in an automated way, as they can have different shapes,
which makes it difficult to identify the direction of the plume.
The second criterion (PD-2) removes all plumes with multi-
ple fire sources, as the aim of this paper is to quantify fires
with single sources.

2.3 Emission estimation

For detected plumes, emissions were estimated using the
cross-sectional flux method (CFM) (White et al., 1976;
Beirle et al., 2011; Cambaliza et al., 2014, 2015; Kuhlmann
et al., 2020). The CO emission E is defined as the mean flux
through n cross-sections perpendicular to the downwind di-
rection of the plume, namely
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where Q; (in kg s~1) is the CO flux through cross-section
i, 8Cé0 (in kgm~2) is the background-subtracted CO val-
ues along a cross-section i, and v’ (in ms™!) is the velocity
perpendicular to the cross-section i. Wind velocity v(z, s, tp)
at plume height z, cross-section position s, and observation
time 7o are obtained from the data of the European Centre
for Medium-Range Weather Forecasts Reanalysis v5 (ERAS)
(Hersbach et al., 2017). For error characterization, we define
the standard error (og) as

“4)

The cross-sections, hereafter referred to as transects, were
determined by calculating the plume direction in the down-
wind direction. The plume line results from a second-order
curve fit through the pixel centres of the detected plume (see,
for example, the solid black line in Fig. 4a). Next, the tran-
sects every 2.5 km perpendicular to the plume line were cal-
culated and are illustrated as dashed lines in Fig. 4a. The
transects are sampled at 2.5 km to reduce errors due to inter-
polation — discussed in the next paragraph. To compute Q;
in Eq. (3), each transect was sampled at distances of 500 m.
Points over transects are over-sampled to obtain a smoother
CO distribution, which further helps in the background sub-
traction discussed in Sect. 2.3.1.

Geosci. Model Dev., 16, 4835-4852, 2023
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Figure 4. Plume on 1 October 2019 at 03:52 UTC. (a) Plume and every second transact line drawn based on the detected plume separated
by 5km in the downwind direction. (b) The dotted black line corresponds to the CO column along a transect in (a), and the red line shows
re-centred and cut-off CO used for Gaussian fitting. The dash—dotted blue line corresponds to the Gaussian fit, and the orange line represents
the enhanced CO along the transect. (¢) > Cco along a transect against the distance from the source.

Along each transect, the CO column (C,,) is extracted by
linear interpolation of the original CO data and is illustrated
by a dotted black line in Fig. 4b. This CO column is further
used to calculate 6C., in Eq. (3). During the diagnostic tests
of our interpolation algorithm, an oscillation was observed in
the CO columns integrated along the transects as a function
of the downward distance from the fire source (see Fig. 4c).
The oscillation is due to the under-sampling of the CO distri-
bution by the TROPOMI instrument. The distance between
two minima is approximately equal to the TROPOMI pixel
size. This error propagated further into the CO enhancement
8C¢o, which was computed from the background subtraction
algorithm.

2.3.1 Background subtraction

To determine the atmospheric background of CO per tran-
sect, first we re-centre the C., such that the maximum is at
the origin to facilitate the Gaussian fit. The transect line is
truncated at the first minima of CO on either side of the ori-
gin, as illustrated by the red line in Fig. 4b. To determine the
background for each transect (red line), we assume that the
column CO along the transect can be expressed as

Ceo=Ho+ Hy-s+ AgG(s), )

where Hy and Hj represent the background and the slope of
change in the background over the transect, respectively. Ag
is the amplitude of the Gaussian distribution (G). We deter-
mined the background by fitting Eq. (5) through the CO data,
which is subsequently subtracted from the C., data to calcu-
late the CO enhancement as shown below:

8C¢o = max{0, Ceo — Ho+ Hj - s}. 6)

Here, the negative enhancements in the CO column are ig-
nored. The dashed blue and the orange lines in Fig. 4b repre-
sent Gaussian fit and §C,,, respectively.

2.3.2 Filtering during background subtraction

The background subtraction includes an important filtering
mechanism to remove overlapping plumes. This is done dur-
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ing the background subtraction after the transect line is trun-
cated. The filter criterion is as follows.

— EE-1. The difference between the minima on either side
of a truncated transect should be < 10 %. This ensures a
smooth background and the absence of any interference
with adjacent emission events.

2.3.3 Plume height

The plume height z; at a transect i is used to extract the ap-
propriate wind velocity v(z;, s, fp). For wildfires, Rémy et al.
(2017) showed that the Integrated Monitoring and Modelling
System for Wildland Fires (IS4FIRES) injection height, zi;,
from the Global Fire Assimilation System (GFAS) database
is in good agreement with the observations. Sofiev et al.
(2012) showed the IS4FIRES injection height deviated by
less than 500 m compared to the MISR Plume Height Project
(MPHP); therefore we consider 500 m as plume height un-
certainty. First, we assume that the height of the plume is zjp;
and is constant throughout the plume. This may be true for
stable meteorological conditions. The constant plume height
will be called z. and the uncertainty at this plume height is
given as zb = Zinj +500m and z" = zjsj — 500 m.

It should be noted that the injection height calculated in
the GFAS is for 24 h and may not be appropriate for a satel-
lite plume which is a snapshot at a measurement time #y. In
addition, the plume height may vary due to meteorology in
the downwind direction. Therefore, we alternatively simu-
lated particle trajectories starting at the fire site around the
injection height with a three-dimensional Lagrangian tracer
dispersion model. The local plume height z; is then estimated
by averaging the height of the tracers along the downwind di-
rection. This estimated plume height is z1,; and captures the
change in height in the downwind direction.

The Lagrangian simulations were performed using tracer
particles. The motion of tracers is simulated according to

dxp (1)
dr

= v(xp(1)), )

https://doi.org/10.5194/gmd-16-4835-2023
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where v(x)) represents the fluid velocity at the instantaneous
particle position x,. The explicit forward Euler scheme
(Butcher, 2003, p. 45) was used to integrate the equation in
time. The velocity on the right-hand side of Eq. (7) is calcu-
lated by tri-linear interpolation of the ERAS velocity fields.
The fire counts described in Sect. 2.1.1 are used as source lo-
cations for Lagrangian simulations. Three tracer particles are
released at zjpj and zjpj = 500 m at each source location. The
release at zjyj = 500 m is used for uncertainty analysis. The
end time of the simulations is the TROPOMI measurement
time fy ~ 13:30h local time (Veefkind et al., 2012), and the
simulation starts at #p — 6 h. The particles are released from
the source locations every 2 min. Figure 5a shows a simu-
lation of the tracer particles for one plume. The white band
indicates particles at the TROPOMI measurement time.

The contribution to fire emissions is low in the early morn-
ing, as shown in the ecosystem-specific diurnal cycles by Li
et al. (2019). Therefore, we ignore trajectory simulations be-
fore o — 6 h. Additionally, the process of heating due to fires
is not accounted for in our Lagrangian simulation as we as-
sume the ERAS velocity fields contain some aspect of heat-
ing, as ERAS assimilates skin surface temperatures.

In each transect, the heights of the tracer particles released
at zjpj were extracted, and the mean height, zj,g ;, was calcu-
lated. This is assumed to be constant along the transect. Fig-
ure 5b shows the height of the plume for different transects
from the fire source that was used to calculate the velocity, v,
in Eq. (3). The uncertainty in plume height is defined as zfag
and z{f;g and was calculated from tracer particles that were
released at heights zj,j + 500 and zj,; — 500 m, respectively,
which can be observed in Fig. 5b. Finally, the velocity, v,
was used to compute emissions.

2.3.4 Filtering during Lagrangian simulations

Related to the Lagrangian simulation, we apply three filters.

— EE-2. The injection height from the GFAS must be
available.

— EE-3. If the simulated trajectories are not aligned in the
direction of the plume, then the plume is rejected.

— EE-4. If the wind velocity at the TROPOMI mea-
surement time used to compute emissions is less than
2ms~!, then the plume is rejected.

Filter EE-2 may become relevant due to the false detection of
a plume, a false fire in the VIIRS active fire database, or the
missing data in the GFAS database. There are several poten-
tial origins for filter EE-3: the rotation, errors in ERAS5 veloc-
ities, the spatial and temporal resolution of velocity fields, or
inaccurate injection height. Finally, if the wind speed is be-
low the specified value in EE-4, diffusion dominates the pol-
lutant transport, and the CFM is not appropriate to estimate
the CO emissions.
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3 Algorithm application

The APE algorithm targets global performance and includes
several threshold values which need to be carefully deter-
mined for optimal performance. For the current version of
APE vl1.1, we decided to determine the thresholds using the
region that encapsulates the United States of America (US) in
September 2020. The algorithm is verified by applying it to
other regions that encompass Australia (AU) in October 2019
and Siberia (Sib) in June and July 2021 (see Table B1 for
more details). It is important to note that these regions are not
used to configure APE and can therefore be used to verify the
overall performance of the algorithm. The different periods
were chosen to focus on the regional burning season to maxi-
mize the number of fires observed. Table 1 shows the number
of cases evaluated by different APE modules. The columns
“fire clusters” and “CO data”, “plume detection”, and “emis-
sion estimation” show the results for data preparation (see
Sect. 2.1), plume detection (Sect. 2.2), and emission estima-
tion (Sect. 2.3), respectively. Furthermore, the details corre-
sponding to filtering can be found in Tables B2, B3, and B4
in Appendix B.

A total of 5562 fire sources (see Table 1) were identified
in the VIIRS active fire data product for all regions based
on the clustering method discussed in Sect. 2.1.1. For each
fire source, the TROPOMI CO data were filtered for maxi-
mum pixel size and quality (see Sect. 2.1.2). The TROPOMI
pixel size filter (DP-1) rejected 1533 cases out of 5562 cases
that mostly belonged to Australia and the United States. The
quality of TROPOMI CO data (DP-2) was found to be in-
sufficient for about 2553 cases in 5562 cases mainly due to
the presence of clouds. For the Siberian region in July 2021,
more than 50 % of all fire clusters are flagged as bad-quality
data for the same reason. Finally, the data preparation part
yielded a total of 1327 good CO data granules for all regions
for further processing.

The plume detection algorithm described in Sect. 2.2 iden-
tified a plume signature in 882 cases for all regions from
1327 good CO data cases available. A total of 445 cases were
found not to have enhancements (see Table B3), meaning
that the enhancement of CO from these fires was below the
detection limit of TROPOMI. In 882 cases, only 378 cases
were considered good, as the PD-1 filter flagged 309 identi-
fied plumes as short as their plume length was < 25 km. Fur-
thermore, the PD-2 filter identified a total of 195 cases where
other fire sources and clusters were present in the detected
plumes.

The emission estimation algorithm took 378 plumes as in-
put and calculated emissions using the CFM for a total of 226
cases. Therefore, a total of 152 plumes were rejected by the
EE-1, EE-2, EE-3, and EE-4 filters during emission estima-
tion (see Table B4 for details). The EE-1 filter removed 29
cases due to overlap with other plumes. The injection height
from the GFAS database was not available for 57 cases (EE-2
filter). In addition, the particle—plume alignment filter, EE-3,
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detected plume. Panel (b) shows the plume height computed for different transects from Lagrangian simulations. The constant plume height
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Table 1. Results for automated plume detection and emission estimation algorithm (APE v1.1) for 4 months in the US, Australia, and Siberia.

Regions Fire clusters CO data Plume  Emission Visual
detection  estimation inspection
UsS 1081 213 130 37 35
AU 2013 385 266 129 128
Sib June 416 130 83 35 34
Sib July 2052 599 94 25 24
All regions 5562 1327 378 226 221
removed a total of 51 cases. This can be attributed to poor are given as
plume detection, inaccurate velocities, or inaccurate injec- |
tion heights. Finally, the velocity filter, EE-4, rejected a total Tlag = — Z Zag.i» (8)
of 15 cases. mizo
As a final step, the 226 cases were verified by visual in- 8z = max{zag) — zc. )

spection. We can see a good performance of the algorithm,
as only 5 of the 226 cases were wrongly identified. Figure 6
shows three examples of bad cases. Thus, based on the above
analysis, we can conclude that 97.7 % of the cases produced
by the algorithm are good.

Overall, APE incorporates strict data filtering, which is
mainly driven by the TROPOMI detection limit and data
quality due to cloud coverage. However, this should not dis-
tract from the fact that TROPOMI is the first instrument that
shows these emission features in satellite data. Secondly, the
data yield is thinned out further by selecting data which are
appropriate for the current APE inversion scheme, which
are fire emission events by isolated single sources. Over-
all, we consider that there will be sufficient data yield for a
new TROPOMI CO data product when applied to more than
6 years of global observations.

3.1 Cross-sectional flux method (CFM)

The CFM computed emissions for 221 cases. To compare the
effect of plume heights, two variables were defined, namely
the mean plume height 7j,g, which is the mean of zj, of all
transects along the downwind direction of the plume, and the
maximum rise in plume height (8z) with respect to z.. They

Geosci. Model Dev., 16, 4835-4852, 2023

Figure 7a and ¢ show the mean plume height Zj,¢ plotted
against the constant plume height (z.) for the United States,
Australia, and the Siberian region. §z decreased and in-
creased in the downwind direction for about 43 and 178 fires,
respectively. Furthermore, §z in the downwind direction was
found to vary by > 500m for 30 fires in Australia and the
United States, as shown by the orange colour in Fig. 7a.
However, no such cases were found in Siberia (see Fig. 7¢).
Among these 30 fires, about 11 fires had §z > 1000 m. This
increase in plume height in the downwind direction can be
attributed to the rising warm air, which may be heated by
the fire. Furthermore, this heating can be related to total fire
radiative power (FRP) and fire counts, since they describe
the heat generated and the burnt area, respectively. However,
no such relation was observed, as there were cases with low
FRP or low fire counts, where §z > 1000 m and vice versa.
Additionally, it was challenging to find a suitable reason
for a large increase in plume height in the downwind direc-
tion. Obviously, this plume height variation can influence the
emissions due to the change in the velocity with height.

Figure 7b and d compare the emissions computed from
the Lagrangian plume height (E1,g) with the emissions com-
puted from the constant plume height (E.) represented in
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Figure 7. Plume height variation and emissions for regions encapsulating US and Australia (a, b) and Siberia (¢, d). (a, ¢) The mean plume
height (see Eq. 8) versus the constant plume height for each fire. The black colour represents §z < 500 m, and the orange colour indicates
8z > 500 m (b, d). Comparison between the emissions computed at plume height zj,¢ versus zc is represented by black colour and zjag versus

a constant plume height of 100 m by the blue colour.

black and the 100m plume height (Ejoo) represented in
blue. A combination of all cases in Fig. 7b and d shows
that E varied less than 10 % from Ej,, for a total of 198
cases. For Siberia fires, the corresponding variation is less
than 4 %. However, 23 cases in the United States and Aus-
tralia show differences of > 10%. Thus, the overall effect
of the Lagrangian plume height is considered minor. How-
ever, we could identify several cases where the emission es-
timate from Lagrangian plume height becomes more reliable.
For example, a US fire (black colour) in the bottom right of
Fig. 7b was found to have a high Ej,; = 809 kg s~! and low
E.=115.9kgs™!. The total fire radiative power (FRP) for
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this case was the highest among all detected plumes, and the
burnt area (number of fire counts in VIIRS data) was the third
highest among all detected cases. The CO enhancement was
also large, so a high emission estimate is expected. Further-
more, a high FRP is correlated with higher temperatures, so
an increase in plume height in the downwind direction is nor-
mal. It should be noted that the Lagrangian simulations do
not consider heating, but we assume that the meteorological
data (velocities) in ERAS cover this, as it assimilates the sur-
face temperatures. The increase in plume height is observed
in Lagrangian simulations, as 71, increases by 1350 m com-
pared to the constant plume height in the downwind direction

Geosci. Model Dev., 16, 4835-4852, 2023
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at 32.5 km from the fire source. From this, we can conclude
that E1,; may be more appropriate than E.. Similar reason-
ing can be used to explain why Ej,, was higher compared to
E., where the FRP on average was higher.

Figure 7b and d also compare emissions from Lagrangian
plume height to a constant 100 m plume height. We consid-
ered 100 m plume height as three-dimensional velocity fields,
which are required to compute the CO emissions based on
the plume heights z. and zje, amounting to a large quan-
tity of data. Furthermore, computing emissions by scaling
100 m winds (Hersbach et al., 2018) would simplify the ap-
proach to a large extent. However, we found no correlation
between the difference in the emissions (E19o— Elag or Ec)
and the variation in plume heights. Additionally, a total of 37
fires were found to have negative values for Eqgg due to a
negative velocity at 100 m. This makes it challenging to find
an appropriate scaling to obtain emissions at zj,g from the
velocities at 100 m, thus highlighting the importance of us-
ing three-dimensional velocity fields rather than near-surface
wind fields at a fixed altitude. From all these observations,
we conclude that the varying plume height is more reliable
to compute emissions by an automated algorithm.

3.2 Emission uncertainty

Sherwin et al. (2023) validated satellite CH4 data using con-
trolled emission releases of point sources of methane for de-
tection and quantification. For CO, such validation is not pos-
sible for single-point releases. Rowe et al. (2022) have shown
that the integrals of TROPOMI CO data along the plume
transects were =~ 7.2 % higher than the aircraft measurements
after corrections for a few fires in the US. However, they do
not report emissions. Thus, to the best of our knowledge, no
independent, high-quality estimate of CO point-source emis-
sion is currently available. Hence, to demonstrate the data
quality and enhance confidence in our data product, we in-
stead perform a detailed uncertainty analysis disentangling
(quasi-)random and systematic errors.

We estimate three different contributions to the uncertainty
of the estimated emission, where constant emissions over
time are assumed for each fire case. First, the relative vari-
ation in the CO fluxes through the different intersects Q;
is considered. Different error sources may cause this varia-
tion, and the corresponding error in the flux estimate can be
characterized by the standard error og in Eq. (4). Second,
errors due to random uncertainties in ERAS velocity fields
are addressed. Finally, systematic errors that affect the dif-
ferent fluxes, Q;, require a different approach. These errors
are TROPOMI CO column biases, ERAS velocity bias, and
injection height uncertainty. To complete our error classifica-
tion, we verify the emission uncertainty in the APE algorithm
using data from WRF simulations, where the wind velocities,
CO, and injection height are known.

Geosci. Model Dev., 16, 4835-4852, 2023
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four regions.

3.2.1 Standard errors

The standard error in the emission estimate encompasses var-
ious uncertainty sources, e.g. the interpolation error due to
the under-sampling of the CO field by TROPOMI (shown
in Fig. 4c), the precision of the TROPOMI CO data, the
uncertainty variation in defining the atmospheric CO back-
ground per intersect, and the temporal variation in the emis-
sion around its mean. og does not allow us to disentangle
these error sources, except for the TROPOMI CO precision,
which is specified for every TROPOMI observation. Overall,
the precision of the CO column is < 10% per pixel, even
for dark scenes over land (Landgraf et al., 2016). For the
flux estimate, this yields a negligible error contribution. To
compare the standard error for different fires, Table 2 reports
the maximum relative standard error for the four regions
using the Lagrangian plume height and the constant plume
height z.. The error for individual fires can be accessed in
the database (Goudar et al., 2023). The data show that the
maximum standard error for the Lagrangian plume height is
significantly smaller than for the constant plume height z. for
both the US and Australia. This is another indication to use
the Lagrangian plume height as a baseline for APE. For the
Siberian region, there is no difference between the two meth-
ods because the height of the plume does not vary much, as
depicted in Fig. 7c. In general, the standard error in the emis-
sion estimate is < 20 %.

3.2.2 ERAS uncertainties

ERAS5 ensemble data (Hersbach et al., 2017) are used to
quantify velocity uncertainties. The ensemble includes 10
members, and the variation between the members represents
random errors but not systematic errors (Hersbach et al.,
2020). Due to the small size of the ensemble, the data cannot
encapsulate all the random uncertainties. For every member
Jj of the ensemble, the Lagrangian plume height (Sect. 2.3.3)
is used to calculate the emissions (Elja ) for all plumes. Sub-
sequently, the relative standard deviation ovel/ Elag per emis-
sion source was computed, where o] represents the standard
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Table 2. Maximum values of standard error and emission uncertainties due to plume height for different regions among all fires.

Region  0R(zlag) %  0E(zc) % AEﬁlg % AEf % AEY%  AE" %
Us 15.11 35.51 71.28 82.27 246.93  163.54
AU 18.79 28.10 94.78 95.41 130.17  170.37
Sib June 18.21 18.13 17.34 14.95 17.37 8.84
Sib July 19.72 19.57 14.88 13.12 15.47 12.1
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deviation of the emissions of the 10 members of the ensem-
ble. Figure 8 shows the density histogram versus the relative
standard deviation for all regions. A total of 215 cases among
221 cases have a velocity uncertainty of less than 20 %. One
Australian case has an uncertainty > 70 %, which was due
to a single ensemble whose velocities were ~ 3 times higher
than the other nine ensembles. Although the ensembles do
not fully describe the random errors, we observe less than
20 % uncertainty in 97 % of the cases.

3.2.3 Systematic errors

One potential error that cannot be addressed with the stan-
dard error is an overall bias in the TROPOMI CO product.
Borsdorff et al. (2019b) reported a CO bias of 3.4 ppb for
the TROPOMI product compared to the Total Carbon Col-
umn Observing Network (TCCON). This corresponds to a
typical relative error < 1.7 % for a plume concentration of
about 200 ppb in a plume. Rowe et al. (2022) showed that
the integrals of TROPOMI CO data along the plume tran-
sects were ~ 7.2 % higher than the aircraft measurements af-
ter corrections for a few fires in the US. Assuming a worst-
case scenario, the constant bias of 7.2 % over the plume leads
to & 7.2 % higher emission estimation.

Another error in this category is the emission uncertainty
due to the uncertainty in the IS4FIRES injection height of
+500 m (Sofiev et al., 2012). For each fire, we calculate two
emission uncertainties,

p/m
AEP/™ — Elag — Fiag

) 10
lag Elag (10)

using plume heights zfag and zfgg (see Fig. 5b). Analogously,

the uncertainties AEY and AE" for E. are computed. The
uncertainties change from fire to fire and can be found in
the data (Goudar et al., 2023). Table 2 shows the value of
the largest uncertainty per region. For the Siberian region,
the maximum uncertainties are small, indicating little vertical
variation in the velocity. For the US and Australian regions,
the corresponding uncertainties are much larger, and the un-
certainties corresponding to the constant emission height are
a factor of 2-3 times higher than the Lagrangian plume
height uncertainties. This hints at a more variable wind field
for these regions. Overall, we estimate that this APE error
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term is the largest error contribution with an error < 100 %
for each fire.

Finally, we consider systematic errors in wind velocity that
are constant in the plume domain. The error propagates one-
to-one into the error of the flux estimate. Uncertainties of the
ERAS wind fields in the tropospheric boundary layer are not
reported. Gualtieri (2022) derived near-surface wind errors of
1.76 ms~! (root mean square error) for ERAS data. A typical
wind speed at the plume height is 3—11 ms~!, and although
at the plume height the wind speed error of 1.76 ms~! might
be smaller, we consider this error as a significant error contri-
bution. However, we refrain from quantifying this error due
to the lack of reliable knowledge.

3.2.4 Emission uncertainty in APE

We verify our uncertainty estimates by evaluating WRF sim-
ulations of a CO plume using APE. The WRF simulation was
performed using real atmospheric forcing at 1 km resolution
for a fire with the highest FRP (USA, 12 September 2020; see
Sect. 3.1). The details of the WRF simulation can be found
in Appendix A. Three plumes at three different UTC times
shown in Fig. 9a—c were selected, and emissions were esti-
mated by our algorithm. It should be noted that the averag-
ing kernels were not used to degrade to TROPOMI data, and
only the enhancements were simulated in the model; thus the
background is set to zero by the simulation. The plume height
(z1ag) was calculated as the maximum height where the con-
centration became zero, and the fire sources were the same as
the sources used in the WRF simulation. The velocity used
in both Lagrangian simulations and emission estimations was
inferred from the WREF velocity data. The emissions for these
plumes were estimated by APE assuming a constant emission
in time and are presented in Table 3. Here, the actual emis-
sion is the mean of the total known CO emissions from all
fire sources with time. The averaging interval is defined as
the time the particles take to reach the final transect. Addi-
tionally, we degraded the simulation grid to the TROPOMI
grid shown in Fig. 9e—g.

The uncertainties of the APE emission estimate range be-
tween —1.5% and 38.5 % (Table 3). In all three plumes, the
velocity and plume height used by APE are appropriate; how-
ever, the emissions computed by our algorithm differed from
the actual emissions. This is attributed to the error in the
cross-sectional flux method due to the assumption of constant
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Figure 9. Three selected plumes at three different UTC times (a, d) at 17:00, (b, e) at 18:00, and (c, f) at 19:00. Top panels (a—c) represent
plumes at 1 km grid resolution, and bottom panels (d—f) represent TROPOMI grid resolution.

Table 3. Comparison of actual emissions to the emissions computed at plume height zj,g for the three selected plumes shown in Fig. 9. The
uncertainty in the table is computed as 100 x (actual—computed)/actual.

Time in UTC  Actual (kg s_l)

1 km grid (kgs_l);

TROPOMI grid (kgs™1);

(h:min) uncertainty uncertainty
17:00 28.45 20.26; 28.8 % 20.67; 27.3 %
18:00 56.84 34.92; 38.5 % 34.52;37.5%
19:00 97.86 99.15;—1.5% 99.36; —1.53%

emissions, which might not be the case for a fire. It should
be noted that this uncertainty is for one particular case, and it
can vary depending on the case. For the three selected cases,
the CFM method leads to an error of 28.8 %, 38.5 %, and
1.5 %, which is in the range of the derived standard error.
The difference in emissions between high resolution (1 km
grid) and low resolution (TROPOMI grid) was found to be
less than 2 %. If the velocity is accurate, then it can be con-
cluded that having higher-resolution data does not have much
effect on the cross-sectional flux method. Overall, this anal-
ysis suggests that the assumption of a constant emission is
the major error source next to errors in the wind field and
uncertainties in the injection height.

4 Conclusions and recommendations

An automated plume detection and emission estimation
scheme for CO flux inversion for single-point fires was de-
veloped by integrating four freely available data sources: the
VIIRS active fire dataset, the TROPOMI CO dataset, the in-
jection height from GFAS, and ERAS meteorological data.
The automated plume detection and emission estimation al-
gorithm (APE vl1.1) was optimized for one region, and its
performance is verified for 3 months of data for two other
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regions, Australia and Siberia. For all regions and for all the
fire sources identified by VIIRS, 16 % (882 cases) of the data
correspond to clear-sky TROPOMI CO data with a plume
signature. Out of those 882 plumes, 309 plumes were too
short and about 195 had multiple sources of fire in them. In-
ternal quality filtering of APE reduced the number of esti-
mated fires to 226 cases, which is 26 % of the 882 cases. Fi-
nally, the visual filter on APE’s output of 226 cases showed
a true-positive confidence level of 97.7 % (221 cases). One
key element of automated APE detection of fire plumes in
the TROPOMI CO dataset is prior knowledge of potential
fire locations coming from the VIIRS active fire data product
from Suomi NPP. It highlights the potential to fly the Suomi
NPP and SP5 satellites in a loose formation with a temporal
separation of 3.5 min.

To estimate CO fire emissions, we employed the CFM.
Here, we considered three different assumptions on plume
heights: first a constant plume height at 100 m altitude, sec-
ond a constant plume height at the GFAS injection height,
and third a varying plume height using a Lagrangian model.
The varying plume height approach best reflects the char-
acteristics of fire. If a fire is at its peak, strong convection
leads to an upsurge of air, and at the same time, it is trans-
ported downwind from the fire source. Note that we assume
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that the ERAS velocity fields incorporate this heating effect
to some extent, as it assimilates the surface temperature ob-
served by satellites. In our simulations, the plume height var-
ied by more than 500 m in a downwind direction for 30 out of
221 cases, and all 30 cases were in the United States and Aus-
tralia. The variation in plume height was found to be minimal
in Siberia.

The assumption of plume height at 100 m led to unreli-
able emission estimates and was discarded. The difference
in emission estimation for the constant injection height of
the GFAS and the varying plume height was observed to be
less than 4 % for the Siberian region. We observed larger dif-
ferences for the US and Australia, where the maximum un-
certainty using the varying plume height is half that using a
constant plume height. Based on these findings, we decided
to use the Lagrangian model for plume height as the process-
ing baseline for APE.

Overall, we estimate the uncertainty of our product with a
standard error of < 20 %, which mainly accounts for errors
due to spatial under-sampling of the CO field by TROPOMI
and the assumption of constant emission for the time frame
relevant to plume formation. The TROPOMI CO data are of
high quality with respect to precision and bias. Based on TC-
CON, the TROPOMI CO data do not provide any signifi-
cant contribution to the emission estimate of APE. Addition-
ally, we analysed emission errors due to the uncertainty of
injection height from the GFAS. Depending on the meteoro-
logical situation in the different regions, errors are < 100 %.
The random error in the meteorological data (wind veloci-
ties) was described using the ERAS ensemble data and was
found to be less than 20 % for 97 % of the cases. Systematic
errors due to the wind for every fire case were also considered
important; however, they cannot be specified, as the ERAS
data product does not provide an estimate of systematic wind
errors.

Finally, the presented APE algorithm is appropriate for
estimating CO emissions from single isolated fires from
TROPOMI and VIIRS data using a fully automated algo-
rithm. It is considered a baseline for future APE upgrades to
optimize automated emission estimates of CO point sources.
As a next step, we consider (1) the processing of the entire
CO TROPOMI dataset; (2) expanding emission estimations
for multiple fire sources; (3) developing an improved inver-
sion scheme, which can be done by developing algorithms
that map the simulated tracer particles from Lagrangian sim-
ulations to the TROPOMI CO concentrations to compute
emissions; and (4) comparing the emissions predicted by
APE to available emission databases.
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Appendix A: The WRF model description

The WRF model configured in a two-domain configuration
is applied in the tracer mode to simulate the transport and
dispersion of CO emitted by a wildfire in the US. The outer
and inner domains are run at a horizontal grid spacing of
5x 5km? and 1 x 1km?, respectively. The model domains
are centred at 36.16225° N, 119.1528° E and have 43 ver-
tical levels that extend from the surface to a model top of
50hPa. The outer domain has 200 x 200 grid points, while
the inner domain has 400 x 350 grid points in the west—east
and north—south directions. The meteorological initial and
boundary conditions for the outer domain are based on the
Global Forecast System (GFS) forecasts available every 3h
at a horizontal grid spacing of 0.25° x 0.25°. The static ge-
ographical fields and the GFS output are mapped onto the
WRF domains using the WRF Preprocessing System (WPS).
The physical parameterizations follow Kumar et al. (2021),
except for the cumulus parameterization that is turned off in
the inner domain.

Biomass burning emissions are obtained from the NCAR
Fire Inventory (FINN; Wiedinmyer et al., 2011) version 2.5
and are distributed vertically online using a plume rise pa-
rameterization developed by Freitas et al. (2007). This pa-
rameterization selects fire properties appropriate for the land
use in every grid box containing fire emissions and simu-
lates the plume rise explicitly using the environmental con-
ditions simulated by WRE. Since we are using the model
in the tracer mode, the chemical evolution of the plume is
not simulated. To describe the loss of CO in the model,
we allow the CO fire emissions to decay with an e-folding
lifetime of 30d. No other source (anthropogenic emissions,
biogenic emissions, or photo-chemical production from hy-
drocarbons) is included in the simulation. The model run
started on 12 September 2020 at 12:00 UTC and stopped on
13 September 2020 at 00:00 UTC. We used a time step of 20 s
for the outer domain and 4 s for the inner domain. The model
output is saved every minute and used for further analysis.
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Appendix B: Algorithm and simulation details

Algorithm B1 APE algorithm: pseudo-code

Require: region and time
for region and time do
Find Fire sources from VIIRS data (Sect. 2.1.1)
for Each fire source do
Extract TROPOMI CO data granule (Sect. 2.1.2)
if Data is good then
Detect plume by plume detection algorithm (Sect. 2.2)

if Plume is detected then
Estimate emission (Sect. 2.3)
end if
end if
end for
end for

Table B1. Considered region and time. The region is rectangular and is constructed based on the origin and width and height. The origin is
always the south-western point of the region.

Label Regionorigin  Region size Time L2 product version ~ VIIRS, ERAS, and
(long, lat) (width, height) GFAS data access

us 140°W,20°N  80°, 45° Sep 2020 1.03.02 10 Oct 2020

AU 70°E, 53°S 55°,27° Oct 2019  1.03.02 10 Oct 2020

Sib 113°E,44°N  41°,34° Jun 2021  1.04.00 5 Feb 2023

Sib 113°E,44°N  41°,34° Jul 2021 2.02.00 5 Feb 2023

Table B2. Filtering from fire clusters to good CO data. The total column is the same as the fire clusters in Table 1.

Region Grid size  Quality  Multiple clusters Good data  Total
us 442 373 53 213 1081
AU 1020 512 87 385 2013
Sib June 37 249 130 416
Sib July 34 1419 599 2052
All regions 1533 2553 140 1327 5562

Table B3. Filtering from good data to plume detection in Table 1. The total should represent the good CO data available.

Region No enhancements ~ Short plumes  Other clusters  Detected plumes  Total
us 42 41 51 79 213
AU 57 62 94 172 385
Sib June 22 25 12 71 130
Sib July 324 181 38 56 599
All regions 445 309 195 378 1327

Geosci. Model Dev., 16, 4835-4852, 2023
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Table B4. Filtering from plume detection to emission estimation in Table 1. The total should represent the plume detection cases.

Region No injection ~ Background Plume Velocity Emission  Total
height  subtraction alignment <2ms™ I estimation

UsS 14 14 11 3 37 79

AU 20 4 13 6 129 172

Sib June 15 2 15 4 35 71

Sib July 8 9 12 2 25 56

All regions 57 29 51 15 226 378

Code availability. APE v1.1 code 1is archived on Zenodo
(https://doi.org/10.5281/zenodo.7740542, Goudar, 2022).

Data availability. The TROPOMI CO dataset of this study
is providled by ESA and is available for download at
https://sSphub.copernicus.eu/dhus/#/home (ESA, 2023). The
injection height from IS4FIRES generated by Copernicus
Atmosphere Monitoring Service Information was obtained
from https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/
cams-global-fire-emissions-gfas (Copernicus Atmosphere Moni-
toring Service Information, 2023). The three-dimensional velocities
at 127 model levels (https://doi.org/10.24381/cds.143582cf,
Hersbach et al., 2017) and hourly data on single levels
(https://doi.org/10.24381/cds.adbb2d47, Hersbach et al., 2018)
were obtained from the European Centre for Medium-Range
Weather Forecasts (ECMWF) Reanalysis vS5 (ERAS) on 5
February 2023. The Visible Infrared Imaging Radiometer
Suite 375m thermal anomalies/active fire product (standard
processing) generated by NASA FIRMS was also accessed
from https://earthdata.nasa.gov/firms (NASA FIRMS, 2023)
on 5 February 2023. The processed data are available at
https://doi.org/10.5281/zenodo.7738734 (Goudar et al., 2023).
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