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Abstract. Numerical weather prediction models rely on pa-
rameterizations for subgrid-scale processes, e.g., for cloud
microphysics, which are a well-known source of uncertainty
in weather forecasts. Via algorithmic differentiation, which
computes the sensitivities of prognostic variables to changes
in model parameters, these uncertainties can be quantified. In
this article, we present visual analytics solutions to analyze
interactively the sensitivities of a selected prognostic variable
to multiple model parameters along strongly ascending tra-
jectories, so-called warm conveyor belt (WCB) trajectories.
We propose a visual interface that enables us to (a) compare
the values of multiple sensitivities at a single time step on
multiple trajectories, (b) assess the spatiotemporal relation-
ships between sensitivities and the trajectories’ shapes and
locations, and (c) find similarities in the temporal develop-
ment of sensitivities along multiple trajectories. We demon-
strate how our approach enables atmospheric scientists to in-
teractively analyze the uncertainty in the microphysical pa-
rameterizations and along the trajectories with respect to the
selected prognostic variable. We apply our approach to the
analysis of WCB trajectories within extratropical Cyclone
Vladiana, which occurred between 22-25 September 2016
over the North Atlantic. Peaks of sensitivities that occur at
different times relative to a trajectory’s fastest ascent reveal
that trajectories with their fastest ascent in the north are more
susceptible to rain sedimentation from above than trajecto-
ries that ascend further south. In contrast, large sensitivi-
ties to cloud condensation nuclei (CCN) activation and cloud

droplet collision in the south indicate a local rain droplet for-
mation. These large sensitivities reveal considerable uncer-
tainty in the shape of clouds and subsequent rainfall. Sensi-
tivities to cloud droplets’ formation and subsequent conver-
sion to rain droplets are also more pronounced along con-
vective ascending trajectories than for slantwise ascents. The
slantwise ascending trajectories are characterized by periods
of slower ascent and even descent, during which the sensi-
tivities to the formation of cloud droplets and rain droplets
alternate. This alternating pattern leads to large-scale pre-
cipitation patterns, whereas convective ascending trajecto-
ries do not exhibit this pattern. Thus the primary source for
uncertainty in large-scale precipitation patterns stems from
slantwise ascents. The strong ascent of convective trajecto-
ries leads to large sensitivities of rain mass density to riming
and freezing parameters at high altitudes, which are barely
present in slantwise ascending trajectories. These sensitivi-
ties correspond to uncertainties concerning graupel and hail
formation in convective ascents.

1 Introduction

The warm conveyor belt (WCB) is a well-defined moist
airstream which originates in the lowermost levels of the at-
mosphere within an extratropical cyclone’s warm sector and
generally ascends poleward to the upper troposphere within
2d (Wernli, 1997; Madonna et al., 2014). WCBs play a
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critical role in cloud formation and precipitation in the ex-
tratropics (e.g., Madonna et al., 2014; Pfahl et al., 2014).
In data from numerical weather prediction (NWP) models,
WCBs are often detected and analyzed by means of tra-
jectories computed from the simulated time-dependent 3-D
wind fields (e.g., Wernli, 1997; Rautenhaus et al., 2015a).
Coherent ensembles of trajectories are then used to analyze
processes not directly discernible from the underlying wind
fields, including the origins of moist airflow and how precip-
itation patterns emerge from air mass ascent.

Surface precipitation rates in extratropical cyclones can
be significantly impacted by convective ascent embedded in
WCBs (QOertel et al., 2020, 2021; Jeyaratnam et al., 2020).
Moreover, the precipitation formation pathway and associ-
ated latent heating are sensitive to the cloud microphysical
processes implemented in the numerical model and may in
turn introduce uncertainties to WCB ascent (Joos and Forbes,
2016; Mazoyer et al., 2021). As the scale of cloud micro-
physical processes responsible for precipitation formation
is too small to be explicitly resolved in NWP models, pa-
rameterizations are used to calculate the integrated effects
on the resolved prognostic variables. These parameterization
schemes, however, are still associated with large uncertain-
ties that can influence the representation of atmospheric dy-
namics including air mass ascent and formation of precipita-
tion in NWP models (Leutbecher and Palmer, 2008; Ollinaho
et al., 2017; Pickl et al., 2022).

Thorough analysis of the impact of the parameterizations’
parameters on prognostic variables can clarify how, when
and where model representations of atmospheric processes
including air mass ascent and formation of precipitation are
particularly sensitive and can yield enhanced process under-
standing and eventually improved parameterizations. Such
an analysis has motivated our work. On the one hand, it re-
quires a methodology to efficiently compute the sensitivities,
on the other hand it requires an approach to locate sensi-
tive behavior in space and time and to place it in the con-
text of the simulated atmospheric processes. Regarding the
efficient computation of sensitivities, we follow up on recent
work by Hieronymus et al. (2022) using algorithmic differ-
entiation (AD), a method to compute derivatives of an imple-
mented model (Griewank and Walther, 2008). In this article,
we present a novel method for the visual analysis of sensi-
tive behavior in space and time. We propose an interactive
visualization workflow to facilitate

— automatic identification of relevant sensitivities
— simultaneous visualization of multiple sensitivities
— and linking of sensitivities to trajectories in 3-D space.

We note that while the visualization method we are present-
ing has been motivated by the analysis of sensitivities of
WCB trajectories, it can readily also be applied to further
analyses of trajectory data that require the simultaneous dis-
play and analysis of multiple variables.
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Visualization approaches for meteorological analysis have
been discussed widely in the literature. Comprehensive
overviews have been provided by Rautenhaus et al. (2018),
Afzal et al. (2019), and Yoshizumi et al. (2020). Our work-
flow builds upon and extends approaches to perform interac-
tive statistical data analysis (Love et al., 2005; Potter et al.,
2010; Orf et al., 2016; Meyer et al., 2021) and trajectory-
based visualization of multivariate data (Stoll et al., 2005;
Neuhauser et al., 2022; Russig et al., 2023; He et al., 2019;
Nguyen et al., 2019, 2021), and it touches on aspects of 3-D
feature-based visualization (Rautenhaus et al., 2015a; Kern
et al., 2018, 2019; Bader et al., 2019; Kappe et al., 2022;
Bosiger et al., 2022). While in the current work AD is used
to compute uncertainty information in the form of parame-
ter sensitivities, previous works in visualization have mostly
addressed simulation uncertainty in the form of given sim-
ulation ensembles (Sanyal et al., 2010; Wang et al., 2018;
Rautenhaus et al., 2018).

In this study, we discuss the use of the proposed work-
flow for the analysis of WCB trajectories associated with ex-
tratropical Cyclone Vladiana, which occurred between 22—
25 September 2016 over the North Atlantic (Schifler et al.,
2018). The following analysis questions motivated our work:

1. Do similar trends regarding selected sensitivities and
prognostic variables occur across a (sub-)group of se-
lected trajectories? (Q1)

2. Do different sensitivities and prognostic variables show
similar statistical characteristics across a selected trajec-
tory group? (Q2)

3. How do sensitivities depend on the time and location
along the trajectories, and how are they related to, e.g.,
precipitation and cloud formation? (Q3)

4. Do coherent sensitivity patterns emerge if trajectories
ascending at different times are considered relative to
their time of ascent? (Q4)

5. Do sensitivities differ with respect to different types of
trajectories (i.e., convective vs. slantwise)? (Q5)

While Q1 to Q3 enable improved process understanding,
Q4 and Q5 provide insight into the structure of WCB trajec-
tories and their associated sensitivities. Figure 1 provides a
typical visualization of our workflow, which combines stan-
dard and novel visualization techniques. For an impression
of the interactive aspects, we refer to Videos 1 and 2 in
the “Video supplement” (Neuhauser and Hieronymus, 2023),
which provide an overview of the implemented visualization
techniques (Video 1) and illustrate the analysis of the Vladi-
ana WCB trajectories (Video 2).

The article is structured as follows. We first introduce
the employed data and the method’s interactive work-
flow (Sect. 2), before the proposed visualization techniques
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Figure 1. Visual analysis of the sensitivity of a prognostic variable to selected model parameters (emphasized in red in curve plot overlay)
along warm conveyor belt trajectories in extratropical Cyclone Vladiana to assess uncertainties of parameterizations in numerical weather
prediction models. The trajectories are calculated from 20 September 2016 at 00:30 until 22 September 2016 at 08:00. Prognostic variable
(blue, rain mass density QR; kg m~3) and maximum simulation parameter sensitivity (red; kg m~3) are color coded along the trajectories
in view-aligned bands so that one-half of the seen trajectory tube is consumed by either color. Sensitivity is defined here as the predicted
change in QR if the corresponding model parameter is perturbed by 10 %. Multiple sensitivities at a selected time step are visualized via polar
charts that are mapped onto spheres in the 3-D view. The radius encodes the quantity at the time step. A consistent view-aligned mapping
of sensitivities to polar charts enables an effective comparison across the trajectories. A curve plot shows statistical summaries of prognostic
variables, sensitivities and model parameters to which sensitivities are computed. The black lines show the per time step mean value over
all trajectories, and the blue shade shows the standard deviation o. Surface precipitation (kg m~2) is shown on the ground in blue, and the
specific cloud liquid water content in the air (kg kg_l) at 860 hPa is shown in white using a horizontal cross section. The display of the

earth’s surface and shadows places trajectories in spatial context.

(Sect. 3) and their technical implementation (Sect. 4) are dis-
cussed in detail. In Sect. 5, the visualization techniques are
applied to WCB trajectories to illustrate the sensitivity of rain
mass density to various microphysical parameters. Section 6
concludes with a summary.

2 Data and method overview

The proposed workflow and methodology facilitate the inter-
active visual analysis of the effects of simulation model pa-
rameters on a selected target variable. In this study, we focus
on rain mass density along convective warm conveyor belt
trajectories, which are responsible for heavy rainfall on the
earth’s surface. The analysis hints at relationships between
the trajectories’ spatial locations and shapes, as well as the
occurrence of specific features in the sensitivities of the se-
lected variable to different model parameters.

https://doi.org/10.5194/gmd-16-4617-2023

2.1 Data

We consider WCB trajectories that are computed for ex-
tratropical Cyclone Vladiana, which developed from 22—
25 September 2016 in the North Atlantic during the North
Atlantic Waveguide and Downstream Impact Experiment
field campaign (Schifler et al., 2018). The trajectory data
of the case study shown here are taken from a simulation
described in detail by Oertel et al. (2020) with the NWP
model COSMO version 5.1 (Baldauf et al., 2011). In addi-
tion, an online trajectory scheme (Miltenberger et al., 2013)
was applied to calculate the positions and properties of the
trajectories from the resolved 3-D wind field at every model
time step, here 20s. The trajectories are calculated from
20 September 2016 at midnight until 24 September 2016
at 16:00 (all times are given in UTC). Different trajecto-
ries are started every 2 h until 22 September 2016 at 16:00.
The starting time for the trajectories from Sect. 5 covers the
same range. The other trajectories showcasing different vi-
sual analysis methods start on 20 September 2016 at 00:30
and are calculated until 22 September 2016 at 08:00.

Geosci. Model Dev., 16, 4617-4638, 2023
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In this work, sensitivity is defined as the linearly predicted
change in a prognostic variable if a model parameter is per-
turbed by 10% (Hieronymus et al., 2022). The prognostic
variable can be any of the NWP simulation outputs. In this
work, we focus on multiparameter sensitivities of rain mass
density (QR). The linear prediction is the gradient computed
via AD times 10 % of the model parameter value. AD can
be used to quantify the impact of multiple model parameters
on a prognostic variable at once. It exploits the fact that any
computer model after code compilation becomes a sequence
of differentiable elemental operations. By repeatedly apply-
ing the chain rule, the derivative for any code can be calcu-
lated automatically alongside the usual run of the code. AD
has been applied on a warm-rain microphysics scheme for
idealized trajectories (Baumgartner et al., 2019) and recently
on convective and slantwise WCB trajectories (Hieronymus
et al., 2022). The application of AD to a prognostic variable
along WCB trajectories results in one sensitivity value of this
variable for each model parameter and for each simulation
point along the trajectories. In an NWP model with multi-
ple processes and hundreds of parameters, AD also reveals
which processes are active. That is to say that if the sensi-
tivity to a parameter is above zero, then the simulation must
have involved the corresponding process.

AD has been applied to convective and slantwise tra-
jectories in Vladiana with the tool by Hieronymus et al.
(2022), which implements the Seifert and Beheng (2006)
two-moment cloud microphysics model. The tool includes
routines for the ice phase (Kércher et al., 2006; Phillips et al.,
2008) and is augmented with CoDiPack (Sagebaum et al.,
2019) to evaluate the Jacobian of the implemented model at
every time step in an efficient way. Overall, the sensitivities
of rain mass density with respect to 177 model parameters
have been computed via AD, of which the 40 most important
parameters are used in this work. For an overview over all
available parameters and prognostic variables, please refer to
Appendix C.

2.2 Method overview

Figure 2 shows an overview of the method’s workflow.
The input is a set of M convective WCB trajectories —
X ={Xi,i e M}, X; ={(t,xi(1)),t € {19, ...,tx—1}} — which
have been computed over a time interval of interest, as well
as a set of L attributes — A={A; j,ieM,jeL}, A;j=
{(t,a j(1)),t € {ty,...,tx—1}} — containing model parameter
sensitivities along these trajectories with respect to a se-
lected prognostic variable (Fig. 2b). Sensitivities are named
“d[...]”, which stands for 9QR/9[. .. ], where rain mass den-
sity (QR; kg m~3) is the selected target variable, and “[...]”
is the model parameter in question. “sensitivity_max” is the
per time maximum of all sensitivities.

As shown in Figs. 1 and 2e, we use an interactive mul-
tiparameter “curve plot” (2-D line plot) to enable the user
to analyze the time evolution of the maximum of any se-
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lected sensitivity (as well as the standard deviation (SD) of
this maximum) over all trajectories. Beyond this, sensitivities
can be sorted automatically with respect to their temporal de-
velopment by using the development of a selected sensitiv-
ity as reference. The user can then select a time period in
the curve plot of a sensitivity or prognostic variable and let
the system search for similar trends in the temporal develop-
ments of other sensitivities or prognostic variables. The curve
plot view enables an interactive comparative visualization of
the statistical similarities of local and global temporal trends
across the set of selected trajectories.

Curve plots alone, however, cannot reveal the relation-
ships between sensitivities and the trajectories’ locations
and shapes. Therefore, the curve plots are embedded into
the open-source meteorological 3-D visualization system
Met.3D (Rautenhaus et al., 2015b). Met.3D visualizes the
trajectories in their spatial context (i.e., the 3-D trajectory
view), including visualizations of additional data sources like
textured terrain fields and in particular 3-D atmospheric field
data. From its existing support to display a single parame-
ter along 3-D trajectories (Rautenhaus et al., 2015a), Met.3D
has been extended according to the specific visualization op-
tions required to support a comparative analysis as men-
tioned. Multiple sensitivities along a trajectory can now be
shown via stripe patterns with different colors (Neuhauser
etal., 2022) and by using additional geometric primitives like
enlarged disks (Sadlo et al., 2006).

The curve plot view is linked to the trajectory view in
that the user can move a vertical line along the time axis,
and instantly the points on each trajectory corresponding to
that time are highlighted by enlarged disks (sphere glyphs),
which encode multiple sensitivities simultaneously and en-
able a comparison of sensitivities across trajectories (see
Video 1, 2 min 46 s; Neuhauser and Hieronymus, 2023). Al-
ternatively to moving the time line in the curve plot, the user
can pick a sphere glyph and move it along the trajectory (see
Video 1, 3min 18 s; Neuhauser and Hieronymus, 2023). All
other glyphs are moved accordingly in time so that via ani-
mation the sensitivities on different trajectories can be com-
pared.

Striped bands become problematic when the bands are
fixed to a bending trajectory’s surface, where they appear
distorted and can cover differently sized regions in the view
plane (see Fig. 6a). Similarly, enlarged disks suffer from oc-
clusions under certain views, and disks may penetrate each
other when the trajectory exhibits strong bending. To address
these limitations, we use view-aligned bands (Russig et al.,
2023) that consistently segment the visible surface part into
equally sized and connected stripes. By further letting the
system automatically compute for each trajectory its unique
time of ascent and interpreting the current time relative to
these times, the trajectories’ sensitivities during the ascend
phases can be effectively compared.

As soon as more than two to three sensitivities are visual-
ized simultaneously, however, the single bands become too

https://doi.org/10.5194/gmd-16-4617-2023
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Figure 2. Workflow overview: Met.3D reads (a) 3-D trajectory data and (b) tables of model variables and sensitivities along the trajectories.
(¢) The visualization canvas of Met.3D, including the 3-D trajectory view that is linked to the curve plots’ summary view. (d) Focus view
options using sphere-based multiparameter visualization via polar area charts. (e) Statistical summaries of the temporal development of
variables and sensitivities, which can be ordered automatically regarding the similarity of their temporal development to a selected variable
or sensitivity. (f) Variables exhibiting a selected sequence of events can be determined automatically and shown first.

thin and can hardly be distinguished in the 3-D view. There-
fore, we restrict this by showing only the temporal evolution
of the target variable and the maximum sensitivity over all
parameters via colored bands and propose a view-aligned cir-
cular mapping for showing multiple sensitivities at a selected
time step simultaneously. Multiple sensitivities are encoded
via a polar area chart that has a fixed orientation in view
space and is mapped onto a sphere centered at a trajectory
point. The enlarged sphere acts both as a time step marker
and magnifying lens. Since polar charts on different trajecto-
ries are consistently oriented in view space, the sensitivities
can be compared effectively in a single view. The number
of subdivisions of the polar chart is given by the number of
sensitivities the user selects in the curve plot view.

3 Visualization techniques
The visual analysis workflow presented in this work builds

upon the curve plot view, the 3-D trajectory view and inter-
active linkage between these two views. Linkage enables us

https://doi.org/10.5194/gmd-16-4617-2023

to find relationships between locations with high sensitivities
along trajectories and the trajectories’ locations and shapes.

3.1 Multiparameter curve plot view

The curve plot view shows the single curve plots of the
prognostic variables and sensitivities vertically aligned (see
Fig. 3). The time axis is going to the right, and the vertical
axis represents the value domain. All values are initially nor-
malized to [0, 1]. The trajectories are traced with a time step
of At =20s, which is also the time delta between two data
points on the horizontal axis. When the number of time steps
exceeds the number of pixels reserved for showing the curve
plots, the algorithm “largest triangle three buckets” (LTTB)
(Steinarsson, 2013) is used to recursively downsample the
data. LTTB takes into account the perceptual importance of
points during the downsampling process by assessing the
area of triangles formed by points in neighboring buckets.
By generating the curve plots at multiple resolutions, the
user can zoom into interesting time intervals and analyze the
variables and sensitivities over these intervals in more detail.

Geosci. Model Dev., 16, 4617-4638, 2023
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Figure 3. Curve plots with trajectories aligned by time step (a, b, ¢) and time of ascent (d, e, f). Curve plots show the mean of prognostic
variables and the maximum of sensitivities over all trajectories. The SD to the mean and/or maximum is mapped by color. Top curve shows
target variable rain mass density (QR). (a, d) Curve plots in random order. (b, e) Curve plots are sorted regarding the similarity of their
time development relative to the target variable QV (water vapor mass density). (¢, f) Sorting regarding similarity to max QR. A pattern of
consecutive spikes has been selected in QR, and regions in which similar features have been determined are highlighted.

In this way, the performance penalty of drawing too many
points can be avoided, simultaneously ensuring that no fea-
tures are lost. In our tests, the frame time for rendering the
curve plot view was almost proportional to the number of
points rendered. Using LTTB makes the frame time indepen-
dent of the number of time steps of the underlying data, as
the number of buckets is based only on the width of the curve
plot view on the screen. In our tests, we have noticed an up to
25 x performance improvement with LTTB for our test data.

For the target variable and sensitivities, in each band the
maximum over all trajectories is shown via a curve. For all
other prognostic variables and model parameters the mean
over all trajectories is shown. Since the sensitivities are of-
ten close to zero, resulting in very small mean values, the
maximum values and corresponding SD can far more effec-
tively indicate the spread of the distributions and the overall
trend regarding their strengths. In particular, regions of po-
tential local instability are emphasized, and high sensitivities
are not missed. The background is colored according to the
SD with respect to the values represented by the curves; i.e.,
SD is mapped to a color ranging from white (low value) to
blue (high value). By utilizing mouse controls, the user can
scroll through the set of parameters and zoom into individ-
ual regions in the curve plot view. A moveable vertical line
indicates the currently selected time step.

Geosci. Model Dev., 16, 4617-4638, 2023

Since there are many parameters and not all can be shown
in one single view, the system proposes an automatic order-
ing to quickly identify sets of parameters with a similar sen-
sitivity development over time. Therefore, the user selects an
individual curve plot, and the system sorts all curve plots in
descending order regarding the similarity to the curve in this
plot. As a measure of similarity we use the absolute normal-
ized cross-correlation:

1 Z(Xl — ux)(Y; _My) (1)

NCC(X,Y)=—

N - 0Oy
Here, X; and Y; are two time series, and u, and uy and oy
and oy, are the corresponding means and SD. Note that due
to the division by the SD, NCC becomes independent of the
scale of the two time series.

We further considered CrossMatch (Toyoda and Sakurai,
2013) and the “edit distance on real sequence” (EDR) (Chen
et al., 2005) as alternatives for similarity sorting. However,
since the former does not support data normalization, and
the latter may suppress relevant sensitivities due to built-in
noise suppression, both turned out to be less effective in our
scenario.

Figure 3a and d and Figure 3b and e show, respectively, the
initial curve plots using a random ordering of variables and
the ordering with respect to the selected temporal distribu-
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Figure 4. Test sequences sorted by their similarity to “standard” us-
ing the absolute NCC. The NCC can deal with scaling and shifting
in the data axis but not with shifting in the time axis. We address
this limitation by aligning curves relative to the time of ascent of
the corresponding WCB trajectories.

tion of the variable QV (water vapor mass density). Figure 3¢
and f show the ordering with respect to QR. As can be seen,
a number of sensitivities behave very similarly to QR and,
in particular, show a significant change at the point in time
where QR changes significantly. Note here that by using the
absolute value of the NCC, it is ensured that parameters with
high negative correlation are shown before those with low
absolute correlation.

A limitation of NCC is that time series which show a sim-
ilar but time-shifted behavior are found to be dissimilar (see
Fig. 4). Even though this can be avoided by computing NCC
for successively delayed versions of the original series and
finding the peak in the sequence of similarities, we provide a
different alternative that takes into account that it is in partic-
ular the ascent phase of a trajectory which is of interest. We
define the start of the ascent of a trajectory as the start of the
most rapid ascent within a 2 h window. This is calculated by
using a sliding window of 2 h and calculating the total ascent
within this time window. Finally, the trajectories are shifted
in time so that they all start their ascent at the same time, and
the shifted versions are then sorted via NCC.

To facilitate an improved comparative analysis of the sen-
sitivities along multiple trajectories, it is furthermore impor-
tant to find similar reoccurring subsequences in these data.
In particular, since trajectories are seeded at different lo-
cations and times, they can first travel close to the surface
over different time intervals, before similar upstream paths
are observed along which specific sensitivity patterns occur.
To determine similar patterns, the user can select a time in-
terval using the mouse, and automatically the subsequence
of sensitivity values within this interval is searched in the
same and all other curves via the subsequence matching
algorithm SPRING (Sakurai et al., 2007). SPRING selects
all subsequences with a dynamic time warping (DTW) dis-
tance less than a user-controlled threshold by warping one
sequence so that it best matches another sequence (see Fig. 5
for a schematic illustration). The DTW distance is the sum of
the per-element distances of two such optimally aligned se-
quences. When searching for all subsequences in a sequence
of length n with respect to a query sequence of length m with
a DTW distance less than a user-specified threshold, a naive
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Figure 5. Subsequence matching in the curve plot view using
SPRING. SPRING, due to dynamic time warping, can pick up pat-
terns that are shifted and scaled in the time axis.

algorithm has a time complexity of O (n’m). Due to its time
complexity of O(nm), SPRING enables an interactive use
even for long sequences.

As SPRING is based on dynamic time warping, the
timescale of subsequences may be both stretched or com-
pressed. As can be seen in Fig. 3c and f, this enables us
to select, e.g., all falling edges in the temporal develop-
ments, independently of their duration. The subsequences
found are underlined by red background color. Compared
to NSPRING (Gong et al., 2014), an extension of SPRING
that adds support for data normalization, in all of our exper-
iments SPRING gave the most plausible results in line with
our perception of similarity (i.e., that the similarity of two
sub-sequences is also dependent on their scale).

The number of sensitivities that can be read by the system
is not limited, yet beyond a certain number the correspond-
ing curve plots cannot be shown simultaneously and the user
needs to scroll through them. Especially in this case the func-
tionality to quickly identify interesting sensitivities through
similarity sorting and subsequence matching is beneficial.
An alternative to using scroll bars is using table lenses (Rao
and Card, 1994), which reduce the height of data rows not
currently in focus. This visual representation is, however, not
well-suited to the curve plots used in the paper, as the vertical
height of the individual rows is used to encode the magnitude
of the data points, which cannot be reduced arbitrarily.

3.2 Trajectory view

In the trajectory view, the trajectories are shown in their
geospatial context using Met.3D (see Fig. 2). Each trajectory
is rendered as a colored and illuminated tube with black out-
lines to let it stand out against the background. By default, the
target variable and the maximum sensitivity are encoded by
two different colors, and they are shown on the tube via two
bands running along the direction of the trajectory’s tangent
(see Fig. 6a, b for an illustration).

However, when defining these bands in object space (i.e.,
the assignment of points on the tube surface to either band is
fixed; see Fig. 6a), parts of a band can disappear and become
visible on the opposite surface part when rotating around the
trajectory or when the tube twists. This makes it difficult to
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Figure 6. Target variable (bluish color map) and maximum sensitivity (reddish color map) are mapped to the trajectory surface via (a) object
space bands and (b) view-aligned color bands. (¢) When multiple variables are mapped to view-aligned bands running across an enlarged
focus sphere, the band’s distortions and alignment with the trajectory’s tangent prohibit an effective visual analysis and comparison between
different trajectories. (d) The use of consistent view-aligned polar color charts improves readability of multiple variables and enables an
effective comparison between different trajectories. While in (d) values are encoded by saturation, in (e) a polar chart using the radius instead

of the saturation for encoding the individual values is used.

match a band with its corresponding quantity, and it is es-
pecially critical when multiple trajectories are shown and
need to be compared regarding the data that are shown in
the bands. To avoid this problem, we have developed a ren-
dering technique that renders the bands so that each band
covers always one-half of the visible tube surface regardless
of the current view and the tube’s orientation (see Fig. 6b).
This rendering is used in all trajectory views throughout this
work.

While in principle it is possible to show more than two
bands on each trajectory, quickly with increasing view-
distance the bands cannot be distinguished anymore. To cir-
cumvent this restriction, we propose a focus view that uti-
lizes a locally enlarged surface to provide more space for the
variables shown. On each trajectory, a sphere with adjustable
radius is rendered at the currently selected time. The sphere
acts both as a time marker and a magnifying lens enabling
the display of more variables at once. By showing one focus
sphere on each trajectory at the selected time, occlusions that
are introduced when increasing the radii of the trajectories
everywhere can be minimized.

The magnifying lens can in principle be realized by cen-
tering a sphere at a selected point on a trajectory and letting
multiple bands run across it (see Fig. 6¢). When crossing over
the sphere, the bands become wider so that the different col-
ors can be better perceived and distinguished. As for bands
on a tube, bands on a sphere can be made view-aligned; i.e.,
while they are oriented according to the trajectory tangent,
they cover equal area on the visible sphere surface. Even
though this mapping results in a fairly smooth appearance,
the following drawbacks can be perceived. Firstly, an ad-
ditional yet unwanted shape cue is introduced because the
bands deform differently on the sphere surface. Secondly,
due to the shading of the sphere surface, the bands’ colors
become brighter and darker depending on where the bands
cross over the surface. Thus, the relationships between col-
ors and values are disturbed. Thirdly, and most importantly,
even when a variable shown on two different trajectories has
the same value, the band patterns can look vastly different if
the trajectories have different orientations in 3-D space. This
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makes a visual comparison of the variables between different
trajectories difficult. Due to these reasons, we refrain from
using this visual mapping.

3.3 Polar charts

In the following we propose an alternative mapping that does
not use bands and avoids an alignment with the trajectory.
The mapping builds upon a polar-chart-based subdivision of
the sphere; i.e., the visible surface part is split into equal an-
gle sectors. Each sector can be given either equal area and a
color that is saturated according to a given value (see Fig. 6d)
or a constant color and a modified radius to indicate the value
(see Fig. 6e). In either case, the user selects the variables to be
shown, and the polar chart is automatically subdivided into
an equal number of sectors. The polar charts are aligned with
the up axis of the camera system to make them view-aligned
(see Sect. 4). This enables a more efficient and effective com-
parison of charts on multiple trajectories.

For coloring N sectors, N best distinguishable col-
ors are chosen from the Brewer color map (Harrower
and Brewer, 2003). By default, we offer users the eight-
class “setl” (https://colorbrewer2.org/#type=qualitative&
scheme=Set1&n=8, last access: 9 August 2023) qualitative
color map plus turquoise. When values are mapped to sat-
uration, the value range is mapped from 20 % saturation to
full saturation. This prevents adjacent sectors with low val-
ues from fading out to almost indistinguishable colors. Since
each sector of a polar chart is equally affected by shading, the
use of shading is less problematic than for bands. Further-
more, each view-aligned chart has a consistent orientation.

The mapping using color saturation gives maximum space
to each variable in a chart. On the other hand, an accurate
visual reconstruction of values based on saturation can be
difficult and, in particular, makes the comparison of values
in the same sector but in charts on different trajectories less
effective. According to Munzner (2014) and based on exper-
iments from psychophysics (Stevens, 1975), visual channels
like length or area rank higher regarding the accuracy than
color saturation. Based on these findings, we alternatively

https://doi.org/10.5194/gmd-16-4617-2023


https://colorbrewer2.org/#type=qualitative&scheme=Set1&n=8
https://colorbrewer2.org/#type=qualitative&scheme=Set1&n=8

C. Neuhauser et al.: Visual analysis of model parameter sensitivities along WCB trajectories

use constant colors per sector but select the radius of the sec-
tor from the center depending on the magnitude of the as-
sociated value. We choose a greyish chart background color
which is not used by any sector and furthermore draw thin
contour lines around each sector. As can be seen in Fig. 6, the
area encoding of variables can be perceived more effectively
than the saturation encoding, yet when charts are more dis-
tant from the viewer, some sectors might become too small
and cannot be perceived. Due to this reason, we provide po-
lar charts with radius variation as the default visualization
mapping and allow the user to manually switch to saturation
encoding.

3.4 Predicate-based filtering

As described above, color mapping is used along the trajecto-
ries to encode individual sensitivities. By using saturation to
encode the strength of a sensitivity, the user can quickly lo-
cate regions along the trajectories where two selected sensi-
tivities are high. When two sensitivities are shown, however,
it is difficult to efficiently spot regions where, for instance,
two sensitivities are simultaneously high or one of them is
high while another one is low. This requires a search task
with explicit attention to the variation in colors in the bands
along the trajectory. To support the user in such tasks, pred-
icates regarding the values of sensitivities can be specified
and used to filter out regions along the trajectories where the
values do not satisfy these predicates. In particular, the user
can specify value ranges for both sensitivities shown, and the
system automatically desaturates all locations where the val-
ues are not within the selected ranges. In Fig. 7, interval-
based filtering is demonstrated. It can be seen that locations
where the predicates are fulfilled stand out from those loca-
tions where desaturation has been applied, enabling an effi-
cient and effective location of selected value intervals.

To further aid users in reading individual values from the
trajectories and polar charts, a mouse hover is supported to
inspect the values of the quantities below the mouse cur-
sor. The use of this mouse hover is demonstrated in Video 1
(4min 56 s; Neuhauser and Hieronymus, 2023). In order to
avoid clutter and visual overload due to a high number of
trajectories displayed simultaneously, we support deselect-
ing individual trajectories with the mouse. These trajectories
are then desaturated in the 3-D view. Also, it is left up to the
users to optionally use discrete, quantized color maps instead
of the continuous color maps used in the figures of this work.

4 Implementation

All techniques presented in this paper have been integrated
into Met.3D, which uses the OpenGL application program-
ming interface (API) for GPU-based rendering. For draw-
ing the curve plot view, the vector graphics library NanoVG
(https://github.com/memononen/nanovg, last access: 9 Au-
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gust 2023) is embedded. It provides hardware-accelerated
rendering of vector graphics elements like anti-aliased lines
and polygons, as well as the specification of scissor geome-
try, to restrict rendering to a rectangular screen region. This
is necessary for providing a scroll bar for the content of the
curve plot view.

Met.3D offers functionality to render 3-D trajectories us-
ing illuminated polygonal tubes, including a base map show-
ing the earth’s surface and shadows cast by the trajectories.
However, the specific rendering options required by our ap-
proach, i.e., showing view-aligned bands on trajectories and
spheres, as well as view-aligned polar charts on spheres, are
not available. Notably, these options cannot be realized using
object-space texture mapping or standard pixel shaders due
to the requirement to keep the color patterns fixed in screen
space.

A detailed description of our implementation is given in
Appendix A and Appendix B. In the following, we outline
the basic concepts underlying the implementation, including
additional rendering options.

4.1 View-aligned bands

For rendering the trajectories, what needs to be determined
for each fragment that is rendered for the tube surface is
which of the N bands in screen space it belongs to. Each
fragment lies on a circular arc orthogonal to the trajectory
tangent (see Fig. 8). The bands run perpendicularly to this
arc along the tangent direction of the trajectory. In order for
the bands to have equal thickness, the angle along the arc to
the fragment position is projected onto a line perpendicular to
the tangent, which removes the curvature of the arc from the
individual bands. The projected arc is then subdivided into N
sectors which all have the same height in screen space, and
the fragment is classified according to the sectors by comput-
ing its relative position dpang in the projection and assigning
the corresponding variable index iy, to it. All required pa-
rameters can be derived solely from local properties of the
rendered surface, i.e., the surface normal vector n, the trajec-
tory tangent vector ¢ and the camera view vector v. In partic-
ular, by projecting the camera view direction into the plane
orthogonal to the trajectory’s tangent direction, the problem
of computing the circular arc and the angle it subtends can
be reduced to a 2-D problem (see Appendix A).

4.2 View-aligned polar charts

To color a sphere with a polar chart that encodes the values
of multiple parameters into its sectors, the screen space pro-
jection of the sphere is subdivided into a predefined number
of individual sectors. To achieve a consistent assignment of
parameters to sectors for all spheres, first the angle ogector
representing the angular distance of a fragment prr,g to the
up axis of the camera is computed. The global sector posi-
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Figure 7. Data from Fig. 1 with predicate-based filtering where regions are highlighted where QR < 1073 and dinv_z > 0.1.

1T\ n 1 doand |
J\pfrag . :
\ Ivar = 1 | dsub
1
| |
|
| 1
I 1
/ lar=0 dsup
1
/ 1
0/ ~ 0 Lo

Figure 8. Ilustration of local surface properties and subdivision of
the visible part of a trajectory to determine a fragment’s band posi-
tion dpand, the sub-band position dgy,p and its corresponding variable
ID ivar.

tion dsector 1S then given by
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dsector =
When mapping N parameters onto the sphere, the sector po-

sition dgecior € [0, 1) is subdivided into multiple subsector po-
sitions dgyp.
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5 Results: case study Vladiana

WCB trajectories associated with extratropical Cyclone Vla-
diana ascend in a wide region near the cyclones’ fronts be-
tween 23 September 2016 and 26 September 2016 (Oertel
et al., 2019, 2020), where WCB ascent leads to substantial
surface precipitation (Fig. 9). A 3-D view on the trajectories’
ascent in the vicinity of Vladiana’s fronts has recently been
provided by Beckert et al. (2023). Here, we demonstrate the
value of our new visual analysis method by discussing first
investigations of the sensitivity of the rain mass density (QR)
to microphysical parameters along WCB trajectories within
Vladiana. We add the prefix “d” (for “derivative”) to param-
eter names to refer to the sensitivity of QR to the parameter.
For the example presented here, we are interested in the com-
parison of sensitivities related to QR (i) along trajectories in
different regions of the cyclone and (ii) for WCB trajecto-
ries with different ascent behavior; i.e., we are particularly
interested in the spatial variability in sensitivities and their
relation to the WCB ascent rate. The interactive aspects of
the analysis are documented in Video 2 (Neuhauser and Hi-
eronymus, 2023).

https://doi.org/10.5194/gmd-16-4617-2023



C. Neuhauser et al.: Visual analysis of model parameter sensitivities along WCB trajectories

Figure 9. Overview of selected trajectories and first insights with spheres at the same height. Low-level clouds at approximately 1500 m
altitude (gray) and surface precipitation (blue) are shown at 07:00 UTC on 23 September 2016 when multiple trajectories start their ascent.
(a) Trajectories ascending in the south (group 1) and in the north (group 2) with spheres showing eight variables each. (b) View from the top
with the northern group 2 near clouds and precipitation and the southern group 1 with less clouds and precipitation. (¢) A close-up view of

group 2.

We focus on selected subsets of trajectories to analyze
the joint development of multiple sensitivity parameters. To
pre-select different groups of trajectories, the 8744 available
WCB trajectories have been clustered with k-means into dif-
ferent groups (see Fig. 9). We use the location and ascent rate
of WCB trajectories as distinction criteria for the clustering
to analyze the spatial dependencies of parameter sensitivities
(Q3) and the characteristics for different types of trajectories
(Q5). No weights have been applied to the clustering. From
the clusters, we further select five trajectories with the slow-
est and five with the fastest ascents in the north and south,
respectively.

Figure 9 and Video 2 (44 s; Neuhauser and Hieronymus,
2023) illustrate the substantially different ascent behavior of
the fast compared to the slowly ascending WCB trajectories
and simultaneously show that QR is primarily important dur-
ing the ascent of WCB air parcels. In the following, we an-
alyze the sensitivity of QR to microphysical parameters and
compare the multiparameter sensitivities (i) in trajectories as-
cending in the north and south and (ii) across fast and slow
trajectories.

https://doi.org/10.5194/gmd-16-4617-2023

5.1 Spatial variability in parameter sensitivities

Figure 10 shows curve plots with trajectories selected from
either the southern (Fig. 10a) or northern (Fig. 10b) group
to analyze and compare trends of parameters across one or
more groups of trajectories (Q1, Q2 and Q3). We select QR
as the target variable and center the x axis by the time of
rapid ascent of each trajectory to understand if coherent sen-
sitivity patterns of QR emerge once trajectories are centered
relative to their time of ascent (Q4). The variance of the
sensitivities (blue shades) is similarly distributed for both
groups, but peaks appear at different times. The southern
group shows QR maxima at the start of the ascent, while the
northern group is characterized by larger QR maxima a few
hours before the ascent starts. From this, we can infer that
the variance between trajectories with different locations of
ascent is higher than between trajectories with a similar lo-
cation. Such high QR along trajectories can arise from ei-
ther (i) sedimentation of rain from above (influenced by pa-
rameters alpha, beta and gamma in the numerical model’s
parameterization) or (ii) local production of raindrops from
the collision of available cloud droplets (influenced by the
cloud condensation nuclei (CCN), the mass density of cloud
droplets (QC) and a cloud collision parameter (k_r); for a
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Figure 10. Curve plots aligned by time of ascent. The labels for the x axis show the simulation time step, where each simulation step stands
for 20s. (a) Only trajectories from the southern group have been selected. There are large peaks for rain mass density (QR) around the start
of the ascent, which coincide in part with peaks in the collision parameter dk_r. This indicates rain formation from the ascent of colliding
cloud droplets. (b) Trajectories from the northern group with a peak in QR several hours before their ascent starts. Those rain droplets stem

from precipitation above the trajectories.

detailed description of these parameters, see Seifert and Be-
heng, 2006, and Hieronymus et al., 2022). Hence, we are in-
terested in which processes are relevant and which are dom-
inant in which region. The automated ordering (Sect. 3.1) of
the parameters provides further insight (see Video 2, 3 min
3's; Neuhauser and Hieronymus, 2023). The parameters are
sorted by similarity in each time step to the maximum of
QR. The sensitivities of QR to the parameters rain_alpha,
rain_beta, rain_gamma (used for sedimentation velocity) and
rain_nu (used in the description of the size distribution of
raindrops) are the variables with the highest similarity to QR
in both cases.

Sensitivities of QR to CCN parameters and to k_r are
ranked higher in the southern group, indicating that rain-
drop formation due to collisions of cloud droplets is closely
related to local QR formation. These correlations are not
present in the northern group, which indicates that local QR
maxima result from the sedimentation of precipitation from
above. We conclude that QR, specifically local maxima of
QR, in the southern group is more closely related to the for-
mation of cloud droplets and subsequent conversion to rain-
drops than in the northern group (Q3).

To elaborate on the spatiotemporal evolution of sensitivi-
ties (Q3), we investigate where along the trajectories any of
the parameters is associated with the maximum sensitivity in
Fig. 9. The blue color along trajectories shows QR, whereas
red indicates the maximum sensitivity of QR to any param-
eter. Low sensitivity values (i.e., unsaturated bands) appear
mostly when the trajectories descend and after they have
reached their maximum height (Fig. 9a, b). This corrobo-
rates that processes influencing QR dominate during updrafts
and at lower altitudes and are generally larger for faster-
ascending WCB trajectories.

Geosci. Model Dev., 16, 4617-4638, 2023
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Figure 11. View-aligned polar chart for a selected trajectory in the
lower troposphere. The sensitivity of rain mass density (QR) to
the sedimentation parameter rain_alpha (pink) is more pronounced
where large amounts of rain mass (blue) appear and where rainfall
is high (blue shade on the ground). The maximum sensitivity (red)
here stems from the sensitivity of QR to the parameter rain_alpha.
Even though QR is large, no cloud droplets are present (turquoise).

To further investigate which trajectories are related to large
peaks in QR before the ascent starts, we use the spheres and
move them slowly along the trajectories (Video 2, 3 min 21 s;
Neuhauser and Hieronymus, 2023). Figure 11 shows a de-
tailed view of one such trajectory. The position of the sphere
indicates the current position of the air parcel, and the blue
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Figure 12. View-aligned bands with multiple sensitivities for a con-
vective trajectory. Zoom-in of a convective trajectory with the slant-
wise trajectory from Fig. 13 on the left. The green (sensitivity of rain
mass density (QR) to a_ccn_4 associated with cloud droplet for-
mation) and purple (sensitivity of QR to k_r associated with cloud
droplet collision to form raindrops) sensitivities have simultane-
ously large values during the convective ascent, whereas only the
green sensitivity is large in the slantwise ascent on the left.

color corresponds to its QR. The blue shade on the ground
is the surface precipitation shown at the same time as the
air parcel location (i.e., at 81 h simulation time). The pink
color on the sphere shows the sensitivity of QR to a parame-
ter related to the sedimentation of rain and illustrates that QR
is particularly sensitive to the model representation of rain
sedimentation in regions with high QR. Video 2 (3 min 21 s;
Neuhauser and Hieronymus, 2023) shows the spatial correla-
tion between rainfall at the surface and the peaks in rain mass
density for the bands in the background of Fig. 11, which are
all trajectories that started in the south and with a strong as-
cent in the north.

5.2 Influence of ascent rate on parameter sensitivities

At last, we illustrate differences in sensitivities between con-
vective and slantwise trajectories (Q5). Generally, QR and
the associated parameter sensitivities are higher along con-
vective ascending trajectories than along slantwise trajecto-
ries (Fig. 12; see Figs. 14 and 15). In the following, we il-
lustrate examples of differences in parameter sensitivities,
which are relevant for local precipitation characteristics.
First of all, QR is more sensitive to processes related
to cloud droplet number concentration (a_ccn_4) and colli-
sion processes (k_r) along convective trajectories than along
slantwise trajectories, prominently shown in Fig. 12. The
color intensities of da_ccn_4 (sensitivity of QR to a_ccn_4;
green) along slantwise ascending trajectories (e.g., Fig. 9a)
are lower than for convective ones, which indicates that pro-
cesses associated with a_ccn_4 have a minor effect on QR
during slantwise ascent. Similarly, the collision of cloud
droplets (sensitivity of QR to k_r; purple color) is more
important during convective ascent. This agrees with our
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Figure 13. View-aligned band and polar chart with multiple sensi-
tivities for a slantwise trajectory. Zoom-in of a slantwise trajectory.
The green band (sensitivity of rain mass density (QR) to a_ccn_4
associated with cloud droplet formation) alternates with the purple
band (sensitivity of QR to k_r associated with cloud droplet colli-
sion to form raindrops).

previous assessment and shows that the formation of cloud
droplets and their subsequent conversion to QR are more im-
portant for QR along convective ascent than for slantwise as-
cent.

For a more detailed analysis, we zoom in on a slantwise
ascending trajectory and use multiple bands to show several
parameters at once (see Fig. 13). Figure 13 reveals an alter-
nating pattern between sensitivities of QR to k_r (purple) and
a_ccn_4 (green). The overall slantwise ascent of the trajec-
tory is characterized by short periods of sharp ascent with
more pronounced cloud droplet formation. These periods are
interrupted by periods of slower ascent and even descent,
during which the collision of cloud droplets is the dominant
sensitivity. These processes do not alternate in convective as-
cending trajectories (Fig. 12) but instead occur simultane-
ously. This can produce and accumulate large amounts of
QR quickly (see Fig. 9c with convective trajectories in the
foreground and slantwise trajectories in the background, all
from group 2), leading to more intense surface precipitation
in a limited area. In contrast, during slantwise ascent these
processes are spread over a larger area. These illustrative ex-
amples are in line with previous studies on the impact of dif-
ferent ascent behavior on large-scale precipitation patterns in
extratropical cyclones (QOertel et al., 2019, 2020, 2021; Je-
yaratnam et al., 2020).

As a second example, Fig. 14 shows convective tra-
jectories with sensitivities of rain mass density (QR)
to graupel_a_geo (determines the shape of graupel) and
D_rainfrz_gh (influences the maximum size of graupel
when raindrops freeze). Large sensitivities of dD_rainfrz_gh
(turquoise) emerge in both the northern cluster and southern
cluster. Moreover, larger sensitivities to graupel_a_geo occur
at low altitudes due to sedimentation and subsequent melt-
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Figure 14. View-aligned bands with multiple sensitivities for con-
vective trajectories. Convective trajectories from the southern clus-
ter (a) and the northern cluster (b) with sensitivities of rain mass
density (QR) to graupel_a_geo and D_rainfrz_gh. Additionally,
graupel mass density (QG; pink) is shown to highlight the amount
of graupel that is present in convective trajectories. Sensitivities of
QR to freezing and conversion of rain to graupel and hail are visible
at higher altitudes for both clusters with clear graupel formation.

ing of graupel, which represents a source of QR. At higher
altitudes and colder temperatures, where dD_rainfrz_gh be-
comes relevant (i.e., rain starts to freeze and is converted
to graupel), the sensitivity to graupel_a_geo is more likely
due to freezing of rain droplets. Due to the locally higher
ascent velocity along convective trajectories, cloud droplets
and raindrops are present at higher altitudes, which subse-
quently facilitates riming and graupel formation. In contrast,
slantwise trajectories show hardly any sensitivity of QR to
D_rainfrz_gh or graupel_a_geo, if any at all, as illustrated in
Fig. 15. This difference, and the difference in graupel water
content between convective and slantwise trajectories, em-
phasizes convective trajectories’ role in forming graupel and
hail. These differences highlight the convective trajectories’
role for graupel formation, as well as the sensitivity of QR to
the model representation of riming in convective conditions.

6 Conclusions

We propose a novel visual analysis workflow to investigate
multiparameter properties along trajectories, here applied
specifically to the relationships between the sensitivity of QR
to changes in model parameters and the location and ascent
behavior of WCB trajectories. This information is required to
analyze the validity of physical assumptions on which micro-
physical parameterizations in the source code of NWP mod-
els are based. Making the sensitivities accessible along im-
portant Lagrangian features, such as WCB trajectories, offers
new insights into the correlation structures between differ-
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dgraupel_a_geo

Figure 15. View-aligned bands with multiple sensitivities for slant-
wise trajectories. Slantwise trajectories from the southern cluster
(a) and the northern cluster (b) with sensitivities of rain mass
density (QR) to graupel_a_geo (determines shape of graupel) and
D_rainfrz_gh (determines the maximum size of graupel when rain-
drops freeze). Hardly any sensitivities are visible in contrast to con-
vective trajectories in Fig. 14.

ent parameters and differences between trajectories. To per-
form these analyses in an effective way, we link a curve-plot-
based summary view with a novel sphere-based focus view
that enables comparison of multiparameter distributions on
different trajectories. The curve plot view provides statisti-
cal overviews and enables us to quickly find parameters with
a similar temporal evolution. We develop the workflow in a
team of scientists from visualization, high-performance com-
puting and meteorology and integrate it into the open-source
meteorological visualization software Met.3D. The usability
and benefits of the workflow are demonstrated with a real-
world case study.

We investigated trajectories associated with extratropical
Cyclone Vladiana that ascended between 23 September 2016
and 26 September 2016. Our investigation revealed that tra-
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jectories with their fastest ascent in the northern region are
more susceptible to rain sedimentation from above than tra-
jectories ascending further south (Q3). The occurrence of
sensitivity peaks at different times relative to the fastest
ascent of these trajectories illustrates this phenomenon. In
contrast, rain mass density in trajectories from the south-
ern region exhibits a higher sensitivity to parameters related
to CCN activation and cloud droplet collision, indicating a
localized formation of rain droplets (Q3) and notable un-
certainties in the shape of clouds and subsequent rainfall.
When focusing on the time of their fastest ascent, the over-
all variation in sensitivities in trajectories from the south
and north becomes more prominent compared to the vari-
ation observed between trajectories from similar locations
(Q4). Cloud droplets’ formation and subsequent transforma-
tion into rain droplets are more pronounced along convective
ascending trajectories than in slantwise ascents. Slantwise
ascending trajectories are characterized by slower ascent and
even descent periods, during which cloud and rain droplets
form alternately (Q1, Q2). This alternating pattern gives rise
to large-scale precipitation patterns, whereas convective as-
cending trajectories do not exhibit such a pattern (Q5). Ac-
cordingly, uncertainty in large-scale precipitation patterns
arises from slantwise ascending trajectories. The strong as-
cent of convective trajectories results in significant sensitiv-
ities of rain mass density to riming and freezing parameters
at higher altitudes, which are barely present in slantwise as-
cending trajectories (Q5). We can conclude that graupel and
hail mass uncertainty comes from convective ascents.

Our approach can be further extended in multiple ways.
First, it would be beneficial to investigate how to effectively
show additional 3-D atmospheric fields, or features in these
fields, in the surroundings of trajectories to reveal specific
regional multi-field patterns causing high sensitivities. Sec-
ond, the workflow could be made usable with ensembles of
trajectories, where multiple sets of trajectories from differ-
ent simulation runs are considered. In this way, relationships
between sensitivities and the ensemble spread can be exam-
ined. Third, it would be interesting to support multiple target
variables that can be switched interactively.

Appendix A: Tube rendering

To obtain a renderable trajectory representation, the trajecto-
ries (i.e., 3-D pathlines) are polygonized by extruding them
into tubes in a GPU geometry shader. The parameters are
mapped onto the surface of the tube as a set of bands run-
ning in the direction of the trajectory tangent (see Fig. 8).
When mapping the bands onto the tube in object space, oc-
clusion effects can occur, as not all parameters may lie in the
front, visible part of the tube. Also, due to twist and rota-
tions around the tube, the order in which the bands appear
on screen can change and make a comparison between dif-
ferent tubes and the association of parameters to bands more
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difficult (see Fig. 6a). To avoid this, our rendering technique
aligns the bands in view space and keeps their relative or-
der on the screen fixed, independent of the viewing direc-
tion (see Fig. 6b). For this, a screen space band position
dpand 1s computed in the pixel shader on the GPU using only
the tangent vector ¢ of the pathline associated with the tube

surface fragment, the surface normal r and the view vec-
Pcam — Pfrag

torv = —————&

| |pca.m._pfrag [l2 .

camera position p_,, as inputs.

By projecting the camera view direction into the plane or-
thogonal to the tangent direction of the trajectory, the prob-
lem of computing the band position can be reduced to a 2-D
problem. The projected camera direction v’ can be computed
by u.sing Vaux = ||ttxx—vv||2 as v = % The resulting set-
ting is shown in Fig. Al.

Using the angle ¢ = /(v’, n) between the projected view
vector v’ and the normal vector n would unfortunately not be
sufficient as a measure because it does not change linearly in
screen space, thus producing bands of differing width. In or-
der to derive the desired screen space measure, the fragment
position needs to be projected onto an imaginary band, illus-
trated as the vertical line in Fig. Al. As can be seen in the
figure, the normalized distance of the projected point to the
center of the band amounts to the sine of the angle ¢. In order
to compute the sine, one of the two equalities below can be
used.

pointing from the fragment towards the

sin(@)| = [[v" x nll = /1 — (v, n)? (AD)

1

Figure Al. Cross section of the tube with the plane perpendicular
to the tangent vector ¢ of the pathline.
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These statements hold due to the following mathematical
properties of the sine, cosine, cross product and scalar prod-
uct.

110" []2 =Inll2 =1 (A2)
(', n) =|v'|]2lIn||2cos(¢) (A3)
10" x n|l2 = ||v'||2]|n]]2]| sin(®)] (A4)
sin’ () + cos>(¢) = 1 (A5)

= I xnlly = Isin@)] = /1 —cos2(@) = /1 - /.2 (A6)

As a final step, the resulting distance |sin(¢)| needs to be
corrected, as the absolute value of the sine does not go from
0 to 1 from one end of the imaginary band to the other but
from 1 to O in the middle and back to 1 at the other side. In
order to correct this problem, we need to compute the sign of
the sine by using the winding direction of the angle ¢. The
sign of the sine can be computed as the sign of the volume of
the parallelepiped spanned by ¢, v" and n.

vol(¢,v',n) =det(t, v, n) = (t,v xn) (A7)

The equality of the determinant and the combination of the
scalar product and cross product can be proven by the simple
expansion of the respective formulas using the three input
vector coordinates as variables. Finally, we can compute the
screen space band measure we are looking for as

1 1
dana = 7 |sin(@)] - sgn(det(z, v',n)) + 3 (A8)

When mapping N parameters onto the tube, we subdi-
vide the band position dpang € (0, 1) into multiple sub-band
positions dgyp. For this, we compute the variable ID iy, =
[dband - N and then finally dgyb = dpand - N —ivar (see Fig. 8).

Appendix B: Polar-chart-based sphere rendering

For the rendering of a sphere colored via polar charts, we
want to subdivide the screen projection of the sphere in an-
gular bands, i.e., individual polar sectors (see Fig. B1). For
this, we want to compute the angle ogector, Which represents
the angular distance of the fragment py,, to the up axis of
the camera. As input, we need the surface normal vector n,
the camera view direction v and the camera up-vector u. As
a first step, the normal n is projected into the view plane to
obtain

Rproj =N — (1, V) - N. (B1)

.
Then, we set n’ = 22—
. ||"pr0] ||2
normalized screen space distance to the center of the sphere.

This can be easily checked for the special case v = (0, O, I)T,
/n2 + n% € [0, 1). We will use this

. The length " = ||yl |2 is the

where ||nproj||2 becomes
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Figure B1. Illustration of how the input vectors and points on the
sphere are used to compute the sector position dsector, the subsector
position dsector and its corresponding variable ID iyar.

fact later in Eq. (B5). In the next step, we compute the angle
Usector as follows:

Gsector = atan2(det(n’, e, v), ', ) + 7. (B2)
where atan2(y, x) computes the angle between the positive x
axis and the line connecting the origin and the point (x, y)T,
and atan2 returns the angle in a mathematically positive di-
rection, i.e., a counterclockwise angle. However, in our case,
we do not want the counterclockwise angle from the positive
x axis but rather the clockwise angle from the positive y axis
(the positive y axis being the up vector of the camera). This
can be most easily achieved by transposing (i.e., interchang-
ing) the x and y coordinates we feed to atan2. To get the y
coordinate of the point we use for calculating the angle, the
term (n’, u) is used in Eq. (B2). In this way, we project the
view plane normal onto the up axis vector. For the x coordi-
nate, det(n’, u, v) is used. We can again use Eq. (A7) to get
the equality det(n’, u, v) = (n’, u x v). Here, u x v can be in-
terpreted as the right axis vector of the view plane. When we
project the view plane normal onto this new right axis vector,
we get the x coordinate for Eq. (B2). The polar chart in the
view plane can be seen in Fig. B1.

Finally, we can compute the global sector position dsector
as

sectormod2r
dsector = %Ctorz—- (B3)
4
When mapping N parameters onto the sphere, we again
subdivide the sector position dgecior € [0, 1) into multiple
subsector positions dgyp, (see Fig. B1).
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A black separator line is drawn between two neighboring
subsectors. A problem that also arises for the polar-chart-
based spheres is that changes in the subsector position are
not linear in screen space but are dependent on the distance
to the screen space center of the sphere. Consequently, two
correction factors are introduced below, and the final separa-
tor thickness is computed as

;o Wsep

wSCp - f] f2 .

The factor fj is equal to ||mprojll2, Which itself, as was
shown earlier in this section, is equal to the normalized dis-
tance to the screen space center of the sphere. In this way, it
is guaranteed that the separator thickness does not get thinner
the closer we get to the center of the polar chart.

(B4)

J1 = lInprojll2 (BS)

Finally, the factor f> is used to make sure that the sepa-
rator thickness of the polar chart sphere and the trajectory
tube match. For this, the circumference of the sphere 2rm is
divided by the width of the tube wiype.

2rm

fa= (B6)

Wtube
If the polar color chart visualization mapping introduced
in Sect. 3.2 is used, the value of the individual variables dis-
played in the sectors is mapped to the saturation of the colors.
If the polar area chart mapping is used, the radius r’ is used
to determine whether to render the point in color depending
on the magnitude of the variables.
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Appendix C: Variable and parameter names

Table C1. Variable names in the data set.

Variable Description

Pressure Pressure in hPa

T Temperature in K

w Vertical velocity in m s~1

N Saturation

Qv Water vapor mass density in kg m~3

QC Cloud mass density in kg m~3

QR Rain mass density in kg m—3

QS Snow mass density in kg m~3

QI Ice mass density in kg m~3

QG Graupel mass density in kg m~3

QH Hail mass density in kg m~3

NCCLOUD Cloud number density in m—3

NCRAIN Rain number density in m3

NCSNOW Snow number density in m—3

NCICE Ice number density in m—3

NCGRAUPEL Graupel number density in m~3

NCHAIL Hail number density in m~3

QR_OUT Sedimentation of rain mass density out of the air parcel in kg m~3
QS_OUT Sedimentation of snow mass density out of the air parcel in kg m~3
QL OUT Sedimentation of ice mass density out of the air parcel in kg m~3
QG_OUT Sedimentation of graupel mass density out of the air parcel in kg m—3
QH_OUT Sedimentation of hail mass density out of the air parcel in kg m~3
NR_OUT Sedimentation of rain number density out of the air parcel in m~3
NS_OUT Sedimentation of snow number density out of the air parcel in m™3
NIL_OUT Sedimentation of ice number density out of the air parcel in m~3
NG_OUT Sedimentation of graupel number density out of the air parcel in m~3
NH_OUT Sedimentation of hail number density out of the air parcel in m—3
latent_heat Latent heat released by cloud microphysical processes in J kg_1
latent_cool Latent heat absorbed by cloud microphysical processes in J kg_l

Z Height in m

Inactive Number of nuclei that can not be activated for ice, snow, graupel or hail
Deposition Mass density of water vapor deposited in ice, snow, graupel and hail
Sublimation Mass density of water vapor from ice, snow, graupel and hail
time_after_ascent Time centered to the start of the fastest ascent in a 2 h time window
conv_400 Flag for a convective ascent of 400 hPa

conv_600 Flag for a convective ascent of 600 hPa

slan_400 Flag for a slantwise ascent of 400 hPa

slan_600 Flag for a slantwise ascent of 600 hPa

Step Simulation step

Phase Flag for different phases of the trajectory. 0: warm phase; 1: mixed phase; 2: ice phase; 3: neutral phase

Geosci. Model Dev., 16, 4617-4638, 2023 https://doi.org/10.5194/gmd-16-4617-2023
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Table C2. Parameter names in the data set.
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Parameter Description

inv_z Inverse of air parcel size (height) used in explicit sedimentation (see Hieronymus et al., 2022)
rho_vel Exponent for density correction in velocity-mass-relations (see Seifert and Beheng, 2006, Eq. 33)
D_rainfrz_gh Size threshold for partitioning of freezing rain in the hail scheme (see Seifert and Beheng, 2006)
p_sat_melt Saturation pressure at 7 = 273.15 K (see Seifert and Beheng, 2006)

a_HET Exponent for heterogeneous rain freezing with data from Barklie and Gokhale (1959) (see Seifert and Beheng, 2006)
k_r Coefficient for accretion of QC to QR (see Seifert and Beheng, 2006)

a_ccn_1 Parameter for CCN concentration (see Hande et al., 2016)

a_ccn_4 Parameter for CCN concentration (see Hande et al., 2016)

b_cen_1 Parameter for CCN concentration (see Hande et al., 2016)

b_ccn_3 Parameter for CCN concentration (see Hande et al., 2016)

b_ccn_4 Parameter for CCN concentration (see Hande et al., 2016)

c_cen_1 Parameter for CCN concentration (see Hande et al., 2016)

c_cen_3 Parameter for CCN concentration (see Hande et al., 2016)

c_cen_4 Parameter for CCN concentration (see Hande et al., 2016)

d_cen_1 Parameter for CCN concentration (see Hande et al., 2016)

d_ccn_2 Parameter for CCN concentration (see Hande et al., 2016)

d_cen_3 Parameter for CCN concentration (see Hande et al., 2016)

d_ccen_4 Parameter for CCN concentration (see Hande et al., 2016)

rain_a_geo Coefficient for diameter size calculation (see Seifert and Beheng, 2006, Eq. 32)

rain_b_geo Exponent for diameter size calculation (see Seifert and Beheng, 2006, Eq. 32)

rain_min_x Minimum size of the particle used after the microphysics (see Seifert and Beheng, 2006, Eqs. 94, 97)
rain_a_vel Coefficient for particle velocity (see Seifert and Beheng, 2006, Eq. 33)

rain_b_vel Exponent for particle velocity (see Seifert and Beheng, 2006, Eq. 33)

rain_alpha Constant in rain sedimentation (see Seifert, 2008, Eq. A10)

rain_beta Coefficient for rain sedimentation (see Seifert, 2008, Eq. A10)

rain_gamma Exponent for rain sedimentation (see Seifert, 2008, Eq. A10)

rain_nu Parameter to calculate the shape of the generalized I'-distribution (see Seifert and Beheng, 2006, Eq. 79)
rain_mu Shape parameter of the generalized I'-distribution (see Seifert and Beheng, 2006, Eq. 79)

graupel_a_geo
graupel_b_geo
graupel_a_vel
graupel_b_vel
graupel_vsedi_max

Coefficient for diameter size calculation (see Seifert and Beheng, 2006, Eq. 32)
Exponent for diameter size calculation (see Seifert and Beheng, 2006, Eq. 32)
Coefficient for particle velocity (see Seifert and Beheng, 2006, Eq. 33)
Exponent for particle velocity (see Seifert and Beheng, 2006, Eq. 33)
Maximum sedimentation velocity parameter (see Hieronymus et al., 2022)

ice_a_geo Coefficient for diameter size calculation (see Seifert and Beheng, 2006, Eq. 32)
ice_b_geo Exponent for diameter size calculation (see Seifert and Beheng, 2006, Eq. 32)
ice_b_vel Exponent for particle velocity (see Seifert and Beheng, 2006, Eq. 33)
ice_vsedi_max Maximum sedimentation velocity parameter (see Hieronymus et al., 2022)
snow_b_geo Exponent for diameter size calculation (see Seifert and Beheng, 2006, Eq. 32)
snow_b_vel Exponent for particle velocity (see Seifert and Beheng, 2006, Eq. 33)

snow_vsedi_max

Maximum sedimentation velocity parameter (see Hieronymus et al., 2022)

Code and data availability. The implementation of the visualiza-
tion techniques described in this work is available in a fork

Video supplement. Two video supplements showcasing
functionality of the visualization techniques describe

the
d in

of the open-source 3-D visualization system Met.3D at https:
//github.com/chrismile/met.3d (last access: 9 August 2023) un-
der the terms of the GNU General Public License v3.0 (GPL-
3.0). Version 1.6.0-multivarl of this software is archived at
https://doi.org/10.5281/zenodo.8082371 (Neuhauser et al., 2023).
The trajectory data used for the realization of the figures and the
case study are archived at https://doi.org/10.5281/zenodo.8043592
(Hieronymus and Oertel, 2023) under the terms of the Cre-
ative Commons Attribution 4.0 International License. The algo-
rithmic differentiation code used for the generation of these data
is described in Hieronymus et al. (2022) and made available at
https://doi.org/10.5281/zenodo.6645540 (Hieronymus, 2022) under
the terms of the MIT License.
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this work (Video 1) and illustrating the analysis of the
Vladiana WCB trajectories (Video 2) are available at
https://doi.org/10.5281/zenodo.8085134  (Neuhauser and Hi-
eronymus, 2023).
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