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Abstract. The Surface Urban Energy and Water Balance
Scheme (SUEWS) has recently been introduced to include a
bottom-up approach to modeling carbon dioxide (CO2) emis-
sions and uptake in urban areas. In this study, SUEWS is
evaluated against the measured eddy covariance (EC) turbu-
lent fluxes of sensible heat (QH), latent heat (QE), and CO2
(FC) in a densely built neighborhood in Beijing. The model
sensitivity to maximum conductance (gmax) and leaf area in-
dex (LAI) is examined. Site-specific gmax is obtained from
observations over local vegetation species, and LAI parame-
ters are extracted by optimization with remotely sensed LAI
obtained from a Landsat 7 data product. For the simulation of
anthropogenic CO2 components, local traffic and population
data are collected. In the model evaluation, the mismatch be-
tween the measurement source area and simulation domain
is also considered.

Using the optimized gmax and LAI, the modeling of heat
fluxes is noticeably improved, showing higher correlation
with observations, lower bias, and more realistic seasonal dy-
namics of QE and QH. The effect of the gmax adjustment
is more significant than the LAI adjustment. Compared to
heat fluxes, the FC module shows lower sensitivity to the
choices of gmax and LAI. This can be explained by the low
relative contribution of vegetation to the net FC in the mod-

eled area. SUEWS successfully reproduces the average diur-
nal cycle of FC and annual cumulative sums. Depending on
the size of the simulation domain, the modeled annual accu-
mulated FC ranges from 7.4 to 8.7 kgCm−2 yr−1, compared
to 7.5 kgCm−2 yr−1 observed by EC. Traffic is the domi-
nant CO2 source, contributing 59 %–70 % to the annual to-
tal CO2 emissions, followed by human metabolism (14 %–
18 %), buildings (11 %–14 %), and CO2 release by vegeta-
tion and soil respiration (6 %–10 %). Vegetation photosyn-
thesis offsets only 5 %–10 % of the total CO2 emissions. We
highlight the importance of choosing the optimal LAI param-
eters and gmax when SUEWS is used to model surface fluxes.
The FC module of SUEWS is a promising tool in quantifying
urban CO2 emissions at the local scale and therefore assisting
in mitigating urban CO2 emissions.

1 Introduction

Currently, half of the global population resides in urban ar-
eas, and this percentage is projected to grow to 68 % by the
middle of the 21st century (United Nations Department of
Economic and Social Affairs, 2019). Urban expansion has
reshaped the morphological, thermal, and dynamical prop-
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erties of the land surface (Grimmond and Oke, 2006; Oke,
1995; Zhu et al., 2016). In addition, intensive human activ-
ities in urban areas have caused a large quantity of green-
house gas emissions (Marcotullio et al., 2013; Velasco and
Roth, 2010). Both factors have influenced urban climate from
micro-scales to regional scales (Johansson and Emmanuel,
2006; Sarangi et al., 2018; Tan et al., 2010). Climatic and
environmental risks due to urbanization are frequently re-
ported, such as heat waves, flooding, and air pollution (Qian
et al., 2022; Watts et al., 2015). In this context, there is a
pressing need to better understand the effects of urbanization
on land–atmosphere interaction, preferably in a quantitative
way.

Urban land surface models (ULSMs) are widely used to
simulate urban land–atmosphere interactions, including the
exchanges of energy, water, and CO2 and hydrological pro-
cesses (Chen et al., 2011; Masson et al., 2013). The results
from the First International Urban Land Surface Model Com-
parison Project suggested that the most important processes
for urban surface energy balance were radiative and vege-
tation processes (e.g., vegetation fraction, seasonal cycle of
vegetation phenology) (Best and Grimmond, 2015; Grim-
mond et al., 2010; Nordbo et al., 2015). Long-term obser-
vations with low vegetation cover (< 30 %) were especially
needed to evaluate heat flux simulation, as energy distribu-
tion was found to be sensitive in such environments (Best
and Grimmond, 2016).

The Surface Urban Energy and Water balance Scheme
(SUEWS) is one of the widely tested ULSMs (Järvi et al.,
2011, 2014; Ward et al., 2016). SUEWS is designed to run
with surface information (e.g., surface cover fractions) and
a minimum amount of model forcing data. In recent years,
Supy (SUEWS in Python) was developed to allow Python
front-end implementation for broader and easier applications
(Sun and Grimmond, 2019). SUEWS has demonstrated good
performance against hydrological observations and surface
flux observations in several cities in Europe, North America,
and Asia (Alexander et al., 2016; Ao et al., 2018; Havu et al.,
2022a; Järvi et al., 2011; Ward et al., 2016). In SUEWS, the
seasonal cycle of vegetation phenology is indicated by leaf
area index (LAI). Previous studies made in two UK cities
and Shanghai, China, have reported that bias in modeled LAI
leads to overestimation or underestimation in QE or QH (Ao
et al., 2018; Ward et al., 2016). They highlighted the im-
portance of having an appropriate seasonal cycle of LAI in
SUEWS. Omidvar et al. (2022) proposed a workflow to de-
rive LAI-related parameters for SUEWS, but it was intended
for fully vegetated areas located mainly on the outskirts of
cities. Apart from LAI, the maximum conductance (gmax) is
also critical in scaling the surface conductance (gs) and there-
fore the available energy distribution (Ward et al., 2016).
However, the impact of LAI-related parameters and gmax on
the modeled turbulent fluxes has received insufficient atten-
tion in urban areas.

Recently, the module of local-scale CO2 flux (FC) was in-
corporated into SUEWS (Järvi et al., 2019). It was found
to give reasonable annual sum, seasonal, and diurnal cycles
against observed FC in Helsinki, Finland, suggesting that
the bottom-up CO2 emission or uptake estimate in SUEWS
can be evaluated by observation-based evidence provided by
top-down eddy covariance (EC) measurements. Furthermore,
SUEWS shows the potential for broader use, such as quan-
tifying the carbon sequestration potential of urban vegeta-
tion (Havu et al., 2022a), investigating the spatial variability
of CO2 emission, quantifying the contribution of each emis-
sion component (Järvi et al., 2019), and assisting urban CO2
emission mitigation. However, this module has not yet been
evaluated in cities other than Helsinki.

Beijing provides a unique test bed for SUEWS evaluation
and application: a megacity with a population of over 21 mil-
lion and an increasing urbanized area (MHURD, 2018). The
older version of SUEWS (V2017b) has been evaluated and
applied in Beijing by Kokkonen et al. (2019), showing good
model performance against observed heat fluxes. However,
good simulation of turbulent flux does not necessarily im-
ply that the sub-models within give accurate estimates, e.g.,
LAI and radiative components. Correct presentation of these
processes is necessary for more advanced applications like
the prediction of surface exchanges of energy under future
climate scenarios. Besides, the newly developed FC module
has not yet been evaluated in Beijing.

In this paper, we present a comprehensive evaluation of
SUEWS V2020b and its ability to simulate surface fluxes
of energy and CO2 in Beijing. The main aims of this study
are (1) to evaluate the model performance of SUEWS us-
ing different (default and site-specific) vegetation parameters
against the turbulent flux (QE, QH and FC) measurements
and (2) to estimate the contributions of the anthropogenic and
biogenic components to the FC with the bottom-up model-
ing approach of SUEWS. Meanwhile, the impact of the mis-
match between the turbulent flux source area and the mod-
eled area is also examined.

2 Model description

SUEWS is an urban land surface model that simulates the
surface energy and water balances and CO2 flux at a lo-
cal (neighborhood) scale (Järvi et al., 2011, 2019; Ward
et al., 2016). In SUEWS, the modeling domain is separated
into seven interacting surface types (buildings, paved sur-
faces, grass, evergreen trees/shrub, deciduous trees/shrubs,
bare soil, and waterbody), with a single soil layer below
each type. SUEWS is designed to run with surface informa-
tion (e.g., surface cover fractions) and a minimal amount of
model forcing data, including wind speed (U ), relative hu-
midity (RH), air temperature (Tair), air pressure (p), precip-
itation, and incoming solar radiation (Kdown). SUEWS has
sub-models for LAI and net all-wave radiation, and users are
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allowed to modify the parameters of the sub-models based
on the information of the modeled domain. In this study, we
use SUEWS version V2020b (Havu et al., 2022b).

2.1 Leaf area index model

In SUEWS, leaf growth is accumulated when Tair stays above
the limit value Tbase,GDD,i consecutively, denoted by grow-
ing degree day (GDD). Leaf growth is allowed until GDD
reaches the upper boundary GDDfull,i or LAI reaches its
maximum (LAImax,i). Similar to the leaf growth period, the
leaf-off period is impacted by Tbase,SDD,i , senescence degree
day (SDD), and SDDfull,i or LAImin,i . Leaf fall is controlled
by Tair or (at high latitudes) by day length (Järvi et al., 2014).
Here, LAI for vegetation type i at the day of year d (LAId,i)
is defined as follows:

LAId,i =
min

(
LAImax,i ,LAIω1,GDD,i

d−1,i ·GDDd,i ·ω2,GDD,i +LAId−1,i

)
,

leaf-on,Tbase,GDD,i > Td−1

max
(

LAImin,i ,LAIω1,SDD,i
d−1,i ·SDDd,i ·ω2,SDD,i +LAId−1,i

)
,

leaf-off,Td−1 < Tbase,SDD,i ,

(1)

where LAImax,i and LAImin,i for each vegetation type can
be obtained from literature or determined from observations,
ω1/2,GDD/SDD,i represents the growing or senescence rates
derived for each study site or uses their default values (Järvi
et al., 2011; Omidvar et al., 2022), and Td−1 is the previous
day air temperature mean.

2.2 Radiation fluxes

Kdown is a required variable in the meteorological forc-
ing data, whereas other radiation components are estimated
within SUEWS. Outgoing shortwave radiation (Kup) is cal-
culated using a bulk albedo (α) based on the area fraction for
each surface type. Incoming longwave radiation (Ldown) is
calculated using Tair and RH to estimate the cloud cover and
the clear-sky emissivity (Loridan et al., 2011), while outgo-
ing longwave radiation (Lup) is estimated by surface emis-
sivity, α, Kdown, Ldown, and Tair (Offerle et al., 2003).

2.3 Turbulent heat fluxes

Latent heat flux (QE, Wm−2) is calculated using the modi-
fied Penman–Monteith equation for each surface type:

QE =
s(QN+QF−1Qs)+ ρcpVPD/rav

s+ γ (1+ rs/rav)
, (2)

where QN (Wm−2) is the net all-wave radiation, QF
(Wm−2) is the anthropogenic heat flux, 1QS (Wm−2) is
the net storage heat flux, ρ (kgm−3) is the air density,
cp (Jkg−1 K−1) is the specific heat capacity of air at con-
stant pressure, VPD (Pa) is the vapor pressure deficit, s
(Pa ◦C−1) is the slope of the saturation vapor pressure curve,
γ (Pa ◦C−1) is the psychrometric constant, rav (smm−1) is

the aerodynamic resistance for water vapor, and rs (smm−1)
is the surface resistance. rs, or its inverse surface conductance
gs (mms−1), has the following form:

gs =
1
rs
=

∑
i

(
gmax,i

LAIi
LAImax,i

fri

)
×G1g(Kdown)g(1q)g(Tair)g(1θ), (3)

where gmax,i is the maximum conductance of vegetation
type i; fri is the surface fraction of i; G1 is a constant con-
necting stomatal conductance to canopy conductance; and
g(Kdown), g(1q), g(Tair), and g(1θ) are environmental re-
sponse functions on Kdown, specific humidity deficit (1q),
air temperature (Tair), and soil moisture deficit (1θ ), respec-
tively. The functions have the following forms (Ward et al.,
2016):

g(Kdown)=
Kdown/(G2+Kdown)

Kdown,max/(G2+Kdown,max)
, (4)

g(1q)=G3+ (1−G3)G
1q

4 , (5)

g(Tair)=
(Tair− TL)(TH− Tair)

TC

(G5− TL)(TH−G5)TC
, (6)

where

TC =
(TH−G5)

(G5− TL)
, (7)

and

g(1θ)=
1− exp(G6(1θ −1θWP))

1− exp(−G61θWP)
. (8)

Coefficients G2–G6 determine the shape of the curves de-
scribing responses of stomatal conductance to each environ-
mental variable.Kdown,max (Wm−2) is the maximum incom-
ing solar radiation; TL and TH (◦C) are the lower and upper
limits for temperature at which photosynthesis and transpi-
ration are off, respectively; and 1θWP (mm) is wilting point
deficit. Kdown (Wm−2) is model input, 1q (gkg−1) is cal-
culated from model input RH, Tair (◦C) is either model input
or simulated at 2 m height, and 1θ (mm) is simulated within
SUEWS (Järvi et al., 2017).QH is determined as the residual
from the surface energy balance equation:

QH =QN+QF−1QS−QE. (9)

2.4 CO2 flux

The FC module adopts a bottom-up approach to determine
the local-scale FC (µmolm−2 s−1), accounting for both an-
thropogenic (FC,ant) and biogenic (FC,bio) components (Järvi
et al., 2019):

FC = FC,ant+FC,bio

= (FM+FV+FB+FP)+ (Fpho+Fres). (10)
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In Eq. (10), FM is the CO2 emissions from human
metabolism, FV is the emissions from traffic, FB is the
emissions from buildings (e.g., combustion of natural gas,
coal, and wood), FP is the emissions from local-scale point
sources, Fpho is the CO2 uptake by photosynthesis, and Fres
is the CO2 release by soil and vegetation respiration. Positive
values indicate CO2 emissions, and negative values indicate
CO2 uptake with respect to the atmosphere. Fpho has a nega-
tive sign, while the rest of the FC components have a positive
sign.
FC,ant relates to the energy balance through QF. FM and

FV are estimated with an inventory approach, i.e., based on
population density or traffic rate, and their emission factors
(EFs). Hourly CO2 emissions from human metabolism on
weekdays or weekends (FM,h,d, µmolm−2 s−1) are calculated
using

FM,h,d = pd ·PPh,d ·APh,d ·CM, (11)

where pd is the daily average population density (capha−1),
PPh,d is the population diurnal profile by hour, APh,d is the
activity level diurnal profile by hour, and CM is the CO2 re-
lease per person (µmolCO2 s−1 per capita). The pd and PPh,d
reconstruct the diurnal population density cycle. APh,d scales
the CM to vary between the nighttime minimum and daytime
maximum values (CM(min,max)) to indicate the diurnal cycle
of per capita human metabolic intensity.

Hourly traffic CO2 emissions (FV,h,d) on weekdays or
weekends are calculated from

FV,h,d = Trd ·Ec,d ·HT,d, (12)

where Trd is the mean daily traffic rate within the study area
(vehd−1 area−1), HT,d is the diurnal traffic profile, and Ec,d
is the traffic EFs for CO2 (kgkm−1 per vehicle).

Hourly building CO2 emissions (FB,h,d) on weekdays or
weekends are calculated from

FB,h,d = [frheat ·QF,heat+ frnonheat ·QF,base · frQF,base,BEU,d]

×ECO2 per J, (13)

where frheat is the fraction of fossil fuels used for heat-
ing; QF,heat is the building heat emission at local scale es-
timated from the heating degree day model (Järvi et al.,
2011); frnonheat is the fraction of fossil fuels used for en-
ergy other than heating (e.g., the use of gas stove for cook-
ing); QF,base is the non-temperature-related anthropogenic
heat flux (Wm−2) including heat emissions from traffic, hu-
man metabolism, and electricity usage; frQF,base,BEU,d is the
fraction of the QF,base coming from building energy use on
weekdays or weekends; and ECO2 per J is the EF for fuels in
building energy use (µmolCO2 J−1). Emissions from single-
point sources such as power plants and industrial activities
can be included as model inputs.
Fpho relates to the energy balance through LAI and the en-

vironmental responses of surface conductance (Eq. 3). Fpho

is calculated using

Fpho =
∑
i

(friFpho,max,iLAIi)

× g(Tair)g(1q)g(1θ)g(Kdown), (14)

where Fpho,max,i is the maximum photosynthetic rate for veg-
etation type i.

Soil and vegetation respiration Fres (µmolm−2 s−1) fol-
lows an exponential dependency on Tair:

Fres =
∑
i

frimax(ai · exp(Tairbi),0.6), (15)

where ai and bi are the parameters controlling the tempera-
ture dependency and 0.6 µmolm−2 s−1 is the minimum res-
piration in winter time.

3 Study site and measurements

The model domain is a 1 km circle around the 325 m
meteorological tower constructed by Institute of Atmo-
spheric Physics, Chinese Academy of Sciences (IAP tower,
39◦58′ N, 116◦22′ E, 60 m above sea level) located in the
6th Ring Road area of Beijing, China (Fig. 1a–d). An EC
setup at the height of 47 m on IAP tower continuously mea-
sures the surface fluxes of QE, QH and FC using a three-
dimensional sonic anemometer (Windmaster, Gill, UK) and
an open-path infrared gas analyzer (LI-7500A, LI-COR,
USA). In addition, all four radiation components are mea-
sured at the height of 140 m using a net radiometer (CNR1,
Kipp & Zonen, Netherlands). These measurements are used
to evaluate SUEWS model performance. The 1 km radius cir-
cle around IAP tower roughly covers 80 % of the accumu-
lated flux footprint area (Liu et al., 2012). This area is mainly
covered by impervious surfaces (Fig. 1b). Three patches of
urban green spaces are situated to the east, south, and west
to IAP tower, while the other vegetation is sparsely spread
along the roads and near the buildings. Most of the imper-
vious surfaces in the source area are residential buildings
(Fig. 1d). A more detailed description of the surroundings
and the used instruments can be found in previous publica-
tions by Cheng et al. (2018), Liu et al. (2012), and Liu et al.
(2021).

The 30 min turbulent flux calculation procedures and the
quality controls were described in detail by Cheng et al.
(2018). Quality controls such as out-of-limit value removal,
spike removal, and a dropout test were conducted on the
10 Hz data during the flux calculation. In order to exclude
low-quality data caused by precipitation, dust, or other con-
tamination on the sensor, the records with automatic gain
control value ≥ 62 were discarded. On top of the procedures
by Cheng et al. (2018), the following quality control steps are
performed for 30 min turbulent flux observations in the year
2016. (1) Upper- and lower-boundary filtering is performed
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Figure 1. (a) The location of IAP tower and the land cover type within the 6th Ring Road area of Beijing (MODIS land cover type
(MCD12Q1) version 6; Friedl and Sulla-Menashe, 2019). (b) A satellite image (Google Earth, image ©2022 Maxar Technologies) over
the study area. (c) Wind sectors that have been filtered out for data quality control. (d) Urban land use categories (EULUC-China) (Gong
et al., 2020). (e) Wind direction frequency by season.
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to remove observations that fall outside specified ranges:QE
from −500 to 1000 Wm−2, QH from −500 to 1000 Wm−2,
and FC from −100 to 200 µmolm−2 s−1. (2) Spike detection
is done to remove flux values outside 3.5 standard deviations
of the 3 d moving mean value (Liu et al., 2012). (3) Wind di-
rection filtering is performed to remove the wind directions
with building heights over 50 m (112–128, 160–243, 314–
3◦) (Kokkonen et al., 2019) (Fig. 1c). (4) Stationarity tests
are performed to filter out data points with stationary indi-
cator > 30 % (Foken and Wichura, 1996). The percentage of
data removed through these four steps is 0.2 %–0.3 %, 1.7 %–
2.7 %, 37.8 %–38.2 %, and 13.1 %–17.4 %, respectively. The
numbers of observations retained after quality control are
8017 for QE, 7338 for QH, and 7797 for FC. These 30 min
flux observations are resampled to 1 h resolution. In addition,
FC is gap-filled using seasonal mean diurnal cycle in order to
calculate the seasonal and annual sums (Falge et al., 2001).

Wind directions are mainly from the southern and western
sectors and the northeastern and eastern sectors before the
implementation of the wind direction filtering (Fig. 1 e). In
winter, wind from the west is more frequently seen than from
the east compared to the other seasons.

To optimize the behavior of LAI, a 6-year time series
(2011–2016) of LAI over an adjacent park near the IAP
tower is calculated from the atmospherically corrected sur-
face reflectance provided by the USGS Landsat 7 Enhanced
Thematic Mapper+ (ETM+) (30 m spatial resolution) via the
Google Earth Engine Data Catalog (Masek et al., 2006). The
atmospherically corrected surface reflectance bands have
been preprocessed using the scaling factors from the meta-
data. Next, enhanced vegetation index (EVI) is calculated us-
ing the following formula (Huete, 1997):

EVI= 2.5× (NIR−RED)/

(NIR+ 6×RED− 7.5×BLUE+ 1), (16)

where NIR, RED, and BLUE are the near-infrared, red, and
blue bands, respectively. EVI is further used to calculate LAI
with the formula (Boegh et al., 2002):

LAI= 3.618×EVI− 0.118. (17)

The LAI and air temperature time series are subjected to
optimization using the covariance matrix adaptation evolu-
tion strategy (CMA-ES) (Appendix A). Before the optimiza-
tion process, values larger than 10 m2 m−2 and negative val-
ues are considered outliers and removed; values during De-
cember and January are set to a fixed value, i.e., the average
of these months (0.2 m2 m−2), to reduce the noise in winter
and improve optimization performance. More details can be
found in Appendix A. The related data and code are openly
available to reproduce the results (Zheng et al., 2022).

4 Model run

4.1 Forcing meteorological data

The reanalysis dataset WFDE5 (Cucchi et al., 2021) is used
as the forcing data for SUEWS. WFDE5 is a bias-corrected
dataset of near-surface meteorological variables specifically
suited for land surface modeling. It is derived from the
fifth generation of the European Centre for Medium-Range
Weather Forecasts (ECMWF) atmospheric reanalysis (Hers-
bach et al., 2020). It is provided at 0.5◦ spatial resolution and
at hourly temporal resolution. WFDE5 is evaluated against
observed meteorological observations before it is used as the
forcing data for SUEWS (Appendix B).

4.2 Land cover

Land cover types and their fractions needed in the model
cases are estimated based on aerial images. Paved surfaces
account for 46 % of the total area, buildings 24 %, trees/shrub
13 %, grass/lawn 16 %, and water 1 %. The average building
height is 19.1 m (Kokkonen et al., 2019). According to a field
survey conducted in the 6th Ring Road area, the population
of deciduous species accounts for 82 % of the total number
of woody plants investigated (Ma, 2019). Therefore, the sur-
face fraction of deciduous trees is set to 11 % and evergreen
trees 2 %.

Due to the wind direction filtering (Sect. 3), the actual flux
source area “seen” by the EC measurement is biased from the
1 km radius circle around IAP tower. The vegetation fraction
is 31 % in the remaining sectors combined, as compared to
29 % in the entire 1 km radius circle (Fig. 1b–c, Table S1 in
the Supplement). The model performance in turbulent flux
modeling with the land fractions for the remaining sectors
is similar to the entire circle (Fig. S1 in the Supplement).
Therefore, only the results using the land fractions of the en-
tire circle are demonstrated in the main text.

4.3 Storage heat flux

To calculate the storage heat flux, the Objective Hysteresis
Model (OHM) is used (Grimmond and Oke, 1999). The co-
efficients for all the surface types follow the previous study
by Kokkonen et al. (2019). A large portion of the paved sur-
face is asphalt in the study area. Thus, the coefficients are
set to the weighted average values of asphalt surface (AN99)
following Ward et al. (2016).

4.4 Human activity

In this study, local parameters of traffic, population dynam-
ics, and building energy use are incorporated in order to esti-
mate QF and CO2 emissions.

The annual mean weekday and weekend diurnal cycle of
traffic rate for each road link in 2017 in the study domain
are all extracted from a dataset based on an extensive road

Geosci. Model Dev., 16, 4551–4579, 2023 https://doi.org/10.5194/gmd-16-4551-2023
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Table 1. Parameters related to anthropogenic heat and CO2 emissions.

Parameter Notation Value Reference

CM(min) Minimum CO2 release per capita 120 µmolCO2 s−1 per capita Ward et al. (2013)
CM(max) Maximum CO2 release per capita 280 µmolCO2 s−1 per capita Moriwaki and Kanda (2004)
Ec,wd Traffic CO2 EF for weekday 0.207 kgkm−1 per vehicle

(4.70× 106 µmolCO2 per vehicle
per kilometer)

Wen et al. (2020, 2022);
Zhang et al. (2014)

Ec,we Traffic CO2 EF for weekend 0.209 kgkm−1 per vehicle
(4.75×106 µmolCO2 per vehicle per
kilometer)

Wen et al. (2020, 2022);
Zhang et al. (2014)

Trwd Mean daily traffic rate for weekday 0.3260 vehicle kilometers per day per
meter squared

Yang et al. (2019)

Trwe Mean daily traffic rate for weekend 0.2664 vehicle kilometers per day per
meter squared

Yang et al. (2019)

Frheat Fraction of fossil fuels used for heating 0.81 Cui et al. (2019);
MHURD (2018);
Zhang et al. (2019)

Frnonheat Fraction of fossil fuels used for energy 0.5 BMBS (2017)
ECO2 per J EF for fuels used in building energy use 0.1688 µmolCO2 J−1 Cui et al. (2019)
Tbase_HC Base temperature for heating degree day 12 ◦C This study

Figure 2. Annual average diurnal cycle of traffic rate for weekday (Trwd) and weekend (Trwe), population density (POP), and the activity
profiles for weekdays (APwd) and weekend (APwe) within the 1 km radius circle around IAP tower.

traffic monitoring network (Yang et al., 2019). For weekends
and weekdays, the diurnal traffic cycles are calculated inde-
pendently. The total hourly traffic rate (vehicle kilometer per
hour) is calculated as the sum of the traffic rates, i.e., the
product of traffic volume (vehicles per hour) and the road
link length (km) from all the road links in the study area. The
hourly traffic rates are then summed up to the total daily traf-
fic rates (vehicle kilometer per day) and divided by the total
modeling area, yielding Trd. Finally, the diurnal traffic pro-
files (HT,d) are obtained by normalizing the diurnal cycles of
the total hourly traffic rate (Table 1, Fig. 2).

The annual average diurnal cycle of population density
within the model domain is obtained from a dataset of hourly
population dynamics at 500 m resolution generated from re-
motely sensed and geospatial data over the years 2015 and

2016 (Zhao et al., 2021) (Fig. 2). As there are several residen-
tial building areas located within the model domain (Fig. 1d),
population density increases in the evening when residents
get home from work, remains high throughout the night, and
decreases in the morning. Weekdays and weekends share the
same diurnal cycle of population density in our study.

Heating in Beijing is dominated by central heating, sup-
plied mainly at the district level. The sources include co-
generation plants fueled by coal or gas and district boilers
powered by coal, oil, or gas. Cogeneration plants are usually
located at suburban or rural areas, and there are no cogenera-
tion plants within the model domain, meaning that their con-
tribution to CO2 emission is neglected in this study. In com-
parison, boiler plants are very common: over 5000 coal-fired
and 1000 gas-fired heating boilers were located surrounding
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the populated areas in 2014 (Cui et al., 2019). We investi-
gated the boiler plants near the IAP tower through interviews
and found that there were at least 11 of them located at mul-
tiple directions within a 1.5 km distance from the IAP tower.
For the known boiler plants, eight of them have a chimney
height lower than 20 m. Thus, their CO2 emissions are very
likely to be observed by EC at 47 m during the heating sea-
son. Unfortunately, the heating capacity and detailed infor-
mation regarding the fuel combustion for each boiler plant
are either unknown or restricted from access. Therefore, it
is challenging to treat the boiler CO2 emissions as point
sources. As an alternative, SUEWS first estimates the anthro-
pogenic heat release from heating QF,heat and then converts
the heat into local CO2 release using the EF and the fraction
of fossil fuels used for heating frheat (Eq. 13).

In 2015, the ratio of district boiler heating capacity to co-
generation plants was 4.2 : 1 (Zhang et al., 2019). Corre-
spondingly, frheat is set to 0.81 to represent the heating ca-
pacity from local boiler plants. The value of natural gas con-
sumption over the annual total heating supply is 3.2× 106 tce
(tonne coal equivalent) and the value for coal consump-
tion 2.6× 106 tce in 2015. The consumption of the rest of
the fuel types is only 3.8× 105 tce (MHURD, 2018). The
EFs of heating supply are 96.51 TgCO2 (1019 J)−1 for coal-
fired boilers,and 56.17 TgCO2 (1019 J)−1 for gas-fired boil-
ers (Du et al., 2018). Therefore, the EF for fuels used in
building energy use (ECO2 per J) in SUEWS takes the average
of the EFs of natural gas and coal weighted by their annual
consumption, i.e., 0.1688 µmolCO2 J−1 (Table 1). In addi-
tion, SUEWS needs a temperature limit (base temperature,
Tbase_HC) to indicate when heating takes place in the heat-
ing degree day model. Central heating usually starts around
15 November and lasts until 15 March, when the outdoor air
temperature is around 12 ◦C. Therefore, this value is given to
SUEWS Tbase_HC to replace the default value (18.2 ◦C) (Järvi
et al., 2011).

Statistics showed that urban household living consumed
liquefied petroleum gas at a rate of 27.9× 107 kgce (kilo-
gram of coal equivalent), gas 17.1× 108 kgce, and electric-
ity 20.46× 108 kgce in 2016 (BMBS, 2017), indicating that
50 % of the household energy use involved on-site CO2 emis-
sions. Therefore, the non-heating fraction (frnonheat) is set
to 0.5.

4.5 Evaluation design

Two different groups of SUEWS runs are made around the
IAP tower (Fig. 1c). The first run over the years 2009 to 2011
is to evaluate the modeled radiation components against ob-
servations. The first 16 months are the spin-up period, and
the actual model evaluation is made from May 2010 to June
2011, when the radiation observations are available. The sec-
ond SUEWS run from 2015–2016 is to evaluate the turbulent
fluxes. The first year is used as a spin-up period, and only the
year 2016 is used in the evaluation.

The model performance of radiation fluxes is evaluated
prior to the simulation of turbulent heat fluxes. The results
show that SUEWS is applicable to provide realistic estimates
of radiation fluxes in the study area despite the absence of
site-specific parameters (Appendix C). The calculation of ra-
diation fluxes is mostly dependent on the land cover fractions
under the current scheme adopted by SUEWS (Loridan et al.,
2011; Offerle et al., 2003). No visible change in land use type
is observed according to satellite images from Google Earth
within the modeled area between 2010 and 2016 (figure not
shown). Therefore, we assume that the evaluation of radia-
tion fluxes using observations in the years 2011–2012 holds
true in 2016.

4.5.1 Sensitivity to vegetation-related parameters

In order to test the model’s sensitivity of radiation and turbu-
lent fluxes to vegetation-related parameters, four model cases
are designed as follows.

1. The “Base” case. Control run where model parame-
ters are considered “default” following Kokkonen et al.
(2019) (Tables S2–S4). The exceptions are (1) parame-
ters in the environmental response functions (Eqs. 4–7)
of surface conductance that follow those by Havu et al.
(2022a) (Table 2) because the product of response func-
tions calculated following Kokkonen et al. (2019) is too
low (95th percentile= 0.19) to obtain a realistic esti-
mate of photosynthetic rate and (2) biogenic parameters
for Eqs. (14) and (15) and soil properties that were up-
dated following Havu et al. (2022a) (Table 2). In addi-
tion, Fpho,max for grass and lawn (5.5 µmolm−2 s−1) is
obtained from EC observations of CO2 flux made over
urban lawn in Helsinki in summer 2021 by fitting the
conductance parameters (Fpho,max,grass, G2–G6) to the
observations following Järvi et al. (2019) (Appendix D).

2. The “LAI” case. The same as the base case but the
parameters for Eq. (1) describing the annual behavior
of LAI are optimized using remotely sensed LAI and
CMA-ES (Appendix A). The new optimized LAI pa-
rameters are compared with the base case in Table 3.

3. The “gs” case. The same as the base case but with gmax
values collected from observational studies over vegeta-
tion species in Beijing (Appendix E). The site-specific
gmax values are in general lower than the values used by
the base case (Table 4).

4. The “gs_LAI” case. The same as the base case but with
both LAI and gmax modified as described in the LAI and
gs cases.

4.5.2 Sensitivity to radius of modeled area

SUEWS output will be evaluated against EC-measured tur-
bulent fluxes, but the challenge is that the source area of the
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Table 2. SUEWS biogenic model parameters used for all case runs in this study.

Parameter Evergreen or deciduous trees Grass and lawn Reference

LAIi,max (m2 m−2) 5.1a/5.5b 5.9 Järvi et al. (2011)
LAIi,min (m2 m−2) 4.0a/1.0b 1.6 Järvi et al. (2011)
Fpho,max,i (µmolm−2 s−1) 8.4 5.5 Havu et al. (2022a); this study
G1 3.5 3.5 Havu et al. (2022a)
G2 477 477 Havu et al. (2022a)
G3 0.66 0.66 Havu et al. (2022a)
G4 0.89 0.89 Havu et al. (2022a)
G5 30 30 Havu et al. (2022a)
G6 0.36 0.36 Havu et al. (2022a)
1θWP (mm) 132 132 Havu et al. (2022a)
Kdown,max (Wm−2) 1200 1200 Järvi et al. (2014)
TL (◦C) −10 −10 Ward et al. (2016)
TH (◦C) 55 55 Ward et al. (2016)
ai 0.78 2.1 Havu et al. (2022a); Järvi et al. (2019)
bi 0.08 0.06 Havu et al. (2022a); Järvi et al. (2019)
Soil depth (mm) 1000 349 Havu et al. (2022a); Kokkonen et al. (2019)

a Evergreen tree. b Deciduous tree.

Table 3. Comparison in leaf area index (LAI) parameters between
the base case and LAI and gs_LAI cases. All vegetation types (ever-
green tree, deciduous tree, and grass) use the same LAI parameters
within one case. The base case values are the same as in Järvi et al.
(2011).

LAI parameters

Base case LAI and gs_LAI cases

Tbase,GDD (◦C) 5 5.7
Tbase,SDD (◦C) 10 22
GDDfull (◦C) 300 446
SDDfull (◦C) −450 −1000
ω1,GDD 0.04 −1.42
ω2,GDD 0.001 0.00258
ω1,SDD −1.5 2.0
ω2,SDD 0.0015 0.0001

observations is different to the exact modeling domain. To
consider the impact of the chosen modeling domain on model
evaluation, we designed three additional model cases where
circular areas around the IAP tower with different radii are
considered. The default run is with the 1 km radius circle,
but SUEWS is also run within 500, 750, and 1500 m cir-
cular areas, corresponding to the flux footprint of roughly
60 %, 70 %, and 80 %–90 %, respectively (Liu et al., 2012).
Used vegetation parameters are as in the gs_LAI case, but
land surface fractions, population, and traffic parameters are
modified accordingly (Appendix F).

Table 4. Comparison of maximum conductances (gmax) between
the base case and gs and gs_LAI cases. Parameters for the base case
follow Järvi et al. (2011). More details can be found in Appendix E.

gmax (mms−1)

Base case gs and gs_LAI cases

Evergreen tree 7.4 1.4
Deciduous tree 11.7 7.0
Grass 40.0 3.7

4.6 Statistical metrics for model evaluation

Common statistical metrics are used to quantify the model
performance, including the coefficient of determination
(R2), root-mean-square error (RMSE), and mean bias error
(MBE). Simple linear regression is used to estimate the rela-
tionship between the model output and the observations, and
the square of the correlation coefficient is taken as R2. The
other statistical metrics are defined as follows:

RMSE=

√∑n
i=1(yi − ŷi)

2

n
, (18)

MBE=
1
n

n∑
i=1
(ŷi − yi), (19)

where ŷi is the modeled value and yi the measured value.
Statistical metrics are calculated at annual and seasonal scale,
i.e., DJF (winter), MAM (spring), JJA (summer), and SON
(autumn).
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Figure 3. Normalized LAI in 2016, where the value 0 (1) repre-
sents the minimum (maximum) of LAI. “Base” denotes the mod-
eled LAI for the base case, “Landsat” denotes the remotely sensed
LAI of the adjacent park near the IAP tower, and “optimized” de-
notes the modeled LAI using the parameters derived with CMA-ES
(Appendix A).

5 Results and discussion

5.1 Seasonal dynamics of the optimized LAI

The control base case simulates the onset of leaf growth and
the ending of senescence reasonably well (Fig. 3). The per-
formance of LAI modeling is further improved after the opti-
mization (Appendix A). In the base case, the modeled LAI
starts to increase rapidly from day-of-year (DOY) 70 and
plateaus at DOY 105, which is too early when compared
to the remotely sensed LAI (Landsat 7 LAI). The optimized
LAI starts to grow at the same time but slightly slower and
peaks 20 d later than in the base case. In autumn, LAI mod-
eled by the base case drops rapidly at DOY 310, while the op-
timized LAI starts to decline rapidly at DOY 267. The LAI
model with optimized parameters is better at capturing the
behavior of senescence than in the base case.

Although previous studies suggested that LAI was gener-
ally modeled well using default parameters following Järvi
et al. (2011), Ward et al. (2016) reported that leaf growth is
reached too early and suddenly in spring in two UK cities.
In contrast, Ao et al. (2018) showed that the simulated LAI
might be lower than reality when vegetation remained green
in winter and spring in Shanghai, China. These lead to the
bias in gs and therefore QE estimates (Eqs. 2 and 3). In Bei-
jing, the rainy season lasts from May to October, while the
rest of the year is the dry season (Liu et al., 2012). It is possi-
ble that the distinct dry season leads to a lack of soil moisture
in spring and autumn and thus influences the LAI seasonal
dynamics if there is no external water input (Omidvar et al.,
2022). However, the urban green spaces in Beijing are usu-
ally sufficiently or even excessively irrigated (Zhang et al.,
2017). Observations also provided evidence to support the

relationship between air temperature and phenological dy-
namics in the urban environment in Beijing (Lu et al., 2006;
Luo et al., 2007). Therefore, the air temperature-dependent
LAI model is applicable in Beijing, but the “default” LAI
parameters might be not suitable. We recommend evaluating
the LAI model when SUEWS is applied to a different city
and deriving the optimal LAI parameters if necessary.

5.2 Evaluation of turbulent heat flux modeling

Both observed QE and QH reach their maxima around noon
(Fig. 4). The observed QE has the largest amplitude during
the summer months, whileQH during the spring months. All
four model cases capture their diurnal cycles, but large differ-
ences in the amplitude and model performance are observed
among the model cases (Fig. 5).

In the base case, the model overestimates QE (with MBE
from −7.4 to 48.6 Wm−2) except in winter months (Fig. 5).
With the optimized LAI (the LAI case), model performance
in QE remains virtually unchanged, with RMSE (12.1–
94.1 Wm−2) and R2 (0.17–0.53) when compared to the
base case (with RMSE 11.7–96.1 Wm−2 and R2 0.20–0.51)
(Fig. 5a–c). QE is to a large extent determined by surface
conductance, which is scaled by gmax of each vegetated sur-
face for the modeled area (Eq. 3). Clear improvement is
observed when the local gmax is used (the gs case), espe-
cially during summer. The overestimation of QE is largely
reduced, RMSE drops to 11.3–54.7 Wm−2, and R2 increases
to 0.25–0.61. With both the optimized LAI and the local
gmax introduced (the gs_LAI case), the R2 is similar to the
gs case, while RMSE slightly decreases by 1–2 Wm−2 in
spring and summer compared to the gs case. QE is underes-
timated throughout the day in winter (MBE=−8.3 Wm−2).
Observational studies have shown that combustion-derived
water vapor often contributes 5 %–10 % of total urban hu-
midity during the heating season (Fiorella et al., 2018; Liu
et al., 2022; Salmon et al., 2017). The observed QE ranges
from 0 to 30 Wm−2 in winter when vegetation is dormant;
this suggests that combustion and evaporation, as the domi-
nant sources of QE, might lead to QE at this magnitude. The
anthropogenic water vapor release might be underestimated
by SUEWS in winter.

In SUEWS, QH is estimated as the residual of energy bal-
ance and is therefore directly affected by the modeledQE. As
a result of overestimating QE in the base case, QH is greatly
underestimated with MBE of−51.1–14.4 Wm−2 and RMSE
of 60.9–116.0 Wm−2. R2 values in summer months and au-
tumn months are lower than 0.1. The model performance is
barely improved by the optimized LAI (the LAI case) but it
is noticeably improved after the local gmax is introduced (the
gs case) (Fig. 5d–f). The best model performance for QH is
obtained by the gs_LAI case, decreasing the magnitudes of
MBE to −13.6–15.2 Wm−2 and RMSE to 60.1–75.3 Wm−2

and increasing R2 to 0.40–0.64 (Fig. 5d–e).
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Figure 4. Annual and seasonal mean diurnal cycles of observed and modeled (a–e) latent heat flux (QE) and (f–j) sensible heat flux (QH)
for the four model cases (base, gs, LAI, and gs_LAI) in the year 2016. The shaded area denotes the interquartile range.

QH is also influenced by QF. Nighttime QF in summer
might be overestimated, leading to the overestimation inQH.
Turbulent heat fluxes are also related to 1QS. Both QE and
QH correlate negatively with 1QS (Eqs. 2 and 9). For in-
stance, QE is underestimated, while QH is overestimated at
noon in summer in the gs_LAI case. The decrease in 1QS
will lead to a simultaneous increase inQE andQH, lowering
the bias of QH while increasing the bias of QE. Therefore,
the adjustment of 1QS can hardly improve the QE and QH
modeling at the same time.

Our results suggest that the model performance of heat
fluxes is more sensitive to the adjustment of gmax than to
the change in LAI seasonal dynamics. By incorporating local
LAI and gmax, SUEWS simulates the heat fluxes noticeably
better, increasing R2 by 0.03 (0.30) and decreasing RMSE

by 27.0 (23.7) Wm−2 for QE (QH) compared to the base
case.

5.3 Evaluation of CO2 flux modeling

5.3.1 Model performance

SUEWS basically reproduces the average annual and sea-
sonal diurnal cycle of observed FC (Fig. 6). The diurnal
behavior is dominated by on-road traffic emission, which
reaches 22.6 and 23.0 µmolm−2 s−1 for the morning peak
and afternoon peak, respectively, during the rush hours
(Fig. 7). Human metabolism (maximum 4.8 µmolm−2 s−1)
is the second largest source of CO2 emissions. In winter, the
building CO2 emission has a maximum of 6.7 µmolm−2 s−1

in the daytime. The maximum photosynthesis rate is

https://doi.org/10.5194/gmd-16-4551-2023 Geosci. Model Dev., 16, 4551–4579, 2023



4562 Y. Zheng et al.: Simulating heat and CO2 fluxes in Beijing using SUEWS V2020b

Figure 5. Model performance statistics R2, RMSE, and MBE of (a–c) latent heat flux (QE) and (d–f) sensible heat flux (QH) for the four
model cases (base, gs, LAI, and gs_LAI) in the year 2016.

Figure 6. Annual and seasonal average diurnal cycles of observed and modeled CO2 flux (FC) for the four model cases (base, gs, LAI, and
gs_LAI) in the year 2016. The shaded area denotes the interquartile range.

5.9 µmolm−2 s−1 around noon in summer, while soil and
vegetation respiration constantly serves as a CO2 source with
a rate lower than 3.6 µmolm−2 s−1.

Each of the model performance statistics of FC is of a sim-
ilar magnitude among cases, indicating the FC modeling is
far less sensitive to the choices of gmax and LAI-related pa-
rameters than QE and QH shown in Sect. 5.2 (Fig. 8). Under
the current parameterizations, Fres considers only air temper-
ature (Eq. 15). The adjustments of gmax and LAI parameters
affect the modeled heat fluxes, influencing 2 m air temper-
ature, and finally Fres, but the difference in annual CO2 re-

lease from respiration is less than 0.01 kgCm−2 yr−1 among
cases. Fpho is sensitive to the adjustments of gmax and LAI
parameters. In the base case, the large values of gmax al-
low relatively high evapotranspiration (namely QE). As a re-
sult, the average 1θ during January and June is larger than
105 mm, which is only 27 mm lower than the wilting point
deficit (1θWP). The dry soil lowers the surface conductance
and photosynthetic CO2 uptake through the limiting func-
tion of g(1θ) (Eq. 8). As the local gmax is introduced, the
soil remains moister with 1θ lower than 75 mm through-
out the year, allowing more favorable conditions for the pho-
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Figure 7. Seasonal average diurnal cycles of modeled CO2 flux (FC) components in the gs_LAI case in 2016. FV denotes the CO2 emissions
from on-road traffic, FB denotes buildings, FM denotes human metabolism, Fres denotes vegetation and soil respiration, and Fpho denotes
the CO2 uptake by vegetation photosynthesis. Positive values indicate emissions of CO2, and negative values indicate the uptake of CO2
with respect to the atmosphere. The shaded area denotes the interquartile range.

Figure 8. Model performance statistics for (a) R2, (b) RMSE, and (c) MBE of CO2 flux (FC) for the four cases (base, gs, LAI, and gs_LAI)
in the year 2016.

tosynthetic CO2 assimilation. The CO2 assimilated through
photosynthesis is 0.57 kgCm−2 yr−1 in the gs case, which is
0.21 kgCm−2 yr−1 higher than in the base case. The LAI re-
duction in spring and autumn in the gs_LAI case, on the other
hand, directly limits surface conductance and photosynthesis
(Eq. 14), leading to a decrease of 0.07 kgCm−2 yr−1 in an-
nual photosynthetic CO2 uptake when compared to the gs
case.

In SUEWS, photosynthetic and respiration rates are pro-
portional to the fractions of vegetated surfaces, which ac-
count for only 29 % of the modeled area. The magnitude of
Fpho is substantially lower than the traffic emission, making
the effect of photosynthesis, as well as its response to the ad-
justments of gmax and LAI parameters, hardly visible in the
FC diurnal cycles (Fig. 6).

Expectedly, SUEWS has difficulty in capturing the hourly
variability of FC, resulting in the overall low R2 (0.16–0.22)
and high RMSE (12.9–16.4 µmolm−2 s−1) (Fig. 8a). On the
one hand, observed FC has great variability at the hourly
scale throughout the year, as indicated by the large interquar-
tile range (Fig. 6). On the other hand, under the current pa-
rameterization, two of the anthropogenic FC components are
static: modeled traffic emission diurnal cycle is only depen-
dent on whether it is a weekend or a weekday, and modeled
human metabolism diurnal cycle is invariable throughout the

year (Fig. 7), making it difficult to capture the extreme val-
ues. Other urban FC bottom-up modeling studies also re-
ported similar challenges in modeling FC hourly variability
in Helsinki and in Basel (Järvi et al., 2019; Stagakis et al.,
2022).

SUEWS gives a reasonable estimate of annual accu-
mulated FC (8.6 kgCm−2 yr−1), which is 15 % higher
than the observed gap-filled value (7.5 kgCm−2 yr−1).
FC is overestimated in all seasons, with the lowest
MBE (0.2 µmolm−2 s−1) in winter and the highest MBE
(5.7 µmolm−2 s−1) in summer (Fig. 8c).

There are multiple reasons to explain the difficulty in ac-
curately capturing the diurnal cycle of the observed FC for
each season. First, the underlying seasonal variation in the
diurnal wind pattern makes the FC diurnal cycle from the
NW quadrant more “seen” in winter and spring, while the
diurnal cycle from the SE quadrant is more seen in summer
and autumn (Fig. S2a–d). Second, the observed FC varies
noticeably with wind direction (Fig. S2e–h). An evident af-
ternoon and evening FC peak is observed from the NE and
SE throughout the year. This might be attributed to the rela-
tively high traffic volumes and more severe traffic congestion
in the afternoon and evening than in the morning, especially
at the nearby crossroads (Fig. 1d). The morning FC peak only
comes from the NE and NW and only during winter months,
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suggesting that there might be seasonal variation in the traf-
fic pattern that is not captured by SUEWS. The noticeable
increase in FC in winter from the SE and NW indicates that
the building heating emissions might mainly originate from
these two sectors. However, SUEWS cannot consider this
FC’s wind direction dependency as it simulates the overall
flux from the simulation domain.

Apart from the wind direction, atmospheric stability in-
fluences the real-time footprint fetch of FC (Crawford and
Christen, 2015), but this is not considered in our study. Fur-
thermore, there might be biases in simulating the seasonal
cycles of FC components. SUEWS might underestimate the
vegetation photosynthetic rate or overestimate the CO2 re-
lease from respiration due to the lack of site-specific bio-
genic parameters. Nonetheless, the model performance over
the FC diurnal cycle is reasonably good compared to a previ-
ous study (Järvi et al., 2019).

Uncertainties in traffic emission originate from the traf-
fic rates and EFs. SUEWS adopts static traffic EFs and ne-
glects the relationship between traffic emission and Tair as re-
ported by Alvarez and Weilenmann (2012) and Fontaras et al.
(2017). In order to examine the impact of seasonal variation
of Tair in traffic emission, correction is conducted using the
regression function following Zhang et al. (2021), but only a
marginal difference is seen at monthly scale: a difference of
3 % in winter, −2 % in spring, ∼ 0 % in summer, and −1 %
in autumn. Therefore, we believe that the static traffic EFs
adopted by SUEWS can provide reasonable traffic emission
values without considering the seasonal dynamics of Tair.

Järvi et al. (2019) reported that using a different coeffi-
cient of CO2 release per capita (CM) led to a 6 % decrease
in the human metabolic CO2 emission estimate. If CM is
set to a daily mean value of 242 µmolm−2 s−1 (Prairie and
Duarte, 2007) instead of the current values (Table 1), the hu-
man metabolic emission will increase and the annual FC will
be 4 % higher than the original estimate.

Building emissions are calculated based on the QF es-
timates and heating fraction. Modeled average QF in De-
cember is 52.7 Wm−2, which is higher than another model
estimate (21.6 Wm−2) in the modeled area (Wang et al.,
2020). Observations of QF are rarely available, and thus
these QF estimates have not yet been validated. The repre-
sentativeness of the heating fraction estimated from year-
book statistics is yet to be examined because the location
and heating capacity of heating boilers within the modeled
area is unknown. However, the building emission estimate
(0.97 kgCm−2 yr−1) falls in the range of estimates (∼ 0–
3.0 kgCm−2 yr−1) by other cities (Björkegren and Grim-
mond, 2018; Christen et al., 2011; Järvi et al., 2019; Mori-
waki and Kanda, 2004).

The modeled CO2 release by respiration is larger than CO2
assimilated through photosynthesis in our study. At the an-
nual scale, urban vegetative surfaces can have a net CO2 up-
take (Awal et al., 2010; Konopka et al., 2021) but may also
have a net emission (Peters and McFadden, 2012). Admit-

tedly, bias might exist in biogenic CO2 flux estimates since
the parameters used in this study are derived from the obser-
vations over street trees in Helsinki and over a lawn at Os-
sinlampi, Finland, where the climate and vegetative species
are different from Beijing. With these parameters, the model
might underestimate the CO2 sequestrated by the local vege-
tation or overestimate the CO2 release by respiration.

5.3.2 The impact of the modeling domain size

The surroundings of the IAP tower are heterogeneous in
terms of land surface fraction and mean daily traffic rate
(Fig. 9a). The fraction of vegetated surfaces is higher closer
to the tower than further away due to the green spaces adjoin-
ing the IAP tower (Fig. 1b). Additionally, there is a traffic hot
spot on the 3rd Ring North Road located 850 m to the south
of IAP tower (Fig. 1d), where the traffic rate is 2 to 7 times
the value for the other roads inside the circle of a 1000 m
radius (figure not shown). A large increase of 26 % in daily
traffic rate is seen when the radius of modeling domain is
1000 or 1500 m when compared to domains with lower radii
(Fig. 9a). Thus, the modeled annual accumulated FC largely
depends on the modeling domain size chosen, giving esti-
mates of 7.4, 7.6, 8.6 ,and 8.7 kgCm−2 yr−1 for the radii of
500, 750, 1000, and 1500 m, respectively. Observational an-
nual FC (7.5 kgCm−2 yr−1) falls within this range, which in-
dicates the good model performance of SUEWS (Fig. 9b).

The turbulent flux modeling is usually evaluated over a
fixed extent, such as a circle with a certain radius, to approx-
imate the flux source area (Demuzere et al., 2017; Järvi et al.,
2019). However, when a circle with the radius ≥ 1000 m
is selected to approximate the ≥ 80 % footprint fetch in our
study, SUEWS does not give the closest estimate of annual
FC. This can be explained by the mismatch between the mod-
eling domain and the real flux source area – the single fixed-
extent modeled area cannot perfectly represent the land sur-
face characteristics (e.g., the nonuniform land cover and hu-
man activities), biassing turbulent flux modeling (Chu et al.,
2021; Laine et al., 2009). First, the accumulated footprint
area of the observed fluxes is irregular in shape and varies
with time (Liu et al., 2012). Second, the relative contribu-
tion to flux from the land surface decreases as the distance to
the measurement instrument increases (Christen et al., 2011;
Rebmann et al., 2005). Thus, when the modeling domain is a
1000 m radius circle, the model might underestimate the rel-
ative contribution from the adjacent vegetated surface and
overestimate the contribution of the traffic hot spot at the
edge of 80 % footprint fetch.

Regardless of the modeling domain size, traffic is the dom-
inant CO2 source, contributing 59 %–70 % to the total CO2
emissions, followed by human metabolism (14 %–18 %),
building energy use (11 %–14 %), and CO2 release by vege-
tation and soil respiration (6 %–10 %). Vegetation photosyn-
thesis offsets only 5 %–10 % of the total annual CO2 emis-
sions (Fig. 10). Several bottom-up modeling studies show

Geosci. Model Dev., 16, 4551–4579, 2023 https://doi.org/10.5194/gmd-16-4551-2023



Y. Zheng et al.: Simulating heat and CO2 fluxes in Beijing using SUEWS V2020b 4565

Figure 9. (a) Land use fraction and mean daily traffic rate (Trwd/we) and (b) accumulated CO2 flux (FC) for the modeling domain, with
the radius ranging from 500 m to 1500 m. “Wd” denotes weekday, “we” denotes weekend, “Mod” denotes modeled FC, and “Obs” denotes
observed FC. Note that in (b) the lines for Mod 500 m and Mod 750 m nearly overlap, while the lines for Mod 1000 m and Mod 1500 m
nearly overlap.

that the on-road traffic is the greatest source in a densely built
neighborhood, contributing to 70 % in central London, 61 %
in Helsinki, 53 %–78 % in Tokyo, and 70 % in Vancouver,
while human metabolism also plays an important role, con-
tributing 5 %–39 % to the annual total FC (Björkegren and
Grimmond, 2018; Christen et al., 2011; Järvi et al., 2019;
Moriwaki and Kanda, 2004). Our results are in general agree-
ment with these studies. The contribution of the local build-
ing emissions within the study area is more variable among
cities: a contribution of 70 % is reported in Basel (Stagakis
et al., 2022), while ∼ 0 % is reported in Helsinki (Järvi et al.,
2019), and our estimate falls in this range. The direct CO2
sequestration by urban plants is minor compared with the to-
tal CO2 emissions in this densely built neighborhood, which
is in general agreement with Pataki et al. (2011) and Chris-
ten et al. (2011). For more accurate biogenic component esti-
mates in Beijing, photosynthetic and respiration observations
over local species are needed in the future.

6 Conclusions

A correct description of vegetation is vital in order to sim-
ulate the energy and CO2 fluxes over urban surfaces using
the urban land surface model SUEWS. In this study, the
impact of selecting appropriate vegetation parameters, in-
cluding LAI parameters and gmax, on simulating the surface
fluxes is examined in Beijing, China. In addition, the newly
developed CO2 emissions module in SUEWS is evaluated
against EC measurements.

The model performance of heat fluxes (QE and QH) is
more sensitive to the adjustment of gmax than to the change
in LAI seasonal dynamics in our study area. The LAI model
has been improved by using CMA-ES to optimize the LAI

Figure 10. The contribution to total CO2 emissions by each compo-
nent at the annual scale for the modeled area with a radius ranging
from 500 to 1500 m. Note that for photosynthesis the percentages
denote the offset against total CO2 emissions.

parameters with a remotely sensed LAI product, provid-
ing more realistic vegetation phenological dynamics, espe-
cially for the senescence season. The parameter gmax was
parameterized according to leaf-level observations of veg-
etation species in Beijing. By incorporating local LAI and
gmax, SUEWS simulates the heat fluxes noticeably better, in-
creasing R2 by 0.03 (0.30) and decreasing RMSE by 27.0
(23.7) Wm−2 for QE (QH), and showing more realistic sea-
sonal dynamics when compared to EC observations.
FC modeling appears to be less sensitive to the choice of

LAI-related parameters and gmax. Only one of the FC com-
ponents, Fpho, responds noticeably to them. SUEWS can
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catch the general diurnal and seasonal behavior of FC but
tends to overestimate FC, especially in summer months. We
also tested the influence of chosen modeling domain size
on simulated FC. By selecting the modeled radii of cir-
cular areas ranging from 500 to 1500 m (i.e., an accumu-
lated footprint area from 60 % to 80 %–90 %), the modeled
annual FC ranges from 7.4 to 8.7 kgCm−2 yr−1, which is
comparable with the EC observations (7.5 kgCm−2 yr−1).
This shows that the model also performs well on the an-
nual scale. Regardless of the modeling domain size, traffic
is the dominant CO2 source, contributing 59 %–70 % to the
total CO2 emissions, followed by human metabolism (14 %–
18 %), buildings (11 %–14 %), and CO2 release by vegeta-
tion and soil respiration (6 %–10 %). Vegetation photosyn-
thesis offsets only 5 %–10 % of the CO2 emissions.

We highlight the importance of choosing more site-
specific LAI parameters or gmax when SUEWS is used for
heat flux modeling before the more advanced application
such as urban climate and hydrological modeling. Observa-
tions are needed to support more accurate parameterizations
of biogenic CO2 fluxes. We believe that the bottom-up ap-
proach to model FC by SUEWS can be a promising tool in
capturing the CO2 emission hot spots, quantifying the rela-
tive contribution of the local CO2 sources, and assisting us in
mitigating urban CO2 emissions.

Appendix A: Workflow of LAI parameters optimization

In SUEWS, LAI influences the surface conductance and sub-
sequently QE and Fpho (Sect. 2). A workflow for param-
eter derivation for the LAI sub-model based on remotely
sensed data is designed for natural ecosystems (Omidvar
et al., 2022). However, vegetation in urban areas behaves dif-
ferently from natural ecosystems (Zhang et al., 2022) and
needs to be considered separately. Therefore, we propose a
workflow to obtain the parameters for urban area based on
remotely sensed LAI and covariance matrix adaptation evo-
lution strategy (CMA-ES). This workflow can also be applied
to natural ecosystems. The related data and codes are openly
available (Zheng et al., 2022).

Covariance matric adaptation evolution strategy (CMA-
ES) is one of the strategies for numerical optimization of
non-convex problems. It is based on the principle of biolog-
ical evolution. The evolution strategy takes a certain number
of individuals (candidate solutions) in a stochastic way, se-
lects individuals based on the fitness, and repeats this process
for generations so that a better or an optimal solution is ob-
tained. Adaptation of the covariance matrix amounts to learn-
ing a second-order model of the underlying objective func-
tion. Compared with classic optimization methods, CMA-ES
requires neither derivatives nor an objective function; it only
requires the ranking of candidate solutions. Besides, CMA-
ES outranks many of other optimization algorithms, perform-

ing especially strongly for “difficult functions” or larger di-
mensional search spaces (Hansen et al., 2010).

Taking our study area as an example, the LAI parameters
are optimized as follows:

1. LAI derivation. A 6-year time series (2011–2016) of
LAI of the vegetation in a park near the IAP tower is cal-
culated from the atmospherically corrected surface re-
flectance provided by USGS Landsat 7 Enhanced The-
matic Mapper+ (ETM+) (30 m spatial resolution) via
the Google Earth Engine Data Catalog (Masek et al.,
2006). The time series is treated as the “original LAI”.

2. Spikes removal. There are outliers in the LAI time se-
ries caused by instrument problems, uncertainties in
the retrieval algorithm, and cloud contamination. Val-
ues larger than 10 m2 m−2 and negative values are first
removed. The LAI values during December and January
are set to a fixed value, i.e., the average of these months
(0.2 m2 m−2), in order to reduce the noise in winter and
improve the optimization performance.

3. Scaling the original LAI to the canopy level. The orig-
inal LAI might be noticeably lower than the measured
LAI at the canopy level over a homogeneous vegetated
surface. Nonetheless, the original LAI provides the sig-
nals of vegetation phenology (e.g., leaf out, peak grow-
ing season, leaf fall). In order to give a more realistic es-
timate of LAI at the canopy level, the original LAI needs
to be scaled. Therefore, LAImax and LAImin need to be
given manually, preferably based on observational stud-
ies over local species. Here, the original LAI is scaled
to allow the optimized LAI to reach 5–6 m2 m−2 in the
peak growing season as reported by an observational
study in Beijing (Wang et al., 2021). The canopy-level
LAI is marked as the “input LAI” for the process of op-
timization and marked as the “observed LAI” for the
process of evaluation.

4. Interpolation. The observed LAI values are linearly in-
terpolated between values to obtain a daily time series,
marked as the “interpolated LAI”.

5. Parameter derivation using CMA-ES. The time series of
interpolated LAI and Tair are subjected to CMA-ES to
optimize the parameters. Using the LAI model and the
derived parameters, LAI is calculated and marked as the
“predicted LAI”.

Despite the spike removal step, noise is observed in the
LAI time series such as the abrupt drop and recovery during
summer. Smoothing techniques are used to extract valid in-
formation from the satellite data with noise. In other words,
the overall pattern (e.g., the moving average) of the time se-
ries is the information of interest, and CMA-ES has success-
fully reproduced the overall pattern out of the input LAI time
series contaminated by noise (Fig. A1a). Moreover, the LAI

Geosci. Model Dev., 16, 4551–4579, 2023 https://doi.org/10.5194/gmd-16-4551-2023



Y. Zheng et al.: Simulating heat and CO2 fluxes in Beijing using SUEWS V2020b 4567

Figure A1. (a) Time series of the input LAI, the interpolated LAI, and the predicted LAI and a (b) comparison of the predicted LAI against
the observed LAI.

has been “scaled” as shown in the scaling step to allow the
output LAI to reach 5–6 m2 m−2 in order to avoid the un-
derestimation of the predicted values. Therefore, the noise in
the input LAI during summer is kept since it has little impact
on the outcome. We conclude that the model performance
is overall good (with R2

= 0.74 and RMSE= 1.2 m2 m−2)
(Fig. A1b).

Appendix B: Evaluation of WFDE5 reanalysis against
observed meteorological variables

To force SUEWS, local-scale meteorological data within the
inertial sublayer is required. However, they can be unavail-
able for the area and period desired. Reanalyses provide spa-
tially and temporally complete datasets, which might make
the modeling run easier for users. Kokkonen et al. (2018)
and Kokkonen et al. (2019) evaluated one of the reanalyses,
WATCH Forcing Data ERA-Interim (WFDEI), suggesting
that WFDEI can serve as the forcing of SUEWS but should
be corrected beforehand when the bias is large.

WFDE5 is a bias-corrected dataset of near-surface me-
teorological variables derived from the fifth generation of
the European Centre for Medium-Range Weather Fore-
casts (ECMWF) atmospheric reanalysis (ERA5) (Cucchi
et al., 2021). It is generated using the same methodology as
WFDEI, and provides a single layer at 0.5◦ spatial resolution
and hourly temporal resolution. The evaluation of WFDE5
and the use of it as forcing data to SUEWS have been ne-
glected so far. Here, we compare WFDE5 against observed
meteorological variables including air temperature (Tair), rel-
ative humidity (RH), wind velocity (U ) at 47 m, and incom-
ing shortwave radiation (Kdown) at 140 m on the IAP tower
(Liu et al., 2012). The evaluation ofKdown is conducted from
May 2010 to June 2011, and the rest is conducted from Jan-
uary 2010 to December 2011. All the observed variables are
resampled from 30 min to 1 h resolution.

With the difference in height for each meteorological vari-
able (Table B1), however, WFDE5 is close to the observed
data as a whole (Fig. B1). Compared with the observed data,

Table B1. The height of WFDE5 and observed meteorological vari-
ables.

WFDE5 Observations (m)

Tair 2 m 47
RH near surface 32
U 10 m 47
Kdown near surface 140

WFDE5 Tair is lower, RH is higher, U is lower, and Kdown
is higher. WFDE5 may underestimate Tair and overestimate
RH due to it neglecting the urban anthropogenic heat release;
WFDE5 might overestimate Kdown due to insufficient con-
sideration of aerosol’s effect in decreasing solar radiation re-
ceived by the urban surface. The lower U of WFDE5 can be
explained by the lower height compared with the observa-
tions (Table B1). If the WFDE5 U is adopted as a forcing
of SUEWS, aerodynamic resistance might be overestimated,
and therefore QE might be underestimated.

Admittedly, some meteorological variables of WFDE5
correlate poorly with the observations in a particular season
(e.g., R2

= 0.13 for U in JJA). However, the overall high R2

and low RMSE and MBE in magnitude suggest that WFDE5
provides reasonably good estimates of each meteorological
variable (Table B2). Therefore, WFDE5 is adopted as the
forcing data of SUEWS in this study.
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Figure B1. Comparison of WFDE5 and observed meteorological variables including (a) air temperature (Tair), (b) relative humidity (RH),
(c) wind velocity (U ), and (d) incoming solar radiation (Kdown) at an hourly resolution.

Table B2. Statistics for WFDE5 compared against the observed meteorological variables.

Season Average R2 RMSE MBE N

WFDE5 Observed

Tair (◦C) DJF −2.1 −1.2 0.83 2.3 −1.0 4217
MAM 12.7 13.5 0.92 2.5 −1.0 4100
JJA 26.2 26.8 0.77 2.1 −0.5 3966
SON 13.8 14.2 0.94 1.9 −0.4 4278

RH (%) DJF 41.8 32.4 0.77 13.4 9.3 4216
MAM 41.6 34.1 0.74 13.8 7.9 3986
JJA 66.6 59.9 0.71 12.6 5.1 3546
SON 60.2 49.3 0.50 20.6 10.9 3958

U (ms−1) DJF 2.1 2.7 0.52 1.3 −0.5 4217
MAM 2.7 2.8 0.45 1.4 −0.1 4100
JJA 1.9 1.9 0.13 1.2 0.1 3949
SON 2.0 1.9 0.45 1.0 0.0 4252

Kdown (Wm−2) DJF 117.0 99.2 0.94 50.6 19.5 2160
MAM 222.5 218.1 0.93 82.7 19.7 2941
JJA 216.4 189.3 0.86 110.5 38.2 2883
SON 140.9 124.7 0.93 58.9 16.5 2150
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Appendix C: Evaluation of radiation fluxes

The radiation parameterization scheme Net All-wave Radia-
tion Parameterization (NARP) does not involve gmax or LAI.
As expected, the four experiments (Sect. 4.5.1) give identical
radiation flux components in the output. Therefore, only the
gs_LAI case is further analyzed here.

The model performance of SUEWS in simulating radia-
tion fluxes is good (Fig. C1, Table C1), and it can reproduce
the diurnal cycle of each radiation flux well (Fig. C2). Kup
is overestimated in all seasons, with MBE ranging from 0
to 10 Wm−2. This overestimation can at least partly be ex-
plained by the positive bias (MBE > 15 Wm−2 in all sea-
sons) of WFDE5 Kdown when compared to the observed
Kdown (Appendix B). The overestimation in Kup can also be
caused by surface albedo. Observational studies have shown
that the urban surface albedo near the IAP tower varies be-
tween 0.1 and 0.15 with season (Jiang et al., 2007; Miao
et al., 2012). The annual bulk albedo for the modeling do-
main given to SUEWS is 0.14, which is relatively high but
still consistent with the observations. A larger positive bias
in Kup is observed in summer than in winter. Surface albedo
is influenced by many factors, such as surface wetness and
street canyon trapping effect (Ao et al., 2016; Dou et al.,
2019), which have not yet been considered by SUEWS. By
simply (1) adjusting the albedos for surface types following
Ward et al. (2016) and (2) allowing albedo for vegetation to
vary from a lower value in summer to a higher value in winter
(Table S5), the RMSE for Kup decreases for all seasons, es-
pecially in summer (from 18.0 to 13.6 Wm−2), but this only
has a minor impact on QN modeling (Table S6).

The average seasonal and diurnal cycles of Ldown are
well captured by the model (Fig. C2i–l), although R2 (0.68–
0.88) is lower than with other radiation fluxes. The differ-
ence might result from the discrepancy between the observed
and modeled cloud fraction as clear skies and overcast con-
ditions are especially difficult to capture using the radiation
model NARP, as also reported by Ao et al. (2016) and Ward
et al. (2016). The diurnal amplitude of Lup is slightly overes-
timated by SUEWS (Fig. C2m–p). The model tends to over-
estimate Lup, particularly at high values of Lup (Fig. C1m–
p). The values of emissivity of building materials used in
SUEWS might be slightly higher than in reality. Lup is also
dependent on Kdown in NARP. Therefore, the overestimation
of Lup can partly be explained by the overestimated Kdown
provided by WFDE5, especially around noon and in summer.

We conclude that SUEWS is applicable to provide a real-
istic estimate of radiation fluxes in Beijing, in general accor-
dance with previous studies (Järvi et al., 2014; Karsisto et al.,
2016; Ward et al., 2016), despite the absence of site-specific
parameters.

Table C1. SUEWS model performance statistics for radiation
fluxes. The abbreviations are the same as those in Fig. C1. Note
that Kdown is an input of SUEWS, while the others are outputs of
SUEWS.

Season R2 RMSE MBE N

Kdown DJF 0.94 52.3 19.5 2160
MAM 0.93 82.6 19.8 2940
JJA 0.86 110.4 39.3 2728
SON 0.93 59.6 16.6 2150

Kup DJF 0.88 9.2 0.2 2160
MAM 0.92 14.8 5.0 2940
JJA 0.88 18.0 8.1 2728
SON 0.91 11.6 3.3 2150

Ldown DJF 0.74 16.0 −2.4 2160
MAM 0.86 20.5 −10.0 2940
JJA 0.68 18.1 8.8 2728
SON 0.88 23.7 12.9 2150

Lup DJF 0.80 15.3 3.8 2160
MAM 0.90 18.6 3.2 2940
JJA 0.79 22.1 10.5 2728
SON 0.91 18.6 9.2 2150

QN DJF 0.94 38.0 13.2 2160
MAM 0.93 64.6 1.5 2940
JJA 0.86 87.0 29.5 2728
SON 0.92 50.8 17.0 2150
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Figure C1. Input or modeled vs. observed hourly radiation fluxes, including (a–d) incoming solar radiation (Kdown), (e–h) outgoing short-
wave radiation (Kup), (i–l) incoming longwave radiation (Lup), (m–p) outgoing longwave radiation (Lup), and (q–t) net radiation (QN) from
May 2010 to June 2011. Note that while Kdown is input, the rest are model output.
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Figure C2. Average diurnal cycle of input or modeled and observed hourly radiation fluxes by season, including (a–d) incoming solar
radiation (Kdown), (e–h) outgoing shortwave radiation (Kup), (i–l) incoming longwave radiation (Lup), (m–p) outgoing longwave radiation
(Lup), and (q–t) net radiation (QN) from May 2010 to June 2011. The shaded area denotes the standard deviation. Note that while Kdown is
input, the rest are model output.
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Appendix D: Fitting the maximum photosynthetic rate
for the grass and lawn vegetation type

In order to find the maximum photosynthetic rate for the veg-
etation type of grass to be used in SUEWS simulation, the en-
vironmental response functions g(Tair), g(1q), g(1θ), and
g(Kdown) in Eq. (14) were fitted to observations from an eddy
covariance (EC) station (60◦11′16.02′′ N, 24◦49′56.85′′ E)
situated on an urban lawn in Espoo, Finland. A 1.2 m high
EC tower was located at the center of the urban lawn cov-
ering an area of 0.7 ha. The EC setup consisted of a three-
dimensional sonic anemometer (Metek GmbH, Germany) for
measuring the three wind components and sonic temperature
and a closed-path infrared gas analyzer (LI-7200; LI-COR,
Lincoln, NE, USA) for measuring the CO2 and H2O mixing
ratios. The gas analyzer inlet was positioned 13 cm below
the anemometer, and air was drawn into the gas analyzer us-
ing a 60 cm length of steel tube, having an inner diameter
of 4.57 mm and a mean flow rate of 12 Lmin−1. The tube
was heated to avoid water vapor condensation on tube walls.
The raw EC data were sampled at 10 Hz and stored for post-
processing. The steps before 30 min flux calculations con-
sisted of despiking, linear detrending, and planar fitting of
the raw data.

The biogenic CO2 flux FC,bio from EC measurements was
partitioned into Fres and Fpho using the nighttime tempera-
ture dependency of Fres. The nighttime FC,bio was consid-
ered nighttime Fres, and it was related to the observed Tair by
fitting the exponential model:

Fres = agrass · exp(Tairbgrass), (D1)

where agrass and bgrass are parameters controlling the temper-
ature dependency. The nighttime temperature dependency of
Fres was then extrapolated to daytime, and Fpho was then cal-
culated by

Fpho = FC,bio−Fres. (D2)

Then Fpho was used as a dependent variable, whereas on-
site measurements of net radiation (CNR4; Kipp&Zonen,
Delft, Netherlands), air temperature and relative humid-
ity (HMP110 A15; Vaisala Oyj, Vantaa, Finland), and
soil moisture (ML3 Thetaprobe; Delta-T, Cambridge, UK)
were used to estimate the independent variables in g(Tair),
g(1q), g(1θ), and g(Kdown). Atmospheric pressure from
the Finnish Meteorological Institute Kumpula station was
used to calculate 1q. Additional reference values of soil
properties (field capacity and wilting point), which were esti-
mated to be same as in an urban lawn in Kumpula (Järvi et al.,
2019), were used to calculate 1θWP. Parameters Fpho,max,
and G2–G6 were fitted using a nonlinear least-squares ap-
proach.

Data from mid-July to the end of August 2021 were used
and in the fitting only data points with Kdown< 10 Wm−2

and 1q > 1 gkg−1 were selected (Havu et al., 2022a).
After applying a bootstrapping method to randomly select
seven-eighths of the data 100 times, the final parameters
fitted for grass were obtained as medians with the uncertain-
ties as follows: Fpho,max= 5.497± 0.110 µmolm−2 s−1,
G2= 195.019± 5.601 Wm−2, G3= 0.741± 0.008,
G4= 0.413± 0.015, G5= 30.000± 0.000 ◦C, and
G6= 0.500± 0.000 mm−1. The value of Fpho,max is
used for grass and lawn in the Beijing simulation.
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Appendix E: Maximum conductance of urban green
space in Beijing

The weighted average of gmax is 7.0 mms−1 for the decid-
uous tree weighted by the population ratio of each species
(Table E1). The average gmax for grass is 3.7 mms−1. Note
that when the species in the modeled area are known, we sug-
gest the gmax is selected accordingly. Here, we seek values
that can represent the overall vegetation over the urban area
in Beijing, and therefore the average is taken from different
species.

Table E1. Maximum conductance (gmax) for each vegetated surface.

Deciduous tree

Sophora japonica Linn. Populus tomentosa Carr. Fraxinus chinensis Roxb. Ginkgo biloba Linn.

Ratioa 26.26 % 12.39 % 9.44 % 8.12 %
gmax (mms−1) 9.0 5.2 6.1 4.1
Reference Xu et al. (2020) Wang et al. (2018) Xu et al. (2020) Song et al. (2015)

Evergreen tree Grass/lawn

Pinus tabuliformis Festuca arundinacea Schreb. Poa pratensis L. Zoysia japonica Steud.

gmax (mms−1) 1.4b 5.4 4.0 1.6
Reference Chen et al. (2021) Wang et al. (2006) Wang et al. (2006) Wang et al. (2006)

a Obtained from a field survey over Beijing (Ma et al., 2019). b obtained by dividing maximum canopy conductance by G1 (= 3.5)
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Appendix F: Comparison of parameters for modeling
domain with different radii

Table F1. Land surface fraction for modeling domain with different radii, where “Paved” denotes paved surface, “Bldgs” denotes buildings,
“EveTr” denotes evergreen trees, “DecTr” denotes deciduous trees, “Grass” denotes grassland and lawn, “Bsoil” denotes bare soil, and
“Water” denotes waterbodies.

Radius (m)

500 750 1000 1500

Fr_Paved 0.39 0.32 0.46 0.46
Fr_Bldgs 0.18 0.21 0.24 0.24
Fr_EveTr 0.04 0.04 0.02 0.02
Fr_DecTr 0.18 0.18 0.11 0.01
Fr_Grass 0.20 0.24 0.16 0.17
Fr_Bsoil 0 0 0 0
Fr_Water 0.01 0.01 0.01 0.01

Figure F1. Diurnal cycles of (a) traffic rate and (b) population density for the modeling domain with different radii, where WD denotes
weekday and WE denotes weekday.
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Code and data availability. The datasets are openly available, in-
cluding the complete model cases of SUEWS; the meteorological,
radiation, and turbulent flux measurements; codes for LAI model
optimization using CMA-ES; and codes to reproduce the statistics
and figures (https://doi.org/10.5281/zenodo.7427360; Zheng et al.,
2022).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-16-4551-2023-supplement.

Author contributions. YZ, MH, HL, and LJ conceptualized the
study. YZ performed the SUEWS model cases, analyzed the re-
sults, and prepared the figures. HL, XC, YW, and JA collected the
data. HSL performed the fitting of maximum photosynthetic rate.
LJ and HL supervised the study. All authors contributed to writing
and preparing the manuscript.

Competing interests. At least one of the (co-)authors is a mem-
ber of the editorial board of Geoscientific Model Development. The
peer-review process was guided by an independent editor, and the
authors also have no other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. This study is funded by National Natural Sci-
ence Foundation of China (grant no. 42161144010), the China
Scholarship Council (grant no. 202104910363), the Tiina and Antti
Herlin Foundation (grant no. 20200027), the Academy of Finland
(grant nos. 321527 and 337549), and the Strategic Research Coun-
cil established within the Academy of Finland (grant no. 335201).
We sincerely appreciate Weiyi Zuo from Institute of Acoustics at
the Chinese Academy of Sciences for his significant technical sup-
port in realizing CMA-ES method in this study.

Financial support. This research has been supported by
the National Natural Science Foundation of China (grant
no. 42161144010), the China Scholarship Council (grant
no. 202104910363), the Tiina ja Antti Herlinin säätiö (grant
no. 20200027), the Academy of Finland (grant nos. 321527 and
337549), and the Academy of Finland, Strategic Research Council
(grant no. 335201).

Review statement. This paper was edited by Hisashi Sato and re-
viewed by two anonymous referees.

References

Alexander, P. J., Bechtel, B., Chow, W. T., Fealy, R., and
Mills, G.: Linking urban climate classification with an
urban energy and water budget model: Multi–site and
multi–seasonal evaluation, Urban Climate, 17, 196–215,
https://doi.org/10.1016/j.uclim.2016.08.003, 2016.

Alvarez, R. and Weilenmann, M.: Effect of low ambient temper-
ature on fuel consumption and pollutant and CO2 emissions of
hybrid electric vehicles in real-world conditions, Fuel, 97, 119–
124, https://doi.org/10.1016/j.fuel.2012.01.022, 2012.

Ao, X., Grimmond, C., Liu, D., Han, Z., Hu, P., Wang, Y.,
Zhen, X., and Tan, J.: Radiation fluxes in a business district
of Shanghai, China, J. Appl. Meteorol. Clim., 55, 2451–2468,
https://doi.org/10.1175/jamc-d-16-0082.1, 2016.

Ao, X., Grimmond, C., Ward, H., Gabey, A., Tan, J., Yang,
X.-Q., Liu, D., Zhi, X., Liu, H., and Zhang, N.: Evalua-
tion of the Surface Urban Energy and Water balance Scheme
(SUEWS) at a dense urban site in Shanghai: Sensitivity to an-
thropogenic heat and irrigation, J. Hydrometeorol., 19, 1983–
2005, https://doi.org/10.1175/jhm-d-18-0057.1, 2018.

Awal, M., Ohta, T., Matsumoto, K., Toba, T., Daikoku, K., Hattori,
S., Hiyama, T., and Park, H.: Comparing the carbon sequestration
capacity of temperate deciduous forests between urban and rural
landscapes in central Japan, Urban For. Urban Gree., 9, 261–270,
https://doi.org/10.1016/j.ufug.2010.01.007, 2010.

Best, M. and Grimmond, C.: Key conclusions of the first inter-
national urban land surface model comparison project, B. Am.
Meteorol. Soc., 96, 805–819, https://doi.org/10.1175/bams-d-14-
00122.1, 2015.

Best, M. and Grimmond, C.: Modeling the partitioning of turbulent
fluxes at urban sites with varying vegetation cover, J. Hydromete-
orol., 17, 2537–2553, https://doi.org/10.1175/jhm-d-15-0126.1,
2016.

Björkegren, A. and Grimmond, C.: Net carbon dioxide emis-
sions from central London, Urban Climate, 23, 131–158,
https://doi.org/10.1016/j.uclim.2016.10.002, 2018.

BMBS: Beijing Statistical Yearbook, Beijing Municipal Bureau of
Statistics, China Statistics Press, Beijing, ISBN 7-5037-0802-6,
2017.

Boegh, E., Soegaard, H., Broge, N., Hasager, C., Jensen, N.,
Schelde, K., and Thomsen, A.: Airborne multispectral data for
quantifying leaf area index, nitrogen concentration, and pho-
tosynthetic efficiency in agriculture, Remote Sens. Environ.,
81, 179–193, https://doi.org/10.1016/s0034-4257(01)00342-x,
2002.

Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C.,
Grossman-Clarke, S., Loridan, T., Manning, K. W., Mar-
tilli, A., and Miao, S.: The integrated WRF/urban mod-
elling system: development, evaluation, and applications to ur-
ban environmental problems, Int. J. Climatol., 31, 273–288,
https://doi.org/10.1002/joc.2158, 2011.

Chen, S., Chen, Z., and Zhang, Z.: The canopy stomatal conduc-
tance characteristics of Pinus tabulaeformis and Acer trunca-
tum and their environmental responses in the mountain area
of Beijing, Chinese Journal of Plant Ecology, 45, 1329–1340,
https://doi.org/10.17521/cjpe.2021.0198, 2021 (in Chinese).

Cheng, X., Liu, X., Liu, Y., and Hu, F.: Characteristics of CO2 con-
centration and flux in the Beijing urban area, J. Geophys. Res.-

https://doi.org/10.5194/gmd-16-4551-2023 Geosci. Model Dev., 16, 4551–4579, 2023

https://doi.org/10.5281/zenodo.7427360
https://doi.org/10.5194/gmd-16-4551-2023-supplement
https://doi.org/10.1016/j.uclim.2016.08.003
https://doi.org/10.1016/j.fuel.2012.01.022
https://doi.org/10.1175/jamc-d-16-0082.1
https://doi.org/10.1175/jhm-d-18-0057.1
https://doi.org/10.1016/j.ufug.2010.01.007
https://doi.org/10.1175/bams-d-14-00122.1
https://doi.org/10.1175/bams-d-14-00122.1
https://doi.org/10.1175/jhm-d-15-0126.1
https://doi.org/10.1016/j.uclim.2016.10.002
https://doi.org/10.1016/s0034-4257(01)00342-x
https://doi.org/10.1002/joc.2158
https://doi.org/10.17521/cjpe.2021.0198


4576 Y. Zheng et al.: Simulating heat and CO2 fluxes in Beijing using SUEWS V2020b

Atmos., 123, 1785–1801, https://doi.org/10.1002/2017jd027409,
2018.

Christen, A., Coops, N., Crawford, B., Kellett, R., Liss,
K., Olchovski, I., Tooke, T., Van Der Laan, M., and
Voogt, J.: Validation of modeled carbon-dioxide emis-
sions from an urban neighborhood with direct eddy-
covariance measurements, Atmos. Environ., 45, 6057–6069,
https://doi.org/10.1016/j.atmosenv.2011.07.040, 2011.

Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S.
C., Torn, M. S., Metzger, S., Kumar, J., and Arain, M. A.: Rep-
resentativeness of Eddy-Covariance flux footprints for areas sur-
rounding AmeriFlux sites, Agr. Forest Meteorol., 301, 108350,
https://doi.org/10.1016/j.agrformet.2021.108350, 2021.

Crawford, B. and Christen, A.: Spatial source attribution of mea-
sured urban eddy covariance CO2 fluxes, Theor. Appl. Clima-
tol., 119, 733–755, https://doi.org/10.1007/s00704-014-1124-0,
2015.

Cucchi, M., Weedon, G. P., Amici, A., Bellouin, N., Lange, S.,
Müller Schmied, H., Hersbach, H., and Buontempo, C.: Near
surface meteorological variables from 1979 to 2019 derived
from bias-corrected reanalysis, Version 2.0, Copernicus Cli-
mate Change Service (C3S) Climate Data Store (CDS) [data
set], https://doi.org/10.24381/cds.20d54e34 (last access: 11 May
2022), 2021.

Cui, Y., Zhang, W., Wang, C., Streets, D. G., Xu, Y., Du, M.,
and Lin, J.: Spatiotemporal dynamics of CO2 emissions from
central heating supply in the North China Plain over 2012–
2016 due to natural gas usage, Appl. Energ., 241, 245–256,
https://doi.org/10.1016/j.apenergy.2019.03.060, 2019.

Demuzere, M., Harshan, S., Järvi, L., Roth, M., Grimmond, C.,
Masson, V., Oleson, K., Velasco, E., and Wouters, H.: Impact of
urban canopy models and external parameters on the modelled
urban energy balance in a tropical city, Q. J. Roy. Meteor. Soc.,
143, 1581–1596, https://doi.org/10.1002/qj.3028, 2017.

Dou, J., Grimmond, S., Cheng, Z., Miao, S., Feng, D.,
and Liao, M.: Summertime surface energy balance fluxes
at two Beijing sites, Int. J. Climatol., 39, 2793–2810,
https://doi.org/10.1002/joc.5989, 2019.

Du, M., Wang, X., Peng, C., Shan, Y., Chen, H., Wang,
M., and Zhu, Q.: Quantification and scenario analysis of
CO2 emissions from the central heating supply system in
China from 2006 to 2025, Appl. Energ., 225, 869–875,
https://doi.org/10.1016/j.apenergy.2018.05.064, 2018.

Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bern-
hofer, C., Burba, G., Ceulemans, R., Clement, R., and Dol-
man, H.: Gap filling strategies for defensible annual sums of
net ecosystem exchange, Agr. Forest Meteorol., 107, 43–69,
https://doi.org/10.1016/j.agrformet.2006.03.003, 2001.

Fiorella, R. P., Bares, R., Lin, J. C., Ehleringer, J. R., and
Bowen, G. J.: Detection and variability of combustion-derived
vapor in an urban basin, Atmos. Chem. Phys., 18, 8529–8547,
https://doi.org/10.5194/acp-18-8529-2018, 2018.

Foken, T. and Wichura, B.: Tools for quality assessment of surface-
based flux measurements, Agr. Forest Meteorol., 78, 83–105,
https://doi.org/10.1016/0168-1923(95)02248-1, 1996.

Fontaras, G., Zacharof, N.-G., and Ciuffo, B.: Fuel consumption
and CO2 emissions from passenger cars in Europe–Laboratory
versus real-world emissions, Prog. Energ. Combust., 60, 97–131,
https://doi.org/10.1016/j.pecs.2016.12.004, 2017.

Friedl, M. and Sulla-Menashe, D.: MCD12Q1 MODIS/Terra+Aqua
Land Cover Type Yearly L3 Global 500 m SIN Grid V006, USGS
[data set], https://doi.org/10.5067/MODIS/MCD12Q1.006 (last
access: 19 April 2022), 2019.

Gong, P., Chen, B., Li, X., Liu, H., Wang, J., Bai, Y.,
Chen, J., Chen, X., Fang, L., and Feng, S.: Mapping
essential urban land use categories in China (EULUC-
China): Preliminary results for 2018, Sci. Bull., 65, 182–187,
https://doi.org/10.1016/j.scib.2019.12.007, 2020.

Grimmond, C. and Oke, T.: Heat storage in urban areas:
Local-scale observations and evaluation of a simple model,
J. Appl. Meteorol., 38, 922–940, https://doi.org/10.1175/1520-
0450(1999)038<0922:HSIUAL>2.0.CO;2, 1999.

Grimmond, C. and Oke, T.: Progress in measuring and observ-
ing the urban atmosphere, Theor. Appl. Climatol., 84, 3–22,
https://doi.org/10.1007/s00704-005-0140-5, 2006.

Grimmond, C. S. B., Blackett, M., Best, M., Barlow, J., Baik, J.,
Belcher, S., Bohnenstengel, S., Calmet, I., Chen, F., and Dandou,
A.: The International Urban Energy Balance Models Comparison
Project: First Results from Phase 1, J. Appl. Meteorol. Clim., 49,
1268–1292, https://doi.org/10.1175/2010jamc2354.1, 2010.

Hansen, N., Auger, A., Ros, R., Finck, S., and Pošík, P.: Comparing
results of 31 algorithms from the black-box optimization bench-
marking BBOB-2009, in: Proceedings of the 12th annual confer-
ence companion on Genetic and evolutionary computation, As-
sociation for Computing Machinery, New York, NY, USA, 1689–
1696, https://doi.org/10.1145/1830761.1830790, 2010.

Havu, M., Kulmala, L., Kolari, P., Vesala, T., Riikonen,
A., and Järvi, L.: Carbon sequestration potential of street
tree plantings in Helsinki, Biogeosciences, 19, 2121–2143,
https://doi.org/10.5194/bg-19-2121-2022, 2022a.

Havu, M., Lee, H. S., Soininen, J., and Järvi, L.: Spatial variability
of biogenic CO2 flux in Helsinki in 2020 (Version 1), Zenodo
[data set], https://doi.org/10.5281/zenodo.7198140, 2022b.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo,
G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara,
G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flem-
ming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L.,
Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S.,
Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The
ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–
2049, https://doi.org/10.1002/qj.3803, 2020.

Huete, A.: A comparison of vegetation indices over a global set of
TM images for EOS-MODIS, Remote Sens. Environ., 59, 440–
451, https://doi.org/10.1016/s0034-4257(96)00112-5, 1997.

Järvi, L., Grimmond, C., and Christen, A.: The Surface Ur-
ban Energy and Water Balance Scheme (SUEWS): Evalua-
tion in Los Angeles and Vancouver, J. Hydrol, 411, 219–237,
https://doi.org/10.1016/j.jhydrol.2011.10.001, 2011.

Järvi, L., Grimmond, C. S. B., Taka, M., Nordbo, A., Setälä, H., and
Strachan, I. B.: Development of the Surface Urban Energy and
Water Balance Scheme (SUEWS) for cold climate cities, Geosci.
Model Dev., 7, 1691–1711, https://doi.org/10.5194/gmd-7-1691-
2014, 2014.

Järvi, L., Grimmond, C., McFadden, J., Christen, A., Strachan, I.,
Taka, M., Warsta, L., and Heimann, M.: Warming effects on the

Geosci. Model Dev., 16, 4551–4579, 2023 https://doi.org/10.5194/gmd-16-4551-2023

https://doi.org/10.1002/2017jd027409
https://doi.org/10.1016/j.atmosenv.2011.07.040
https://doi.org/10.1016/j.agrformet.2021.108350
https://doi.org/10.1007/s00704-014-1124-0
https://doi.org/10.24381/cds.20d54e34
https://doi.org/10.1016/j.apenergy.2019.03.060
https://doi.org/10.1002/qj.3028
https://doi.org/10.1002/joc.5989
https://doi.org/10.1016/j.apenergy.2018.05.064
https://doi.org/10.1016/j.agrformet.2006.03.003
https://doi.org/10.5194/acp-18-8529-2018
https://doi.org/10.1016/0168-1923(95)02248-1
https://doi.org/10.1016/j.pecs.2016.12.004
https://doi.org/10.5067/MODIS/MCD12Q1.006
https://doi.org/10.1016/j.scib.2019.12.007
https://doi.org/10.1175/1520-0450(1999)038<0922:HSIUAL>2.0.CO;2
https://doi.org/10.1175/1520-0450(1999)038<0922:HSIUAL>2.0.CO;2
https://doi.org/10.1007/s00704-005-0140-5
https://doi.org/10.1175/2010jamc2354.1
https://doi.org/10.1145/1830761.1830790
https://doi.org/10.5194/bg-19-2121-2022
https://doi.org/10.5281/zenodo.7198140
https://doi.org/10.1002/qj.3803
https://doi.org/10.1016/s0034-4257(96)00112-5
https://doi.org/10.1016/j.jhydrol.2011.10.001
https://doi.org/10.5194/gmd-7-1691-2014
https://doi.org/10.5194/gmd-7-1691-2014


Y. Zheng et al.: Simulating heat and CO2 fluxes in Beijing using SUEWS V2020b 4577

urban hydrology in cold climate regions, Sci. Rep.-UK, 7, 1–8,
https://doi.org/10.1038/s41598-017-05733-y, 2017.

Järvi, L., Havu, M., Ward, H. C., Bellucco, V., McFad-
den, J. P., Toivonen, T., Heikinheimo, V., Kolari, P., Ri-
ikonen, A., and Grimmond, C. S. B.: Spatial modeling of
local-scale biogenic and anthropogenic carbon dioxide emis-
sions in Helsinki, J. Geophys. Res.-Atmos., 124, 8363–8384,
https://doi.org/10.1029/2018jd029576, 2019.

Jiang, X., Zhang, C., Gao, H., and Miao, S.: Impacts of urban albedo
change on urban heat island in Beijing-A case study, Acta Me-
teorol. Sin., 65, 301–307, https://doi.org/10.1002/jrs.1570, 2007
(in Chinese).

Johansson, E. and Emmanuel, R.: The influence of urban de-
sign on outdoor thermal comfort in the hot, humid city
of Colombo, Sri Lanka, Int. J. Biometeorol., 51, 119–133,
https://doi.org/10.1007/s00484-006-0047-6, 2006.

Karsisto, P., Fortelius, C., Demuzere, M., Grimmond, C. S. B.,
Oleson, K., Kouznetsov, R., Masson, V., and Järvi, L.: Sea-
sonal surface urban energy balance and wintertime stabil-
ity simulated using three land-surface models in the high-
latitude city Helsinki, Q. J. Roy. Meteor. Soc., 142, 401–417,
https://doi.org/10.1002/qj.2659, 2016.

Kokkonen, T., Grimmond, C. S. B., Räty, O., Ward, H., Christen,
A., Oke, T., Kotthaus, S., and Järvi, L.: Sensitivity of Surface
Urban Energy and Water Balance Scheme (SUEWS) to down-
scaling of reanalysis forcing data, Urban Climate, 23, 36–52,
https://doi.org/10.1016/j.uclim.2017.05.001, 2018.

Kokkonen, T. V., Grimmond, S., Murto, S., Liu, H., Sundström, A.-
M., and Järvi, L.: Simulation of the radiative effect of haze on
the urban hydrological cycle using reanalysis data in Beijing, At-
mos. Chem. Phys., 19, 7001–7017, https://doi.org/10.5194/acp-
19-7001-2019, 2019.

Konopka, J., Heusinger, J., and Weber, S.: Extensive Urban
Green Roof Shows Consistent Annual Net Uptake of Carbon
as Documented by 5 Years of Eddy-Covariance Flux Mea-
surements, J. Geophys. Res.-Biogeo., 126, e2020JG005879,
https://doi.org/10.1029/2020jg005879, 2021.

Laine, A., Riutta, T., Juutinen, S., Väliranta, M., and Tuit-
tila, E.-S.: Acknowledging the spatial heterogeneity in
modelling/reconstructing carbon dioxide exchange in
a northern aapa mire, Ecol. Model., 220, 2646–2655,
https://doi.org/10.1016/j.ecolmodel.2009.06.047, 2009.

Liu, H. Z., Feng, J. W., Järvi, L., and Vesala, T.: Four-year (2006–
2009) eddy covariance measurements of CO2 flux over an
urban area in Beijing, Atmos. Chem. Phys., 12, 7881–7892,
https://doi.org/10.5194/acp-12-7881-2012, 2012.

Liu, S., Pang, H., Zhang, N., Xing, M., Wu, S., and Hou, S.: Tem-
poral variations of the contribution of combustion-derived water
vapor to urban humidity during winter in Xi’an, China, Sci. To-
tal Environ., 830, 154711, https://doi.org/10.2139/ssrn.3994594,
2022.

Liu, Y., Liu, H., Du, Q., and Xu, L.: Multi-level CO2 fluxes
over Beijing megacity with the eddy covariance method,
Atmospheric and Oceanic Science Letters, 14, 100079,
https://doi.org/10.1016/j.aosl.2021.100079, 2021.

Loridan, T., Grimmond, C., Offerle, B. D., Young, D. T.,
Smith, T. E., Järvi, L., and Lindberg, F.: Local-scale urban
meteorological parameterization scheme (LUMPS): long-
wave radiation parameterization and seasonality-related

developments, J. Appl. Meteorol. Clim., 50, 185–202,
https://doi.org/10.1175/2010jamc2474.1, 2011.

Lu, P., Yu, Q., Liu, J., and Lee, X.: Advance of tree-flowering
dates in response to urban climate change, Agr. Forest Meteorol.,
138, 120–131, https://doi.org/10.1016/j.agrformet.2006.04.002,
2006.

Luo, Z., Sun, O. J., Ge, Q., Xu, W., and Zheng, J.: Phenologi-
cal responses of plants to climate change in an urban environ-
ment, Ecol. Res., 22, 507–514, https://doi.org/10.1007/s11284-
006-0044-6, 2007.

Ma, J.: The study on urban forest structure and
eco-service in the Sixth Ring Road of Beijing,
Thesis, Chinese Academy of Forestry, Beijing,
https://doi.org/10.27625/d.cnki.gzlky.2019.000083, 2019.

Ma, J., Jia, B., Zhang, W., Liu, X., Li, X., and Liu, J.: The
characteristics of urban forest structure within the Sixth Ring
Road of Beijing, Chinese Journal of Ecology, 38, 2318–2325,
https://doi.org/10.13292/j.1000-4890.201908.035, 2019.

Marcotullio, P. J., Sarzynski, A., Albrecht, J., Schulz, N., and Gar-
cia, J.: The geography of global urban greenhouse gas emis-
sions: An exploratory analysis, Climatic Change, 121, 621–634,
https://doi.org/10.1007/s10584-013-0977-z, 2013.

Masek, J., Vermote, E., Saleous, N., Wolfe, R., Hall, F., Huemmrich,
K., Gao, F., Kutler, J., and Lim, T.-K.: A Landsat Surface Re-
flectance Dataset for North America, 1990–2000, IEEE Geosci.
Remote S., 3, 68–72, https://doi.org/10.1109/lgrs.2005.857030,
2006.

Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A.,
Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F.,
Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B.,
Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H.,
Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse,
M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf,
J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Sal-
gado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon,
B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and
ocean surface platform for coupled or offline simulation of earth
surface variables and fluxes, Geosci. Model Dev., 6, 929–960,
https://doi.org/10.5194/gmd-6-929-2013, 2013.

MHURD: China urban-rural construction statistical yearbook 2016,
Ministry of Housing and Urban-Rural Development of the Peo-
ple’s Republic of China, China Statistics Press, Beijing, ISBN
9787503779596, 2018.

Miao, S., Dou, J., Chen, F., Li, J., and Li, A.: Analy-
sis of observations on the urban surface energy balance
in Beijing, Science China Earth Sciences, 55, 1881–1890,
https://doi.org/10.1007/s11430-012-4411-6, 2012.

Moriwaki, R. and Kanda, M.: Seasonal and diurnal fluxes
of radiation, heat, water vapor, and carbon dioxide over
a suburban area, J. Appl. Meteorol., 43, 1700–1710,
https://doi.org/10.1175/jam2153.1, 2004.

Nordbo, A., Karsisto, P., Matikainen, L., Wood, C. R.,
and Järvi, L.: Urban surface cover determined with air-
borne lidar at 2 m resolution–implications for surface
energy balance modelling, Urban Climate, 13, 52–72,
https://doi.org/10.1016/j.uclim.2015.05.004, 2015.

Offerle, B., Grimmond, C., and Oke, T. R.: Parameterization
of net all-wave radiation for urban areas, J. Appl. Me-

https://doi.org/10.5194/gmd-16-4551-2023 Geosci. Model Dev., 16, 4551–4579, 2023

https://doi.org/10.1038/s41598-017-05733-y
https://doi.org/10.1029/2018jd029576
https://doi.org/10.1002/jrs.1570
https://doi.org/10.1007/s00484-006-0047-6
https://doi.org/10.1002/qj.2659
https://doi.org/10.1016/j.uclim.2017.05.001
https://doi.org/10.5194/acp-19-7001-2019
https://doi.org/10.5194/acp-19-7001-2019
https://doi.org/10.1029/2020jg005879
https://doi.org/10.1016/j.ecolmodel.2009.06.047
https://doi.org/10.5194/acp-12-7881-2012
https://doi.org/10.2139/ssrn.3994594
https://doi.org/10.1016/j.aosl.2021.100079
https://doi.org/10.1175/2010jamc2474.1
https://doi.org/10.1016/j.agrformet.2006.04.002
https://doi.org/10.1007/s11284-006-0044-6
https://doi.org/10.1007/s11284-006-0044-6
https://doi.org/10.27625/d.cnki.gzlky.2019.000083
https://doi.org/10.13292/j.1000-4890.201908.035
https://doi.org/10.1007/s10584-013-0977-z
https://doi.org/10.1109/lgrs.2005.857030
https://doi.org/10.5194/gmd-6-929-2013
https://doi.org/10.1007/s11430-012-4411-6
https://doi.org/10.1175/jam2153.1
https://doi.org/10.1016/j.uclim.2015.05.004


4578 Y. Zheng et al.: Simulating heat and CO2 fluxes in Beijing using SUEWS V2020b

teorol. Clim., 42, 1157–1173, https://doi.org/10.1175/1520-
0450(2003)042<1157:ponarf>2.0.co;2, 2003.

Oke, T.: The Heat Island of the Urban Boundary Layer:
Characteristics, Causes and Effects, Springer, Dordrecht,
https://doi.org/10.1007/978-94-017-3686-2_5, pp. 81–107,
1995.

Omidvar, H., Sun, T., Grimmond, S., Bilesbach, D., Black, A.,
Chen, J., Duan, Z., Gao, Z., Iwata, H., and McFadden, J. P.: Sur-
face Urban Energy and Water Balance Scheme (v2020a) in veg-
etated areas: parameter derivation and performance evaluation
using FLUXNET2015 dataset, Geosci. Model Dev., 15, 3041–
3078, https://doi.org/10.5194/gmd-15-3041-2022, 2022.

Pataki, D. E., Carreiro, M. M., Cherrier, J., Grulke, N. E., Jennings,
V., Pincetl, S., Pouyat, R. V., Whitlow, T. H., and Zipperer, W. C.:
Coupling biogeochemical cycles in urban environments: ecosys-
tem services, green solutions, and misconceptions, Front. Ecol.
Environ., 9, 27–36, https://doi.org/10.1890/090220, 2011.

Peters, E. B. and McFadden, J. P.: Continuous measurements
of net CO2 exchange by vegetation and soils in a sub-
urban landscape, J. Geophys. Res.-Biogeo., 117, G03005,
https://doi.org/10.1029/2011jg001933, 2012.

Prairie, Y. T. and Duarte, C. M.: Direct and indirect metabolic
CO2 release by humanity, Biogeosciences, 4, 215–217,
https://doi.org/10.5194/bg-4-215-2007, 2007.

Qian, Y., Chakraborty, T., Li, J., Li, D., He, C., Sarangi, C., Chen,
F., Yang, X., and Leung, L. R.: Urbanization Impact on Regional
Climate and Extreme Weather: Current Understanding, Uncer-
tainties, and Future Research Directions, Adv. Atmos. Sci., 39,
819–860, https://doi.org/10.1007/s00376-021-1371-9, 2022.

Rebmann, C., Göckede, M., Foken, T., Aubinet, M., Au-
rela, M., Berbigier, P., Bernhofer, C., Buchmann, N., Car-
rara, A., and Cescatti, A.: Quality analysis applied on
eddy covariance measurements at complex forest sites us-
ing footprint modelling, Theor. Appl. Climatol., 80, 121–141,
https://doi.org/10.1007/s00704-004-0095-y, 2005.

Salmon, O. E., Shepson, P. B., Ren, X., Marquardt Collow, A. B.,
Miller, M. A., Carlton, A. G., Cambaliza, M. O., Heimburger,
A., Morgan, K. L., and Fuentes, J. D.: Urban emissions of wa-
ter vapor in winter, J. Geophys. Res.-Atmos., 122, 9467–9484,
https://doi.org/10.1002/2016jd026074, 2017.

Sarangi, C., Tripathi, S., Qian, Y., Kumar, S., and Ruby Leung,
L.: Aerosol and urban land use effect on rainfall around cities
in Indo–Gangetic Basin from observations and cloud resolving
model simulations, J. Geophys. Res.-Atmos., 123, 3645–3667,
https://doi.org/10.1002/2017jd028004, 2018.

Song, Y., Li, F., Wang, X., Xu, C., Zhang, J., Liu, X., and
Zhang, H.: The effects of urban impervious surfaces on eco-
physiological characteristics of Ginkgo biloba: A case study
from Beijing, China, Urban For. Urban Gree., 14, 1102–1109,
https://doi.org/10.1016/j.ufug.2015.10.008, 2015.

Stagakis, S., Feigenwinter, C., Vogt, R., and Kalberer, M.: A high-
resolution monitoring approach of urban CO2 fluxes. Part 1 –
bottom-up model development, Sci. Total Environ., 160216,
https://doi.org/10.2139/ssrn.4172744, 2022.

Sun, T. and Grimmond, S.: A Python-enhanced urban land sur-
face model SuPy (SUEWS in Python, v2019.2): development,
deployment and demonstration, Geosci. Model Dev., 12, 2781–
2795, https://doi.org/10.5194/gmd-12-2781-2019, 2019.

Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X.,
Yuan, D., Kalkstein, A. J., and Li, F.: The urban heat island and
its impact on heat waves and human health in Shanghai, Int.
J. Biometeorol., 54, 75–84, https://doi.org/10.1007/s00484-009-
0256-x, 2010.

United Nations Department of Economic and Social Affairs: World
Urbanization Prospects: The 2018 Revision, United Nations,
https://doi.org/10.18356/b9e995fe-en, 2019.

Velasco, E. and Roth, M.: Cities as net sources of CO2: Review of
atmospheric CO2 exchange in urban environments measured by
eddy covariance technique, Geography Compass, 4, 1238–1259,
https://doi.org/10.1111/j.1749-8198.2010.00384.x, 2010.

Wang, L., Fan, S., Hu, F., Miao, S., Yang, A., Li, Y., Liu,
J., Liu, C., Chen, S., Ho, H. C., Duan, Z., Gao, Z., and
Yang, Y.: Vertical gradient variations in radiation budget
and heat fluxes in the urban boundary layer: A comparison
study between polluted and clean air episodes in Beijing dur-
ing winter, J. Geophys. Res.-Atmos., 125, e2020JD032478,
https://doi.org/10.1029/2020jd032478, 2020.

Wang, Y., Yang, J., and Han, L.: Effects of different irrigation vol-
ume on photosynthesis of turfgrass (in Chinese), Journal of Bei-
jing Forestry University, 28, 26–31, 2006.

Wang, Y., Li, G., Di, N., Clothier, B., Duan, J., Li, D., Jia,
L., Xi, B., and Ma, F.: Leaf phenology variation within the
canopy and its relationship with the transpiration of Popu-
lus tomentosa under plantation conditions, Forests, 9, 603,
https://doi.org/10.3390/f9100603, 2018.

Wang, Y., Chang, Q., and Li, X.: Promoting sustainable carbon se-
questration of plants in urban greenspace by planting design:
A case study in parks of Beijing, Urban For. Urban Gree., 64,
127291, https://doi.org/10.1016/j.ufug.2021.127291, 2021.

Ward, H. C., Evans, J. G., and Grimmond, C. S. B.: Multi-season
eddy covariance observations of energy, water and carbon fluxes
over a suburban area in Swindon, UK, Atmos. Chem. Phys., 13,
4645–4666, https://doi.org/10.5194/acp-13-4645-2013, 2013.

Ward, H. C., Kotthaus, S., Järvi, L., and Grimmond, C. S. B.: Sur-
face Urban Energy and Water Balance Scheme (SUEWS): devel-
opment and evaluation at two UK sites, Urban Climate, 18, 1–32,
https://doi.org/10.1016/j.uclim.2016.05.001, 2016.

Watts, N., Adger, W. N., Agnolucci, P., Blackstock, J., Byass, P.,
Cai, W., Chaytor, S., Colbourn, T., Collins, M., and Cooper, A.:
Health and climate change: policy responses to protect public
health, Lancet, 386, 1861–1914, https://doi.org/10.1016/S0140-
6736(15)60854-6, 2015.

Wen, Y., Zhang, S., Zhang, J., Bao, S., Wu, X., Yang, D., and
Wu, Y.: Mapping dynamic road emissions for a megacity by us-
ing open-access traffic congestion index data, Appl. Energ., 260,
114357, https://doi.org/10.1016/j.apenergy.2019.114357, 2020.

Wen, Y., Wu, R., Zhou, Z., Zhang, S., Yang, S., Walling-
ton, T. J., Shen, W., Tan, Q., Deng, Y., and Wu, Y.:
A data-driven method of traffic emissions mapping with
land use random forest models, Appl. Energ., 305, 117916,
https://doi.org/10.1016/j.apenergy.2021.117916, 2022.

Xu, Y., Li, S., Yuan, X., and Feng, Z.: Emission characteristics of
biogenic volatile compounds (BVOCs) from common greening
tree species in northern China and their correlations with pho-
tosynthetic parameters, Environmental Science, 41, 3518–3526,
https://doi.org/10.13227/j.hjkx.202001180, 2020 (in Chinese).

Geosci. Model Dev., 16, 4551–4579, 2023 https://doi.org/10.5194/gmd-16-4551-2023

https://doi.org/10.1175/1520-0450(2003)042<1157:ponarf>2.0.co;2
https://doi.org/10.1175/1520-0450(2003)042<1157:ponarf>2.0.co;2
https://doi.org/10.1007/978-94-017-3686-2_5
https://doi.org/10.5194/gmd-15-3041-2022
https://doi.org/10.1890/090220
https://doi.org/10.1029/2011jg001933
https://doi.org/10.5194/bg-4-215-2007
https://doi.org/10.1007/s00376-021-1371-9
https://doi.org/10.1007/s00704-004-0095-y
https://doi.org/10.1002/2016jd026074
https://doi.org/10.1002/2017jd028004
https://doi.org/10.1016/j.ufug.2015.10.008
https://doi.org/10.2139/ssrn.4172744
https://doi.org/10.5194/gmd-12-2781-2019
https://doi.org/10.1007/s00484-009-0256-x
https://doi.org/10.1007/s00484-009-0256-x
https://doi.org/10.18356/b9e995fe-en
https://doi.org/10.1111/j.1749-8198.2010.00384.x
https://doi.org/10.1029/2020jd032478
https://doi.org/10.3390/f9100603
https://doi.org/10.1016/j.ufug.2021.127291
https://doi.org/10.5194/acp-13-4645-2013
https://doi.org/10.1016/j.uclim.2016.05.001
https://doi.org/10.1016/S0140-6736(15)60854-6
https://doi.org/10.1016/S0140-6736(15)60854-6
https://doi.org/10.1016/j.apenergy.2019.114357
https://doi.org/10.1016/j.apenergy.2021.117916
https://doi.org/10.13227/j.hjkx.202001180


Y. Zheng et al.: Simulating heat and CO2 fluxes in Beijing using SUEWS V2020b 4579

Yang, D., Zhang, S., Niu, T., Wang, Y., Xu, H., Zhang, K.
M., and Wu, Y.: High-resolution mapping of vehicle emis-
sions of atmospheric pollutants based on large-scale, real-
world traffic datasets, Atmos. Chem. Phys., 19, 8831–8843,
https://doi.org/10.5194/acp-19-8831-2019, 2019.

Zhang, D., Gao, J., Tang, D., Wu, X., Shi, J., Chen, J.,
Peng, Y., Zhang, S., and Wu, Y.: Switching on auxil-
iary devices in vehicular fuel efficiency tests can help cut
CO2 emissions by millions of tons, One Earth, 4, 135–145,
https://doi.org/10.1016/j.oneear.2020.12.010, 2021.

Zhang, H., Zhou, L., Huang, X., and Zhang, X.: De-
carbonizing a large City’s heating system using heat
pumps: A case study of Beijing, Energy, 186, 115820,
https://doi.org/10.1016/j.energy.2019.07.150, 2019.

Zhang, S., Wu, Y., Liu, H., Huang, R., Yang, L., Li, Z., Fu, L.,
and Hao, J.: Real-world fuel consumption and CO2 emissions
of urban public buses in Beijing, Appl. Energ., 113, 1645–1655,
https://doi.org/10.1016/j.apenergy.2013.09.017, 2014.

Zhang, X., Mi, F., Lu, N., Yan, N., Kuglerova, L., Yuan,
S., Peng, Q., and Ma, O. Z.: Green space water use
and its impact on water resources in the capital region
of China, Phys. Chem. Earth Pts. A/B/C, 101, 185–194,
https://doi.org/10.1016/j.pce.2017.02.001, 2017.

Zhang, Y., Yin, P., Li, X., Niu, Q., Wang, Y., Cao, W.,
Huang, J., Chen, H., Yao, X., and Yu, L.: The divergent re-
sponse of vegetation phenology to urbanization: A case study
of Beijing city, China, Sci. Total Environ., 803, 150079,
https://doi.org/10.1016/j.scitotenv.2021.150079, 2022.

Zhao, X., Zhou, Y., Chen, W., Li, X., Li, X., and Li, D.: Mapping
hourly population dynamics using remotely sensed and geospa-
tial data: a case study in Beijing, China, GISci. Remote Sens.,
58, 717–732, https://doi.org/10.1080/15481603.2021.1935128,
2021.

Zheng, Y., Liu, H., and Cheng, X.: Datasets for simulating heat and
CO2 fluxes in Beijing using SUEWS V2020b, Zenodo [data set],
https://doi.org/10.5281/zenodo.7427360, 2022.

Zhu, X., Ni, G., Cong, Z., Sun, T., and Li, D.: Impacts of sur-
face heterogeneity on dry planetary boundary layers in an
urban-rural setting, J. Geophys. Res.-Atmos., 121, 12164–12179,
https://doi.org/10.1002/2016jd024982, 2016.

https://doi.org/10.5194/gmd-16-4551-2023 Geosci. Model Dev., 16, 4551–4579, 2023

https://doi.org/10.5194/acp-19-8831-2019
https://doi.org/10.1016/j.oneear.2020.12.010
https://doi.org/10.1016/j.energy.2019.07.150
https://doi.org/10.1016/j.apenergy.2013.09.017
https://doi.org/10.1016/j.pce.2017.02.001
https://doi.org/10.1016/j.scitotenv.2021.150079
https://doi.org/10.1080/15481603.2021.1935128
https://doi.org/10.5281/zenodo.7427360
https://doi.org/10.1002/2016jd024982

	Abstract
	Introduction
	Model description
	Leaf area index model
	Radiation fluxes
	Turbulent heat fluxes
	CO2 flux

	Study site and measurements
	Model run
	Forcing meteorological data
	Land cover
	Storage heat flux
	Human activity
	Evaluation design
	Sensitivity to vegetation-related parameters
	Sensitivity to radius of modeled area

	Statistical metrics for model evaluation

	Results and discussion
	Seasonal dynamics of the optimized LAI
	Evaluation of turbulent heat flux modeling
	Evaluation of CO2 flux modeling
	Model performance
	The impact of the modeling domain size


	Conclusions
	Appendix A: Workflow of LAI parameters optimization
	Appendix B: Evaluation of WFDE5 reanalysis against observed meteorological variables
	Appendix C: Evaluation of radiation fluxes
	Appendix D: Fitting the maximum photosynthetic rate for the grass and lawn vegetation type
	Appendix E: Maximum conductance of urban green space in Beijing
	Appendix F: Comparison of parameters for modeling domain with different radii
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

