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Abstract. The modelling of small-scale processes is a ma-
jor source of error in weather and climate models, hindering
the accuracy of low-cost models which must approximate
such processes through parameterization. Red noise is es-
sential to many operational parameterization schemes, help-
ing model temporal correlations. We show how to build on
the successes of red noise by combining the known bene-
fits of stochasticity with machine learning. This is done us-
ing a recurrent neural network within a probabilistic frame-
work (L96-RNN). Our model is competitive and often supe-
rior to both a bespoke baseline and an existing probabilis-
tic machine learning approach (GAN, generative adversarial
network) when applied to the Lorenz 96 atmospheric sim-
ulation. This is due to its superior ability to model tempo-
ral patterns compared to standard first-order autoregressive
schemes. It also generalizes to unseen scenarios. We evalu-
ate it across a number of metrics from the literature and also
discuss the benefits of using the probabilistic metric of hold-
out likelihood.

1 Introduction

A major source of inaccuracies in climate models is due to
“unresolved” processes. These occur at scales smaller than
the resolution of the climate model (“sub-grid” scales) but
still have key effects on the overall climate. In fact, most
of the inter-model spread in how much global surface tem-

peratures increase after CO; concentrations double is due to
the representation of clouds (Schneider et al., 2017; Zelinka
et al., 2020). The typical approach to deal with the problem
of unresolved processes has been to model the effects of these
unresolved processes as a function of the resolved ones. This
is known as “parameterization”.

Red noise is a key feature in many parameterization
schemes (Christensen et al., 2015; Johnson et al., 2019;
Molteni et al., 2011; Palmer et al., 2009; Skamarock et al.,
2019; Walters et al., 2019). It is characterized by a power
spectral density which is inversely proportional to the square
of the frequency. It is the type of noise produced by a ran-
dom walk, where independent offsets are added to each step
to generate the next step. This leads to strong autocorrela-
tions in the time series. It contrasts with a white noise pro-
cess where each step is independent. Hasselmann (1976) de-
veloped the theory underpinning the importance of red noise
for parameterization, showing that the coupling of processes
with different timescales leads to red-noise signals in the
longer timescale process, analogously to what takes place
in Brownian motion. In parameterization, the resolved pro-
cesses typically have far longer timescales than the unre-
solved ones, motivating the inclusion of red noise in these
schemes. The usefulness of tracking the history of the sys-
tem for parameterization follows from the importance of red
noise.

We use probabilistic machine learning to propose a data-
driven successor to red noise in parameterization. The the-
ory explaining the prevalence of red noise in the climate
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was developed in an idealized model, within the framework
of physics-based differential equations. Such approaches
may be intractable outside the idealized case. Recently,
there has been much work looking at uncovering relation-
ships from data instead (Arcomano et al., 2022; Beucler
et al., 2020, 2021; Bolton and Zanna, 2019; Brenowitz and
Bretherton, 2018, 2019; Chattopadhyay et al., 2020a; Gagne
et al., 2020; Gentine et al., 2018; Krasnopolsky et al., 2013;
O’Gorman and Dwyer, 2018; Rasp et al., 2018; Vlachas
et al., 2022; Yuval and O’Gorman, 2020; Yuval et al., 2021).
We develop a recurrent neural network in a probabilistic
framework, combining the benefits of stochasticity with the
ability to learn temporal patterns in more flexible ways than
permitted by red noise. We use the Lorenz 96 model (Lorenz,
1996), henceforth the 196, as a proof of concept. Our model
is competitive with, and often outperforms, a bespoke base-
line. It also generalizes to unseen scenarios as shown in
Sect. 4.3.

1.1 Numerical models

Numerical models represent the state of the Earth system at
time ¢ by a state vector X,;. The components of X; may in-
clude, for example, the mean temperature and humidity at
time ¢ in every cell of a grid that covers the Earth. The goal is
to parameterize the effects of unresolved processes in such a
way that the model can reproduce the evolution of this finite-
dimensional representation of the state of the real Earth sys-
tem. A simple way to model the evolution would be

Xir11 = Xir + fi(Xy), (1

where X} ; is the value that the state variable X takes at the
spatial coordinate k and time point ¢ and Xy ; € RY, X : €
R4K  and f is a function for the updating process.

1.2 Stochastic schemes

Stochasticity can be included using the following form:

Xir+1 = Xir + fiu (X, Hy 1), ()
Hyrv1=B(Hi 1y 2k ,141), 3
Zk,t NN(OV I)’ (4)

where hidden variables (discussed below) created by the
modeller are denoted Hy ; € RIMEH) and are tracked through
time, B is a function for updating these, and zj ; € RAM@) jg
a source of stochasticity.

Introducing stochasticity through Eq. (2) represented an
improvement on models of the form in Eq. (1). Results in-
cluded better ensemble forecasts (Buizza et al., 1999; Leut-
becher et al., 2017; Palmer, 2012) and improvements to cli-
mate variability (Christensen et al., 2017) and mean cli-
mate statistics (Berner et al., 2012). The motivation for using
stochasticity comes from the understanding that the effects
of the unresolved (sub-grid) processes cannot be effectively
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predicted as a deterministic function of the resolved ones
due to a lack of scale separation between them. Stochastic-
ity allows us to capture our uncertainty about those aspects
of the unresolved processes which may affect the resolved
outcomes.

1.3 Hidden variables and red noise

Hidden variables — Hy ; in Egs. (2) and (3) — are defined
here as being variables separate from the observed state, Xy ;,
which, if tracked, help better model Xy ;. Using them is key
to numerical weather and climate models using stochastic pa-
rameterizations, allowing temporal correlations to be better
modelled. Red noise results when the hidden variables evolve
with a first-order autoregressive (AR1) process such as

Hiip1=¢Hi, +0(1— ) 20041, (5)

where ¢ is the lag-1 correlation and o is the standard devia-
tion.

One example is the stochastically perturbed parameteriza-
tion tendency (SPPT) scheme (Buizza et al., 1999; Palmer
et al., 2009), which is frequently employed in forecasting
models (Leutbecher et al., 2017; Molteni et al., 2011; Palmer
et al., 2009; Sanchez et al., 2016; Skamarock et al., 2019;
Stockdale et al., 2011). Here, the AR1 process results in far
better weather and climate forecasting skill than a simple
white noise model, with good modelling of regime behaviour
requiring correlated noise (Christensen et al., 2015; Dawson
and Palmer, 2015).

There is no intrinsic reason why an AR1 process is the best
way to deal with these correlations. It is simply a modelling
choice.

1.4 Machine learning for parameterization

Learning the parameters of a climate model, either the simple
form (1) or the general form (2)—(4), requires deciding on a
parametric form for the functions f and . For full-scale cli-
mate models, it is difficult to find appropriate functions. The
machine learning (ML) approach is to learn these from data.
Various researchers have proposed ML methods for learn-
ing the deterministic (meaning the same output is always re-
turned for a given input) model of the form in Eq. (1) (Beu-
cler et al., 2020, 2021; Bolton and Zanna, 2019; Brenowitz
and Bretherton, 2018, 2019; Gentine et al., 2018; Krasnopol-
sky et al., 2013; O’Gorman and Dwyer, 2018; Rasp et al.,
2018; Yuval and O’Gorman, 2020; Yuval et al., 2021).
Amongst ML-trained stochastic models (Gagne et al.,
2020; Guillaumin and Zanna, 2021), various ones with red
noise were proposed by Gagne et al. (2020), using genera-
tive adversarial networks (GANs) (Goodfellow et al., 2014).
Full architectural details are in Gagne et al. (2020), and we
will refer to one of their best-performing models (which they
call X-sml-r) as the GAN, with italics indicating that X-sml-r
is meant. A wider range of generative models can be trained
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using such an adversarial approach as opposed to maximum
likelihood (the standard way to train models in ML, dis-
cussed in Sect. 3), but such methods are notoriously unstable
due to the nature of the minimax loss in training (Goodfel-
low, 2016). Although they used ML to learn f in Eq. (2), it
was not used to learn 8, which they modelled with an AR1
process.

Recurrent neural networks (RNNs) are a popular ML tool
for modelling temporally correlated data, eliminating the
need for update functions (like that in Eq. 3) to be manu-
ally specified. RNNs have had great success in the ML lit-
erature in a variety of sequence modelling tasks, including
text generation (Graves, 2013; Sutskever et al., 2011), ma-
chine translation (Sutskever et al., 2014), and music genera-
tion (Eck and Schmidhuber, 2002; Mogren, 2016). The state-
of-the-art RNNs are long short-term memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997) and gated recur-
rent unit (GRU) networks (Cho et al., 2014). These use gating
mechanisms to control information flow, providing major im-
provements to the vanilla RNN’s issue of unstable gradients
and therefore making it easier to capture long-range depen-
dencies.

Current parameterization work using ML to model tem-
poral correlations has predominantly used deterministic ap-
proaches, including deterministic RNNs and echo state
networks (Arcomano et al., 2022; Chattopadhyay et al.,
2020a, b; Vlachas et al., 2018, 2020, 2022), and found no-
table success. A stochastic RNN for ocean modelling was re-
cently presented by Agarwal et al. (2021). Our work differs
in how we provide a joint training approach for the determin-
istic and stochastic parts. All this work with RNNs suggests
such ML approaches are effective ways of modelling tem-
poral dynamics in physical systems. However, the investiga-
tion of how to implement these in probabilistic frameworks
is limited.

Other off-the-shelf models are not obviously suited for
the parameterization task. Transformers and attention-based
models (Vaswani et al., 2017) perform well for sequences but
require all the previous data to be tracked for each simulation
step, providing a computational burden which may increase
simulation cost. Random forests (RFs) have been used for
parameterization (O’Gorman and Dwyer, 2018; Yuval and
0O’Gorman, 2020) and shown to be stable at run time (due to
predicting averages from the training set), but it is not obvi-
ous how they would learn and track hidden variables.

1.5 Overview

The 196 set-up and baselines are presented in Sect. 2. Our
model is detailed in Sect. 3, with the experiments and re-
sults in Sect. 4. This is followed by a discussion on the use
of “likelihood” in evaluating probabilistic climate models
(Sect. 5), with our conclusions in Sect. 6.
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2 Parameterization in the Lorenz 96

We introduce the .96 model here and then present two L96
parameterization models from the literature which help clar-
ify the above discussion and serve as our baselines.

2.1 Lorenz 96 model

We use the two-tier L96 model, a toy model for atmo-
spheric circulation that is extensively used for stochastic pa-
rameterization studies (Arnold et al., 2013; Crommelin and
Vanden-Eijnden, 2008; Gagne et al., 2020; Kwasniok, 2012;
Rasp, 2020). We use the configuration described in Gagne
et al. (2020). It comprises two types of variables: a large,
low-frequency variable, X, interacting with small, high-
frequency variables, Y;. These are dimensionless quantities,
evolving as follows:

dXy
— = X1 (Xp2 = Xpy1) —Xi +F
dr —— ——
advection diffusion forcing
he kJ
- Y/ k=1,...K,
b
J=J(k=1D+1
—_—
coupling
dy;
—==—cbYj 1 (Yj2—Yj—1) —c¥;
dr
advection diffusion
he .
— XiniG-n J=1 K,
coupling

where the wvariables have cyclic boundary conditions:
Xi+x = Xy and Y4 j¢ =Y. In our experiments, the num-
ber of X variables is K =8 and the number of Y vari-
ables per X is J =32. The value of the constants are set
to h=1,b=10, and ¢ = 10. These indicate that the fast
variable evolves 10 times faster than the slow variable and
has 1/10 the amplitude. The chosen parameters follow those
used in Arnold et al. (2013) and are such that 1 model time
unit (MTU) is equivalent to 5 atmospheric days when com-
paring the error doubling time from the model to that seen in
the atmosphere (Lorenz, 1996).

The L96 model is useful for parameterization work as
we can consider the Xy to be coarse processes resolved in
both low-resolution and high-resolution simulators, whilst
the Y; can be regarded as those that can only be resolved
in high-resolution, computationally expensive simulators. In
this study the coupled set of L96 equations is treated as the
“truth”, and the aim is to learn a good model for the evolu-
tion of X alone using this truth data. The effects of ¥; must
therefore be parameterized. Success would be if the modelled
evolution of X matched that from the truth.

The L96 is also useful as it contains separate persistent
dynamical regimes, which change with different values of
F (Christensen et al., 2015; Lorenz, 2006). The dominant
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regime exhibits a wave-2 pattern around the ring of X vari-
ables, whilst the rarer regime exhibits a wave-1-type pattern.
In the atmosphere, regimes include persistent circulation pat-
terns like the Pacific—-North American (PNA) pattern and the
North Atlantic Oscillation (NAO).

It is easy to use models with no memory, which do well
on standard loss metrics but fail to capture this interesting
regime behaviour. This is seen in the L96, where includ-
ing temporally correlated (red) noise improves the statistics
describing regime persistence and frequency of occurrence
(Christensen et al., 2015) and improves weather forecasting
skill (Arnold et al., 2013; Palmer, 2012). Temporally cor-
related noise also improves regime behaviour (frequency of
occurrence and persistence) in operational models (Dawson
and Palmer, 2015) as well as forecasting skill (Palmer et al.,
2009).

2.2 Parameterization models in the literature

The below models are stochastic. They use AR1 processes to
model temporal correlations, but this need not be the case, as
we show in Sect. 3.

2.2.1 Stochastic non-ML model with non-ML hidden
variables

Arnold et al. (2013) propose a model which we refer to as
the polynomial model (in light of the polynomial in Eq. 6),
with italics indicating that we are referring specifically to the
following model:

Xk,t—H = Xk,t + wp (Xy)

— At (aX,i,+bX,%’,+ch,z+d+Hk,z+1), (6)

where Hj ; evolves as in Eq. (5) with Hi 1 = oz,1 and where

o (X)) = ki (Xo +2(X0)/2) 7
and

MXD) = At (= XXz = Xerr) = Xea +F ) (8)
where Eq. (7) is the implementation of a second-order
Runge—Kutta method and [A(a)]x = Ak(a). Hi; only de-

pends on Hy ;—1.

2.2.2 Stochastic ML model with non-ML hidden
variables

The GAN from Gagne et al. (2020) replaces Eq. (6) by
Xii+1 = Xier + or(Xo) — At U(Xir, Hyei41), ©))
where the function U is implemented by a neural network

(NN), w is defined in Eqs. (7)—(8), Hi ; evolves as in Eq. (5)
witho =1, and Hi1 = zk.1-
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3  Our L96-RNN model
3.1 Stochastic ML model with ML hidden variables

Our model, henceforth denoted as L96-RNN, follows the gen-
eral form in Egs. (2)—(4) but splits the hidden variable into
two parts: Hy ; = (Rkt, lk,;). The model is

Xt = Xes +ou(X0) = At (o(Xe) + Resst ), (10)

Ri141 =boUk1+1) + 02k 141, (11)
lk,t+l = S0 (lk,tv Rk,t), (12)

where g, b, and s are NNs with weights 6, z;, € R! is ex-
ogenous noise as defined in Eq. (4), w is specified in Eq. (7)
above (implements a second-order Runge—Kutta method and
expresses physical quantities like advection), and 6 and o
are parameters to be learnt. We set [;,; =0 as is typically
done with RNNs and Rk 1 = o0zk,1. The dimensions of the
variables are X;; e R!, X, e RK R, , e R", R, e RK [}, €
RS, and I, € R®X . The dimensions of the NN are go: R! —
R, by : R® — R! and s : R? — R3. The L96-RNN is struc-
turally based on a recurrent neural network (RNN) as it has
hidden variables, the same update procedure is used each
step, and g, b and s are NNs. In this model, the sub-grid
parameterization is split into a deterministic part (parameter-
ized by gp) and a stochastic part, R, which is parameterized
by an RNN (bg and sg). The RNN is described by Eqs. (11)-
(12) and models the stochastic term at the next time step
Ry 141 given the past sequence of Ry | =7y 1, ..
where we use upper-case Ry ; to denote the random variable
and use lower-case r¢ ; to denote the values which a random
variable R; ; may take. When the random variable being re-
ferred to is clear from the context, we drop it and just write
Tk.1s--- k.t for example. The same notation is used for X.
The notation is only important when talking about the prob-
abilistic perspective of the model and the likelihood. Oth-
erwise, the distinction between the upper- and lower-case
variables can be ignored by the reader. The backbone of the
L96-RNN is the sp mapping, which takes as input r¢ ; and
the hidden state /; ; (which summarizes the information in
Tk,t—1,---,7k,1) and updates the hidden state. The stochas-
tic term is then modelled using a Gaussian distribution pa-
rameterized by the output layers of the L96-RNN, by, and
o. The sampled value, r¢ ;+1, is used in Eq. (10) to output
Xk 1+1 = Xk,s+1 and is fed back into the L96-RNN.

The key insight is that our model allows more flexibility
than the standard AR1 processes for expressing temporal re-
lationships. This is shown by how Eq. (10) is identical in
form to Eq. (6), but the hidden variable is evolved in a more
flexible manner than the AR1 process in Eq. (5).

Figure 1 shows the mechanism of generation and the NN
architectures used to learn the functions. The main architec-
tural details are that s in Eq. (12) is implemented using two
GRU layers, each composed of four units, and » in Eq. (11)

. Rk,l = rk,l7
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(a)
XO Xl \Xz \ X3 \
Ry + go(Xo) Ry + go(X1) R3 + go(X3)
Ry R, R
/ / /
0Zq 0Z; Il 0Z3 I
[JH Dense, 1 unit b(a Dense, 1 unit
| |
Se Se
12 \——> GRU4uits —>  [2 GRU, 4units —>  [2 —>
4 4
i GRU, 4units —> [} GRU, 4units —> |1 —>
ll lZ l3
input
(b) l L

Dense, 16 units
0
Dense, 16 units
0

Dense, 1 unit

l

output

Figure 1. (a) RNN graphical model showing how each X; is gen-
erated. X, is a function of X; and R, 1, and R; is a function
of I; and z;. z; € RX is the source of stochasticity. bg, sp and gg
are NNs. I; consists of a stack of l,1 and ltz, each € R*. The neural
networks are stacked K times (not shown in the figure), with each
section of the stack being applied to each of the K components of
X:. (b) The architecture of the gg neural network.

is represented by a dense layer of size 1. g in Eq. (10) is
implemented using three fully connected layers.

Here, as well as in the baselines, the parameterization
models are “spatially local”, meaning that the full X, vec-
tor is not taken in as input when modelling Xy ;41 anywhere
apart from in wi(X;). This is done to mimic parameteriza-
tions in operational weather and climate models. For all fore-
cast models, Ar = 0.005 model time units (MTU).

3.2 Training probability models using likelihood

The L96-RNN is probabilistic and trained by maximizing the
likelihood of sequences x; in the training data, as is com-
monly done in the ML literature for RNN models (Bah-
danau et al., 2014; Cho et al., 2014; Goodfellow et al.,
2016; Sutskever et al., 2011, 2014). The “likelihood of a se-
quence” is denoted Pr(x1, x2, ..., Xx,) and can be interpreted
as the probability assigned to a given sequence of variables
(x1,x2,...,Xx,) by a given model.

https://doi.org/10.5194/gmd-16-4501-2023

For our L96-RNN, the log likelihood (the natural loga-
rithm of the likelihood) of a sequence of x; is

logPr(xy,...,x,;x0) =

K n
Z (logPr(rk,l) + ZlOgPr(l’k,t |lk,t))
=2

k=1
— Knlog(At), (13)

where the semicolon denotes that x¢ is given and r and / are
deterministic functions of the training sequence xo, ..., X,
derived from Eqgs. (10)—(12). Specifically, by rearranging
Eq. (10) we get

Xke,t4+1 — Xkt — i (x¢)
Vit = _A;

— 86 (Xk,1)s (14)

and so we can calculate what values ry ; must take in order
for the training sequence Xy, ..., X, to be generated. Now,
given the known sequence ri,...,r, and the initial value
1| = 0, the sequence of [ values, 1, ...,I, can be calculated
from Eq. (12). For example, l; 3 = s (se Uk.157x,1)s rk,z). To
reduce clutter in the final equation which we show in this
section, we will rewrite Eq. (14) as

Tit = Ukt — 80 (Xk 1), (15)

where Uy ; = Tt Xkt kX1 a0 can be understood as the

true sub-grid forcing. Now, the explicit expression for the log
likelihood is given by

logPr(x1,...,x,;x0) =
K 1 5
Z —log(ov/2m) — p(Uk,o — 80 (xk,0))

k=1

n 1
+ Z ( —log(o~/2m) — 352 (Ur,r — g0 (x,0) — by (lk,t))2>)
=2
— Knlog(Ar), (16)

The L96-RNN is trained by maximizing this likelihood
with respect to the parameters 6 and o. The explicit form of
the L96-RNN likelihood makes training by maximum like-
lihood relatively straightforward. The full derivation of the
likelihood is in Appendix A.

From Eq. (16) we can see that both the deterministic part
(gp) and the stochastic model (bg and sg, which are involved
via Iy ;) are trained jointly to minimize the mean squared er-
ror in the sub-grid forcing prediction. This is unlike the poly-
nomial and GAN models where the deterministic part is fit-
ted first and then the stochastic part is modelled in a separate
step.

3.3 RNN training

Truth data for training were created by running the full
L96 model five separate times with the following values
of F: (19,20,20.5,21,21.5). Henceforth, we use truth data

Geosci. Model Dev., 16, 4501-4519, 2023
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to refer to data from the full L96 model. We gave our
model data from different forcing scenarios so it could learn
how perturbations in the forcing may affect the evolution
of X;. The GAN and polynomial were trained in a simi-
lar manner to allow for a fair comparison. The truth data
were created by solving the two-level L96 equations us-
ing a fourth-order Runge—Kutta time stepping scheme and a
fixed time step Ar = 0.001 MTU, with the output saved at
every 0.005MTU. A training set of the length 2500 MTU
was assembled from the truth data, consisting of three
equal 500 MTU components with F = (19,20.5,21) and
one 1000MTU component with F =20, with a F =21.5
set of the length 500 MTU kept as a validation hold-out
set. This resulted in a 75:25 training: validation set split
(3999 992 samples : 800 008 samples).

The L96-RNN was trained using truncated back propaga-
tion through time on sequences of a length of 700 time steps
for 100 epochs with a batch size of 32 using Adam (Kingma
and Ba, 2014), with 6 and o being the learnable parameters.
A variable learning rate was used, starting at 0.0001 for the
first 70 epochs and decayed to 0.00003 for the remaining 30.
A small grid search was conducted over the number of GRU
layers (searching over 1 to 3) and the GRU unit sizes (search-
ing between 4 to 16). The model parameters which gave the
lowest loss on the validation set were saved.

4 Results

This section analyses performance across a range of
timescales. The first results are for F =20. Assessing the
model in the training realm allows us to verify if it can repli-
cate the L96 attractor. Later experiments are for ' > 28. For
F =20 and F =28, 50000 MTU long simulations (= 685
“atmospheric years”) were created for analysis.

4.1 Weather evaluation

The models were evaluated in a weather forecast framework.
A total of 745 initial conditions were randomly taken from
the truth data, and an ensemble of 40 forecasts each last-
ing 3.5 MTU were generated from each initial condition. Fig-
ure 2 shows the spread and error terms for these experiments
over time. The error is defined as

error(t) =

M -
% Z Xo(l‘) aample(t))Z’

m=1
where there are M different initial conditions, X2 (1) is the
observed state at time ¢ for the mth initial condition and
X32mPe () i the ensemble mean forecast at time 7.
The spread is defined as

M N
spread(?) = | — Z Z sample (t) — sample (t))

ml n=1

Geosci. Model Dev., 16, 4501-4519, 2023
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Spread-Error plot for F=20

27

/ —— Polynomial Error
/ ,»° === Polynomial Spread
/ e —— RNN Error
1 / e --- RNN Spread
/ e —— GAN Error
-~ === GAN Spread

0.0 015 1fo 1t5 2?0 ZTS 370 3.5
Forecast period / MTU

Figure 2. Error and spread for weather experiments. We expect a
smaller error for a more accurate forecast model. The spread/ error
ratio would be close to 1 in a “perfectly reliable” forecast.

where N is the number of ensemble members and X S'mple(t)

is the state of the nth member at time ¢ for the mth initial
condition.

As noted by Leutbecher and Palmer (2008), for a per-
fectly reliable forecast (defined as one where X, P le (¢t) and
X2 (t) are independent samples from the same dlstrlbution),
for large N and M the error should be equal to the spread.
A smaller error implies an ensemble forecast that better
matches observations, and a spread/ error ratio close to 1 im-
plies a reliable forecast. Figure 2 shows that the polynomial
and the L96-RNN have the smallest errors, but the L96-RNN
has the better spread/ error ratio until 1.0 MTU. After that, its
spread is still slightly better matched to its error compared to
the polynomial. The GAN is underdispersive, with the great-
est error but smallest spread / error ratio, suggesting it is over-
confident in its predictions.

4.2 Climate evaluation

The ability to simulate the climate of the L96 was evalu-
ated using the 50000 MTU simulations. We use histograms
to represent various climate-related distributions. For exam-
ple, Fig. 3a represents each model’s marginal distribution of
X ;. Since the true continuous distributions for this quantity
are unavailable, we represent them using histograms (a dis-
crete estimate). The idea of estimating an underlying contin-
uous distribution’s density with a discrete distribution based
on a finite set of sampled points is commonplace and known
as histogram density estimation (Silverman, 1986; Wilks,
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Histograms of Xy
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Figure 3. Histograms of Xy ;. The truth histogram is shown in
green and bold. The closer a model’s histogram to the truth, the
better it models the probability density of Xy ;. A total of 827 bins
are used for all shown models.

2011). When plotting histograms, an appropriate bin width
is necessary. Too few bins will lead to over-smoothing where
the underlying distribution’s shape is not captured, whilst too
many bins will lead to under-smoothing. Both cases lead to
poor representations of the underlying distribution. We use
the Freedman—Diaconis rule (Freedman and Diaconis, 1981)
to determine the bin widths (and therefore number of bins).
The rule is based on minimizing the mean integrated squared
error between the histogram’s density estimate and the true
density function. The number of bins used are noted in the
relevant figure captions.

We can quantitatively measure how well the histogram
density estimates from each model match the histogram den-
sity estimate from the truth using KL (Kullback-Leibler di-
vergence) divergence. The KL divergence has a direct equiv-
alence to log likelihood: minimizing the KL divergence be-
tween a true distribution and a model’s distribution is equiv-
alent to maximizing the log likelihood of the true data under
the model. We evaluate the KL divergence between ¢ (a), the
distribution described by the histogram of a variable A in the
true L96 model, and p(a), the distribution described by the
histogram of that variable in a parameterized model, using

)

KL(g(a)||p(a)) = ;q(a)log Ztg

where the sum is over all the discrete values which A
takes. The smaller this measure, the better the goodness
of fit. The calculated KL divergence is obviously depen-
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Table 1. KL divergence (goodness of fit) between (1) the truth and
(2) the parameterized models, for the distributions shown in the
noted figures. The smaller the KL divergence, the better the match
between the true and modelled distributions. The best model in each
case is shown in bold.

Relevant  Polynomial L96-RNN GAN
figure

3a 0.13 004 0.83
4 64 32 735
5a 0.59 045 7.70
5b 0.54 005 8.36
Ta - 0.1 0.5
7b - 0.1 1.1

dent on the number of bins used in our histograms. Using a
number of bins = 1 would give a KL divergence of 0, whilst
using a number of bins = n, where n is the number of data
points, would give a KL divergence of oo in this case as
the variables under consideration are continuous so their em-
pirical probability density functions will not overlap. There-
fore, a bin number which best represents the underlying dis-
tribution is important to use. As noted earlier, we use the
Freedman-Diaconis rule for this. Nevertheless, we also pro-
vide results in Appendix B for the KL divergences for a range
of bin numbers centred on the Freedman—Diaconis sugges-
tions.

Successful reproduction of the L96 climate would result
in a model’s histogram matching the truth model’s. Quali-
tatively, from Fig. 3, the polynomial and the L96-RNN are
closest to the truth, with the L96-RNN doing slightly bet-
ter around X, =9. Quantitatively, the KL divergence re-
sults (Table 1) confirm that the L96-RNN best matches the
truth model here. Results from Appendix B confirm that the
stronger L96-RNN performance is also seen over a range of
bin numbers.

The L96 model used here displays two distinct regimes
with separate dynamics. We use the approach from Chris-
tensen et al. (2015) to examine the regimes. First, the time
series are temporally smoothed with a running average over
0.4 MTU to help identify regimes (Stephenson et al., 2004;
Straus et al., 2007). The dimensionality of the system is
then reduced using principal component analysis, as is often
done when studying atmospheric data (Selten and Bransta-
tor, 2004; Straus et al., 2007). For the truth time series, the
components PC1 (principal component 1) and PC2 (principal
component 2) are degenerate, offset in phase by 7 /2 radi-
ans, and represent wavenumber 2 oscillations. PC3 and PC4
are also degenerate, offset in phase by /2 radians, and rep-
resent wavenumber 1 oscillations. All model runs are pro-
jected onto the truth model’s components. Given the degen-
eracies, the magnitudes of the principal component vectors,
[[[PC1, PC2]|| and ||[PC3, PC4]||, where ||[PC1, PC2]|| =
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+/PC12 +PC22, are computed and histograms of the system
are plotted in this space.

The presence of two regimes is apparent in Fig. 4a where
there is a large maximum corresponding to the major regime,
A, but also a smaller peak corresponding to the minor regime,
B. The polynomial and GAN fail to capture the two regimes,
whereas the L96-RNN is more successful. Comparison is
made easier by decomposing the 2D Fig. 4 into two 1D den-
sity plots (Fig. 5). We can use the KL divergence to measure
how well our models match the truth across all three his-
tograms. Table 1 shows that the L96-RNN best matches the
truth and so captures the regime characteristics best. There
are still evidently deficiencies though as further density is re-
quired to be placed around Regime B.

We desire our parameterized models to correctly capture
the temporal behaviour of the L96 system. One way to as-
sess this is by considering the temporal correlations (linear
associations) using an autocorrelation plot. The autocorrela-
tion plots of the generated X variables are shown in Fig. 6,
and those of the corresponding sub-grid forcing terms, U, are
shown in Fig. 7, where Uy ; = %A:wm In Fig. 6a we
see that for F =20, all the parameterized models perform
well, but the L96-RNN best captures the trough behaviour at
the 0.7 temporal lag. In Fig. 7a, for F = 20, the L96-RNN and
polynomial perform the best.

4.3 Generalization experiments

We set the L96 forcing to F =28,32,35, and 40 and ex-
amine how the models can capture changes due to varying
external forcings. These F values are notably different to
those in the training data and so allow us to test general-
ization. For example, the change from F =21.5 (validation
set) to F' = 28 results in the following changes to the regime
structure: the centroid location of the rarer regime shifts to
higher values of ||[PC1, PC2]|| and ||[PC3, PC4]|| (Fig. 8),
and the proportion of time spent in the rarer regime increases
from 38 % to 50 %. The range of X ; also increases from
[—12,19] to [—24,29]. The differences in wave behaviour
between regimes means the above changes result in different
system dynamics.

In all the below experiments the polynomial model’s tra-
jectories exploded (went to infinite values), so the polyno-
mial is omitted. This is merely due to the specification of a
third-order polynomial. It significantly deviates from its tar-
get values when Xy ; values notably different from those in
training (such as Xy ; > 19) are taken as inputs.

The F = 28 climate was explored in a similar manner to
the F' = 20 one. First, for the histograms of X ; (analogous
to Fig. 3) the L96-RNN and GAN both had small KL diver-
gences (0.02 vs. 0.14). Next, the principal component pro-
jections were examined (analogously to Fig. 4). The same
components as determined from the F =20 truth data set
are used. In this space, the L96-RNN has a smaller KL di-
vergence (11) than the GAN (57). Figures for the above two
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plots are omitted due to it being hard to visually distinguish
between the models. As before, further comparison can be
made by examining the two, 1D density plots in Fig. 9 (anal-
ogously to Fig. 5). Both models perform well (KL divergence
in Table 1), but neither put enough density in the right-hand
side tails. In terms of temporal correlation, as seen in Figs. 6b
and 7b, both models perform well, but the L96-RNN gener-
ally tracks the periodicity and the amplitude of the peaks and
troughs better.

The models were also evaluated in the weather forecast-
ing framework for F' = 28, 32, 35, and 40. A total of 750 ini-
tial conditions were randomly selected from the truth attrac-
tors, and an ensemble of 40 forecasts each lasting 2.5 MTU
were produced. Figure 10 shows the L96-RNN generally has
lower errors than the GAN, with a better matching spread.
The GAN continues to be underdispersive.

4.4 Residual analysis

We can also compare the polynomial and the L96-RNN’s
ability to capture temporal patterns by assessing their residu-
als. The residuals are the differences between observed data
and a model’s predictions. It can be considered an offline
metric. For the proposed models, the residuals should be un-
correlated and resemble white noise. In Fig. 11 we show the
autocorrelation of the residuals. Ideally, there would be no
significant autocorrelation. Neither of the models succeeds in
this aspect, but the autocorrelation of the L96-RNN’s resid-
uals drops off far quicker than that of the polynomial. This
is likely due to the L96-RNN’s ability to capture longer tem-
poral trends. The L96-RNN still has a decaying oscillation,
suggesting further changes must be made to the model to ac-
count for this.

4.5 Computational costs

We wish our models to have a lower simulation cost than
the full L.96. This is measured by considering the number
of floating-point operations per simulated time step (At =
0.005). The L96-RNN (8682) is notably cheaper than the
truth model (88 000) and the GAN (14 074) and so meets the
computational cost objective of parameterization work. The
polynomial (334) is the cheapest.

In terms of training times, both ML models were trained
using a 32GB NVIDIA V100S GPU. The L96-RNN and
GAN took 12 min and 30 h respectively.

5 Evaluation and diagnostics using likelihood
5.1 Hold-out likelihood
We also evaluate using the likelihood (explained in Sect. 3.2)

of hold-out data. This is a standard approach in the ML litera-
ture. Evaluation is done on hold-out sets to ensure that overly
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Regime characteristics of the L96 for F=20
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Figure 4. Regime characteristics of the L96 for F' = 20. Two-dimensional histograms show the magnitudes of the projections of Xy ; onto
the principle components from the truth series. A total of 100 bins are used for this visualization. When calculating the KL divergence in
Table 1, 350 bins are used.

Regime density plots for F=20

(a) (b)
A
0.30{ = Truth /1 0.30
—— Polynomial /)
—— L96-RNN / |
0251 —— GAN / \ 0.25
0.20 0.20
>
=
(%]
C
$0.15 0.15
©
0.10 0.10
0.05 0.05
0.005 14 0.004 10

6 8 10 4 6
|| IPC1, PC21 | || [PC3, PC4] ||

Figure 5. Density plots for each regime for F' = 20. The truth is shown in green and bold. (a) Magnitude of [PC1, PC2]. A total of 534 bins
are used for this. (b) Magnitude of [PC3, PC4]. A total of 350 bins are used for this.
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Temporal correlations for X for generated sequences
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Figure 6. The ability of the parameterized models to reproduce the
“true” temporal correlations of the X variables in the L96 system
(green). The correlations for each of the K components are plotted
— the variability is indicated by the line width. Panel (a) is for the
sequences generated with F' = 20, and (b) is for those with F' = 28.
The polynomial is not shown for (b) as the simulations are unstable
and go to infinity.

complex models which just overfit the training data are not
selected.

Here, hold-out sets for FF =20 and F = 28 were created
by taking a 10000 MTU subset from the 50 000 MTU truth
sets created in Sect. 4. The hold-out log likelihoods are
shown in Table 2. The likelihood for the polynomial model
and its derivation is in Appendix A. We also present an ap-
proach to approximate the GAN likelihood. This is despite its
full form being intractable (involving integrals which cannot
be efficiently approximated using Monte Carlo sampling),
meaning it is not typically used to evaluate GANs. This is
also detailed in Appendix A. The L96-RNN has a worse like-
lihood on F =28 than the polynomial, despite the polyno-
mial simulations exploding, unlike the L96-RNN’s. This is
discussed below.

5.2 What is the use of likelihood?
5.2.1 For evaluation

The other metrics used above only capture snapshots of
model performance. Likelihood is a composite measure
which assesses a model’s full joint distribution (Casella and
Berger, 2002). For example, in the univariate case, the mean
squared error and variance of a model show two separate
things about its performance, with implicit assumptions be-
ing made about variables being normally distributed (as is the

Geosci. Model Dev., 16, 4501-4519, 2023

R. Parthipan et al.: Probabilistic ML used to better model temporal patterns in parameterizations

Temporal correlations for sub-grid forcing for generated sequences
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Figure 7. The ability of the parameterized models to reproduce the
“true” temporal correlations of the sub-grid forcing terms (U) in the
L96 system (green). The correlations for each of the K components
are plotted — the variability is indicated by the line width. Panel
(a) is for the sequences generated with F = 20, and (b) is for those
with F' = 28. The polynomial is not shown for (b) as the simulations
are unstable and go to infinity.
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Figure 8. Difference between the F =21.5 and F = 28 densities
in principal component space. The principal components are those
from the F' =20 truth series. A total of 100 bins are used for this
visualization.

case whenever mean squared error is used). The likelihood
captures both of these and without enforcing such assump-
tions.
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Regime density plots for F=28
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Figure 9. Density plots for each regime for F = 28. The truth is shown in green and bold. (a) Magnitude of [PC1, PC2]. A total of 479
bins are used. (b) Magnitude of [PC3, PC4]. A total of 444 bins are used. The right-hand side tails are not given sufficient density by the

L96-RNN or the GAN.

Spread-Error plots for various forcing values
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Figure 10. Error and spread for weather experiments for varying
forcing values. This is done to assess generalization performance.
The L96-RNN’s spread is best matched to its error, unlike the GAN.

Likelihood also captures information about more complex,
joint distributions, saving the need for custom metrics to be
invented to assess specific features. To illustrate this, con-
sider that we wish to assess a model’s temporal associations
(not just the linear temporal correlations). The likelihood al-
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Figure 11. Autocorrelation plot of the residuals for the polynomial
and the L96-RNN. Ideally, these would show no correlations (and
match the black line). The L96-RNN’s residual correlations decay
more quickly than the polynomial’s.

ready contains this information. Although custom metrics
could be invented to assess this, the likelihood is an off-
the-shelf metric which is already available. We suggest it is
wasteful not to use it.

Using a composite metric brings challenges though. Poor
performance in certain aspects may be overshadowed by
good performance elsewhere. This can result in cases where
increased hold-out likelihoods do not correspond to better
sample quality, as noted in the ML literature (Goodfellow
et al., 2014; Grover et al., 2018; Theis et al., 2015; Zhao
et al.,, 2020) and seen in our results: the L96-RNN has a
worse F' = 28 hold-out likelihood than the polynomial (Ta-
ble 2), yet the polynomial model explodes unlike the L96-
RNN. In this case, the phenomenon of “explosion” does not
significantly penalize the likelihood. This links to how like-

Geosci. Model Dev., 16, 4501-4519, 2023



4512

Table 2. Log likelihood on hold-out data for different forcing val-
ues. The best model in each case is shown in bold.

Forcing Polynomial L96-RNN GAN
20 498 653 ~—1x103+0x 108
28 4.07 269 ~-5x108+0x108

lihood is evaluated on trajectories of the true system, so is
an “offline” metric. Just as with the offline metric of mean
squared error, you would expect better “online” performance
(the performance of generated simulations) as the likelihood
improves, but there is no guarantee of a monotonic relation-
ship between the two. Likelihood is therefore a complement
to, not a replacement of, to other metrics which are important
to the end user.

5.2.2 For diagnostics

Likelihood’s composite nature makes it a helpful diagnos-
tic tool. Just like KL divergence, the further away a model
is — in any manner — from the data in the hold-out set, the
worse the likelihood will be. If a model has a poor likelihood
despite performing well on a range of standard metrics, this
suggests there are still deficiencies in the model which need
investigating. For example, with the L96-RNN at ' = 28, the
poor average likelihood (Table 2) is caused by a tiny number
of segments of the X ; sequences being extremely poorly
modelled (and therefore having extremely poor likelihoods
assigned). On inspection, the issue is due to the choice of
a fixed o in Eq. (11) — this is appropriate for most of the
time series, but for parts which are difficult to model, it is too
small, preventing the model from expressing sufficient un-
certainty. This could be rectified by allowing o to vary, and
we suggest future work explore this.

6 Discussion and conclusion

We present an approach to replace red noise with a more flex-
ible stochastic machine-learnt model for temporal patterns.
Even though we used ML to model the deterministic part
86(Xk,r) in Eq. (10), the real benefit came from using ML to
model the hidden variables. For example, on setting go (Xx )
in our model equal to aX,f’t —i—bX,%,t +cXk ¢ +d from the poly-
nomial baseline, our model performance hardly suffered (and
the cost halved) for F = 20. This finding is supportive of
physics-based ML approaches where conventional parame-
terizations are augmented with a stochastic term learnt using
ML.

Using physical knowledge to structure ML models can
help with learning. The L96-RNN includes “physically rele-
vant” features for the L96, particularly advection, in Eq. (10).
This gave better results than when we modelled the system
without them (e.g. when we used an RNN to do the full up-
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dating step of X; given X,_1,..., X¢). Although in theory
a NN can learn to create helpful features (such as advec-
tion), giving these useful features can make learning easier.
The NN does not need to learn the known, useful physical
relationships and instead can focus on learning other helpful
ones.

There are more sophisticated models which can be used
for the L96 system. We noticed that in some cases the L96-
RNN struggled even to overfit the training data, regardless of
the L96-RNN complexity. This could be due to difficulties
in learning the evolution of the hidden variables. Creating
architectures that permit better hidden variables to be learnt
(ones which model long-term correlations better) would give
better models. Despite our use of GRU cells, which along
with the LSTM were great achievements in sequence mod-
elling, we still faced issues with the modelling of long-term
trends as evidenced in Fig. 11. Attention-based models such
as the Transformer (Vaswani et al., 2017) may improve on
this. Separately, certain models (mainly those which did not
leverage physical structure) resulted in unstable simulations.
Using hierarchical models which learn to model trends at dif-
ferent temporal resolutions (Chung et al., 2016; Liu et al.,
2020) may provide improvement. Our particular model had
specific limitations on how the hidden state, R;, was not a
function of X;_i, unlike the GAN, and on how o was not
a function of other variables. We did this to make a clearer
comparison between hidden variables modelled with AR1
processes versus those modelled with RNNs. Nevertheless,
it is simple to include X;_1 in the model for R; and to make
o aneural network function of other variables (including the
forcing) if desired. We believe the latter change would be
particularly useful in better capturing uncertainty.

We trained the L96-RNN using the likelihood of the se-
quence (xg,X1,...,X,) and showed how, for an RNN-based
model, there is an explicit form of the likelihood which
makes likelihood calculations tractable. In the 1L.96, these
X sequences are K-dimensional and correlated. Their like-
lihood can be written in terms of the likelihood of the hidden
variables (r1,r2,...,r,), and as shown in Eq. (13), training
to maximize the likelihood of a sequence of hidden variables
is equivalent to maximizing the likelihood of an X, sequence.
However, in the general case of a general circulation model,
it will often not be possible to analytically derive the relation-
ship between the likelihood of an X, sequence and that for
a sequence of hidden variables, as explained in Sect. A4.1.
Therefore, maximizing the likelihood of other variables (the
approach typically taken), such as the hidden variables or
sub-grid terms, may not correspond to maximizing the like-
lihood of X,. This is unideal as our actual goal is to cre-
ate a model which generates realistic sequences of X;. And
this may be a reason why online evaluations of such models
often show error accumulation leading to simulation blow-
ups (Brenowitz and Bretherton, 2018; Rasp, 2020). In future
work, we plan to investigate how to better train parameteri-
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Figure 12. Model which allows learning from high-resolution data
without requiring it at simulation time, where Ny ~ N(0, I). The
model is trained to generate ¥ and so learns from these data, but at
simulation time, Y is not required to generate X.

zation models for cases where you cannot easily maximize a
likelihood which is proportional to the likelihood of X;.

Learning from all the high-resolution data whilst still be-
ing computationally efficient at simulation time is an inter-
esting idea. Whilst we cannot keep all the high-resolution
variables in our schemes (as otherwise we might as well run
the high-resolution model outright — which is not possible as
it is too slow for the desired timescales and is a reason why
this field of work exists), only keeping the average (as in ex-
isting work which coarse-grains data) means many data are
thrown away. Our preliminary investigations used the graph-
ical model in Fig. 12. We designed this so that in training,
I; is learnt such that it contains useful information about the
high-resolution data, Y,, whereas during generation, Y; is
not required to be simulated. For the L96, this showed no
improvement over our L96-RNN though. Parthipan and Wis-
chik (2022) show that such an approach may be useful as a
regularizer when training data are limited.

Further work with GANs could result in better models.
There may be aspects of realism which we either may not
be aware of or may not be able to quantify, so they are diffi-
cult to include explicitly in our probability models. The GAN
discriminator could learn what features constitute “realism”
and so the generator may learn to create sequences which
contain these. However, we found that using the adversar-
ial approaches from GANs and Wasserstein GANs (Arjovsky
et al., 2017; Gulrajani et al., 2017) to train the L96-RNN (in-
stead of by likelihood) did not show any benefit. This may be
due to the difficulty of training GANs on longer sequences.
They have been used to train RNNs on medical time series
(Esteban et al., 2017) and to model music (Mogren, 2016), so
applying this approach to climatic sequences may be some-
thing for future work to reconcile. The challenges of using
GANSs are seen by how we have not been able to reproduce
the results shown in Gagne et al. (2020) despite the same set-
up. This points to the instability of GAN training, as noted
by them too. Mode collapse is a common issue encountered
when training GANs, where the generator fails to produce
samples that explore certain modes of the distribution, and
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could explain why density is only present for Regime A in
Fig. 4 and not for Regime B.

7 Conclusions

We have shown how to build on the benefits of red-noise
models (such as AR ones) in parameterizations by using a
probabilistic ML approach based on a recurrent neural net-
work (RNN). This can be seen as a natural generalization of
the classical autoregressive approaches. This is done in the
idealized case of the two-level Lorenz 96 system, where the
unresolved variables must be parameterized. Our L96-RNN
outperforms the red-noise baselines (a polynomial model and
a GAN) in a weather forecasting framework and has lower
KL divergence scores for the probability density functions
arising from long-range simulations. The L96-RNN general-
izes the best to new forcing scenarios. These strong empirical
results, along with a less correlated residual pattern, supports
the benefit of the L96-RNN being due to it better capturing
temporal patterns.

This approach now needs testing on more complex sys-
tems — both to specifically improve on AR1 processes and to
learn new, more flexible models of X;. An interesting area
for further work is to examine what information is tracked in
the hidden variables of the L96-RNN and how this relates to
the timescales of the required memory in the modelled sys-
tem. The field is ripe for other probabilistic ML tools to be
used, and we suspect that further customization of these will
lead to many improved parameterization models.

Likelihood can often be fairly easily calculated, and where
this is the case, we propose that the community also evaluate
the hold-out likelihood for any devised probabilistic model
(ML or otherwise). It is a useful debugging tool, assessing
the full joint distribution of a model. It would also provide a
consistent evaluation metric across the literature. Given the
challenges relating to sample quality, likelihood should com-
plement, not replace, existing metrics.

Finally, we have used demanding tests to show that ML
models can generalize to unseen scenarios. We cannot hope
for ML models to generalize to all settings. We do not expect
this from our physics-based models either. But ML models
can generalize outside their training realm. And it is by using
challenging hold-out tests that we can assess their ability to
do so and, if they fail, begin the diagnosis of why.

Appendix A: Likelihood derivations

In all cases, the log likelihood of the sequence of X, is given
by

logPr(xq,...,x,;x0) =logPr(x1; xq)
+logPr(xz|x1;x0) +logPr(x3|x2, x1; x0)

+...+logPr(x,|x,—1,...,X1; X0), (A1)
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which follows from the laws of probability.
Al L96-RNN

Now from Eq. (10), we can write

Xilxi—1,..ox15%0 = f(xi—1)

— At(Rs|x:_1,...,X1;X0), (A2)
where for the L96-RNN
fx) =x+w(x) — At go(x,), (A3)

X; denotes the random variable, and x; denotes the value
which that random variable takes. Given this relationship be-
tween X, and R, a change of variables (further details are in
Appendix A4) for the likelihood gives

logPr(x;|x;—1,...,x1; x0) = logPr(r;|r;—1,...,r1)

— Klog(At). (Ad)
Eq. (Al) is therefore

=logPr(ry) +1logPr(ra|ry) + logPr(rs|ra, ry)
+ ...+ logPr(r,|r,—1.1) — Knlog(At), (AS)

n
=logPr(ry) + ZlogPr(r,lveclt) — Knlog(At), (A6)

=2
K n
=" (logPr(ri.) + Y logPr(re.slik.) )
k=1 t=2
— Knlog(At), (AT)

where Eqs. (A6)-(A7) follow from the independencies in the
graphical model (Fig. 1).

A2 Polynomial model

For the polynomial model, the log likelihood of the X, se-
quence is

logPr(xy,...,x,;Xx0) =

K n—1
> (logPr(i, 1)+ logPr(h,11hi.) )

k=1 =1
— Knlog(At), (AB)

and the derivation follows below.
The graphical model is shown in Fig. Ala. From Eq. (6),
we can write

Xilxi—1,...x1;x00 = f(x:—1)

—At(Hlxi-1,...,X1;X0), (A9)

and given this relationship between X; and h,, a change of
variables for the likelihood gives

X 15X0)
=logPr(h/|h;—1,...,h1) — Klog(At).

logPr(x;|x;—1,..
(A10)
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(a)
X X, X, X,
1 1 t
H, H, H3
t t t
z z, Z3

(b)

0 1 X,

N1—> ‘u1 NZ_’"{'Z N3—>l{,3
H, H, H3
t t t
zZ, z, Z;3

Figure A1l. Graphical model for (a) polynomial and (b) GAN with
added white noise.

Eq. (A1) is therefore
=logPr(h) +logPr(hy|h) 4+ logPr(hs3|hy, hy)

+...+logPr(h,|h,—1.1) — Knlog(At), (All)
n—1
=logPr(h) + ZlogPr(h,+1 |hy) — Knlog(At), (A12)
=1
K n—1
=" (logPr(hi1) + Y logPr(he411hi.))
k=1 t=1
— Knlog(At), (A13)

where Eqs. (A12)—(A13) follow from the independencies de-
scribed in Eq. (5).

A3 GAN

We approximate the GAN’s likelihood by calculating the
likelihood of a model which functions and gives results al-
most identical to the GAN (one with a small amount of white
noise added) using importance sampling and the reparame-
terization method as in the variational autoencoder Kingma
and Welling (2013). Here, Eq. (9) is altered to

Xir1 = Xip +op(Xy) — At u(Xgr, H 1 11), (A14)

where  u(Xg s, Hi,r+1) = U(Xgr, Hip41) + Nir+1 and
Ni.; ~ N(0,0.0012). The log likelihood is

logPr(xq,...,x,;x0) = logEhNPrﬁ.

Pr(u.|h.,xo)Pryg.(h.)

Prj,.(h.) (A13)

— Knlog(At),
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where the expectation can now be approximated by a large
sum if there is a suitable importance sampler Prg (h.). A to-
tal of 50 samples were used for the importance sampling, and
this was repeated 50 times to give 95 % confidence intervals.
We note that given the finite number of samples taken, it is of
course possible that the GAN likelihood is larger, but a well-
trained importance sampler should minimize the chance of
this. The derivation and form of the importance sampler is
detailed below.

The graphical model of the GAN with a small amount of
white noise added is shown in Fig. Alb. X, is related to u;
as in Eq. (A14), so

Xl X1 =x-1,... X1 =x1; X0 =x0)
= f(x—1) — At X1 =x;-1,.... X1 =x1; Xg =x0), (Al6)

and a change in variables for likelihood gives

X1;X0) =
Lu1;x0) — Klog(At).

logPr(x;|x;_1,..

logPr(u;|u;—1, .. (A17)

Eq. (A1) is therefore

= logPr(ui|xo) +logPr(uz|uy, xo) +logPr(usluz, ui, xo)
+...+logPr(uy|u,_1.0,x0) — Knlog(At),

=logPr(u.|xg) — Knlog(At),

and just decomposing the first term below gives the follow-

ing:

logPr(u.|xo) =logEp~pr, Pr(u.lh., xo)

Pr(u.lh.,xo)Prgy.(h.)
PI‘I:I(h)

= logEp~pr,. . (A1)

where Eq. (A18) can be approximated with a sufficiently
large sum given a good enough encoder Pr (h.).
For training purposes, the lower bound is used:
Pr(u.|h.,xo)Prgy.(h.)
Pry (h.)

> Ep~prj,. log (A19)

The terms in the numerator decompose as follows, using
the independencies from the graphical model and associated
equations:

n
logPr(u.|h.,xp) = ZlogPr(u[ |h:,x:—1),

=1
n K
= ZZlogPr(uk,tIhk,z,xk,z—l),
t=1 k=1
and

n
logPrpy. (h.) =logPry (k1) + Y _logPry (h;|h; ).
=2

n
= Z (logPrH(hk,l) + ZIOgPrH(hk,sz,z—l))-

k=1 t=2
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The perfect importance sampling distribution would be
proportional to Pr(h.|u., x). Therefore we want Prj; (h.) to
allow for the same dependencies. We choose it by carrying
out the following steps:

logPrg (h.) logPr(h.|u.,xo) =logPry, (h1lu., xo)

+ ) logPry, (hi|h;—1,u.,x0), (A20)

n
1=2

where Eq. (A20) follows from using the laws of probabil-
ity to decompose the term above, followed by applications
of the independencies from the graphical model. Note that
although the process is Markov, it is not necessarily time-
homogeneous. To deal with this, an RNN is used to model
Pru, (hi|lhi—1,u.,x0) as Prg(h;|h;—1,u.,x0,s,) where the
state s; can in principle account for the non-homogeneous
updating procedure of k,. The log likelihood is therefore

K
= Z <logPrH1 (hi,1luk., Xk,0)
k=1

n
+ ZlOgPrHt (Mol hg—1s k., Xk, Sk,:)),
=2

(A21)

where the spatial independencies introduced in Eq. (A21)
follow from the graphical model, and uy, = ug, 1., and xi,. =
Xk 0:n—1. The only simplifying assumption used here is that
the same update model for A ; is used for each component
k. Finally, the sequence of (uy. ,xx.) is summarized using a
bidirectional RNN to give wy ;. Therefore, the final form of
the log likelihood of our importance sampler is

K
=y (loglz’rH1 (hi, 1| wi, 15 Xk,0)
k=1

n
+ ZIOgPrH, (el hie—1, Wies Xke—1, Sk,t))~
1=2

(A22)

The training of the importance sampler is done by maxi-
mizing Eq. (A19), with the learnable parameters being those
of the model used to learn %y 1, the RNN used to model the
update of A ;, and the bidirectional RNN.

A4 Change of variables for probability density
functions

For random variables, X € R! and ¥ € R!, where X = ny),
and 7 :R! — R!, the probability density function for X,
Pryx(x), is

Pry(x) =Pry(n~'(x)) . (A23)

d, _
a(n ')

Now we will show how we arrive at Eq. (A4) for the RNN.
A similar approach can be taken for the other two models. We
can rewrite the equation (a single component of Eq. A2)

Xt Xk =1, X115 Xk,0

= fr(xi—1) — At (Ri ¢ |X g i—1, -+ -, Xk, 15 Xk,0) (A24)
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as
Xkt Xk t—15 -+ Xk, 15 Xk,0
= 0(Ric.t|Xk,1—1. - Xk, 15 XK,0) (A25)
where
N(Rice1Xki—15 - ¥k.13 Xk.0)
= fe(xr—1) — At (Ri ¢ Xk, —15 -, Xk, 15 Xk,0)- (A26)
From this we see
N Xk | Xki—1s - X015 X40)
= %(Xkﬂxk,t—l, e Xk, 15 XE,0 — fk(xt_l)), (A27)
and therefore
d -1
e N (Xke = Xiet[Xki—1, - X115 Xk0) = NS (A28)
We can thus write
Prx, , ke |Xk,e=15 - s Xk,15 X£,0)
—1
=Prr,, (ree|Xk,e=1, - s Xk, 15 Xk,0) ~|
=Prr,, (rke|Fie—1 -+ Tk,1) A (A29)

And from the conditional independencies in Eqs. (10)—
(12),

Prx, (x¢|x;—1,...,X1;X0)

K
= l_[Per,,(Xk,zlxk,z—l, o X1 XE,0)s
k=1

1

'srk,l) R

K
= [ [Pra, rslrair. ..
=1 ' At

1 \K
=P Ly ey (—) , A30
I'R,(rt|rt 1 ry) Al ( )
and on taking logs and dropping the subscripts we get
logPr(x;|x;—1,...,x1; X0)
=logPr(r¢|r;—1,...,r1) — Klog(At), (A31)

which is Eq. (A4).
A4.1 Application to systems beyond the .96

It will sometimes not be possible to apply the approach based
on changes of variables to more complex systems, for a few
reasons. First, it requires the function 7 in X = n(Y) to be ei-
ther a monotonically increasing or monotonically decreasing
function (as the inverse must exist). This may not be the case
in more sophisticated climate models. Second, the derivative
of the inverse of n needs to be computable, which may not
be feasible to do if the inverse is too challenging to calcu-
late (for example, it may not be possible to run individual
components of climate model functions in order to calculate

n~h.

Geosci. Model Dev., 16, 4501-4519, 2023

Appendix B: Further results

Further results for KL divergences are provided in order to
see how results vary with differing bin sizes for the his-
tograms.

Table B1 is for the distributions in Fig. 3, and Table B2 is
for those in Fig. 4. Even for a range of bin sizes, the L96-
RNN has the lowest KL divergences.

Table B1. KL divergence (goodness of fit) between (1) the truth
and (2) the parameterized models, for the distributions shown in
Fig. 3. The smaller the KL divergence, the better the match between
the true and modelled distributions. The best model in each case is
shown in bold.

Number Polynomial L96-RNN GAN
of bins

600 0.09 0.03 0.60
700 0.11 0.04 0.70
800 0.12 0.04 0.80
827 0.13 0.04 0.83
900 0.14 0.05 0.90
1000 0.16 0.05 1.01

Table B2. KL divergence (goodness of fit) between (1) the truth
and (2) the parameterized models, for the distributions shown in
Fig. 4. The smaller the KL divergence, the better the match between
the true and modelled distributions. The best model in each case is
shown in bold.

Number Polynomial L96-RNN GAN
of bins

250 29 14 345
350 64 32 735
450 123 65 1310
550 218 122 2111
650 366 214 3178
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