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Abstract. Autocalibration techniques have the potential to
enhance the efficiency and accuracy of intricate process-
based hydrodynamic and water quality models. In this study,
we developed a new R-based autocalibration toolkit for the
Environmental Fluid Dynamics Code (EFDC) and imple-
mented it into the recalibration of the Yuqiao Reservoir Wa-
ter Quality Model (YRWQM), with long-term observations
from 2006 to 2015, including dry, normal, and wet years.
The autocalibration toolkit facilitated recalibration and con-
tributed to exploring how a model recalibrated with long-
term observations performs more accurately and robustly.
Previously, the original YRWQM was calibrated and vali-
dated with observations of dry years in 2006 and 2007, re-
spectively. Compared to the original YRWQM, the recal-
ibrated YRWQM performed just as well in water surface
elevation, with a Kling–Gupta efficiency (KGE) of 0.99,
and water temperature, with a KGE of 0.91, while perform-
ing better in modeling total phosphorus (TP), chlorophyll a

(Chl a), and dissolved oxygen (DO), with KGEs of 0.10,
0.30, and 0.74, respectively. Furthermore, the KGEs im-
proved by 43 %–202 % in modeling the TP–Chl a–DO pro-
cess when compared to the models calibrated with only dry,
normal, and wet years. The model calibrated in dry years
overestimated DO concentrations, probably explained by the
parameter of algal growth rate that increased by 84 %. The
model calibrated in wet years performed poorly for Chl a,
due to a 50 % reduction in the carbon-to-chlorophyll ratio,
probably triggered by changes in the composition of the algal
population. Our study suggests that calibrating process-based
hydrodynamic and water quality models with long-term ob-

servations may be an important measure to improve the ro-
bustness of models under severe hydrological variability. The
newly developed general automatic calibration toolkit and a
possible hierarchical autocalibration strategy will also be a
powerful tool for future complex model calibration.

1 Introduction

Lakes and reservoirs fulfill the role of “sentinels” to climate
change due to both their capacity to buffer synoptic-scale
hydroclimatic extremes and their susceptibility to hydrolog-
ical variability (Adrian et al., 2009; Williamson et al., 2009;
Mooij et al., 2019). In recent decades, dramatic hydrologi-
cal variability has been widely detected and has remarkably
influenced biogeochemical processes in lakes and reservoirs
(Sinha et al., 2017; Grant et al., 2021; Kong et al., 2022; Salk
et al., 2022). In a bid to delve into these variations, process-
based hydrodynamic and water quality models have been in-
creasingly popular tools, since they can disentangle numer-
ous intricate causal relations between exogenous drivers and
environmental impacts within waterbodies (Arhonditsis and
Brett, 2004; Mooij et al., 2010; Fu et al., 2019). However, the
accuracy and robustness of these models in the face of such
intense hydrological variability have become a key issue.

Driven by the purpose of better understanding physi-
cal, chemical, and biological processes, the complexity of
process-based hydrodynamic and water quality models has
been unabated over recent years (Robson, 2014). However,
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the increased complexity of the model is a mixed blessing.
It indeed helps us to examine biogeochemical processes in
lakes and reservoirs, but when the complexity of the model
exceeds a certain level, both the accuracy and the identifia-
bility are diminished (McDonald and Urban, 2010). Higher
dimensions, more state variables, and more specific details
introduce more and more parameters into models through
drastic simplification of reality, which subsequently become
a massive source of model uncertainty. Model calibration is
one of the essential procedures in model setup to reduce the
uncertainty from parameter estimations and to obtain a satis-
factory parameter set to match the simulated results with ob-
served data (Jørgensen and Fath, 2011). Although calibration
has been used extensively in process-based hydrodynamic
and water quality models, there are still two notable prob-
lems.

The first problem is that the manual calibration method
(trial and error) commonly used in process-based hydrody-
namic and water quality models is inefficient and does not
guarantee optimal results. First, some steps, such as adjust-
ment of inputs, tuning of parameters, evaluation of model
performance, and visualization of outputs, subject modelers
to time-consuming and tedious tasks. Second, the parame-
ter set selected by this method may still suffer from uncer-
tainty and interferences of subjective factors. With the de-
velopment of computer technology and its subsequent appli-
cation in numerical simulation methods, the automatic cal-
ibration method is burgeoning (Shimoda and Arhonditsis,
2016). Numerous modeling studies in recent decades have
employed automatic calibration procedures in 2-D or lower-
dimensional process-based hydrodynamic and water quality
models in lakes or reservoirs (Rigosi et al., 2011; Huang,
2014; Luo et al., 2018). However, due to their high com-
plexity and time-consuming calculation, there are few ap-
plications of automatic calibration procedures in 3-D hydro-
dynamic and water quality models. For example, the auto-
mated Parameter ESTimation software (PEST) was applied
in the Environmental Fluid Dynamics Code (EFDC; Arifin
et al., 2016), and optimization algorithms were applied in
Delft3D (Xia et al., 2022; Xia and Shoemaker, 2021, 2022).
The lack of automatic calibration procedures is a major hin-
drance to improving the efficiency of model calibration and
indirectly causes the problem below. The EFDC is a general-
purpose model developed for simulating three-dimensional
flow, transport, and biogeochemical processes in surface wa-
ter systems, including rivers, lakes, estuaries, reservoirs, wet-
lands, and coastal regions (Hamrick, 1992). The hydrody-
namic model consists of continuity, momentum, state, and
transport equations for salinity and temperature. The wa-
ter quality model consists of 22 state variables and associ-
ated kinetics (Ji, 2017). More than 200 parameters which
govern the above process are spread over different cards in
different input files, and the model results comprise lots of
output files in different formats. Despite the emergence of
numerous well-established generic tools for automatic cal-

ibration, the process of linking these tools to EFDC input
and output files is still cumbersome. For such a sprawling
model system as the EFDC, a specific automatic calibration
tool can eliminate much of the repetitive and unnecessary
work. On the other hand, specific automatic calibration tools
are needed to support multi-objective evaluation methods for
three-dimensional model calibration, including evaluation at
different locations on the horizontal plane, evaluation at dif-
ferent depths on the same grid, or a mixture of these objec-
tives.

The second problem is that many models were calibrated
with only short-term observations with a narrow hydrologi-
cal variability and were then employed in water ecosystem
management decisions or future predictions. There are hid-
den perils in the presumption that these calibrated models
are adaptive to a wider hydrological variability. For example,
in a previous study of the Spokane River and Lake Spokane
model, the use of a low-flow period for calibration may re-
sult in an overestimation of in-lake total phosphorus (TP)
and chlorophyll a (Chl a), and an underestimation of min-
imal dissolved oxygen (DO; Zhang et al., 2018a). This issue
has also arisen in studies of other models (Vaze et al., 2010;
Nielsen et al., 2014; Basijokaite and Kelleher, 2021). A large
number of parameters is almost impossible to be constrained
by a narrow hydrological variability (Janssen and Heuberger,
1995; Franks, 2009), thus triggering the equifinality problem,
where several distinct parameter inputs produce the same
model outputs called the “good results for the wrong rea-
sons” (Arhonditsis et al., 2007; Paudel, 2012). Even if the
final parameter set chosen by the modeler satisfies the match
between model results and observations under the current hy-
drological variability, there is no credibility that the model
will be accurate as a robust prognostic tool under a wider
hydrological variability (Arhonditsis et al., 2007). Therefore,
the utilization of a longer period of observations containing a
wider range of hydrological years for calibration may be an
important way to improve the identifiability of parameters in
process-based hydrodynamic and water quality models. Ben-
efiting from the continued accumulation of historical obser-
vations, numerous published models have been recalibrated
using longer scales of data (James, 2016; Schnedler-Meyer
et al., 2022). Cerco and Noel (2005) recalibrated the Chesa-
peake Bay model with a decade of observations, resulting
in a clear improvement in modeling primary production and
light attenuation. A benefit of long-term data supports is that
it is possible to explore how the hydrological variability in
the calibration period and its impact on the model calibration
will help establish more accurate and robust models.

Long-term modeling is required to test the model’s ability
to reproduce ecosystems under different hydrological years.
Based on the established Yuqiao Reservoir Water Quality
Model (YRWQM; Zhang et al., 2013, 2015, 2019), this study
aims to explore how long-term observations under a wider
hydrological variability impact the model calibration with
the application of automatic calibration techniques. We hy-
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pothesized that models using observations with a longer pe-
riod and wider hydrological variability for calibration per-
form more accurately and robustly. We first developed a
new R-based autocalibration toolkit for the EFDC model.
Second, we recalibrated the YRWQM by the toolkit with
a decadal-scale observation under three hydrological situa-
tions, namely dry, normal, and wet periods. Finally, we com-
pared the model performance, parameters, and kinetic pro-
cesses represented by parameters across the model calibra-
tion scenarios that used different split-sample approaches.
These discrepancies will highlight the importance of the hy-
drological variability corresponding to the observed data for
model calibration and deepen our understanding of biogeo-
chemical processes in shallow lakes and reservoirs under the
wide hydrological variability.

2 Materials and methods

2.1 EFDC Automatic Calibration Toolkit

The EFDC Automatic Calibration Toolkit (EFDC-ACT) was
developed in this study for automating the calibration of a 3-
D hydrodynamic and water quality model, EFDC, with more
than 200 parameters. EFDC-ACT is a multi-parameter and
multi-variable autocalibration toolkit based on R. The doc-
umentation and source code are shared and publicly avail-
able at https://doi.org/10.5281/zenodo.7438143 (Zhang and
Fu, 2022). The conceptual overview of the EFDC-ACT is
shown in Fig. 1. There are three main steps in EFDC-ACT,
including initialization, autocalibration, and post-analysis.

Before using EFDC-ACT, the user should prepare the nec-
essary files, including the EFDC-ACT master file, the file
with comma-separated values (CSVs) that contains the pa-
rameter and variable information, the input file for the EFDC,
and the CSV file containing the observations. In the initial-
ization step, EFDC-ACT checks and loads the master file, the
parameter list, and the variable list. Then EFDC-ACT gener-
ates a matrix of parameter value ranges, sets the model eval-
uation statistics as the objective functions, and launches the
autocalibration process. More detail is in EFDC-ACT user’s
guide (Sect. S1 in the Supplement).

To maintain the diversity of the parameter sets while ac-
celerating convergence, EFDC-ACT introduced the caRamel
package (Monteil et al., 2020) to the autocalibration step.
The caRamel package is a genetic algorithm-based multi-
objective optimizer, incorporating the multi-objective evolu-
tionary annealing simplex method (MEAS; Efstratiadis and
Koutsoyiannis, 2008) and Non-dominated Sorting Genetic
Algorithm II (ε-NSGA-II; Reed and Devireddy, 2004). It is
suitable for highly complex, time-consuming hydrodynamic
and water quality models like EFDC. EFDC-ACT controls
the caRamel optimization according to the master file and
feeds the parameter value range matrix into the caRamel
package. The caRamel package generates the parameter set,

and then EFDC-ACT passes it into EFDC and starts the cal-
culation. At the end of the model run, EFDC-ACT calculates
the statistics, based on the modeled and observed values, and
passes the result back to caRamel as the objective function
value. As the parameter set is adjusted, the autocalibration
process is repeated until the termination criterion is reached,
such as the maximum number of runs or the expected statistic
results.

Automatic model evaluation is a potent tool for making
models more transparent and credible (Alexandrov et al.,
2011; Soares and Calijuri, 2021). To this end, EFDC-ACT
provides model result extraction, statistical model evaluation,
and graphical model evaluation in the post-analysis step.
During the autocalibration process, the user can open the
CSV files to view each iteration’s parameter set and model
evaluation results. After each iteration, EFDC-ACT plots the
time series using modeled and observed values, thus supply-
ing the users with a visual comparison that statistics cannot
accomplish. EFDC-ACT will also output the final optimiza-
tion results in a CSV file when all iterations are complete.

According to the model evaluation guidelines proposed
by Moriasi et al. (2007), the statistics used to evaluate the
model performance include three categories, namely stan-
dard regression (R2), dimensionless (Nash–Sutcliffe effi-
ciency, NSE; Kling–Gupta efficiency, KGE), and error index
(mean absolute error, MAE; root mean square error, RMSE;
percent bias, PBIAS; ratio of root mean squared error to the
standard deviation of observations, RSR). The Kling–Gupta
efficiency (KGE) is included as an alternative to NSE in this
study. KGE gives equal weight to bias, linear correlation,
and variability, avoiding the systematic underestimating of
the variability (Gupta et al., 2009).

2.2 Chronicle of YRWQM

The Yuqiao Reservoir (40◦00′–40◦04′ N, 117◦26′–
117◦37′ E) is situated in Jixian county, Tianjin, China
(Fig. 2). The shallow reservoir has a length of 66 km from
east to west and a width of 50 km from north to south, an
average water depth of 4.74 m, a maximum water depth
of 12.74 m, a total surface area of 86.6 km2, and a storage
capacity of 1.559 × 109 m3. It is situated within a basin
area that covers 2060 km2 (Fig. S1 in the Supplement).
The Yuqiao Reservoir is the primary source of drinking,
agricultural, and industrial water for approximately 129
villages in the surrounding area (Zhang et al., 2019; Yu
and Zhang, 2021). Previous studies have shown that Yuqiao
Reservoir is a typical mesotrophic, phosphorus-limited
environment (Chen et al., 2012; Zhang et al., 2020). The
YRWQM (Zhang et al., 2013) is a regional hydrodynamic
and water quality model developed under the framework
of EFDC (Hamrick, 1992; Ji et al., 2001) to improve the
understanding and management of the Yuqiao Reservoir.
Since its inception, the model has undergone five phases of
development and refinement (Fig. 2).
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Figure 1. Conceptual overview of EFDC-ACT. The main files consist of nine categories. (a) EFDC_ACT_pars.yaml is the EFDC-ACT master
file. (b) Par_list.csv indicates the parameter ranges and whether to calibrate. (c) Var_list.csv is the objective state variable, spatial location,
statistics used, and accuracy expected. (d) EFDC inp files are input files for EFDC. (e) Obs files are CSV files containing observations.
(f) Par_result.csv files are the autocalibration results of parameter values by each iteration. (g) Var_result.csv files are the autocalibration
results of statistics for objective state variables by each iteration. (h) Plots show the time series plots for model results and observations.
(i) caRamel_result.csv files are the final autocalibration results containing optimal parameter sets and model evaluations.

The original YRWQM was constructed to investigate how
agricultural pollution by flood flows affects the water quality
in the Yuqiao Reservoir. The model was calibrated, validated,
and employed to predict the variations in the water quality re-
sulting from agricultural pollution (Zhang et al., 2013). Sub-
sequently, the YRWQM was coupled with a modified sub-
merged aquatic vegetation model (M-SAVM) to study the
development effect of submerged macrophytes (Zhang et al.,
2015, 2016) and epiphyton (Špoljar et al., 2017; Zhang et al.,
2018b) on the water quality indicators of the reservoir. An in-
tegrated climate–hydrological–water quality (RCM-SWAT-
YRWQM) framework was also proposed to elucidate the ef-
fects of a changing climate on the trophic state (Zhang et al.,
2019).

The YRWQM has become a powerful tool for the research
and management of the Yuqiao Reservoir water ecosystem
through the above phases in the past decade. However, there
may still be a risk of insufficient accuracy since the original
YRWQM calibration does not take into account long-term
hydrological variability. With the availability of the decadal-

scale observations covering dry, normal, and wet periods and
the design of new model calibration methods, it is time to
examine whether a longer period of calibration can improve
the accuracy and robustness of the model.

2.3 Benchmarking point: model calibration with the
strategy of the original YRWQM

As mentioned above, the original YRWQM was initially de-
veloped for the purpose of investigating the variations in
the water quality arising from agricultural pollution in the
Yuqiao Reservoir. Both the hydrodynamic and water quality
model were calibrated and validated with the observations
collected in the six monitoring stations from 2006 to 2007,
and the performance was satisfactory. A more detailed de-
scription of the original YRWQM can be found in Zhang et
al. (2013). It should be noted that both the calibration period
(the year 2006) and validation period (6 months of the year
2007) was under dry hydrological conditions.

Consistent with the original YRWQM calibration strategy,
the dry years (the years 2006, 2007, 2010, and 2015) of the
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Figure 2. Bathymetric map of the Yuqiao Reservoir and the chronicle of YRWQM. The YRWQM has undergone five phases of development
and refinement, including (I) model construction, (II) the M-SAVM module, (III) epiphyton, (IV) the integrated framework of RCM-SWAT-
YRWQM, and (V) recalibration with EFDC-ACT.

decade were selected as the calibration period to establish
a benchmarking point for comparison with the recalibrated
YRWQM. The parameter set obtained from the calibration
was implemented to simulate other years with different hy-
drological conditions to validate the model. The normal years
(the years 2009, 2011, and 2014) and the wet years (the
years 2008, 2012, and 2013) of the decade were also em-
ployed to calibrate and then validate the model with the same
method. All three different models and their parameter sets
were eventually compared with the recalibrated YRWQM to
reveal improvements with a wider hydrological variability.

2.4 YRWQM recalibration with EFDC-ACT

The datasets required for YRWQM recalibration included
meteorological data, discharge, precipitation, evaporation,
water surface elevation, water temperature, and water qual-
ity data. Meteorological data are obtained from the China
Meteorological Data Service Center. Discharge, precipita-
tion, evaporation, and water surface elevation data used in the
model were obtained from the Yuqiao Reservoir Administra-
tive Bureau. The data above were collected at a frequency of
once a day from 2006 to 2015, except for 2012, when water
surface elevation data were collected once a month (Zhang et
al., 2019). While six monitoring stations were employed by
the original YRWQM for calibration and validation (Zhang
et al., 2013) to balance the cost with the accuracy in calibra-
tion, water temperature and water quality data collected from
monitoring station S2 were used in recalibrated model evalu-
ation, which represented the water column at the center of the
Yuqiao Reservoir. The water quality state variables included
TP, Chl a, and DO concentrations (Zhang et al., 2015). All

of the water quality data were sampled, preserved, and ana-
lyzed monthly or semi-monthly from 2006 to 2015, accord-
ing to the Standard Methods for the Examination of Water
and Wastewater editorial board.

Due to the lower stability of the hydrodynamic model
compared to the water quality model, the recalibration of the
YRWQM was divided into two parts, namely the hydrody-
namic model recalibration and the water quality model recal-
ibration. Both parts of the YRWQM were recalibrated with
EFDC-ACT. The parameter ranges listed in Table S1 in the
Supplement were referenced from the original YRWQM and
other literature (Wu and Xu, 2011; Zhang et al., 2013; Yi et
al., 2016; Jiang et al., 2018; Zhao et al., 2020; Kim et al.,
2021). KGE and PBIAS were used to evaluate the recali-
brated model. Model performance is considered satisfactory
when the KGE is greater than −0.41 in this study, mean-
ing that the model improves upon the mean value benchmark
(Knoben et al., 2019). The PBIAS describes the average ten-
dency for simulated values to be greater or less than observed
values, with positive values indicating a model bias toward
underestimation and negative values indicating a model bias
toward overestimation (Gupta et al., 1999).

The hydrodynamic model of YRWQM was recalibrated
with the field data collected between 2006 and 2015, with
a time step of 10 s. The objective function of EFDC-ACT
included the KGE results of water surface elevation (WSE)
and surface water temperature (TEM) at station S2 from 2006
to 2015. The decade included dry years (2006, 2007, 2010,
and 2015), normal years (2009, 2011, and 2014), and wet
years (2008, 2012, and 2013). The parameters were automat-
ically adjusted by EFDC-ACT until all the objective func-
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tions (KGEs) were greater than −0.41 or the number of it-
erations reached the maximum. In the water quality model
recalibration, the objective function of EFDC-ACT included
the KGE results of three water quality state variables (TP,
Chl a, and DO) at station S2 from 2006 to 2015. When all
the objective functions (KGEs) were greater than −0.41 or
the number of iterations exceeded the maximum, the auto-
calibration is considered complete.

3 Results

3.1 EFDC-ACT efficiency and model recalibration

Before giving the complicated details of the analysis on
model performance and parameters, we first give an overview
of the implementation of the EFDC-ACT on the YRWQM
recalibration. Both the manual recalibration and the auto-
matic recalibration experiments with a modeling scale of
1 year were implemented under the same calculating work-
station with an Intel® Core™ i7-10700 CPU at 2.90 GHz. In
the manual recalibration, each iteration took an average of
8.25 h, with an average of 6.41 h spent on modeling and an
average of 1.84 h spent on manual pre-processing (parameter
adjustment and parameter set recording) and post-processing
(result extraction, statistic calculation, time series plotting,
and model performance recording). The manual pre- and
post-processing took 22.35 % of the total time of each iter-
ation. In the automatic recalibration, each iteration took an
average of 6.43 h, with an average of 0.02 h (77 s) spent on
automatic pre- and post-processing. The automatic pre- and
post-processing took 0.36 % of the total time of each itera-
tion. In terms of time consumption, automatic recalibration
with EFDC-ACT takes 21.99 % less time than the manual
operation, thereby reducing the time consumed per iteration
by 22.02 % (1.82 h). From the perspective of labor-saving,
EFDC-ACT spared the modeler from tedious, repetitive tasks
such as extraction of results, calculation of statistical values,
and plotting of the time series. These savings in time and la-
bor provided us with abundant time to analyze and improve
the recalibrated YRWQM.

During the recalibration period (2006–2015), the bottom
roughness height and the wind drag multiplier were automat-
ically calibrated. The hydrodynamics of the recalibrated YR-
WQM demonstrated good performance for WSE and TEM at
station S2 (Fig. 3). The recalibrated YRWQM remarkably re-
produced the decadal variation in the WSE in Yuqiao Reser-
voir with a KGE of 0.99. The recalibrated YRWQM repro-
duced the seasonal cycle of water temperature with a KGE
of 0.91. The highest and lowest water temperatures were
grasped with a highest observed value of 31 ◦C and a cor-
responding simulated value of 28 ◦C and a lowest observed
value of 0 ◦C and the same corresponding simulated value.
The modeled WSE and TEM both indicated that the hydro-
dynamic model in the recalibrated YRWQM is reliable and

can be used for water quality modeling in the Yuqiao Reser-
voir during the recalibration period.

The water quality of the recalibrated YRWQM performed
satisfactorily for the modeled TP concentration at station S2
with a KGE of 0.10. Most of the observations were evenly
distributed, with little variance on either side of the modeled
values (Fig. 3). The modeled TP concentration peaked at the
end of 2010 and 2011 and was beyond the range of the obser-
vations. Nevertheless, the inter- and intra-annual variability
in TP concentrations were still well captured, and the model
showed acceptable performance overall, with a PBIAS of
40 %. The model represented the variation in the Chl a con-
centration over the decade, with a KGE of 0.30. The Chl a

concentration showed a clear double-peaked or multi-peaked
pattern in the intra-annual variation, with peaks occurring
mostly in spring and autumn (Fig. 3). The modeled DO con-
centrations likewise showed good performance, with a KGE
of 0.74. DO concentration exhibited a pronounced seasonal
cycle, with lower concentrations in summer and higher con-
centrations in winter (Fig. 3).

The comparisons of the recalibrated model against the
original model demonstrated the better accuracy and robust-
ness of the recalibrated YRWQM over the decade in the
Yuqiao Reservoir (Table 1). The hydrodynamics of the recali-
brated YRWQM performed as well as the original YRWQM,
while the recalibrated YRWQM performed better than the
original YRWQM in modeling the TP, Chl a, and DO con-
centrations. The water quality of the original YRWQM failed
to reach a satisfactory result, with KGEs of −1.60, −3.03,
and−0.19 for TP, Chl a, and DO, respectively, while the wa-
ter quality of the recalibrated YRWQM performed well, with
KGEs of 0.10, 0.30, and 0.74, respectively, as mentioned
above. The 11 primary parameters in the water quality model
are listed in Table 1, eight of which governed algal kinetics
(CChl, PM, Keb, TM1, TM2, KHP, BMR, and PRR), two
parameters influenced phosphorus cycling (KRP and KDP),
and one affected reaeration (REAC). Among these param-
eters, we also found six of them to be sensitive (Table 1).
These parameters were the carbon-to-chlorophyll ratio for al-
gae (CChl), the maximum growth rate for algae (PM), basal
metabolism rate for algae (BMR), predation rate on algae
(PRR), the minimum mineralization rate of dissolved organic
phosphorus (KDP), and reaeration multiplier (REAC). These
primary parameters were selected during our calibration pro-
cess, based on the biogeochemical characteristics of Yuqiao
Reservoir and the model performance, and they significantly
influenced the model results. More detailed model equations,
parameter interpretations, and calibration results are listed in
Sect. S3.
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Figure 3. Performance of the model recalibrated and the model calibrated with original strategy (with dry years) at station S2 of the Yuqiao
Reservoir (n= 3309 for WSE and 190 for other state variables).

3.2 Performance comparison between YRWQM
recalibrated by decade and models calibrated with
different hydrological years

There were obvious discrepancies in the performance of
the recalibrated YRWQM in different hydrological years
(Fig. 4). The ability of the recalibrated YRWQM to repro-
duce TP concentrations for the decade was the best, with the
highest KGE values. The recalibrated model evaluation for
TP concentrations reflected a satisfactory performance in dry
and wet years, with KGEs of −0.22 and 0.004, respectively,
while in normal years the KGE value was less than −0.41.
The recalibrated model showed reasonable performance for
Chl a concentration and performed best in normal years, with
a KGE of 0.36. The recalibrated model succeeded in repro-
ducing DO concentrations in different hydrological years,
with all KGE values greater than 0.6 and the maximum KGE
of 0.76 occurring in wet years.

In comparison to the YRWQM recalibrated with the
decade, the other three models calibrated in different hydro-
logical years showed distinct inferiority (Fig. 4). The model
calibrated in dry years had a relatively poor performance
when modeling DO, with a KGE of 0.24 for the decade and
a maximum KGE of 0.36 in dry years. The model calibrated

in normal years failed to obtain good evaluations in model-
ing TP, with the lowest KGE values for the decade and in all
three different hydrological situations. The model calibrated
in wet years showed relatively worse results when modeling
Chl a, with all KGE values being less than 0.2 and the lowest
KGE of −0.02 occurring in dry years. The results indicated
that the YRWQM recalibrated with the decadal information
outperformed the other three models calibrated with a single
hydrological year, with the best robustness in modeling TP,
Chl a, and DO concentrations for a wide hydrological vari-
ability during the decade.

3.3 Parameters and kinetic processes comparison
between recalibrated YRWQM and models
calibrated within different hydrological years

Similar to the model performances, models employing differ-
ent calibration strategies also had different parameter results
(Fig. 5). Most parameter values of the recalibrated YRWQM
were within the parameter ranges of the other three calibrated
models, except for PRR, which had the lowest value of 0.12
among the four models. PRR represents the rate of preda-
tion on algae by zooplankton or other aquatic organisms, and
algal predation is one of the main causes of algal reduction.
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Table 1. Comparison of the recalibrated YRWQM, the original YRWQM (calibrated with the year 2006), and YRWQM calibrated with the
original strategy (the dry years 2006, 2007, 2010, and 2015). The state variables being compared included WSE, TEM, TP, Chl a, and DO.
The parameters being compared included eight governing algal kinetics (CChl, PM, Keb, TM1, TM2, KHP, BMR, PRR), two influencing
phosphorus cycling (KRP and KDP), and one affecting the reaeration of DO (REAC). A more detailed explanation of the model equations
and parameters is listed in Sect. S3.

State Statistics Recalibrated Original YRWQM calibrated
variables YRWQM YRWQM with original strategy

WSE KGE 0.99 0.99 0.99
PBIAS (%) 0.03 −0.10 0.03

TEM KGE 0.91 0.91 0.91
PBIAS (%) 7.93 8.36 7.93

TP KGE 0.10 −1.60 0.11
PBIAS (%) 40 −78 20

Chl a KGE 0.30 −3.03 0.31
PBIAS (%) 36 −357 5

DO KGE 0.74 −0.19 0.24
PBIAS (%) −2 −53 −22

Parameters Units Descriptions Recalibrated Original YRWQM calibrated Sensitivity
YRWQM YRWQM with original strategy

CChl mg C µg Chl−1 Carbon-to-chlorophyll
ratio for algae

0.080 0.083 0.060 Yes

PM d−1 The maximum growth
rate for algae

2.77 2.00 5.10 Yes

Keb m−1 Background light
extinction coefficient

0.410 0.475 0.475 No

TM1 ◦C The lower optimal
temperature for
algal growth

21 9 22 No

TM2 ◦C The upper optimal
temperature for algal
growth

28 15 26 No

KHP mg L−1 Phosphorus
half-saturation for algae

0.0019 0.0010 0.0022 No

BMR d−1 Basal metabolism rate
for algae

0.120 0.010 0.140 Yes

PRR d−1 Predation rate on algae 0.117 0.010 0.280 Yes

KRP d−1 Minimum
hydrolysis rate of
refractory particulate
organic phosphorus
(RPOP)

0.005 0.001 0.067 No

KDP d−1 Minimum mineraliza-
tion rate of dissolved
organic phosphorus
(DOP)

0.060 0.005 0.070 Yes

REAC / Reaeration multiplier 1.4 0.9 1.1 Yes
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Figure 4. Performance of the models calibrated with different strategies. The YRWQM was recalibrated with the decade and calibrated
with dry, normal, and wet years, respectively. The parameter sets derived from four model calibration strategies were applied to the other
hydrological years or the decade to validate the model under the different hydrological conditions.

Compared to models using other calibration strategies, the
model calibrated in dry years had the highest PM of 5.1, the
highest PRR of 0.28, and the lowest REAC of 1.1. PM and
PRR govern the growth and predation of algae, respectively.
REAC represents the reaeration multiplier for the turbulence-
induced and wind-induced surface reaeration coefficient, and
a lower REAC value means less reaeration at the air–water
interface. There were significantly lower BMR and higher
KDP in the model calibrated in normal years, and these are
the two parameters that represent the algal basal metabolism
and the mineralization of dissolved organic phosphorus into
inorganic phosphorus, respectively. Most parameters of the
model calibrated in wet years were similar to the model re-
calibrated in the decade, except for one significantly lower
value of CChl, which governs the conversion between the
modeled and measured algal biomass.

4 Discussion

4.1 Recalibrated YRWQM vs. original YRWQM

Before embarking on the discussion of the discrepancies be-
tween the recalibrated YRWQM and original YRWQM, it
is important to note that the model evaluations chose a sin-
gle station (station S2 at the center of the Yuqiao Reser-
voir) and three state variables (TP, Chl a, and DO), which
are constrained by the complexity and computational cost
of decadal-scale modeling. Nevertheless, the above indica-

tors were considered to be capable of representing the main
biogeochemical processes in Yuqiao Reservoir, as previous
statistical analyses and numerical models have indicated that
Yuqiao Reservoir is a phosphorus-limited mesotrophic reser-
voir (Chen et al., 2012; Zhang et al., 2013; Xu et al., 2015).
The model evaluations demonstrated that the recalibrated
YRWQM performed equally well when compared to the
original YRWQM in terms of hydrodynamics, while the re-
calibrated YRWQM outperformed the original when it came
to water quality. We supposed that the better performance
probably stemmed from the recalibrated parameter values,
especially for sensitive parameters (Table 1). As described
by Cerco and Cole (1994) in the three-dimensional eutroph-
ication model of Chesapeake Bay, the growth rate of algae
was expressed as a multiplication of the maximum growth
rate (PM), with a series of limiting factors in YRWQM, while
the algal reduction was caused mainly by basal metabolism
(BMR) and predation (PRR). These parameter values in the
original YRWQM gave the algae growth conditions that were
too lenient and motivated inaccurate algal outbreaks during
the decade, with a PBIAS of −357 % (Table 1). These al-
gal outbreaks may also be a potential reason for the overesti-
mations of TP and DO concentrations with PBIAS values of
−78 % and−53 %, respectively (Table 1). With the excessive
algal outbreaks in the original YRWQM, the continuous en-
richment of phosphorus in algae and the oxygen production
process of excessive net photosynthesis prompted the final
overestimations (Ji, 2017). As algal kinetics were accurately
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Figure 5. Parameters of the models calibrated with different hydro-
logical years.

parameterized during the decade, with a PBIAS of 36 % in
the recalibrated YRWQM, satisfactory results were also ob-
tained for TP and DO concentrations, with PBIAS values of
36 % and −2 %, respectively (Table 1).

It should be noted that the modeled TP concentration
peaks were not recorded in the observations in late 2010 and
2011 (Fig. 3). This may have been caused by the year-end
water transfer, with inflow TP concentrations reaching 460
and 960 µg L−1 in December 2010 and 2011, respectively.
It may also demonstrate that the recalibrated YRWQM can
provide a higher temporal resolution than observations and
has potential as a hindcast model for reservoir management.
Overall, the accuracy and robustness of the YRWQM have
taken a solid step forward over a meticulous, long-term re-
calibration process with EFDC-ACT.

4.2 Why does the recalibrated YRWQM have
better-performing parameters? Impact of the
hydrological variability on calibration results

Although it has been discussed above how updating param-
eter values improved the model accuracy and robustness of
YRWQM, it is now more intriguing to see how this param-
eter update was achieved by recalibration. We suppose that

the observations with a wide hydrological variability may
have contributed to the better-performing parameters, as the
original YRWQM was calibrated and validated in the only
dry situation, while the recalibrated YRWQM used decadal
observations with a wide range of hydrological variability.
Hydrological variability is one of the main causes of vary-
ing biogeochemical processes (Delpla et al., 2009; Li et al.,
2020), and the changes in parameter values reflect the vari-
ability in these processes (Robson et al., 2018). James (2016)
recalibrated the Lake Okeechobee Water Quality Model, us-
ing 30 years of observations, including a series of extreme
hydrometeorological events, thereby improving the quality
of the parameters and the ability to model nitrogen and phy-
toplankton. Many studies have also shown that the improve-
ment in the model parameters may be triggered by the cali-
bration using long-term observations with greater hydrologi-
cal variability (Cerco et al., 2004; Lung and Nice, 2007).

Among the four models, the parameters of the recalibrated
YRWQM showed a proper trade-off, with values almost
falling within the range determined by the other models cali-
brated in specific hydrological years (Fig. 5). The model cali-
brated in dry years performed as well as the recalibrated YR-
WQM for Chl a but failed to reproduce DO, with a PBIAS of
−21 % (Fig. 4). This may be due to the highest algal growth
rate (PM) causing excessive net photosynthesis (Fig. 5). The
drastic water level fluctuations in the Yuqiao Reservoir in dry
years (Fig. 3) probably caused the decline of the submerged
macrophytes and the increase in the phytoplankton, like for
other shallow waterbodies (Furey et al., 2004; Krolová et al.,
2013; Lu et al., 2018). However, it is necessary to analyze
more observations of submerged macrophytes and couple the
recalibrated YRWQM with M-SAVM to gain a definite con-
clusion (Zhang et al., 2015). In the case of the model cal-
ibrated in wet years, the model performed poorly in model-
ing Chl a (Fig. 4), and the carbon-to-chlorophyll ratio (CChl)
was the lowest (Fig. 5). Unlike a fixed value in the model, the
value of CChl is more variable and depends on the makeup
of the algae population, typically ranging from 0.015 to 0.1
(Bowie et al., 1985). Ren et al. (2019) also noted the differ-
ences in microbial composition between the dry and wet pe-
riods in Poyang Lake. A multi-species phytoplankton mod-
ule that enables variable CChl may contribute to more ro-
bust algal modeling. The above discussion pointed out the
risks inherent in employing a model calibrated with a sin-
gle hydrological year for climate change studies or manage-
ment decisions. Regarding the point of model accuracy and
robustness, the use of long-term observations with sufficient
hydrological variability to calibrate hydrodynamic and water
quality models is probably the best option.

4.3 Highly efficient calibration with EFDC-ACT

The newly developed autocalibration toolkit, EFDC-ACT,
eliminated a lot of hindrances in the recalibration of YR-
WQM. Compared to the conventional manual calibration
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method, it not only reduces a great deal of uncertainty from
the subjective choice of parameters but also accelerates the
convergence of the optimization process. As a generic auto-
calibration toolkit developed for models based on the EFDC
framework, the EFDC-ACT supports the autocalibration of
any combination of more than 200 parameters in the EFDC
model. Meanwhile, the EFDC-ACT also incorporates auto-
matic model evaluation and advanced visualization of simu-
lations and observations. Some process patterns can only be
seen by time series plots and 2-D plots. Statistics alone can-
not reveal this kind of pattern (Bennett et al., 2013; Hipsey et
al., 2020). The automated time series plots make the model
results more visual and transparent at this point. The gener-
ated output files after each optimization iteration are over-
written, and only the model parameters and evaluation re-
sults of each iteration are retained. This design ensures re-
producibility, while avoiding the need for a large volume of
hard disk space (Luo et al., 2018). The entire automatic cal-
ibration framework proposed with EFDC-ACT can also be
a reference to develop other automatic calibration tools for
hydrodynamic and water quality models.

The caRamel algorithm adopted in EFDC-ACT has been
demonstrated through case studies to obtain similar opti-
mization results, while speeding up convergence (Monteil
et al., 2020). However, hundreds of parameters and the high
spatial and temporal complexity of EFDC bring about a time-
consuming computation, making it difficult to reach the rec-
ommended number of iterations for the caRamel algorithm.
Furthermore, even with the support of optimization algo-
rithms, how to obtain better calibration results faster is still
a critical issue for the autocalibration of high-complexity
models like EFDC. However, with the aid of autocalibration,
modelers should spend time learning and understanding the
model system and the parameter implications to avoid getting
good model error statistics values with the wrong parameters.
The autocalibration should be viewed as an efficient way to
refine the calibration after learning the model system with the
manual calibration.

4.4 Challenging high-complexity model autocalibration
problems: a possible hierarchical autocalibration
strategy introducing expert knowledge

To enable faster convergence of the model parameter op-
timization process, we propose a hierarchical autocalibra-
tion strategy based on EFDC-ACT. This strategy requires the
modelers to calibrate the model three times, for different pur-
poses, in an orderly and automatic manner. First, modelers
formulate a large range of parameters based on the litera-
ture or parameter implications and then run EFDC-ACT and
perform a sensitivity analysis to find both the sensitive pa-
rameters and state variables. Although EFDC-ACT does not
provide the functions for sensitivity analysis, there are a few
R packages for sensitivity analysis, such as the sensitivity
package. A Bayesian framework integrating sensitivity, un-

certainty, and identifiability analysis was also proposed for
EFDC (Jia et al., 2018). The modelers will analyze the in-
teractions between these sensitive variables according to ex-
pert knowledge, and variables with controlling effects will
be the primary target for the second level of autocalibration.
Next, the modelers target the sensitive variables and parame-
ters identified in the first round and perform the autocalibra-
tion again until the model performs satisfactorily. Finally, the
modelers hold the identified variables and parameters con-
stant and then autocalibrate the model a third time to de-
termine the other insensitive state variables and parameters.
With this hierarchical autocalibration strategy, EFDC-ACT
can handle the parameter estimation of EFDC more compe-
tently. This strategy is a possible framework in the future,
which is suitable not only for EFDC-ACT but also for other
automatic calibration tools that do not produce sufficient it-
erations.

Even in the context of rapid advances in computer technol-
ogy, expert knowledge is still indispensable for the calibra-
tion of highly complex models (Wood et al., 1990; Ostfeld
and Salomons, 2005). With the emergence of automatic cal-
ibration tools, how to combine expert knowledge with them
has become a new issue (Krueger et al., 2012; Xia and Shoe-
maker, 2022). The selection of key state variables in the hi-
erarchical autocalibration strategy above is an example of
the application of expert knowledge in an autocalibration
tool. With the evolution of computer technology, the devel-
opment of autocalibration tools, and the accumulation of ob-
servations, the hierarchical autocalibration strategy proposed
above offers a possible workaround to deal with enormous
autocalibration problems in high-complexity models.

5 Conclusions

We developed a new automatic calibration toolkit, EFDC-
ACT, and implemented it into the recalibration of the YR-
WQM with 10 years (2006–2015) of observations in a wide
range of hydrological variability. In comparison with the
original YRWQM, the hydrodynamics of the recalibrated
YRWQM performed just as well for the decade, while the re-
calibrated model performed significantly better in modeling
TP, Chl a, and DO concentrations. When compared to the
models calibrated with only dry, normal, and wet years, the
KGEs improved by a maximum of 196 %, 134 %, and 202 %
in modeling TP, Chl a, and DO, respectively. Our analysis
indicates that the recalibrated YRWQM accuracy and robust-
ness improvement is derived from the constraining effect of
observations with a wider hydrological variability. Such in-
formation will help to unravel how hydrological variability
in the calibration periods affects the process-based hydrody-
namic and water quality models, including their parameters,
kinetic processes, performance, and long-term robustness.
Moreover, a general autocalibration toolkit developed in this
study, EFDC-ACT, is substantially less time-consuming and
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more efficient for modelers than the conventional manual cal-
ibration method. The framework of EFDC-ACT and a pos-
sible hierarchical autocalibration strategy can also be a ref-
erence for future complex hydrodynamic and water quality
model calibration. Finally, with our convenient autocalibra-
tion toolkit, it will be possible to explore the impact of the
hydrological variability on more complex process-based hy-
drodynamic and water quality models.

Code and data availability. The source code of the auto-
matic calibration toolkit, EFDC-ACT, is freely available from
https://doi.org/10.5281/zenodo.7438143 (Zhang and Fu, 2022) on
Zenodo under the Creative Commons Attribution 4.0 International
license. The observed hydrodynamic and meteorological datasets
are freely available from https://doi.org/10.5281/zenodo.8083303
(Zhang and Fu, 2023) on Zenodo. The Yuqiao Reservoir is an
important source of drinking water, and the public may be sensitive
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cannot make water quality datasets publicly available. The water
quality datasets are available upon request to the corresponding
author for reviewers and readers who would like to reproduce the
results.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-16-4315-2023-supplement.

Author contributions. CZ designed the work, led the study, ac-
quired the financial support, provided study resources, and con-
ducted the research process. CZ and TF designed the methodology,
developed the software, and wrote the initial draft. TF validated the
reproducibility of results and prepared visualization. CZ reviewed
and edited the paper.

Competing interests. The contact author has declared that neither
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We are grateful to the National Natural Sci-
ence Foundation of China (grant no. 52079089) and the Seed Foun-
dation of Tianjin University (grant no. 2023XJD-0065). We also
sincerely thank Zhengang Ji at the George Washington University
for his constructive comments on an earlier draft.

Financial support. This research has been supported by the Na-
tional Natural Science Foundation of China (grant no. 52079089).

Review statement. This paper was edited by Jeffrey Neal and re-
viewed by Fenjuan Hu and one anonymous referee.

References

Adrian, R., O’Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D.
O., Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D.,
Van Donk, E., Weyhenmeyer, G. A., and Winder, M.: Lakes as
sentinels of climate change, Limnol. Oceanogr., 54, 2283–2297,
https://doi.org/10.4319/lo.2009.54.6_part_2.2283, 2009.

Alexandrov, G. A., Ames, D., Bellocchi, G., Bruen, M., Crout,
N., Erechtchoukova, M., Hildebrandt, A., Hoffman, F., Jack-
isch, C., Khaiter, P., Mannina, G., Matsunaga, T., Purucker,
S. T., Rivington, M., and Samaniego, L.: Technical assess-
ment and evaluation of environmental models and software:
Letter to the Editor, Environ. Modell. Softw., 26, 328–336,
https://doi.org/10.1016/j.envsoft.2010.08.004, 2011.

Arhonditsis, G. and Brett, M.: Evaluation of the current state of
mechanistic aquatic biogeochemical modeling, Mar. Ecol. Prog.
Ser., 271, 13–26, https://doi.org/10.3354/meps271013, 2004.

Arhonditsis, G. B., Qian, S. S., Stow, C. A., Lamon, E. C.,
and Reckhow, K. H.: Eutrophication risk assessment us-
ing Bayesian calibration of process-based models: Applica-
tion to a mesotrophic lake, Ecol. Model., 208, 215–229,
https://doi.org/10.1016/j.ecolmodel.2007.05.020, 2007.

Arifin, R. R., James, S. C., de Alwis Pitts, D. A., Hamlet, A. F.,
Sharma, A., and Fernando, H. J. S.: Simulating the thermal be-
havior in Lake Ontario using EFDC, J. Gt. Lakes Res., 42, 511–
523, https://doi.org/10.1016/j.jglr.2016.03.011, 2016.

Basijokaite, R. and Kelleher, C.: Time-Varying Sensitivity
Analysis Reveals Relationships Between Watershed Climate
and Variations in Annual Parameter Importance in Regions
With Strong Interannual Variability, Water Resour. Res.,
57, e2020WR028544, https://doi.org/10.1029/2020WR028544,
2021.

Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A.,
Hamilton, S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L.
T. H., Norton, J. P., Perrin, C., Pierce, S. A., Robson, B., Sep-
pelt, R., Voinov, A. A., Fath, B. D., and Andreassian, V.: Charac-
terising performance of environmental models, Environ. Modell.
Softw., 40, 1–20, https://doi.org/10.1016/j.envsoft.2012.09.011,
2013.

Bowie, G. L., Mills, W. B., Porcella, D. B., Campbell, C. L.,
Pagenkopf, J. R., Rupp, G. L., Johnson, K. M., Chan, P. W. H.,
and Gherini, S. A.: Rates, Constants, and Kinetics Formula-
tions in Surface Water Quality Modeling, U.S. Environmental
Protection Agency, Washington, D.C., EPA/600/3-85/040,
https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=
ORD&dirEntryId=34685 (last access: 27 July 2023), 1985.

Cerco, C. F. and Cole, T.: Three-Dimensional Eutrophica-
tion Model of Chesapeake Bay, Volume 1: Main Report,
US Army Corps of Engineers Waterways Experiment
Station, https://www.chesapeakebay.net/what/publications/
three-dimensional-eutrophication-model-of-chesapeake-bay
(last access: 27 July 2023), 1994.

Cerco, C. F. and Noel, M. R.: Incremental Improvements in
Chesapeake Bay Environmental Model Package, J. Envi-

Geosci. Model Dev., 16, 4315–4329, 2023 https://doi.org/10.5194/gmd-16-4315-2023

https://doi.org/10.5281/zenodo.7438143
https://doi.org/10.5281/zenodo.8083303
https://doi.org/10.5194/gmd-16-4315-2023-supplement
https://doi.org/10.4319/lo.2009.54.6_part_2.2283
https://doi.org/10.1016/j.envsoft.2010.08.004
https://doi.org/10.3354/meps271013
https://doi.org/10.1016/j.ecolmodel.2007.05.020
https://doi.org/10.1016/j.jglr.2016.03.011
https://doi.org/10.1029/2020WR028544
https://doi.org/10.1016/j.envsoft.2012.09.011
https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=ORD&dirEntryId=34685
https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=ORD&dirEntryId=34685
https://www.chesapeakebay.net/what/publications/three-dimensional-eutrophication-model-of-chesapeake-bay
https://www.chesapeakebay.net/what/publications/three-dimensional-eutrophication-model-of-chesapeake-bay


C. Zhang and T. Fu: Recalibration of a three-dimensional water quality model 4327

ron. Eng., 131, 745–754, https://doi.org/10.1061/(ASCE)0733-
9372(2005)131:5(745), 2005.

Cerco, C. F., Noel, M. R., and Linker, L.: Managing for Water
Clarity in Chesapeake Bay, J. Environ. Eng., 130, 631–642,
https://doi.org/10.1061/(ASCE)0733-9372(2004)130:6(631),
2004.

Chen, Y. Y., Zhang, C., Gao, X. P., and Wang, L. Y.: Long-term
variations of water quality in a reservoir in China, Water Sci.
Technol., 65, 1454–1460, https://doi.org/10.2166/wst.2012.034,
2012.

Delpla, I., Jung, A.-V., Baures, E., Clement, M., and Thomas,
O.: Impacts of climate change on surface water quality in rela-
tion to drinking water production, Environ. Int., 35, 1225–1233,
https://doi.org/10.1016/j.envint.2009.07.001, 2009.

Efstratiadis, A. and Koutsoyiannis, D.: Fitting Hydrological Mod-
els on Multiple Responses Using the Multiobjective Evolution-
ary Annealing-Simplex Approach, in: Practical Hydroinformat-
ics, vol. 68, edited by: Abrahart, R. J., See, L. M., and Soloma-
tine, D. P., Springer Berlin Heidelberg, Berlin, Heidelberg, 259–
273, https://doi.org/10.1007/978-3-540-79881-1_19, 2008.

Franks, P. J. S.: Planktonic ecosystem models: perplexing parame-
terizations and a failure to fail, J. Plankton Res., 31, 1299–1306,
https://doi.org/10.1093/plankt/fbp069, 2009.

Fu, B., Merritt, W. S., Croke, B. F. W., Weber, T. R.,
and Jakeman, A. J.: A review of catchment-scale wa-
ter quality and erosion models and a synthesis of fu-
ture prospects, Environ. Modell. Softw., 114, 75–97,
https://doi.org/10.1016/j.envsoft.2018.12.008, 2019.

Furey, P. C., Nordin, R. N., and Mazumder, A.: Water Level Draw-
down Affects Physical and Biogeochemical Properties of Littoral
Sediments of a Reservoir and a Natural Lake, Lake Reserv. Man-
age., 20, 280–295, https://doi.org/10.1080/07438140409354158,
2004.

Grant, L., Vanderkelen, I., Gudmundsson, L., Tan, Z., Perroud,
M., Stepanenko, V. M., Debolskiy, A. V., Droppers, B., Janssen,
A. B. G., Woolway, R. I., Choulga, M., Balsamo, G., Kirillin,
G., Schewe, J., Zhao, F., del Valle, I. V., Golub, M., Pier-
son, D., Marcé, R., Seneviratne, S. I., and Thiery, W.: Attribu-
tion of global lake systems change to anthropogenic forcing,
Nat. Geosci., 14, 849–854, https://doi.org/10.1038/s41561-021-
00833-x, 2021.

Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Status of
Automatic Calibration for Hydrologic Models: Comparison
with Multilevel Expert Calibration, J. Hydrol. Eng., 4, 135–
143, https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135),
1999.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decom-
position of the mean squared error and NSE performance criteria:
Implications for improving hydrological modelling, J. Hydrol.,
377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.

Hamrick, J. M.: A Three-Dimensional Environmental Fluid Dy-
namics Computer Code: Theoretical and computational aspects,
Virginia Institute of Marine Science, College of William and
Mary, https://doi.org/10.21220/V5TT6C, 1992.

Hipsey, M. R., Gal, G., Arhonditsis, G. B., Carey, C. C., Elliott,
J. A., Frassl, M. A., Janse, J. H., de Mora, L., and Robson,
B. J.: A system of metrics for the assessment and improve-
ment of aquatic ecosystem models, Environ. Modell. Softw., 128,
104697, https://doi.org/10.1016/j.envsoft.2020.104697, 2020.

Huang, Y.: Multi-objective calibration of a reser-
voir water quality model in aggregation and non-
dominated sorting approaches, J. Hydrol., 510, 280–292,
https://doi.org/10.1016/j.jhydrol.2013.12.036, 2014.

James, R. T.: Recalibration of the Lake Okeechobee
Water Quality Model (LOWQM) to extreme hydro-
meteorological events, Ecol. Model., 325, 71–83,
https://doi.org/10.1016/j.ecolmodel.2016.01.007, 2016.

Janssen, P. H. M. and Heuberger, P. S. C.: Calibration
of process-oriented models, Ecol. Model., 83, 55–66,
https://doi.org/10.1016/0304-3800(95)00084-9, 1995.

Ji, Z.-G.: Hydrodynamics and water quality: modeling rivers, lakes,
and estuaries, 2nd Edn., John Wiley and Sons, Inc, Hoboken, NJ,
https://doi.org/10.1002/9781119371946, 2017.

Ji, Z.-G., Morton, M. R., and Hamrick, J. M.: Wetting and Drying
Simulation of Estuarine Processes, Estuar. Coast. Shelf S., 53,
683–700, https://doi.org/10.1006/ecss.2001.0818, 2001.

Jia, H., Xu, T., Liang, S., Zhao, P., and Xu, C.: Bayesian framework
of parameter sensitivity, uncertainty, and identifiability analysis
in complex water quality models, Environ. Modell. Softw., 104,
13–26, https://doi.org/10.1016/j.envsoft.2018.03.001, 2018.

Jiang, L., Li, Y., Zhao, X., Tillotson, M. R., Wang, W.,
Zhang, S., Sarpong, L., Asmaa, Q., and Pan, B.: Pa-
rameter uncertainty and sensitivity analysis of water qual-
ity model in Lake Taihu, China, Ecol. Model., 375, 1–12,
https://doi.org/10.1016/j.ecolmodel.2018.02.014, 2018.

Jørgensen, S. E. and Fath, B. D.: Fundamentals of ecological mod-
elling: applications in environmental management and research,
4th Edn., Elsevier, Amsterdam, Boston, 399 pp., ISBN 978 0 444
53567 2, 2011.

Kim, J., Seo, D., Jang, M., and Kim, J.: Augmentation of limited in-
put data using an artificial neural network method to improve the
accuracy of water quality modeling in a large lake, J. Hydrol.,
602, 126817, https://doi.org/10.1016/j.jhydrol.2021.126817,
2021.

Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: In-
herent benchmark or not? Comparing Nash–Sutcliffe and Kling–
Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331,
https://doi.org/10.5194/hess-23-4323-2019, 2019.

Kong, X., Ghaffar, S., Determann, M., Friese, K., Jomaa, S.,
Mi, C., Shatwell, T., Rinke, K., and Rode, M.: Reservoir wa-
ter quality deterioration due to deforestation emphasizes the
indirect effects of global change, Water Res., 221, 118721,
https://doi.org/10.1016/j.watres.2022.118721, 2022.
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Kuczyńska-Kippen, N.: Epiphyton dependency of macro-
phyte biomass in shallow reservoirs and implica-
tions for water transparency, Aquat. Bot., 150, 46–52,
https://doi.org/10.1016/j.aquabot.2018.07.001, 2018a.

Zhang, C., Brett, M. T., Brattebo, S. K., and Welch, E. B.:
How Well Does the Mechanistic Water Quality Model CE-
QUAL-W2 Represent Biogeochemical Responses to Climatic
and Hydrologic Forcing?, Water Resour. Res., 54, 6609–6624,
https://doi.org/10.1029/2018WR022580, 2018b.

Zhang, C., Huang, Y., Javed, A., and Arhonditsis, G. B.: An ensem-
ble modeling framework to study the effects of climate change on
the trophic state of shallow reservoirs, Sci. Total Environ., 697,
134078, https://doi.org/10.1016/j.scitotenv.2019.134078, 2019.
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