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Abstract. The prediction of water resource evolution is con-
sidered to be a major challenge for the coming century, par-
ticularly in the context of climate change and increasing de-
mographic pressure. Water resources are directly linked to
the continental water cycle, and the main processes modulat-
ing changes can be represented by global hydrological mod-
els. However, anthropogenic impacts on water resources, and
in particular the effects of dams-reservoirs on river flows, are
still poorly known and generally neglected in coupled land
surface–river routing models. This paper presents a parame-
terized reservoir model, DROP (Dam-Reservoir OPeration),
based on Hanasaki’s scheme to compute monthly releases
given inflows, water demands and the management purpose.
With its significantly anthropized river basins, Spain has
been chosen as a study case for which simulated outflows and
water storage variations are evaluated against in situ observa-
tions over the period 1979–2014. Using a default configura-
tion of the reservoir model, results reveal its positive con-
tribution in representing the seasonal cycle of discharge and
storage variation, specifically for large-storage capacity irri-
gation reservoirs. Based on a bounded version of the Nash–
Sutcliffe efficiency (NSE) index, called C2M, the overall out-
flow representation is improved by 43 % in the median. For
irrigation reservoirs, the improvement rate reaches 80 %. A
comprehensive sensitivity analysis of DROP model param-
eters was conducted based on the performance of C2M on
outflows and volumes using the Sobol method. The results
show that the most influential parameter is the threshold co-
efficient describing the demand-controlled release level. The
analysis also reveals the parameters that need to be focused
on in order to improve river flow or reservoir water storage
modeling by highlighting the difference in the individual ef-

fects of the parameters and their interactions depending on
whether one focuses on outflows or volume mean seasonal
patterns. The results of this generic reservoir scheme show
promise for modeling present and future reservoir impacts
on the continental hydrology within global land surface–river
routing models.

1 Introduction

Dams are used to provide essential services to mankind
in terms of economic, environmental and social impacts.
They provide water supply for domestic, industrial and ir-
rigation needs, enable hydroelectric power generation and
river navigation and prevent extreme hydrological events.
There are currently more than 58 700 large dams (heights
> 15 m) worldwide, with an estimated cumulative storage
capacity between 7700 and 8300 km3 (Vörösmarty et al.,
2003; Downing et al., 2006; Lehner et al., 2011; ICOLD,
2020). When including millions of smaller dams (∼ 16.7 M
larger than 0.01 ha; Lehner et al., 2011), the total global im-
pounded water may even exceed 10 000 km3 (Chao et al.,
2008). This means that reservoirs hold more than 4 times
the amount of water stored in rivers (the average annual river
water storage ranges from approximately 1200 to 2120 km3),
and they account for approximately 20 % of average annual
river flow to the oceans (40 000–45 500 km3 yr−1) (Baum-
gartner and Reichel, 1975; Oki and Kanae, 2006; Syed et al.,
2010; Lehner et al., 2011). More than 60 % of the world’s
largest rivers are fragmented by the construction of dams,
which account for 90 % of the flow from these river basins
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(Dynesius and Nilsson, 1994; Revenga et al., 2005; Grill
et al., 2015, 2019).

Several studies have demonstrated the significant impact
of reservoirs on river flow regimes at not only local scales,
but also at larger regional and global scales: reservoirs im-
pact the magnitude of downstream river flows and alter the
temporal pattern of river discharge over the continental sur-
face (Haddeland et al., 2006; Hanasaki et al., 2006; Döll
et al., 2009; Biemans et al., 2011; Shin et al., 2019; Guten-
son et al., 2020). Through surface evaporation and water ex-
changes with groundwater, lakes and floodplains, reservoirs
not only affect the water budget over land, but also through-
out the Earth’s horological cycle by interacting with the at-
mosphere and oceans (Pokhrel et al., 2012; Zhao et al., 2012;
Wada et al., 2016; Frederikse et al., 2020). There is there-
fore an increasingly pressing need to integrate reservoir op-
erations in large-scale land surface and global hydrological
models (LSMs-GHMs) to overcome the existing biases in
continental water cycle and river flow modeling given the
number of highly regulated basins.

Models developed to date which represent reservoir re-
leases at a large scale can be categorized as data-driven and
process-based approaches. The first category of models is
built on the basis of observed release data, water levels and
volumes. These methods range from simplified representa-
tions of reservoir operation using linear or multilinear regres-
sion (e.g., Young, 1967; Raman and Chandramouli, 1996)
to very sophisticated models based on machine learning and
artificial intelligence techniques, such as neural-network-
based methods (e.g., Maier and Dandy, 2000; Razavi and
Karamouz, 2007; Ehsani et al., 2016; Coerver et al., 2018).
However, this approach requires specific knowledge of the
studied reservoirs and requires access to a large amount of
observed data. This approach also remains limited in its ap-
plicability for future predictions since the generated oper-
ational rules are based on historical data and thus do not
take into account future potential socioeconomic and pre-
dicted climatic changes in the operation of these reservoirs.
Process-based approaches, on the other hand, are based on
conceptualizing reservoir responses according to its opera-
tional purpose by linking release control to physical pro-
cesses, such as crop growth and the associated water require-
ments, or to water and energy demands that can be estimated
at the global scale. The representation of dam operations is
thus achieved without having to explicitly observe the ac-
tual release operations performed on each reservoir (Guten-
son et al., 2020). The best-known schemes in this category
are those developed by Hanasaki et al. (2006) and Hadde-
land et al. (2006), which are inflow- and demand-based mod-
els as presented by Yassin et al. (2019). These two generic
models have been implemented in several global hydrolog-
ical and water management models (e.g., WaterGAP, Döll
et al., 2009; VIC, Haddeland et al., 2006; H08, Hanasaki
et al., 2008; PCR-GLOBWB, Van Beek et al., 2011).

Of all the studies which have been carried out with these
models, very few have been focused on Iberian Peninsula
basins, where the prevailing semi-arid climate leads to a
greater necessity to store water in large-capacity reservoirs,
which leads to larger reservoir effects on rivers (Batalla et al.,
2004; López-Moreno et al., 2009; Lorenzo-Lacruz et al.,
2010). Spain is, in fact, among the top 10 dam-building coun-
tries, with more than 1064 dams (ICOLD, 2020). The study
of Grill et al. (2019), which assessed global river connectiv-
ity, revealed that the regulation effect of dams is the dominant
pressure source in Spain’s rivers, where very high degrees of
regulation cause an alteration of the natural river flow regime
for its five main rivers.

A large number of studies can be found in the literature fo-
cusing on the sensitivity analysis of various models, in var-
ious science fields, such as machine learning (e.g., Zouhri
et al., 2022) or civil engineering (e.g., Zamanian et al., 2021).
Pianosi et al. (2016) provided a classification of the sensi-
tivity analysis methods used in environmental sciences and
their benefits. A comprehensive sensitivity analysis, as pro-
vided by global methods such as Sobol indices, is essen-
tial for a precise understanding of a model (Saltelli et al.,
2008; Saltelli, 2013). It can help to improve parameter cali-
bration efficiency and avoid overparameterization (e.g., Shin
and Jung, 2022; Tang et al., 2007a, b). It is also an efficient
tool to better understand the model structure (Saltelli et al.,
2008), its uncertainties (e.g., Pheulpin et al., 2022) and the
dominant processes under various conditions (e.g., Huang
et al., 2021; Zhang et al., 2013). If understanding and quanti-
fying uncertainties is necessary for hydrological modeling, it
is also particularly critical to efficiently weight observations
and model states in data assimilation techniques (Liu and
Gupta, 2007; Abdolghafoorian and Farhadi, 2016). Finally,
for a potential extension to the global scale, in which the
model parameters cannot be calibrated and validated using
observations (that do not exist or are not accessible in most
reservoirs of the world), a full understanding of the model
sensitivity to the parameters is crucial, especially when mod-
els are used as support tools for decision-making (Herrera
et al., 2022). A few sensitivity tests on the Hanasaki scheme
can be found in the literature (e.g., Hanasaki et al., 2006;
Shin et al., 2019), but all of them only focused on one or two
parameters supposed to be the most sensitive, which may not
be sufficient for a thorough understanding of the impact of
parameter uncertainties (Saltelli and Annoni, 2010). To our
knowledge, no comprehensive sensitivity analysis has been
conducted on this scheme yet.

This study proposes a global and parameterized reservoir
model, DROP (Dam-Reservoir OPeration), built on the basis
of the generic scheme by Hanasaki et al. (2006), and the aim
of the study is to implement it in Spain as a case study to
represent reservoir releases and to provide a comprehensive
understanding of how uncertainties in each of the model pa-
rameters are affecting the overall accuracy of its predictions.
In this regard, the study aims to set up a comprehensive sen-
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sitivity analysis based on Sobol indices in order to quantify
the influence of each parameter and to reveal the types of
influence that each of them holds by dissociating individual
effects from possible interactions. Further work will focus
on implementing this scheme in global hydrological models
in order to provide a physical representation of reservoirs on
large scales.

This paper is organized as follows: Sect. 2 provides a de-
scription of the DROP model and a theoretical outline of
the sensitivity analysis method. The study area in Spain, the
available observational data, the model setup and the sensi-
tivity analysis implementation are described in Sect. 3. Sec-
tions 4–5 illustrate and discuss the model’s overall perfor-
mance and the parameter sensitivity results. Conclusions and
perspectives of the study are presented in the last section.

2 Methodology

2.1 DROP

The parameterized DROP model has been developed based
on the Hanasaki et al. (2006) scheme. The model works at
the level of each reservoir individually and is based on the
mass balance (as shown below in Eq. 1) of each reservoir to
calculate the release at its outlet.

dV
dt
=Qin−Qout (1)

Qin and Qout stand, respectively, for the net inflow to the
reservoir and its outflow at the outlet. In fact, the net in-
flow,Qin, combines different physical processes, as shown in
Eq. (2): it includes water inputs from precipitation P , direct
runoff Rd representing water flows running off the surround-
ing ground surface that also feeds the reservoir, and tributary
streamflows Qtrib flowing into the reservoir. Evaporation E
and groundwater exchange Qgw are also included in Qin.

Qin = (P −E)×Areservoir+Qtrib+Rd±Qgw, (2)

where Areservoir is the reservoir surface area.
In order to simulate dam releases, Qout, the reservoir

model categorizes reservoirs as irrigation and non-irrigation
reservoirs, computes the mass balance for each reservoir in-
dividually, and calculates releases based on inflow and water
demands. A schematic of the DROP model is shown in Fig. 1
with its six parameters (in blue). To give an overview of its
overall functioning, the model takes as input inflow and wa-
ter demands and calculates at a monthly time step dam re-
leases according to the reservoir management purpose and
its relative capacity compared to inflow, denoted as c. Oper-
ating rules are set following an “operational year”. This type
of year has been introduced by Hanasaki et al. (2006), and it
differs from hydrological and calendar years. It starts the first
month of the water release period and is therefore specific to

each reservoir. This specific month, representing the first pa-
rameter of the model, will be denoted as mstart in the remain-
ing sections of this article. At the beginning of each opera-
tional year, defined bymstart, reservoir storage volume Sinit is
compared to the ideal filling value Sideal, defined as a ratio,
α, of storage capacity C. Reservoir-simulated releases are
impacted by this step as they are retrospectively revised up-
wards or downwards depending on whether the reservoir has
more or less water storage than the ideal rate. Dam monthly
releases are then computed following two steps: first, a provi-
sional release is calculated based on water demands and the
annual mean inflow. In irrigation reservoirs, two parameters
are involved: dmax, setting the control area of the reservoir
and thus the water needs to be supplied, and M , defining the
minimum release to be provided for environmental require-
ments. The calculation scheme remains simplistic for other
management purposes where releases are set to mean annual
inflow. The provisional release is then corrected by incor-
porating a “demand-controlled release” ratio R, controlled
by two parameters cthreshold and b, which accounts for in-
flow pattern influence in reservoirs with low storage capaci-
ties compared to inflow. The DROP model therefore has six
parameters, as shown in Fig. 1.

The operating rules are detailed below. First, at the begin-
ning of each operational year, an annual release coefficient
Ky is computed to determine the filling rate of the reservoir.
Ky is a ratio between the reservoir storage at the beginning
of the year Sfirst,y and the long-term target storage Sideal:

Ky = Sfirst,y/Sideal, (3)

where Sideal = α×C, α being a nondimensional constant, and
C is the total storage capacity of the reservoir. Sideal rep-
resents the ideal filling level at the beginning of each year;
α was set semi-empirically to 0.85 of the maximum capac-
ity for all reservoirs based on sensitivity tests conducted in
Hanasaki et al. (2006). This annual release coefficient is the
one used to weight the provisional releases calculated after-
wards depending on whether the reservoir has more (Ky > 1)
or less (Ky < 1) water storage than the ideal rate. The under-
lying aim is to reduce interannual variation in streamflow.

The following steps describe how reservoir releases are
computed. The provisional monthly releases, r ′m, are set de-
pending on the reservoir’s main purpose. The scheme is sim-
plified for a non-irrigation reservoir since it constantly re-
leases the mean annual inflow imean calculated over the whole
simulation period (noted “long-term” in the remaining sec-
tions of this article):

r ′m = imean. (4)

For an irrigation reservoir, monthly releases are proportional
to water demands. They are parameterized here following
Shin et al. (2019) as

r ′m =

{
imean

[
(M + (1−M) dm

dmean,y

]
if DPI> 1−M,

imean+ dm− dmean,y if DPI≤ 1−M,
(5)
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Figure 1. Schematic representation of the DROP model showing its six parameters (in blue): mstart defines the start of the reservoir oper-
ational year. α sets the ideal filling rate of the reservoir to be reached at each starting month of the year. The remaining four parameters
are used in dam release computation: dmax and M , operating only in irrigation reservoirs, set the control area of the reservoir (and therefore
irrigation water demands) and the minimum release to be provided, respectively. cthreshold and b, on the other hand, account for inflow pattern
influence in reservoirs with low relative storage capacity to inflow (i.e., run-of-river reservoirs).

where dm and dmean,y are, respectively, monthly and annual
mean water demands. DPI (demand per inflow) is, as intro-
duced by Shin et al. (2019), the ratio between dmean,y and
imean, and M represents the minimum monthly release as a
percentage of imean. It is set to 0.5 by Hanasaki et al. (2006)
and Döll et al. (2009) and to 0.1 by Biemans et al. (2011) and
Shin et al. (2019).

When the DPI is above the set threshold (1−M), water
needs are considered to be very high and can only be partially
fulfilled by the water stored throughout the coming year. The
priority is to first ensure a minimum release, M × (imean),
in order to meet the environmental flow requirements. The
remaining part of the annual inflow is released throughout
the year on a monthly basis following the sub-annual water
demand fluctuation curve. Otherwise, when the DPI is below
(1−M), the reservoir releases all the monthly water demand
that is needed.

In this scheme, only irrigation demand is considered. Since
dams provide water for the downstream demand within a
certain distance, a maximum distance, dmax, is a parameter
to define, for each reservoir, the irrigated grid cells within
the river basin to be supplied and thus delimits a “command
area” for each reservoir. In contrast to Hanasaki et al. (2006)
(where a crop growth model is considered to calculate the
irrigation demand), here the distribution of irrigated areas is
based on ECOCLIMAP SG (Calvet and Champeaux, 2020;
Druel et al., 2022), which is used by the irrigation module
in the ISBA LSM (Druel et al., 2022) to compute irrigation
demands for 5×5 km-resolution grid cells (see Sect. 3). The
irrigation water demands are aggregated within the command
area for each reservoir. Unlike the Hanasaki et al. (2006)
scheme, the DROP model entirely separates irrigation from
non-irrigation reservoirs and only accounts for irrigation wa-

ter demands for this category of reservoirs. Moreover, indus-
trial and domestic demands are highly uncertain and hardly
accessible. In fact, these consumptions are strongly linked
to each country’s specific political and economical policies,
and extensive records are generally not made public. Some
global databases, such as the Food and Agriculture Organiza-
tion of the United Nations (FAO) global information system
AQUASTAT (AQUASTAT, 1994), provide estimates of av-
erage annual water withdrawals by activity sector and by wa-
ter resource publicly accessed at the country level. However,
such estimates are still limited in terms of temporal and spa-
tial resolution and would consequently add a non-negligible
source of error to the model. They are therefore neglected in
this study.

In all possible cases, regardless of the reservoir purpose,
the water released over the operational year is equivalent to
the long-term mean annual inflow.

The release computed so far is provisional. The real
monthly release is calculated as follows:

rm =

{
Ky× r

′
m if c ≥ cthreshold,

(1−R)× im+R×Ky× r
′
m if 0≤ c < cthreshold,

(6)

where c is the relative capacity of a reservoir and is defined as
the ratio between storage capacity C and the long-term mean
annual inflow water volume (c = C/Imean). The parameterR,
as introduced by Shin et al. (2019) (and also parameterized as
β by Horan et al., 2021), is a so-called “demand-controlled
release ratio”. It is parameterized in the current study as

R =

(
c

cthreshold

)b
, (7)

where R describes the influence of the inflow regime on re-
lease for small storage capacity reservoirs. It varies between
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0 and 1 and includes two parameters: cthreshold and the b coef-
ficient. In fact, the smaller the reservoir capacity is compared
to inflow, the closer it gets to run-of-river dams where re-
lease is close to the natural river flow and thus the influence
of the inflow annual pattern. Otherwise, when c is above the
threshold (large-capacity dams), then R = 1 and the release
is fully controlled by water demand. cthreshold and b are set,
respectively, as 0.5 and 2 in both Hanasaki et al. (2006) and
Biemans et al. (2011). Shin et al. (2019), on the other hand,
proposed an analytical formula to compute R, which is re-
produced in this study, and set cthreshold and b, respectively,
to 1/α and 1. The monthly releases are also weighted by the
annual coefficient, Ky from Eq. (3), which is calculated at
the beginning of the operational year and describes how full
the reservoir is relative to the ideal rate. Reservoir releases
can therefore be revised upwards or downwards depending
on whether the reservoir had more or less water storage than
the ideal rate.

The modifications brought to the model from the previous
version of Hanasaki et al. (2006) and the Shin et al. (2019)
parameterization can be summarized in the following list.

– The starting month of the operational year, which was
calculated in previous versions at the level of each reser-
voir based on observed inflows and dam releases, is con-
sidered in this model version as a parameter, denoted as
mstart. This overcomes the challenge faced by the old
versions when applying the model in ungauged basins.
Within our version, mstart is to be set separately for irri-
gation and non-irrigation reservoirs.

– The same applies to dmax, initially set to a constant value
depending on the spatial resolution of the river routing
model in which the scheme is being implemented in
each study. Here, dmax is defined as a parameter to be
set for reservoir command area delimitation.

– dm and dmean,y in Eq. (5) are monthly and annual mean
irrigation water demands, respectively. Industrial and
domestic water demands are not taken into account, un-
like in Hanasaki et al. (2006).

– M , set to 0.1 in the Biemans et al. (2011) and Shin et al.
(2019) schemes and 0.5 in Hanasaki et al. (2006), is
considered as a parameter in this version, keeping the
same notation used in Shin et al. (2019).

– A more explicit parameterization of the demand-
controlled release ratio R is provided here compared to
what is proposed in Shin et al. (2019). The generalized
formulation of R in Eq. (7) highlights the last two pa-
rameters of the present model version. This enables one
to distinguish the dual role of cthreshold in Eq. (6) from
that of the coefficient b, which only describes the tran-
sition made between a demand-controlled reservoir and
an input-controlled reservoir. Hanasaki et al. (2006) and

Shin et al. (2019) have set (cthreshold, b) to (0.5,2) and
(1/α,1), respectively.

A description of the reservoir model parameters is given in
Table 1.

The reservoir volume is derived at each time step from the
water balance. Boundary conditions are defined considering
two possible scenarios: (i) if the reservoir is full, the excess
water is spilled. (ii) When reservoir storage falls below 10 %
of the capacity, the reservoir reaches the dead storage zone
and water release is prevented.

In order to run the model, reservoir characteristics, such
as the storage capacity and main purpose, are needed. The
model also requires continuous time series of inflow and wa-
ter demands to compute releases. In the current study, all of
the modeled reservoirs are located in Spain, where the phys-
ical characteristics, in situ observations of natural and an-
thropized flows, and storage volumes are publicly available.
Section 3 describes the global and local datasets used herein.

2.2 Sensitivity analysis: Sobol’s method

The Sobol sensitivity analysis method (Sobol, 1993) has
been widely used in hydrological models in order to iden-
tify the parameters that contribute the most to the model out-
put uncertainty. It is a global variance-based approach where,
for a chosen variable of interest Y , the total variance is de-
composed into fractions attributed to each individual input
as well as the interactions between them. If Y = f (X) is a
goodness-of-fit metric of the model with X representing the
set of parameters X1,X2, . . .Xp of size p, the total variance
of Y , D(Y), is decomposed as follows (Zhang et al., 2013):

D(Y)=
∑
i

Di +
∑
i<j

Dij +
∑
i<j<k

Dijk + . . .+D12..p, (8)

where Di is the amount of variance due to a parameter Xi
alone, Dij is the amount of variance arising from the inter-
action between the parameters Xi and Xj , and so on. Equa-
tion (8) is known as Hoeffding decomposition (Hoeffding,
1992).

The sensitivity indices, called Sobol indices, are computed
as ratios between the component variances and total variance
in order to measure the contribution of each single parameter
and each parameter interaction. The first-order Sobol index,
S1, captures the sensitivity of Y to each input parameter Xi
taken alone. The second-, S2, and higher-order indices de-
scribe the contribution of the multiple interactions between
parameters. A model with p parameters requires 2p − 1 in-
dices to be evaluated, which rapidly becomes computation-
ally challenging for high values of p. The total-order index,
ST, measures the full influence of a parameter by including
all of the variance caused by its interactions with the rest of
the parameters, all orders included. The first-, second- and
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Table 1. Description of the DROP model parameters.

Parameter Description

α Refers to the ideal filling rate of the reservoir
dmax (km) Defines the control area of the reservoir
mstart Refers to the first month of the operational year
M Defines the minimum release to be provided for environmental requirements
cthreshold Threshold of the relative capacity; influence of the inflow pattern on reservoir release
b Influence of the inflow pattern on reservoir release

total-order Sobol sensitivity measure formulas are

S1i =
Di

D
, (9)

S2ij =
Dij

D
, (10)

STi =1−
D∼i

D
, (11)

whereD∼i is the amount of variance due to all of the param-
eters except for Xi .

Model parameter sampling and Sobol index estimation are
performed here using the open-source Python library SALib
(Herman, 2017). The parameter samples are generated fol-
lowing quasi-random sequences (Saltelli, 2002) in order to
scatter the sample points as uniformly as possible over the
parameter space. Following the theorem, the different orders
of Sobol indices are estimated from a total number of model
runs of N× (2×d+2), where N and d are, respectively, the
sample size and the number of parameters. The package also
provides confidence intervals of the index estimates at the
95 % confidence level.

3 Study area and data

3.1 Spain river basins description

Spain has an estimated area of 505 983 km2 (INE, 2022), rep-
resenting more than 85 % of the Iberian Peninsula (estimated
area 583 254 km2, Lorenzo-Lacruz et al., 2012). It has river
basins with sizes ranging from a few square kilometers to
more than 80 000 km2 (i.e., the Ebro basin). The five largest
river basins are the Ebro, flowing into the Mediterranean Sea,
and the Duero, Tajo, Guardiana and Guadalquivir, flowing
into the Atlantic Ocean. They also represent the river basins
where the natural river flow pattern is the most significantly
altered in the country, with high degrees of regulation re-
sulting from extensive reservoir construction. These differ-
ent rivers have a Mediterranean hydrological pattern, which
is characterized by high flows during the wet season (i.e.,
fall and winter) and low flows during its dry season (i.e.,
late spring, summer). This seasonality explains the strong an-
thropization of the Spanish hydrographic basins and, in par-
ticular, the construction of more than 1200 dams mainly in

the second half of the 20th century. They are essential for re-
taining enough water to meet irrigation and domestic water
demands as well as for hydropower production, which rep-
resents ∼ 13 % of Spanish electricity generation (IEA, 2022,
in 2020,).

3.2 Dataset

The data series required as inputs to the model and the
ones used to validate the outputs are taken from the Spain
database. Reservoir characteristics are taken from the global
GRanD database. Irrigation demands are simulated by the
ISBA irrigation module. The needed input data are detailed
below.

– Local (Spain) database. In situ observations of natural
and anthropized flow and volume data are made pub-
licly available by the Center for Hydrographic Stud-
ies of Spain (CEDEX, Ministry of Public Works and
Ministry for Ecological Transition, Spain). The national
database includes the location and daily time series of
discharge for 1119 gauge stations and outflows from
347 reservoirs over the period 1900–2014.

– The Global Reservoir and Dam (GRanD) database,
from which the general characteristics of dams are taken
(Lehner et al., 2011). Version 1.3 published in 2019
includes 7320 reservoirs and provides the geographi-
cal locations of dams as well as attribute information
such as the construction year, maximum storage capac-
ity, surface area and set of purposes of reservoirs; 263
of the reservoirs listed in GRanD are located in Spain.
Most of them were built from 1955 to 2000, reaching
a total storage capacity of 56 480 hm3 in 2016, which
exceeds the mean annual streamflow of the eight ma-
jor rivers of the Iberian Peninsula (55 850 hm3 yr−1)
(Lorenzo-Lacruz et al., 2012). Irrigation and hydroelec-
tricity are the most identified purposes of more than half
the reservoirs, and water supply comes third. In this pa-
per, all management purposes different from irrigation
are grouped in the “other purposes” category.

– Simulated irrigation demands. The irrigation water de-
mands are simulated by the new irrigation scheme im-
plemented in the ISBA LSM (Druel et al., 2022). It
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uses the ECOCLIMAP-SG land cover classification to
identify the areas within the grid cell that can be irri-
gated. The three main parameters are set in the model
to control, respectively, the irrigation triggering (when
the plant reaches the wilting point), the period of crop
growth where irrigation is possible (between emergence
and harvest) and the amount of water used for irrigation.
In the default configuration, a predefined amount of wa-
ter of 30 mm is set for each irrigation and a 7 d mini-
mum return period is fixed between two irrigation oper-
ations. These parameters can be user-defined for each
vegetation type and in each grid cell. To generate ir-
rigation demands over Spain, we used the 5 km reso-
lution SAFRAN-based meteorological datasets for that
country (Quintana-Seguí et al., 2017) that were avail-
able over the period 1979–2014 to force the ISBA land
surface model. Set to the default configuration, the ir-
rigation module within the LSM computed daily irriga-
tion demands for each grid cell over that time period. At
the input of the reservoir model, dmax is set beforehand
and delimits for each reservoir a command area made
up of a selection of grid cells within the same basin at a
lower altitude. The equivalent amount of irrigation wa-
ter requested from a reservoir in a given month corre-
sponds to the aggregated daily irrigation demands of all
crop types within the retained grid cells.

3.3 Model setup: pre-processing steps

3.3.1 Cross-referencing global and local datasets

Out of the 263 reservoirs listed in GRanD, only 216 were
kept after cross-referencing the two databases and for which
both the characteristics and time series of release and volume
could be identified. In fact, two reservoirs were doubly iden-
tified in GRanD v1.3 (the IDs were 2882 and 2844) because
they were rebuilt and/or renamed; their most recent charac-
teristics are those retained. The 45 remaining reservoirs, lo-
cated mainly in the northwest and south of Spain, were not
identified in the Spanish database since they were built after
2014.

The maximum storage capacity of the chosen reservoirs
goes from 9.5 (the San Lorenzo Mongay dam, located on the
Segre River in the Ebro basin) to 3200 hm3 (the La Serena
dam on the Zujar River in the Gardiana basin), with a mean of
236 hm3 and a standard deviation of 441 hm3. Using the lat-
itude and longitude information, the chosen reservoirs were
located on the new 1/12◦-resolution river network derived
from the CTRIP river routing model (Munier and Decharme,
2022). Dam locations were adjusted so as to have compa-
rable drainage surfaces between those given by the GRanD
database and those estimated by CTRIP.

An initial analysis conducted on observed river flows
upstream and downstream of the reservoirs has identified
a common seasonal behavior among those with irrigation,

which is that the peak dam release is shifted in time from
the natural inflow. This is due to the typical operating mode
of these reservoirs, which are designed to retain water arriv-
ing upstream during winter (wet season) and release it during
summer (dry season) to meet irrigation needs.

3.3.2 Reconstructing inflow

The reservoir scheme requires reservoir net inflows and wa-
ter demands as inputs to estimate volume variations and out-
flows. In existing studies, water demands are estimated and
net inflows are either modeled by a river routing scheme or
estimated from gauge observations in rivers and tributaries
upstream the reservoir. Reservoir abstraction is also some-
times accounted for in the reservoir water balance. However,
some processes are usually neglected, such as precipitation
interception, direct runoff, evaporation or groundwater ex-
changes. This introduces a bias into the water budget and
consequently increases the model uncertainties, especially
when inflows are derived from land surface and river rout-
ing models (see, e.g., Vanderkelen et al., 2022). In this study,
the water balance (Eq. 2) is used in a first step to derive the
result of all these components (net inflow) from observations
of reservoir volume and outflow, as described below. The ad-
vantage compared to previous studies is that it removes the
uncertainties related to each of these components, enabling
the analysis of the model uncertainties themselves and the
capacity of the model to reproduce the reservoir behavior
alone, without additional uncertainties or potential compen-
sations between the components of the water budget and the
model parameters.

Note that, in a future work, the DROP model aims to be
coupled to a series of models that can represent these differ-
ent processes. In the ISBA-CTRIP land surface–river routing
model, for example (Decharme et al., 2019), evaporation is
computed by FLake, a module representing energy balance in
lakes (Le Moigne et al., 2016), direct runoff is derived from
the ISBA land surface model, and inflows from tributaries as
well as groundwater exchanges are computed by the CTRIP
river routing model (Munier and Decharme, 2022).

For each of the selected reservoirs, the longest continu-
ous common periods of daily observed outflows and volumes
were first determined. At this stage, only reservoirs with
more than 3-year time series were retained, which leaves
215 reservoirs to be simulated. The net inflows were then de-
rived from outflows and volume variations at the daily scale
(Eq. 1). The computed net inflows were then corrected by
removing outliers in two steps: first, all peak flows were se-
lected when their maximum value exceeded 5 times the long-
term mean. Among the peak values, outliers are then identi-
fied when the relative difference of slopes before and after
peak flow is less than 10 %. Both thresholds were set empir-
ically. This step differentiates the outliers from the hydraulic
behavior of a river in flood recession periods. The outlier is
replaced by a linearly interpolated value. The length of the
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corrected time series goes from 3.5 to 34 years with a median
of 23 years. The main purposes, simulation period lengths
and relative capacities of the 215 reservoirs simulated are
shown in Fig. 2.

We note a good distribution of management purposes and
relative inflow capacities in the final selected reservoirs.
Overall, half the reservoirs are primarily used for irrigation,
which is mainly due to the semi-arid climate of the Iberian
Peninsula and the high needs of irrigation in the country. The
rest of the reservoirs are allocated to hydropower generation,
water supply and different other purposes with respective
percentages of 29 %, 16 % and 5 % and are grouped in the
non-irrigation reservoir category.

3.4 Sensitivity analysis implementation

A sensitivity analysis with respect to the six parameters was
conducted on the performance of a Nash–Sutcliffe efficiency
(NSE, Nash and Sutcliffe, 1970) bounded version, called
C2M (Mathevet et al., 2006), on outflows using the Sobol
method. In fact, the NSE values in some reservoirs were
highly negative for some simulations, and thus this met-
ric was not suitable for a variance-based sensitivity analysis
method like Sobol’s. C2M is used instead as it is a normalized
version of NSE that varies between −1 and 1 and where all
negative values are bounded between 0 and −1. Parameter
default values, bounds and distributions are listed in Table 2.
The parameter distributions were all considered uniform ex-
cept for relative capacity, for which the distribution is log-
arithmic to align with the observed pattern on the modeled
reservoirs (Fig. 2).

The default values for α, M , cthreshold and b are those con-
sidered in Hanasaki et al. (2006). α-selected bounds cover a
realistic range of ideal reservoir filling rates. The distribution
and bound values of the cthreshold parameter are drawn from
the relative capacity distribution of the 215 modeled reser-
voirs (Fig. 2). The b lower limit is 0.5, below which the shift
to the demand-controlled state of a reservoir becomes too
abrupt once c exceeds cthreshold. The upper limit considered
for b is 5, beyond which the transition curve between the be-
havior of a low relative capacity reservoir and a high relative
capacity one becomes unchanged, following the sensitivity
test run conducted on this parameter. For dmax, both the de-
fault value and the lower and upper limits were set to be con-
sistent with the sizes of Spanish river basins. The operational
year starting month, mstart, is set to April for irrigation reser-
voirs in order to match the beginning of the crop irrigation
season considered in the irrigation model. For other reser-
voirs, mstart is chosen empirically to be May as the default
value based on the observed filling curves of the reservoirs,
which tend to be at the maximum filling level near May.

The sensitivity analysis was performed on each of the 215
reservoirs separately, distinguishing between irrigation and
non-irrigation reservoirs since the number of parameters in-
volved depends on the main purpose of the reservoir (six and

four, respectively, as dmax and M are only considered in irri-
gation reservoirs).

Using Saltelli’s quasi-random sampling method (Saltelli
et al., 2010), a sample size of 4096 was used for this analy-
sis in each category, resulting in 4096× (2×6+2)= 57344
and 4096× (2× 4+ 2)= 40960 model runs for each of the
107 irrigation and 108 non-irrigation reservoirs, respectively.
By comparing with smaller sample sizes, the confidence in-
tervals estimated by SALib show that the Sobol indices con-
verged and that the chosen sample size is sufficient to reliably
represent the results.

4 Results

This section presents the main results of this study. First,
simulation results of the reservoir releases using the default
configuration of the model are displayed. Then, a sensitivity
analysis of the model parameters is presented.

4.1 Reproducing the flow seasonal shift in irrigation
reservoirs

Using the default parameterization with the parameters listed
in Table 2, an operating rule is determined for each of the 215
reservoirs, and both outflows and water storage variations
are simulated through complete operational years within the
overall period 1979–2014. Figure 3 shows the C2M values at
reservoir outlets by evaluating the simulated monthly outflow
time series against in situ observations. Panel a shows the re-
sults obtained using a reference simulation where rivers are
considered in their natural state (Qout =Qin). Panel b shows
the C2M improvement rate when considering the DROP
model.

Overall, with DROP, the river flow representation is clearly
improved at nearly all the reservoirs’ locations. The median
C2M index for flows is 0.52, which corresponds to a 43 %
improved flow representation when compared to natural river
representation. For storage volume representation, the mean
correlation is 0.53 with a standard deviation of 0.3. Half of
the reservoirs have a correlation greater than 0.63 between
observed and simulated storage volumes.

The results reveal the model’s positive contribution in rep-
resenting the seasonal cycle of river flow, specifically for ir-
rigation large-storage capacity reservoirs, as the model re-
produces the seasonal shift between inflows and outflows
caused by irrigation management rules with reasonable accu-
racy. For these reservoirs, the correlation between simulated
and observed discharge increases from 0.49 (reference sim-
ulation) to 0.75 in the median. Regarding storage volumes,
correlation reaches 0.74 in the median. As an example, the
Gonzalez Lacasa reservoir located in the Ebro basin shows
typical results in Fig. 4. In fact, this irrigation reservoir stores
incoming water during winter/early spring, which explains a
lower outflow than inflow (in blue and orange, respectively,
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Figure 2. Main characteristics of the chosen reservoirs. (a) Classification of their main purpose, (b) distribution of simulation period lengths,
and (c) histogram showing decimal log values of their relative capacity.

Table 2. Summary of the DROP model parameter default values and feasible ranges for the sensitivity analysis.

Parameter Default value Min value Max value Distribution

α 0.85 0.6 0.95 Uniform
dmax (km) 100 1 250 Uniform
mstart (irrigation; other) 4; 5 1 12 Discrete uniform
M 0.5 0 1 Uniform
cthreshold 0.5 0.001 20 Logarithmic
b 2 0.5 5 Uniform

for observed discharges, panels (a) and (b) in Fig. 4) be-
tween October and March and releases the water in summer
when there is insufficient water to supply all crops’ irrigation
needs. The period of release, from April to September in this
case (shown in the annual cycle, Fig. 4c), corresponds to the
crop-growing period and therefore to high irrigation water
needs. As a result, the discharge seasonal curve is shifted and
the maximum monthly discharge, in this example, is reached

in July instead of April. This management scheme is well
reproduced by the DROP model, as the simulated outflows
(shown in red) align well with the observations (in blue), and
consequently so do the volume variations.

The improvement of the C2M distribution for each cate-
gory of dams, in terms of main purpose and relative capacity,
is shown in Fig. 5. Note that, for irrigation reservoirs, the
improvement rate reaches 80 % in terms of the median and
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Figure 3. Results of the DROP model contribution (default configuration) in river flow modeling at reservoir outlets: (a) C2M performance
metrics of non-reservoir simulation (reference simulation where Qout =Qin) and (b) C2M improvement rates by integrating the reservoir
model. Symbols represent the different reservoir management purposes. They come in two different sizes: larger if c ≥ 0.5 and smaller if
c < 0.5.

Figure 4. Simulation results for the Gonzalez Lacasa irrigation reservoir within the Ebro River basin over the period [1979–1994]. The
monthly time series of dam releases and storage volumes are shown in panels (a) and (c), respectively (observations are indicated in blue and
simulations in red). Their corresponding mean annual cycles are shown in panels (b) and (d), respectively.

123 % for those considered of high relative capacity (here
c ≥ 0.5) and which are fully demand-controlled. The flow
improvement rates for the rest of the high relative capac-
ity reservoirs are dispersed but remain positive at the me-
dian despite the simplistic approach of DROP. For low rel-
ative capacity reservoirs (here c < 0.5), and independent of
the management purpose, the model’s contribution is almost
null since the reservoirs are considered “run-of-river” and the
influence of the inflow regime is predominant.

4.2 Results of the sensitivity analysis

The distributions of first-order Sobol indices for each param-
eter calculated at each of the 107 irrigation and 108 non-
irrigation reservoirs are shown in Fig. 6 with a box plot.
Overall, it emerges from Fig. 6 that the most influential pa-
rameter is cthreshold. In fact, based on the definition of S1,
∼ 48 % of the total variance in C2M is attributed to cthreshold
alone within irrigation reservoirs. In non-irrigation reser-

voirs, this parameter accounts for ∼ 74 % of C2M variance.
The M parameter is ranked second in irrigation reservoirs
and accounts for 15 % alone in the median of all of the vari-
ance, followed by dmax with an S1 index of 0.03. The pa-
rameter controlling the month for which the operational year
starts, mstart, alone has very little influence on the overall
outflow C2M variance, although the effect is slightly more
noticeable in the non-irrigation reservoirs. α and b are con-
sidered the least influential parameters for most reservoirs.

To better illustrate how each parameter individually af-
fects the model outputs, the Gonzalez Lacasa reservoir
(GRanD ID 2699; c = 0.65) is set as an example. Given
the sensitivity analysis results, a screening step is added on
cthreshold, M and α separately and the rest of the parameters
are set to their default values. The means of monthly outflows
over the simulation period (1979–1994) are shown in Fig. 7.

Regarding the first parameter and for values of cthreshold
below the relative capacity of the reservoir (lower than 0.65
for the Gonzalez Lacasa case), the reservoir is considered
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Figure 5. Distribution of river flow, C2M, improvement rates with the DROP model based on their main purpose (columns) and relative
capacity (rows). The x-axis labels show the number of reservoirs in each category, and the y axis shows C2M improvement rates.

Figure 6. Distribution of first (S1)-order Sobol indices in the modeled reservoirs for each parameter: (a) in irrigation and (b) in non-irrigation
reservoirs.

with high storage capacity, and so monthly releases are com-
pletely driven by demand, resulting in a seasonal shift be-
tween inflow and outflow and a peak of discharge in July
in order to meet the irrigation needs. Conversely, when the
cthreshold is higher, the dam is considered to have a low stor-
age capacity, which reduces the buffering effect and increas-
ingly aligns the simulated release curve (in red) with the sea-
sonal trend cycle of inflow (in orange), as shown in Fig. 7a.
The buffer role of the reservoir is therefore conditioned by
the value of the cthreshold.

The influence of M on the minimum release is shown in
Fig. 7b. The higher the value of M , the greater the part of
mean inflow set as minimum release and the lower the re-
maining part of water dedicated to meeting irrigation needs
during peak demand. Since the Gonzalez Lacasa reservoir is
considered to have a relatively large storage capacity (with
cthreshold = 0.5 as the default value) among the considered
reservoirs, the outflow will still follow the seasonal curve of
water demand, but M will influence the release peak by ex-
tending or flattening the outflow curve to maintain a mini-

https://doi.org/10.5194/gmd-16-427-2023 Geosci. Model Dev., 16, 427–448, 2023



438 M. Sadki et al.: Implementation and sensitivity analysis of a dam-reservoir model over Spain

Figure 7. Example of seasonal pattern sensitivity of Gonzalez Lacasa reservoir outflow to three of the DROP model parameters: (a) cthreshold,
(b) M and (c) α. The remaining parameters were at their default values (see Table 2).

mum release level required through the year. For run-of-river
dams, M is irrelevant since the release follows the monthly
inflow. dmax also controls the variation of outflows over the
year in the same way, but only when the DPI ratio is low.
Its impact remains limited beyond the (1−M) threshold, as
the release curve is fixed to maintain the required minimum
outflow.

The parameter α, on the other hand, does not affect the
long-term mean pattern of release. In fact, α only operates
on outflows on an inter-annual basis, through Ky, to offset
the excess or shortage of stored water from one year to the
other, especially when the critical filling zones are reached
(reservoir in a dead storage zone or overflowing), in order to
bring the reservoir water state to the ideal filling curve over
the long term (Fig. 7c). The same behavior is noted formstart,
which is not shown in Fig. 7.

The cthreshold, α and mstart parameters have the same ef-
fect on non-irrigation reservoirs. The influence of each of
the three parameters on [1979–2013] monthly mean outflows
from the “Alcantara II” reservoir (GRanD ID 2800) in the
Tagus River basin, which has a relative capacity of 0.6 and is
mainly used for electricity generation, is shown in Fig. 8. For
this specific reservoir, the simulated period includes several
wet years, and there were periods when water flowed over
the spillways during winter, which explains the alignment of
the outflow with the inflow during this season.

The distributions of total sensitivity indices ST (in grey),
alongside S1 (in white), of each parameter are shown in
Fig. 9. A significant gap is observed between the first-
and total-order index distributions. This confirms the non-
negligible effect of the parameters’ interactions on the output
variance involving mainly cthreshold. In the median, based on
the ST definition,∼ 62 % of C2M variance in irrigation reser-
voirs and ∼ 87 % in non-irrigation reservoirs are attributed
exclusively to cthreshold and its interactions with other param-
eters: it is indeed the most important parameter of the DROP
model. α and b, on the other hand, were in the median low
values, which makes them the least important parameters.

The distributions of second-order Sobol indices for each
parameter couple for the irrigation and non-irrigation reser-
voirs considered separately are shown in Fig. 10. The results
reveal that the parameter with the most interactions overall
with other parameters is cthreshold. This is mainly due to its
position at the end of the model chain, where provisional re-
leases are corrected. For the rest of the parameters, the inter-
action between mstart and α is more marked in non-irrigation
reservoirs since the scheme is simplistic and the outflow de-
pends mainly on the Ky annual coefficient that is driven by
both mstart and α. In irrigation reservoirs, the coefficients
dmax andM interact because they control irrigation water de-
mand and the reservoir water storage allocated to it. As they
are both involved in the reservoir water balance, they jointly
control the outflow. The b coefficient meanwhile interacts
only with cthreshold when computing the demand-controlled
release ratio R calculation. The total influence of b, mostly
resulting from the interaction with cthreshold, is only seen in
reservoirs with low relative capacities.

Since c is a defining characteristic of each reservoir and is
involved in the outflow computation, the first- and total-order
Sobol indices were rearranged according to their reservoir-
correspondent c values, here grouped into six ranges to sim-
plify the presentation of the results to better identify the im-
pact on parameter ordering and interactions (Fig. 11).

For low values of c (less than 0.01), cthreshold is the only
relevant parameter. The total influence of b, on the other
hand, is mostly related to its interaction with cthreshold. The
remaining parameters are negligible since their first-order
Sobol indices are almost zero and the total order is very low.
For reservoirs with a medium storage capacity (0.01≤ c ≤
1), a significant part of total variance is due to parameter in-
teractions, apart from b, as all Sobol indices increase sig-
nificantly from first to total order. This is even more notice-
able when 0.1≤ c ≤ 0.3. Above a relative capacity of 0.3,
the M parameter in irrigation reservoirs gains in importance
and increases interactions with the cthreshold as c is bigger. For
non-irrigation reservoirs of the same category, cthreshold takes
on more importance as the storage capacity increases (less
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Figure 8. An example of the seasonal pattern sensitivity of the Alcantara II hydroelectricity reservoir outflow to three of the DROP model
parameters: (a) cthreshold, (b) α and (c) mstart. The remaining parameters were set at default values (see Table 2).

Figure 9. Distribution of first (S1)- and total (ST)-order Sobol indices in the modeled reservoirs for each parameter: (a) in irrigation and
(b) in non-irrigation reservoirs.

spreading and very high S1). The remaining parameters lose
relative importance. For the very high relative capacity val-
ues, α and mstart are almost irrelevant, regardless of the op-
erating objective. Finally, for nearly all reservoirs combined
(except those with very small values of c), the b coefficient
has almost no influence and can therefore be set to a nominal
value.

When using Sobol indices, the representation of model
output uncertainty is limited to the variance only, which is
not fully representative of all the statistical characteristics
(or moments) of the C2M distribution. Using the distribution
function instead provides a complete description of uncer-
tainty in the model output. Here, we evaluate the sensitiv-
ity of parameters by assessing their influence on the entire
C2M distribution without reference to a specific moment of
the output (Chun et al., 2000; Borgonovo, 2007, moment-
independent methods). This method is used as a validation
step for the overall conclusions found with the variance-
based Sobol method. The deviation of the C2M distribution

function caused by two different parameters cthreshold and α
over the irrigation reservoirs is shown in Fig. 12. Here, the
same samples generated for Sobol’s index calculation were
used. First, the unconditional probability distribution func-
tion (PDF) of the model output C2M is obtained when all
input parameters are randomly sampled from their distribu-
tions. Then, for each input parameter, conditional PDFs of
C2M are computed following different value ranges from the
total parameter distribution: here, five ranges are considered.
The importance of each parameter is proportional to the mag-
nitude of the conditional PDF deviation from the uncondi-
tional one.

The large dispersion of the conditional PDFs (colored)
shows the strong impact of cthreshold in the model outlet in
Fig. 12a. All PDFs are nearly aligned for α, and thus the
value of this parameter has very little significance for C2M
distribution. Moment-independent sensitivity indicators like
“Kolmogorov”, “Kuiper” and “Delta” (Borgonovo and Plis-
chke, 2016) were used to measure the deviation from the
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Figure 10. Distribution of second-order Sobol indices (S2) in the modeled reservoirs for each pair of parameters: (a) in irrigation and (b) in
non-irrigation reservoirs.
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Figure 11. Distribution of first- (“S1”) and total-order (“ST”) Sobol indices of parameters according to relative capacity: (a, c) in irrigation
and (b, d) in non-irrigation reservoirs.

Figure 12. Shifts in C2M’ probability distribution function (PDF) depending on cthreshold (a) and α (b) range values, within irrigation
reservoirs. The unconditional PDFs of the DROP model outputC2M, obtained when all input parameters are randomly sampled, are displayed
in black. The conditional PDFs are shown in color depending on the parameter value range.

unconditional PDF, and the results were consistent with the
conclusions made with the Sobol index. It is also noted that
DROP tends to have very poor performance scores for high
values of cthreshold (above 2.76) where all the reservoirs are
considered run-of-river and the release would be close to the
lines alignments with inflow as shown in Fig. 12. This figure
indirectly demonstrates the reservoir model contribution in

terms of improving river flow representation in anthropized
basins where the magnitude and seasonal flow dynamics are
significantly altered by large storage capacity reservoirs, es-
pecially those for irrigation purposes.
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5 Discussion

5.1 Limits of the DROP model scheme

The DROP model outputs are affected by several uncertain-
ties linked to the model inputs and the algorithm. The param-
eterized model is based on a generic scheme of reservoir op-
eration, which inevitably implies a simplification in terms of
water release. Concerning the representation of operational
purposes, the algorithm fails to differentiate between other
purposes than irrigation and considers that a constant release
is expected by the rest of the reservoirs. In addition, only
the main objective of the reservoir is represented, and the
releases of the multi-purpose reservoirs are not entirely rep-
resented since their management rules are more complex to
describe. This explains the poor performance of the model
at the level of reservoirs that are used for irrigation, though
it is not their main objective: DROP is very simplistic for
the rest of its possible purposes, so that the seasonal shift in
water discharge is not always well reproduced. This is the
case of the reservoir “Los Bermejales”, for example, a multi-
purpose reservoir located in the basin of the Guadalquivir
River, southern Spain, which is mainly used for water supply,
but it is also used to meet irrigation water demands (Fig. 13).

In addition, the model computes releases independently on
each reservoir. The cascades of reservoir operations, which
can be coordinated with each other, are thus not captured.
More specific studies on multi-objective reservoirs (Wu and
Chen, 2012; Wang et al., 2019) and multi-reservoir systems
have been conducted (Chang et al., 2014; Tan et al., 2017;
Rougé et al., 2021), but they all remain complex and are
reservoir-specific. These methods were evaluated only at the
local scale and are very difficult to extend to a global scale
because they need a significant amount of observed input
data and require detailed operating rule knowledge.

Regarding the representation of releases from non-
irrigation reservoirs more generally, the scheme remains very
simplistic since release policy is not driven by physical
processes. In fact, operation rules of these types of reser-
voirs involve complex socioeconomic and political factors
that are different in each country. Simulating other manage-
ment purposes is mainly based on optimization algorithms,
as is the case for hydro-power dam releases, for instance,
where the objective functions are economically oriented (i.e.,
to maximize energy production; Moeini et al., 2011; Feng
et al., 2017; Chong et al., 2021). These methods remain very
reservoir-specific and are currently deemed to be too com-
plex to be applicable at a large scale.

The model provides a relatively good performance in rep-
resenting irrigation reservoir operations because of its physi-
cal approach that links water releases to crop water demands.
However, some simplifications are to be noted which could
be improved in the future. The irrigation water demand es-
timation is based on the irrigation scheme in ISBA LSM,
which has its own limitations (Druel et al., 2022). Also, in

this version of the reservoir scheme, water demands for each
irrigation reservoir are reduced to considering pixels that are
downstream of the reservoir at a given maximum distance
dmax. This creates inconsistencies because water demand is
not linked to the reservoir water storage capacity, which leads
for some reservoirs to much higher water demands compared
to water supply. Moreover, here there is no proportional-
ity rule set between reservoirs with common irrigation grid
cells. They are recorded on multiple reservoirs when their
command areas are overlapping because the model runs on
each reservoir independently. We end up repeatedly count-
ing shared pixels, and this leads to overestimation of water
demands at the level of each reservoir. According to results
from the sensitivity analysis, parameter dmax alone (ranging
from 1 to 250 km) does not have much influence on out-
flow variance, and this is even more true when irrigation
demands are considered excessive compared to inflow (DPI
≥ 1−M), because in that case the amount of irrigation de-
mand is not more significant in outflow computing; only the
seasonal variation defines the reservoir release curve. Zhou
et al. (2021) suggested an efficient way to overcome this
issue by defining a least-cost adduction network, based on
Portoghese et al. (2013) and Neverre et al. (2016), to con-
nect each irrigation grid cell to a unique abstraction point, ei-
ther a river or a reservoir, by using topographic information,
distance and upstream areas of the river abstraction points.
This approach has the advantage of considering not only the
downstream grid cells, but all the surrounding ones. Most
importantly, it ensures that reservoir command areas do not
overlap anymore and that each pixel irrigation demand is
only counted once. The method is implemented in the routing
model of ORCHIDEE (ORganizing Carbon and Hydrology
In Dynamic EcosystEms; Nguyen-Quang et al., 2018) and
can be easily implemented in other routing models. It is also
interesting at this stage to account for all possible sources
of water withdrawals, including underground water, canals,
but also the abstractions made directly from the reservoirs’
storage, in order to have a more realistic representation of
reservoir releases.

Another aspect which is not explicitly simulated in the
model is water abstraction. In this study, abstractions are
taken into account indirectly since the inflow is reconstructed
from observations at the inlet of each reservoir. However,
once the DROP model is implemented in a hydrological
model, the tributary inflows will correspond to river flows
simulated by the routing model, and therefore there should
be a deterioration of the performance index on discharge with
an error spreading along the anthropized rivers. However, by
coupling the above with a model that takes irrigation into
account, such as the new version of the ISBA land surface
model, for example (Druel et al., 2022), the water releases
from the reservoir model can be linked to crop irrigation
needs, and thus river water withdrawals can be represented
as well as those taken directly from the reservoirs.
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Figure 13. Example of time series (a) and monthly means (b) of simulated releases from Los Bermejales reservoir, a multi-purpose reservoir
primarily used for water supply and which also operates to meet irrigation water demands. The reservoir model failed to reproduce observed
irrigation releases as it does not consider secondary objectives.

5.2 Contributions of the sensitivity analysis to a clearer
understanding of the DROP model

The sensitivity analysis has revealed the most influential pa-
rameters and those that can be set using predefined values
without impacting the model output uncertainty distribution.
It emerged that cthreshold is the most influential parameter in
representing reservoir releases, and this result is consistent
with the analysis of Shin et al. (2019) on the role of the re-
lease ratio R where cthreshold is involved. Indeed, the afore-
mentioned study showed the positive contribution of this for-
mulation to the R ratio (R = α c, i.e., cthreshold = 1/α) and its
optimization in improving the representation of release and
stabilizing water storage in the simulated reservoirs, espe-
cially those with 0.21≤ c ≤ 1.18 (the values of c for which
4c2
= α c and c = 1/α, α being set at 0.85).

Hanasaki et al. (2006) conducted a sensitivity test on the α
parameter for a case study of a large relative capacity hydro-
electric reservoir (c = 2.28). The model was tested with four
different values of α (0.65, 0.75, 0.85, and 0.95) and found
that this parameter had a low impact on the simulated release
but a high impact on the simulated storage, except when the
reservoir is full. α showed high sensitivity to releases when
events with water passing over spillways were more frequent.
Their conclusions concerning the sensitivity to outflows are
also in line with the results found here.

Actually, the sensitivity analysis undertaken in this study
focused on the model sensitivity in the average representation
of releases rather than on the filling levels of reservoirs since
the focus of the study is on flow representation and the effect
of anthropogenic factors in altering the flow dynamics along
the rivers. If we were to focus on water resource availability
and water management issues, the sensitivity analysis should
also focus on the uncertainty in representing water storage
levels in the reservoirs, considering the C2M over volumes
as the variable of interest. In this configuration, as shown in
Fig. 14, the parameters α and mstart, alongside cthreshold, will
emerge as the most influential parameters with significantly
high sensitivity indices of both first and total orders.

Both α andmstart directly affect the bias in the filling curve
representation. In the ideal case where the reservoir state is
not on the boundary conditions, the filling curve is vertically
shifted following the value of α and the chosen month in or-
der to bring the reservoir volume at the beginning of each
operating year in line with the ideal filling rate αC, as shown
in Fig. 15, without changing the seasonal release pattern. The
larger the seasonality of reservoir water levels, the greater the
effect of both parameters, which is very noticeable in large-
storage capacity reservoirs used for water supply and hence
explains the two parameters’ interaction with cthreshold.

6 Conclusions

In this paper, a global parameterized model, DROP, was
reconstructed based on the Hanasaki et al. (2006) generic
scheme to represent reservoir releases in Spain. Results re-
veal the positive contribution of the model in representing
the seasonal cycle of discharge and storage variation, specif-
ically for irrigation large-storage capacity reservoirs, as the
model succeeds in reproducing the seasonal shift between in-
flows and outflows, improving river flow representation (C2M
improvement rate) by 123 % in the median. The results also
provide a further validation of the Hanasaki et al. (2006)
formulation on 215 reservoirs in Spain where reliable ob-
served data are readily accessible. While Spain represented
an idealized case study in terms of data availability, different
remote sensing data will allow the extension of the model
to any other river basin over the globe, more specifically
to those which are ungauged, since the reservoir model re-
lies only on the GRanD reservoir database (which is global).
This work is in preparation for the upcoming SWOT wide-
swath altimetry mission (Biancamaria et al., 2016), which
will provide the data necessary to make improved global-
scale river and reservoir storage and flow estimates. Further-
more, the results highlight the importance of incorporating
reservoir operations into large-scale hydrological models for
a more realistic representation of river flows and thus the
water mass exchange with oceans and the atmosphere. The
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Figure 14. Distribution of first- (“S1”) and total-order (“ST”) Sobol indices of parameters based on C2M variance over volumes: (a, c) in
irrigation and (b, d) in non-irrigation reservoirs.

Figure 15. Example of seasonal pattern sensitivity of Gonzalez Lacasa (a, b) and Alcantara II (c, d) reservoir volumes to two of the DROP
model parameters: (a, c) α and (b, d) mstart. The remaining parameters were set at default values (see Table 2).

physical approach of DROP is consistent with that of the
ISBA-CTRIP LSM RRM (land surface–river routing model):
irrigation demands used as input to the reservoir model can
be simulated by the irrigation module recently integrated into
ISBA (Druel et al., 2022), and CTRIP already includes a lake
model, “MLake” (Guinaldo et al., 2021), that a priori models

inland water bodies at a global scale, calculates mass balance
and lake outflow at the global scale, and provides the foun-
dation for integrating human reservoir operations. The next
step is to implement the DROP model in MLake and create a
link between the two anthropization models by coupling the
new versions of ISBA (irrigation) and CTRIP (reservoirs).
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The sensitivity analysis, based on Sobol’s method, was
conducted on the C2M representation of the mean seasonal
outflow patterns. The results show that the most important
parameter overall is cthreshold.M and dmax are ranked second,
in the median, in terms of irrigation reservoir release repre-
sentation, and their importance is linked to the reservoir rel-
ative capacity. α and mstart have less influence on both types
of reservoir outflow seasonal dynamics but are important if
the focus is on reservoir water storage values. It has also been
proven that the significance of the model’s parameters varies
according to the range of reservoir relative capacities being
studied. The results represent an essential step to further im-
prove either river flow modeling or reservoir water storage,
through calibration schemes and assimilation of new remote
sensing products, by targeting the most influential reservoir
model parameters. A supplementary application of this work
is provided as a calibration study of the model over Spain
(see Supplement). This work provides future studies with a
fully generalized parameterization of the reservoir scheme
along with a deeper insight into the way each of the param-
eters influences the model outputs and how their importance
changes depending on the reservoir characteristics and the
output variable of interest.

Overall, integrating this reservoir model into LSM RRMs,
which are in turn coupled to climate and Earth system models
(such as the CNRM-CM and CNRM-ESM; Voldoire et al.,
2019; Séférian et al., 2019), will provide a major advance
in understanding past climate reanalysis and will enable a
more realistic representation of future scenarios under cli-
mate change.

Code and data availability. The DROP model and the sensitivity
analysis codes are available on Zenodo. Post-processing codes are
also available. All information can be found in the following repos-
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