
Supplement of Geosci. Model Dev., 16, 4249–4264, 2023
https://doi.org/10.5194/gmd-16-4249-2023-supplement
© Author(s) 2023. CC BY 4.0 License.

Supplement of

Description and evaluation of the JULES-ES set-up for ISIMIP2b
Camilla Mathison et al.

Correspondence to: Andrew J. Hartley (andrew.hartley@metoffice.gov.uk)

The copyright of individual parts of the supplement might differ from the article licence.



 

 

1 

 

Introduction  

The following supporting information provides additional detail on the following: 

• Post-processing steps involved in formatting the JULES raw output into the files 

available for download at https://data.isimip.org/search/query/jules-es-55/ (Text 

S1) 

• ISIMIP driving data used in this study (Figure S1 and S2) 

• iLAMB approach to model assessment (Text S2; Tables S1 to S6) 

• More detailed evaluation of the simulations, including seasonal variation in 

surface fluxes (Figures S3 and S4), modelled vegetation with fire on (Figure S5) 

and comparison of hydrological impacts with fire on and off (Figure S6) 

  

https://data.isimip.org/search/query/jules-es-55/
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S1 Converting data to ISIMIP Protocols 

Code is available and is used here to post-process the raw JULES output data to ensure 
that it conforms to the ISIMIP protocols. Its main functions are to: 

• Modify units 

• Define special variables, for example those that need to be calculated from 
others e.g., Net Biome Production (NBP). 

We also use the ISIMIP quality control python code available from github 
(https://github.com/ISI-MIP/isimip-qc). It checks the filenames against the protocol 
schemas and patterns. This code also checks variables, dimensions and global attributes 
ensuring consistency across all submitted data. 

https://github.com/ISI-MIP/isimip-qc
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Figure S1: Annual average precipitation in m / m2 for 1979-2006 for (top to bottom) 

GSWP3 observations and each driving dataset. (right) the difference between driving 

data and observations. 

 



 

 

4 

 

 

Figure S2: Climatological averaged precipitation over the Amazon basin, mm per month 

(see Figure 1 and 2) between 1979-2003. 
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S2 ILAMB 

Evaluation of JULES using the International Land Model Benchmarking system (ILAMB; 
Collier et al. (2018)). For each model–observation comparison a series of error metrics 
are calculated, scores are then calculated as an exponential function of each error 
metric, scores increase from 0 to 1 with improvements in model performance. Metrics 
and scores for GPP, ET and Albedo are evaluated on a latitude-longitude grid and global 
mean scores are shown in tables S1, S4 and S5. The runoff metrics and scores are 
calculated for 50 major river basins and the global mean score is weighted by the area of 
the basin (Table S6). To calculate the bias score, bias is normalized by observed 
temporal variability before an exponential function is used to map the normalized bias 
to fit between 0 and 1. For some variables, including GPP and ET the global mean bias 
score is weighted by the absolute value of the observation in order to down-weight 
regions of low GPP or ET.  Spatial distributions scores are based on a combination of the 
spatial correlation and spatial standard deviation of time-mean model data. Seasonal 
cycle scores are based on the error in the timing of the seasonal maximum. For 
vegetation cover, we used the Manhattan Metric (MM; Table S2) from Kelley et al. 
(2013), which is the area weighted mean of grid-cell summed absolute difference 
between different fractional items. We compared tree vs none-tree (which includes all 
other vegetation items and bare soil), shrub vs none-shrub, wood (tree and shrub) vs 
none-wood and grass vs none-grass. Each comparison excludes water bodies, ice and 
urban areas, with vegetation and soil rescaled to add up to 1, and area weighting 
adjusted accordingly. 

 

 Global 
average 

NBP(PgC/yr)   

Global 
average 

GPP 
(PgC/yr) 

Bias 
 (g m-2 

d-1) 

Bias 
Score 

Seasonal 
Cycle Score 

Spatial 
Distribution 

Score 

Observed 1.0-2.8 120-140     

GFDL  0.93 135 0.39 0.49 0.75 0.95 

HadGEM2  1.37 137 0.45 0.48 0.78 0.93 

IPSL  1.25 134 0.37 0.47 0.76 0.94 

MIROC  1.46 137 0.45 0.47 0.77 0.93 

GFDL + fire  0.66 133 0.34 0.48 0.74 0.94 

HadGEM2 + fire 1.16 135 0.40 0.45 0.78 0.91 

IPSL + fire 0.87 132 0.32 0.45 0.75 0.92 

MIROC  + fire 1.34 135 0.40 0.45 0.76 0.91 

Table S1: benchmark results for NBP and GPP versus Jung et al. (2011) upscaled Fluxnet 

GPP observation. Observed global total for GPP and NBP are from Global Carbon Budget 

(Friedlingstein et al., 2020). Cells shaded in global NBP and GPP columns to indicate 

where the simulation is within the range of the Global Carbon Budget. 

 



 

 

6 

 

 Tree Shrub Woody total Grass 

Bias (Mkm2) 
MM 

Bias (Mkm2) 
MM 

Bias (Mkm2) 
MM 

Bias (Mkm2) 
MM 

Observation 
(Global total) 

34.86  5.02  39.88  36.87  

GFDL  5.31 0.24 1.28 0.12 6.59 0.44 -8.91 0.38 

HadGEM2  5.08 0.24 1.31 0.12 6.39 0.44 -9.96 0.38 

IPSL  4.97 0.24 1.22 0.12 6.19 0.43 -9.66 0.38 

MIROC  5.31 0.24 1.22 0.12 6.53 0.44 -11.47 0.38 

GFDL + fire  -0.49 
 

0.27 -4.09 
 

0.08 -3.60 0.30 -9.5 
 

0.42 

HadGEM2 + 
fire 

1.55  0.26 -4.34 0.08 -2.79 0.32 -10.98 0.41 

IPSL + fire 1.05 0.26 -4.41 0.08 -3.36 0.31 -10.69 0.41 

MIROC  + fire 1.86 0.26 -4.11 0.08 -2.25 0.33 -12.99 0.42 

Table S2: benchmark results for vegetation fraction observations ESACCI Land cover 

v2.0.7 (Harper et al., 2022). Shades as per Table S1. 

 

 
 Global 

total 
(Mkm2) 

Bias 
(monthly 

%)  
Bias Score 

Seasonal Cycle 
Score 

Spatial Distribution 
Score 

Observation 4.55 0.346    

GFDL + fire  4.43 -0.0431 0.74 0.83 0.74 

HadGEM2 + fire 4.13 -0.0655 0.74 0.83 0.74 

IPSL + fire 4.33 -0.0479 0.75 0.84 0.76 

MIROC  + fire 3.94 -0.0657 0.74 0.83 0.73 

Table S3: benchmark results for burnt area versus GFED4s observations (Van Der Werf et 

al., 2017). 
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 Bias  

(mm d-1) 
Bias Score  

Seasonal Cycle 
Score 

Spatial Distribution 
Score 

GFDL  0.13 0.62 0.82 0.98 

HadGEM2  0.17 0.62 0.80 0.97 

IPSL  0.13 0.62 0.81 0.97 

MIROC  0.18 0.63 0.81 0.97 

GFDL + fire  0.09 0.63 0.82 0.98 

HadGEM2 + fire 0.14 0.64 0.80 0.97 

IPSL + fire 0.10 0.64 0.81 0.98 

MIROC  + fire 0.15 0.64 0.81 0.97 

Table S4: benchmark results for evapotranspiration (ET) versus GLEAM V2A dataset 

(Miralles et al., 2011). Note that the ILAMB comparison to MODIS MOD16A2 ET (Mu et 

al., 2011) produces consistent results, with mean biases being positive and slightly 

smaller when fire is included, and the other scores being nearly identical between the 

simulations with and without fire. Shades as per Table S1 

 

 

 Bias  Bias Score Seasonal Cycle 
Score 

Spatial Distribution 
Score 

GFDL  0.07 0.32 0.59 0.97 

HadGEM2  0.07 0.33 0.60 0.97 

IPSL  0.07 0.33 0.59 0.97 

MIROC  0.07 0.32 0.60 0.97 

GFDL + fire  0.07 0.33 0.57 0.96 

HadGEM2 + fire 0.07 0.33 0.58 0.96 

IPSL + fire 0.07 0.33 0.57 0.96 

MIROC  + fire 0.07 0.33 0.57 0.96 

Table S5: benchmark results for albedo versus GEWEX SRB radiation observations 

(Stackhouse et al., 2011). Shades as per Table S1 
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 Bias (mm d-1) Bias Score Spatial Distribution Score 

GFDL  0.02 0.80 0.97 

HadGEM2  -0.01 0.80 0.97 

IPSL  -0.04 0.78 0.94 

MIROC  -0.01 0.80 0.97 

GFDL + fire  0.05 0.78 0.96 

HadGEM2 + fire 0.02 0.79 0.96 

IPSL + fire -0.01 0.77 0.94 

MIROC  + fire 0.02 0.78 0.96 

Table S6: benchmark results for global runoff versus Dai and Trenberth (2002) derived 

GRDC Aiguo Runoff Dataset. We’ve shaded cells where metric scores indicate whether 

the with or without fire runs perform better. Lighter shade indicates equal scores with 

and without fire. 
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Figure S3: Seasonal variation in Evapotranspiration (ET) for tropical South America. 
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Figure S4: Seasonal variation in Gross Primary Production (GPP) for tropical South 

America 
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Figure S5: Comparison of modelled ensemble mean vegetation cover, with fire, vs 

observations. Split (top to bottom) by tree, shrub, grass and unvegetated (bare) fraction. 

(Left to right) Observations CCI_LC v2.0.7 (Harper et al., 2022), and the difference 

between model ensemble mean and observations. 
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Figure S6: Multi-year mean bias of ET and catchment scale runoff simulated by JULES 

with and without fire, as driven by 4 sets of climate driving data. Modelled ET (1980-

2011) is compared to GLEAM (Miralles et al., 2011). Runoff (1980-2014) is compared to 

Dai & Trenberth (2002). ISIMIP2b forcing data derived from 4 CMIP5 GCMs: GFDL-

ESM2M; HadGEM2-ES; IPSL-CM5A-LR; MIROC5. 
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