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Abstract. It is incumbent on decision-support hydrological
modelling to make predictions of uncertain quantities in a
decision-support context. In implementing decision-support
modelling, data assimilation and uncertainty quantification
are often the most difficult and time-consuming tasks. This
is because the imposition of history-matching constraints on
model parameters usually requires a large number of model
runs. Data space inversion (DSI) provides a highly model-
run-efficient method for predictive uncertainty quantifica-
tion. It does this by evaluating covariances between model
outputs used for history matching (e.g. hydraulic heads) and
model predictions based on model runs that sample the prior
parameter probability distribution. By directly focusing on
the relationship between model outputs under historical con-
ditions and predictions of system behaviour under future con-
ditions, DSI avoids the need to estimate or adjust model pa-
rameters. This is advantageous when using integrated surface
and sub-surface hydrologic models (ISSHMs) because these
models are associated with long run times, numerical insta-
bility and ideally complex parameterization schemes that are
designed to respect geological realism. This paper demon-
strates that DSI provides a robust and efficient means of
quantifying the uncertainties of complex model predictions.
At the same time, DSI provides a basis for complementary
linear analysis that allows the worth of available observa-
tions to be explored, as well as of observations which are
yet to be acquired. This allows for the design of highly ef-
ficient, future data acquisition campaigns. DSI is applied in
conjunction with an ISSHM representing a synthetic but re-
alistic river–aquifer system. Predictions of interest are fast
travel times and surface water infiltration. Linear and non-
linear estimates of predictive uncertainty based on DSI are

validated against a more traditional uncertainty quantifica-
tion which requires the adjustment of a large number of pa-
rameters. A DSI-generated surrogate model is then used to
investigate the effectiveness and efficiency of existing and
possible future monitoring networks. The example demon-
strates the benefits of using DSI in conjunction with a com-
plex numerical model to quantify predictive uncertainty and
support data worth analysis in complex hydrogeological en-
vironments.

1 Introduction

Numerical hydrological models are often built to make pre-
dictions that support decision-making. In this paper we use
the term “prediction” to refer to any quantity of management
interest calculated by a numerical model, whether it is esti-
mated in the future or is a by-product of data assimilation.
Generally, Bayesian methods are applied to models so that
the uncertainties associated with predictions of management
interest can be quantified and reduced. Through this process,
the prior uncertainties of these predictions are constrained by
the assimilation of observations to provide estimates of pos-
terior predictive uncertainties. A variety of Bayesian methods
are available for this purpose. These include linear methods
(James et al., 2009; Dausman et al., 2010), linear-assisted
methods such as null-space Monte Carlo (Tonkin and Do-
herty, 2009; Doherty, 2015) and non-linear methods such
Markov chain Monte Carlo (see, for example, Vrugt, 2016).
More recently, ensemble methods such as those described by
Chen and Oliver (2013) and White (2018) have been used in
this context. The attractiveness of ensemble methods lies in
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their ability to accommodate a large number of parameters
with a high degree of model run efficiency.

In many hydrogeological settings, geological structures
such as elongate structural or alluvial features that embody
interconnected permeability are of high conceptual relevance
as they can have a major impact on management-salient pre-
dictions. Representation of these features typically requires
the use of categorical parameterization schemes that main-
tain their relation and connectivity in space. Despite the ef-
ficiency of ensemble methods, it is difficult for them to ad-
just and maintain permeability connectedness as parameter
fields are adjusted so that model outputs can respect field
measurements (Lam et al., 2020; Juda et al., 2023). Addi-
tionally, theoretical problems arise from the multi-Gaussian
assumption on which ensemble methods are based. Practical
problems arise from the sometimes problematic behaviour
of complex numerical models when endowed with stochastic
parameter fields with high contrasts in hydraulic conductiv-
ity. These problems are generally exacerbated when solute
transport is simulated in addition to flow. It follows that the
use of model partner software such as PEST (Doherty, 2022)
and PESTPP-IES (White, 2018) for parameter field condi-
tioning and predictive uncertainty analysis and reduction is
not always feasible. This makes it difficult to maintain the
simulation integrity of physically based numerical models
where potentially information-rich site data must be assim-
ilated. Compromises in model structure, parameterization or
process complexity may therefore be required (see, for ex-
ample, Delottier et al., 2022).

To overcome these problems, methods have been devel-
oped to generate posterior distributions of predictions with-
out the need to adjust the complex parameter fields of large,
physically based numerical models (for example Satija and
Caers, 2015; He et al., 2018; Hermans, 2017; Sun and
Durlofsky, 2017). Computational advantages are gained by
establishing a direct link between historical observations of
system behaviour and predictions of interest. To establish
this link, a numerical model of arbitrary process complex-
ity is used. This model is equipped with parameter fields
that can best express the hydrogeological characteristics of
the simulated system. These may include complex struc-
tures that represent heterogeneous, three-dimensional con-
figurations of hydraulic properties. Because no adjustment
of the parameter fields is required, simulation integrity is
maintained regardless of the complexity of hydrogeological
site conceptualization. Instead, the model is used to build a
prior probability distribution of predictions of interest based
on samples of realistic hydraulic property fields. The same
model runs that are used to explore prior predictive uncer-
tainty are used to construct a joint probability distribution
that links historical system behaviour with future system be-
haviour.

Some of the methods that adopt this approach to poste-
rior predictive uncertainty analysis attempt to develop ex-
plicit relationships between historical observations of system

behaviour on the one hand and predictions of future system
behaviour on the other hand (Satija and Caers, 2015; Scheidt
et al., 2015). In contrast, other methods develop a more im-
plicit relationship between these two (Sun and Durlofsky,
2017; Lima et al., 2020). Once these relationships have been
established, predictions of interest can be directly condi-
tioned by real-world measurements of historical system be-
haviour. The need for manipulation and estimation of param-
eters is thereby obviated. Consequently, the numerical bur-
den of predictive uncertainty reduction and quantification is
significantly reduced, regardless of the complexity of the nu-
merical model and regardless of the complexity of the prior
parameter probability distribution.

In this paper, we employ a “data space inversion” (i.e. DSI)
methodology that is similar to that described by Lima et al.
(2020). At the same time, we extend the methodology to con-
sider the worth of existing and future data. Assessment of
data worth is based on the premise that the value of data in-
creases with its ability to reduce the uncertainties of predic-
tions. Because it requires uncertainty quantification, assess-
ing the worth of data using methods that rely on explicit or
implicit (through linear analysis) parameter adjustment can
be computationally expensive, especially when performed in
numerical and parameterization contexts that attempt to re-
spect hydrogeological processes and hydraulic property in-
tegrity. The numerically inexpensive methodology for data
worth assessment that is presented herein can support these
assessments in modelling contexts where it would otherwise
be computationally intractable. The proposed approach is
therefore especially attractive for integrated surface and sub-
surface hydrologic models (ISSHMs). Thus it can support
attempts to achieve the goals of decision-support utility and
failure avoidance that are set out in articles such as Kikuchi
(2017) and Doherty and Moore (2020).

All of the methods described here can be applied using
PEST (Doherty, 2022) and PEST++ (PEST++ Develop-
ment Team, 2022). They are therefore readily available to
the wider modelling community.

The paper is organized as follows: Sect. 2 describes the
theory behind DSI. In the ensuing section, a synthetic al-
luvial river–aquifer system is introduced. This is then used
to (i) validate DSI estimates of predictive uncertainty and
(ii) demonstrate the use of DSI in quantifying the worth of
existing and new data in reducing predictive uncertainty.

2 Theory

2.1 Statistical linkage between the past and the future

Let the vector o denote outputs of a model that correspond to
field measurements of system behaviour (e.g. system states
and fluxes). Meanwhile, we denote the actual field measure-
ments of these quantities by the vector h. We use the sym-
bol Z to characterize the operator through which model out-
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puts o are calculated from model parameters; the latter are
denoted by the vector k. Therefore,

h= o+ ε = Z(k)+ ε. (1)

The vector ε denotes the noise associated with field mea-
surements h. It may also include the model-to-measurement
misfit which arises from the imperfect nature of numerical
simulation. In the present case we combine both of these into
a single “noise” term. It is generally assumed that ε has a
mean of 0; we denote its covariance matrix by C(ε).

Ideally, k in Eq. (1) can represent any model inputs that
are incompletely known. Conceptually, there is no limit to
the number of elements that comprise the vector k and hence
to the complexity of model parameterization. Typically, el-
ements of k represent spatially distributed hydraulic and
transport properties. They may also include historical system
stresses, such as pumping and recharge rates that are poorly
estimated, as well as some uncertain specifications of other
boundary conditions.

Suppose the model is run over a period for which predic-
tions are made. Let the vector s contain simulator predictions
of interest. We depict these as being computed from model
parameters using the operator Y. Thus,

s = Y(k). (2)

Suppose that the model is run N times over its simulation
period and that this simulation period spans both the time
over which history matching is performed (that is, the “cali-
bration period”) and the time over which predictions are re-
quired (that is, the “prediction period”); depending on the
prediction, these two periods may coincide. Suppose further
that on each of the N occasions on which the model is run,
the vector k comprises a different sample of its prior proba-
bility distribution. The set ofN realizations of o computed by
the model over these N model realizations can be collected
into a matrix O by arranging them in columns. Meanwhile,
the set of N realizations of s in Eq. (2) can be similarly col-
lected into a matrix S. From these realizations, vectors de-
picting the mean of O and the mean of S (i.e. o and s) are
calculated as

o=

∑N
i=1oi

N
, (3a)

s =

∑N
i=1si

N
, (3b)

where oi and si in Eq. (3a) and (3b) depict the ith column
of O and S, respectively. Let O and S designate matrices
whose columns are comprised of replicates of o and s. Con-
sider now the covariance matrix:

C

([
o

s

])
=

[
Coo Cos
Cso Css

]
, (4)

where

Coo =

(
O−O

)(
O−O

)T
N − 1

, (5a)

Cos = C
T
so =

(
O−O

)(
S−S

)T
N − 1

, (5b)

Css =

(
S−S

)(
S−S

)T
N − 1

. (5c)

Submatrices appearing on the right side of Eq. (4) can be
calculated from realizations of model outputs using Eq. (5a),
(5b) and (5c).

Conditioning of predictions by historical observations of
system state (see below) often benefits from transforming
individual elements oi and si of o and s into normally dis-
tributed variables og

i and sg
i before calculating the covariance

matrices that are depicted in Eq. (4). Unfortunately, Gaussian
transformation of individual elements of o and s does not
guarantee that the joint probability distribution of [ogT,sgT

]

is multi-Gaussian. However, this can be at least partially ac-
commodated by undertaking an ensemble-based condition-
ing process in which og and sg are linked by a surrogate
model. This is now discussed. Meanwhile, to make the fol-
lowing notations a little less complex, we drop the “g” super-
script.

2.2 The DSI surrogate model

Sun and Durlofsky (2017) and Lima et al. (2020) demon-
strate the use of a covariance-matrix-derived surrogate model
that can be used to link o and s. Conditioning of s by h (the
measured counterpart of o) is then achieved by adjusting the
parameters of this model using standard parameter condition-
ing methodologies. The former authors use the randomized
maximum likelihood method, while the latter authors use an
ensemble smoother.

The DSI prediction model is described by the following
equation:[
o

s

]
=

[
op
sp

]
+C1/2

([
o

s

])
x. (6)

“Adjustable parameters” of this model comprise the vec-
tor x in Eq. (6). Meanwhile op and sp are prior mean values
of o and s. The prior probability distribution of elements xi
of x is such that they are independently normal with a stan-
dard deviation of 1.0. Thus,

E(x)= 0 (7a)

and

C(x)= I, (7b)

where E(x) in Eq. (7a) denotes the expected value of x
and C(x) in Eq. (7b) denotes the prior covariance matrix
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of x. The square root of the covariance matrix that is de-
picted in Eq. (6) is obtained using singular value decomposi-
tion. First,

C

([
o

s

])
= U6UT, (8)

where U in Eq. (8) is an orthonormal matrix and 6 is a diag-
onal matrix whose elements are positive singular values. The
square root of this matrix is then obtained as

C1/2
([
o

s

])
= U61/2UT. (9)

Normally 61/2 in Eq. (9) is truncated so that unduly low
singular values are excluded. The sum of squared singular
values (i.e. the diagonal elements of61/2) is a measure of the

total variability in
[
o

s

]
. Normally truncation of 61/2 is such

that 99 % or more of this variability is retained. Once singular
value truncation has been accomplished, a linearized inverse
problem can be formulated using the following Eq. (10).
(Without loss of generality, we omit the vector of prior means[
op
sp

]
in this and the following equations to simplify them.)

[
h

s

]
= C1/2

([
o

s

])
x+

[
ε

0

]
=Mx+

[
ε

0

]
(10)

The matrix operator M is defined through the above equa-
tion. Let the matrix N be an appropriate “selection matrix”
comprised of 1s and 0s such that

h= N
[
h

s

]
. (11)

Then,

h= Lx+ ε, (12)

where

L= NC1/2
([
o

s

])
. (13)

In Eqs. (10) to (12), the vector h contains measurements
of historical system behaviour that correspond to model out-
puts o (same as in Eq. 1). We refer to the model M herein
as the “DSI surrogate model” that links elements of observed
system behaviour to elements of its predicted behaviour (nor-
mally those that have decision-relevance). As stated above,
the former are encapsulated in the vector o, while the latter
are encapsulated in the vector s. This surrogate model can
be “calibrated” against field measurements of system state
encapsulated in h to obtain a maximum a posteriori (MAP)
estimate x of x, from which a MAP estimate s of s can be
readily obtained using Eq. (6). Alternatively, or in addition,
samples of the posterior distribution of x can be obtained

using standard Bayesian methods. In the following analysis,
we use an ensemble smoother as well as a linearized form
of Bayes equation for prediction conditioning. Because the
computations embodied in Eq. (10) are simple, the DSI sur-
rogate model runs extremely fast.

2.3 Imposition of history-match constraints

In the examples that follow, we apply Eqs. (10) and (12) in
a number of different ways. These will now be briefly de-
scribed.

The first of these applications is similar to that described
by Lima et al. (2020). That is, an ensemble smoother is used
to directly sample the posterior probability distribution of x.
The posterior probability distribution of s is then sampled by
running the DSI surrogate model using these samples of x.
We use the PESTPP-IES ensemble smoother described by
the PEST++ development team (2022) for this purpose.

We then use Tikhonov-regularized inversion to “calibrate”
the surrogate model, thereby obtaining a MAP estimate x
of x from which a MAP estimate s of s is obtained from a sin-
gle forward run of the calibrated DSI surrogate model. Cali-
bration is achieved using PEST (Doherty, 2022). Because of
Eq. (6) and the fact that the prior expected value of x is 0,
the Tikhonov-regularized solution to the inverse problem de-
scribed by Eq. (12) is (Doherty, 2015)

x = (LtQL+β2I)−1LtQh. (14)

In Eq. (14), Q is the observation weight matrix; ideally,

Q= C−1(ε). (15)

In practice, Eq. (14) is solved iteratively as a value for β is
sought that guarantees a model-to-measurement least squares
objective function that is equal to, or greater than, a user-
specified value. This value is calculated from the statistics of
measurement noise (de Groot-Hedlin and Constable, 1991;
Doherty, 2003).

As explained below, we also use a constrained optimiza-
tion process to determine the maximum and minimum values
that an individual prediction (i.e. an individual element of s)
can take subject to the constraint that a least squares objec-
tive function does not rise above a user-specified value. This
objective function is comprised of appropriately weighted
model-to-field-measurement residuals, as well as departures
of elements of x from their prior expected values of 0.

Because the prior expected value of x is 0, we can write

0= x+ η, (16)

where η in Eq. (16) is a random vector with the same statis-
tical properties as x. Equation (12) can then be written as[
h

0

]
=

[
L
I

]
x+

[
ε

η

]
. (17a)
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With obvious definitions for d , J and τ , Eq. (17a) can be
re-written as

d = Jx+ τ . (17b)

From Eq. (7b), the covariance matrix of τ is

C(τ )= C

([
ε

η

])
=

[
C(ε) 0

0 I

]
. (18)

Let the vector y denote the sensitivity of an element si of s
to surrogate model parameters x. For predictive uncertainty
analysis, we define a least squares objective function φu as
the sum of squared, weighted model-to-measurement misfit
residuals and parameter misfit residuals from their preferred
values of 0. Thus,

8u = (h− o)
TQ(h− o)+ xTx. (19)

Suppose that values of the objective function φu in Eq. (19)
that exceed a user-specified value of φu0 are deemed to be
unlikely (at a certain level of confidence). Vecchia and Coo-
ley (1987) show that solution of the constrained optimization
problem in which si is maximized/minimized subject to the
constraint that φu ≤ φu0 can be obtained through iterative so-
lution of the following Eq. (20a):

x = (JTQJ)−1
{

JTQh−
y

2λ

}
, (20a)

where(
1

2λ

)2

=±
8u0− d

TRd + dTRJ(JTRJ)−1JTRd
yt (JTRJ)−1y

(20b)

and

R= C−1(τ ). (20c)

Recall that d is defined by Eq. (17b). Maximization or
minimization of si is chosen according to the sign used in
Eq. (20b). In the following example, this process is carried
out using the “predictive analysis” functionality of PEST
(Doherty, 2022).

Finally, in the examples that we present below, we apply
linear uncertainty analysis to evaluate the worth of various
subsets of field data (i.e. elements of h). If we assume a
linear relationship between surrogate model outputs (under
both history-matching and predictive conditions) and surro-
gate model parameters, as well as Gaussian probability dis-
tributions for both x and ε, the posterior uncertainty of a
prediction si can be calculated from the prior covariance
matrix C(x) of model parameters on the one hand and the
covariance matrix C(ε) of measurement noise on the other
hand using the following Bayes-derived equation (Doherty,
2015; Fienen et al., 2010):

σ 2
si
= yTC(x)y− yTC(x)LT

[LC(x)LT

+C(ε)]−1LC(x)y. (21)

The first term on the right side of Eq. (21) is the prior un-
certainty of the prediction si . The second term represents pre-
dictive uncertainty reduction accrued through history match-
ing. In the implementation of Eq. (21), the sensitivities em-
bodied in the matrix L can be calculated using finite pertur-
bations of the MAP estimate x of x. Meanwhile C(x) is the
identity matrix I.

It is important to note that Eq. (21) includes the values
of neither parameters nor observations; it features only sen-
sitivities. Hence, as will be discussed below, it can be eas-
ily turned to the task of data worth evaluation. In particular,
the ability of a new measurement to reduce the uncertainty
of a prediction of interest can be evaluated without actually
knowing the value of that measurement.

3 Application

The objective of this section is to demonstrate the perfor-
mance and utility of DSI in quantifying posterior uncertain-
ties of predictions made by a model whose run time is long
and whose parameter field is complex. As is common in the
literature, where the performance of a new method is tested
and documented, we base our analyses on a synthetic model
rather than on a real-world model. This allows us to assess,
and document the performance of the method. It also dis-
penses with the need to account for epistemic uncertainties
which accompany real-world modelling.

We discuss the application of the DSI methodology in a
synthetic alluvial river–aquifer context, a common hydroge-
ological setting. Alluvial river corridors are used worldwide
for drinking water supply. Up to 85 % of groundwater with-
drawals from these systems come from surface water cap-
ture (Scanlon et al., 2023). They provide productive aquifer
systems and natural riparian filtration (see, for example, Ept-
ing et al., 2022). Alluvial deposits have been formed by mil-
lennia of channel meander migration, aggregation and ero-
sional flow processes. These processes result in highly het-
erogeneous aquifers in which palaeochannels provide prefer-
ential flow paths. These preferential flow paths significantly
influence the spatial and temporal dynamics of the exchange
fluxes between rivers and aquifers. Note that the stochastic
characterization of these sub-surface structures is strongly
non-Gaussian. This makes it difficult to evaluate the statis-
tical properties of management-pertinent model predictions.

In our synthetic example, the objective of our numerical
experiments is to mimic real-world modelling as it is un-
dertaken in many alluvial depositional environments with
which we are familiar. The numerical model is therefore con-
structed to predict surface water infiltration along a river and
surface water travel times to water production wells with
particular emphasis on the shortest of these times. Both of
these variables are relevant to the management of an allu-
vial aquifer used for drinking water supply. The provision
of these predictions by a numerical model can, for exam-
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Figure 1. (a) Model boundary conditions and observation points that are discussed herein. (b) Transient pumping rates for the two production
wells over a period of 95 d; note that the pumping rate is reduced to zero for a period of 50 d. (c) “Synthetic reality” showing “true” alluvial
channels that govern hydraulic properties such as hydraulic conductivity and porosity. Depth to groundwater table under the maximum
pumping regime is also shown and so too are the paths of particles (black lines converging towards water production wells) that are used to
calculate travel times to water production wells.

ple, assist water managers in operating a well field in a way
that minimizes the potential for bacterial contamination of
drinking water (Epting et al., 2018). In this example, we in-
vestigate the ability of DSI to associate uncertainties with
management-pertinent predictions and to support data acqui-
sition strategies which may further reduce these uncertain-
ties.

3.1 Numerical model

It is essential to consider interactions and feedback mech-
anisms between the surface and sub-surface when simulat-
ing alluvial aquifers that are connected to rivers. Integrated

surface and sub-surface hydrologic models (ISSHMs) pro-
vide a consistent framework for simulating flow and trans-
port processes for such systems (Schilling et al., 2022; Brun-
ner et al., 2017). An important feature of these models is
that they can dynamically simulate feedback between the
surface and sub-surface water regimes over a wide range of
temporal and spatial scales (Simmons et al., 2020; Paniconi
and Putti 2015). The ISSHM modelling platform HydroGeo-
Sphere (HGS) (Aquanty Inc., 2022; Brunner and Simmons
2012; Brunner et al., 2012) is used to perform the numeri-
cal simulations documented herein. HGS simulates surface
water (SW) and groundwater (GW) flow processes using a
globally implicit, finite-difference flow formulation. Simula-
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tion of water flow within the surface water domain is based
on the two-dimensional diffusion-wave equation, while the
three-dimensional, variability-saturated Richards equation is
used to simulate sub-surface flow processes.

3.2 Model setup

3.2.1 Geometry

The numerical flow model deployed to explore and doc-
ument the capabilities of DSI has a spatial extent of
300× 500× 30 m in the x, y and z directions (Fig. 1a).
An alluvial plain slopes gently towards the river outlet with
a slope of 0.003 m m−1 in the y direction. The river itself
flows along the eastern boundary of the model domain in
a 3 m deep and 15 m wide channel. The numerical grid is
discretized using a two-dimensional unstructured triangular
mesh with lateral internodal spacing that ranges between 4 m
along the river and 7 m under the proximal alluvial plain. The
two-dimensional mesh was generated using AlgoMesh (Hy-
droAlgorithmics Pty Ltd, 2022). The model has 14 layers.
Layer boundaries are at depths of 0.5, 1.0, 1.5, 2.0, 3.0, 4.0,
5.0, 8.0, 11.0, 14.0, 17.0, 20.0, 23.0 and 26.0 m. The bot-
tom of the model is at a depth of 30 m. The resulting three-
dimensional mesh consists of 112 240 nodes and 204 000 el-
ements (or cells).

3.2.2 Boundary conditions

The surface water inflow on the upstream side of the river is
conceptualized through a second-type (specified flux) bound-
ary corresponding to a constant flow (Q) of 7200 m3 h−1.
The surface water outflow is implemented as a so-called
“critical depth boundary”, which allows surface water to
leave the overland flow area downstream (Fig. 1a). Mean-
while, an areal infiltration rate of 300 mmyr−1 is imposed
over all nodes of the alluvial plain that borders the river. This
top boundary condition represents effective rainfall, as evap-
otranspiration processes are not explicitly simulated by the
model. At the northern and southern ends of the groundwater
system, a head-dependent (Cauchy-type) boundary condition
is deployed to ensure regional groundwater in- and outflow
at these upstream and downstream model boundaries, respec-
tively. Lateral model boundaries, as well as the basal model
boundary, are impermeable.

Two production wells are represented by nodal flux bound-
ary conditions; each well extracts 400 m3 h−1 from the
groundwater system. In each well the pump is placed at an
elevation of 85 m (i.e. at a depth of approximately 14 m).
As in all ISSHMs, streamflow simulation is explicit. The ex-
change between the surface and the sub-surface is based on
the heads calculated for the two flow domains and a coupling
length between them (the so-called dual-node approach). For
this example, we use a coupling length of 0.1 m.

The simulation covers a period of 460 d. Over this period,
the model runs for 365 d for the initialization of hydraulic
conditions. Then, over the next 95 d, extraction rates from the
two water production wells are varied to mimic a controlled
pumping experiment (Fig. 1b). During this experiment, well
field extraction is shut down for 50 d. The pumping rate
is then restored to its initial value of 400 m3 h−1 per well,
and the simulation continues for another 30 d. This pumping
rate reduction experiment introduces significant transience
to the groundwater system. The induced transience has the
potential to provide a significant amount of information on
the hydraulic properties of the system. This setup is loosely
based on a real-world experiment that was conducted in the
Aeschau plain, Switzerland (Schilling et al., 2017).

The average computational time required for the model to
simulate the transient simulation is 10 min; the simulation is
not parallelized. HGS employs adaptive time-stepping; how-
ever, the maximum time step is limited to a single day in
order to ensure numerical stability.

3.2.3 Parameterization

The generation of realistic distributions of sub-surface hy-
draulic properties in depositional environments that are char-
acterized by distinct, continuous features of complex geom-
etry such as alluvial channels is often implemented using
rule-based feature-generation codes. Alternatively, packages
which implement multiple-point geostatistics (Remy et al.,
2009; Linde et al., 2015) can be employed. Algorithms that
underpin the former codes generate structures that can have
similar geometric properties to alluvial channels, whereas
the latter packages employ stochastic image analysis tech-
niques to reproduce these structures while maintaining hy-
draulic property connectedness.

In the present case, we employed the ALLUVSIM allu-
vial channel simulator (Pyrcz et al., 2009) to generate dis-
tributions of the alluvial sub-surface. (Note that the distribu-
tion of the alluvial channels does not affect the present loca-
tion of the river; conceptually they are remnants of historical
river channels). The numerical generation of superimposed
and intersecting alluvial channels is controlled by geomet-
ric (and stochastic) input parameters such as channel depth,
width, porosity, starting location and sinuosity (Pyrcz et al.,
2009); see Table 1. ALLUVSIM simulations were used to
assign sets of alluvial channels to the HGS groundwater flow
domain.

For the generation of ALLUVSIM channel sets we
adopted a width-to-depth ratio of 1. Furthermore, the depth
of channel deposits averages 20 m, this being a considerable
portion of the modelled sub-surface. Recall that the depth
of the base of the model is 30 m. We do not stack chan-
nels at different depths. Therefore, each distribution of the
sub-surface contains a small number (up to 10) of alluvial
channels, each of which is continuous from the north to the
south of the model domain while extending from the sur-
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Table 1. Model parameters used for the synthetic reality and prior parameter means and uncertainties used for prior ensemble generation.

Parameter type Unit Synthetic reality Prior mean Prior standard deviation

HydroGeoSphere
Riverbed porosity (–) 0.4 0.20 0.05 (log)
Riverbed hydraulic conductivity (md−1) 2.5 5.0 0.20 (log)
Aquifer porosity (–) 0.09 0.10 0.05 (log)
Aquifer hydraulic conductivity (md−1) 176 150.0 0.10 (log)
Palaeochannel porosity (–) 0.3 0.3 0.05 (log)
Palaeochannel hydraulic conductivity (md−1) 866 1000.0 0.10 (log)
ALLUVSIM
Channel level elevation (m) 90 –
Channel depth (m) 20 20 3
Channel source location (m) 370 370 5
Width-to-depth ratio (–) 1 –
Channel sinuosity (–) 0.1 0.1 0.015
Net-to-gross ratio (–) 0.05 –
Maximum number of streamlines (–) 10 –

face to a depth that approaches the bottom of the alluvium.
As is apparent in Table 1, the mean channel x coordinate
(about 370 m from the western edge of the ALLUVSIM
model boundary along its northern boundary) is such that
channels tend to occupy parts of the sub-surface that are not
too far from the course of the present river. Groundwater flow
within the near-river part of the model domain is therefore
dominated by the presence of these continuous, conductive
channels. One of the ALLUVSIM-generated channel distri-
butions (out of a total of 101) was adopted as the “reality”
channel distribution. This is displayed in Fig. 1c. The other
100 channel distributions were used to generate realizations
of prior hydraulic properties in the HGS groundwater flow
domain. These prior realizations are required by the DSI pro-
cess described above.

Prior realizations of hydraulic properties contain three fa-
cies; these facies are channel, non-channel and riverbed de-
posits. This last facies is present below the current river lo-
cation and develops in the upper layer of the HGS model
to a depth of 50 cm. For each HGS model realization, each
of these facies was provided with a spatially uniform set of
hydraulic properties (i.e. hydraulic conductivity and poros-
ity). The value of each of these properties was randomly se-
lected from probability distributions that are presented in Ta-
ble 1. (Intra-facies heterogeneity was purposefully neglected
to examine DSI’s performance in geological settings where
hydraulic properties are categorical, with one category ex-
erting a dominant influence on groundwater flow.) Appendix
A depicts a number of HGS model parameter realizations,
coloured according to horizontal hydraulic conductivity.

A vertical anisotropy of 4 was assigned to all hydraulic
conductivities in all realizations. This is consistent with allu-
vial depositional systems similar to those that our study at-
tempts to represent (Gianni et al., 2018; Chen 2000; Ghysels
et al., 2018).

Parameters that govern unsaturated flow are homogeneous
and invariant between realizations. The van Genuchten–
Mualem parameters a [m−1] and β [–] were set to 3.48
and 1.75, respectively, these being typical of alluvial gravel
(Dann et al., 2009). The residual soil water content was set
to 0.095. The Manning’s roughness coefficient was set to
1.7× 10−6dm−1/3.

3.3 History-matching dataset and model predictions

The dataset used for history matching consists of 95 ob-
servations of hydraulic heads in each of the eight observa-
tion wells, providing a total of 760 individual observations.
These heads were calculated using the HGS “reality parame-
ter field”. A random realization of measurement noise was
added to each head measurement. The probability density
distribution of synthetic head measurement noise has a mean
of 0.0 m and a standard deviation of 0.05 m. Figure 2 shows
“reality heads” together with heads calculated at the same lo-
cations using the remaining 100 hydraulic property realiza-
tions. There is considerable scatter in these plots. This sug-
gests that the information content of these heads concerning
sub-surface hydraulic properties is high. Their information
content with respect to predictions of interest is pursued us-
ing the methodologies discussed above.

The predictions of interest are as follows:

– fast travel times (days) at the first well (well no. 1);

– fast travel times (days) at the second well (well no. 2);

– rate of surface water infiltration into the groundwater
system (l s−1) along the entire length of the river.

Travel times are calculated using particles; see Anderson
et al. (2015) for details. For each realization of the alluvial ar-
chitecture and accompanying hydraulic properties, particles
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Figure 2. Observations of hydraulic heads (red); these are calculated by the “synthetic reality” of the HGS parameter field. Heads calculated
by the remaining realizations are shown in grey. Heads calculated using posterior hydraulic property realizations are shown in blue; there
are 70 of these.

are placed along the riverbed at the top of the sub-surface
flow domain; see Fig. 1c. Most particles leave the model do-
main through one of the two extraction wells. The travel time
that corresponds to the 5th percentile of the particle break-
through curve at a particular well under normal operating
conditions is deemed to be the “fast travel time” pertaining to
that well. Our focus on fast-moving water acknowledges the
likelihood of rapid flow processes being driven by preferen-
tial flow paths. These same rapid flow processes can threaten
water extraction in the event of surface water contamination.

Fast times and surface water infiltration are calculated at
t = 365 d. Thus they pertain to maximum well abstraction
rates.

For the synthetic reality, the 5th percentile of travel times
is 9.57 and 7.90 d for water production wells no. 1 and no. 2,
respectively. Meanwhile, surface water infiltration along the
entire river is 130.67 l s−1.

4 Uncertainty quantification

In this section, we document how the posterior (i.e. post-
history-matching) uncertainties of the three predictions of in-
terest can be evaluated using four different approaches. One
of these requires the adjustment of the parameters of the HGS
model. The other three approaches require the adjustment of
parameters of a surrogate model that is built to implement
DSI-based predictive uncertainty evaluation in ways that are
discussed in Sect. 2. In all cases parameter adjustment mini-
mizes a least squares objective function that serves as a mea-
sure of model-to-measurement misfit. This objective func-
tion is calculated as the sum of weighted squared differences
between observed and modelled heads in the eight observa-
tion wells discussed above. Weights are uniform to reflect
the temporal uniformity of measurement noise; each has a
value that is equal to the square of the standard deviation of
this noise. The expected value of the history-matched objec-
tive function is therefore expected to be somewhat greater
than 760, this being the number of observations which com-
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prise the calibration dataset. The “somewhat greater” is an
outcome of the fact that the number of “effective parameters”
is unknown prior to solving an ill-posed inverse problem; see
Doherty (2015) for details.

4.1 Bayesian history matching

4.1.1 History matching with the HGS model

Prior to using DSI for the exploration of predictive uncer-
tainty, we adjust HGS model parameters using the PESTPP-
IES ensemble smoother. History-match-constrained parame-
ter fields were then used to make the predictions of interest.
The variability in these predictions between these posterior
parameter fields is a measure of their posterior uncertainties.

The ensemble smoothing process begins with samples of
the prior parameter probability distribution. In the present
case, we used the 100 parameter fields that were obtained
in the manner discussed above. These parameter fields are it-
eratively adjusted until model outputs fit field measurements.
The HGS model has 204 000 adjustable elements, these be-
ing hydraulic conductivities and porosities ascribed to in-
dividual model cells. As is common practice when using
parameter ensembles for history matching, each of these is
considered a separate parameter when undertaking PESTPP-
IES-based parameter adjustment.

Piecewise spatial uniformity of the initial parameter fields
is lost during the ensemble parameter adjustment process
as each parameter is subject to individual adjustment while
maintaining a high level of spatial correlation with neigh-
bouring parameters that is inherited from the initial realiza-
tions. See Chen and Oliver (2013) for mathematical details
of the parameter adjustment process.

The objective function associated with all ensemble real-
izations was significantly reduced after three iterations of the
IES parameter adjustment process. Objective function values
ranged between 1075 and 16 098, except for 30 realizations
which suffered excessively slow HGS model solution con-
vergence and were therefore abandoned. Note that each it-
eration of the IES parameter adjustment process requires as
many model runs – in this case HGS model runs – as there
are realizations that comprise the ensemble. Figure 2 shows
that model-calculated heads at the observation wells are in-
deed close to “measured” heads. The 70 realizations which
remained after three IES iterations were used to make the
predictions that are described above. The results are plotted
in Fig. 3a.

It can be seen from Fig. 3a that the uncertainty of pre-
dicted surface water infiltration is significantly reduced by
PESTPP-IES-based history matching of the HGS model. It
can therefore be concluded that the information content of
hydraulic heads with respect to this specific prediction is
high. In contrast, the uncertainties of first arrival travel time
predictions are not significantly reduced; see Fig. 3a. The in-
formation content of head responses to altered pumping rates

with respect to these predictions is therefore lower than it is
for surface water infiltration.

An interesting feature of Fig. 3a is that some posterior pa-
rameter fields have fast travel times that exceed those calcu-
lated using prior parameter fields. This can be explained by
the fact that some posterior parameter fields have lost some
of the connectivity exhibited by the prior parameter fields.
(see Appendix B). This is an outcome of the PESTPP-IES
parameter adjustment process which is only truly Bayesian
where prior parameter distributions are Gaussian on a cell-
by-cell basis (if cell-by-cell parameterization is employed).
However, the prior realizations that compose the initial en-
semble from which the IES inversion process has started are
not multi-Gaussian (see Appendix A). Neither the theory on
which IES is based nor numerical implementation of that
theory in its history-matching algorithm can guarantee the
maintenance of long-distance hydraulic property connected-
ness which cannot be characterized by a multi-Gaussian dis-
tribution. Indeed, history-match-constrained adjustment of
connected and categorical parameter fields is still an area
of active research (Khambhammettu et al., 2020). Note that
while uncertainty analysis methods such as rejection sam-
pling or Markov chain Monte Carlo approaches do not re-
quire a Gaussian prior or a Gaussian likelihood function,
these methods are impractical in contexts where the number
of parameters is high and model run times are long, which is
the case for the many hydrogeological applications and for
the example used in this paper.

4.1.2 History matching with the DSI surrogate model

The same 100 samples of the prior parameter probability dis-
tribution that were used to start the PESTPP-IES data as-
similation process were then used to construct a DSI sur-
rogate model using the methodology described in Sect. 2.
Recall that this surrogate model is based on an empirical
covariance matrix that relates history-matched model out-
puts to predictive model outputs. A singular value energy
level of 0.999 was used in the construction of this surro-
gate model. This results in the use of 87 singular values (and
corresponding eigencomponents) of this matrix and hence
an 87-dimensional x vector; see Eq. (6). Note that the only
HGS model runs that were required to construct and history-
match the DSI surrogate model were those that were based on
the 100 prior hydraulic property field realizations discussed
above. No further runs of the HGS model were required to
carry out any of the procedures described below.

Sampling of the posterior distribution of surrogate model
parameters (i.e. elements of the x vector) was implemented
using the PESTPP-IES ensemble smoother. However, in con-
trast to the previous use of PESTPP-IES, its use with the DSI
surrogate model incurs a trivial numerical burden because
of the extremely fast execution speed of this model. An en-
semble comprising 100 realizations of the prior probability
distribution of surrogate model parameters was adjusted. Af-
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Figure 3. Posterior distributions of model predictions of fast travel times (days) and surface water infiltration (Ls−1) with (a) the application
of IES (after three iterations) to the HydroGeoSphere (HGS) model ensemble, (b) the application of IES (after six iterations) to the surrogate
model ensemble, and (c) the application of Eq. (21) (linear analysis) and Eq. (20) (non-linear analysis) with the MAP estimate of the DSI
surrogate model. The dashed lines in (c) represent values for Scheffe 95 % confidence intervals.

ter six iterations of this process, all realizations yielded good
model-to-measurement fits, with objective function values
ranging between 814 and 830. Prior and posterior prediction
histograms are shown in Fig. 3b.

The posterior prediction probability distributions for sur-
face water infiltration calculated by HGS parameter adjust-
ment on the one hand and by DSI surrogate model parameter
adjustment on the other hand are very similar. The same can-
not be said for fast travel times. The posterior uncertainty
of this prediction is lower after DSI surrogate model pa-
rameter adjustment than after HGS model parameter adjust-
ment. This suggests that estimation of DSI surrogate model
parameters does not suffer the same degradation in uncer-
tainty evaluation performance as that which is incurred by
PESTPP-IES-based adjustment of HGS parameters which
tend to lose their continuity as the history-matching pro-
cess progresses. In contrast, parameters of the DSI surro-
gate model are not required to maintain any spatial patterns
or relationships; they must simply represent observation-to-
prediction relationships that are embodied in 100 HGS model
outputs that were all calculated using continuous hydraulic
property parameter fields.

4.2 Tikhonov-regularized inversion and constrained
predictive maximization and minimization

The DSI surrogate model was calibrated using Tikhonov reg-
ularization; see Eq. (14). The MAP estimates of x obtained in
this way were used to calculate MAP values of predictions.
These are listed in Appendix C.

Following calibration of the DSI surrogate model, Eq. (21)
was used to calculate the prior and posterior standard de-
viations of the uncertainties of the three predictions of in-
terest based on an assumption of surrogate model linearity.
Sensitivities of model outputs that correspond to members
of the calibration dataset and that correspond to model pre-
dictions were calculated using finite difference perturbations
from calibrated surrogate model parameter values. Linear-
calculated standard deviations were then used to plot the
probability density distributions for the three predictions so
that they could be compared with ensemble-calculated stan-
dard deviations (Fig. 3c).

Next, posterior uncertainties of the three predictions of in-
terest were calculated using the constrained maximization
and minimization procedure that is described by Eq. (20).
The objective function constraint provided to this equation
was that which enables the calculation of Scheffe 95 % con-
fidence intervals (see Vecchia and Cooley, 1987). The val-
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ues obtained through this process agree reasonably well
with maximum and minimum predictions obtained through
Bayesian history matching of the DSI surrogate model
(Fig. 3c).

Differences between evaluated predictive uncertainties
that appear in Fig. 3 (statistics are available in Appendix C)
are generally small; however, some are large enough to war-
rant discussion. Differences between linear and non-linear
uncertainty estimates can be at least partly attributed to ap-
proximations that the calculation of these estimates requires.
Linear estimation of posterior predictive uncertainty not only
requires an assumption of linearity of the DSI model, but it
also assumes Gaussianality of the prior probability distribu-
tions of DSI model parameters (i.e. elements of the x vector
of Eq. 6). Meanwhile, non-linear analysis, involving adjust-
ment of HGS model parameters by PESTPP-IES, is prone to
sampling errors incurred through the use of only 100 realiza-
tions; it is also affected by problems that beset PESTPP-IES
in maintaining continuity of hydraulic properties (see above).
Another factor that may degrade the accuracy of posterior
uncertainties calculated using the HGS model is failure of
model outputs based on some parameter realizations to fit
measured heads to within limits that are set by the statisti-
cal properties of measurement noise. Nevertheless, in spite
of these approximations, it is pleasing to note that the ratio
of prior to posterior uncertainty is reasonably consistent be-
tween all linear and non-linear estimates of posterior predic-
tive uncertainty. This increases confidence in the data worth
analysis which is the subject of the next section.

5 Data worth

Quantifying the effectiveness and efficiency of existing and
planned data acquisition and monitoring strategies can (and
often should) be an important outcome of decision-support
groundwater modelling. This is because the quantification
of uncertainty brings with it an ancillary benefit, this being
the quantification of the extent to which existing or antici-
pated data acquisition can reduce the uncertainties of one or
more decision-critical model predictions. The worth of data
increases in proportion to their ability to achieve this out-
come.

5.1 Worth of existing data

The worth of data and subsets thereof that already comprise
the calibration dataset can be evaluated according to two dif-
ferent metrics. The worth of subsets of existing data can be
assessed by evaluating the extent to which the posterior stan-
dard deviations of decision-critical model predictions are in-
creased by their omission from this dataset. The worth of
these subsets can also be assessed by evaluating the extent
to which the prior standard deviation of these predictions is
reduced by including a particular subset as the only mem-

ber of the history-matching dataset. In the present section,
we evaluate the worth of existing data according to the first
of these metrics only. This is implemented using linear anal-
ysis based on Eq. (21). It is worth noting that, because the
surrogate model runs so fast, the ensemble smoother could
also have been used to sample the posterior distribution of
our predictions with the omission of certain subsets of the
history-matching dataset.

Using Eq. (21), data are notionally omitted in a calibration
dataset simply by setting their associated weights to values
of zero. This was done for each of the observation wells that
are featured in Fig. 1a. The outcomes of this analysis are pre-
sented in Fig. 4.

An inspection of Fig. 4 reveals that members of the exist-
ing observation network are more informative of predictive
flux than they are of fast travel times. Furthermore, the cost
of omitting OBS110 from the existing observation network
appears to be greater than that of omitting any other obser-
vation well from the network. This implies a certain degree
of uniqueness of information that is forthcoming from this
well. This is not surprising as OBS110 is located upstream
and closer to sources of surface water infiltration than most
of the other observation wells. It is therefore close to the path
of much of the water that flows from the river to production
wells.

Of particular interest is the high information content of
OBS17 data with respect to the prediction of induced infil-
tration. This is attributable to the fact that prior realizations
of hydraulic properties display spatial uniformity within each
stratigraphic unit (that is channels, riverbed and other al-
luvium). Therefore, while pumping-induced surface water
infiltration is sensitive to the structure and disposition of
palaeochannels which convey water from the river to pro-
duction wells, it is also sensitive to aquifer properties that
can control inflow/outflow of water to/from the northern and
southern boundaries of the model domain. The difference
in head between OBS17 and the southern head-dependent
boundary is informative of these properties. The importance
of these head measurements would be reduced if strati-
graphic unit properties were internally heterogeneous.

5.2 Worth of a new observation point

Equation (21) can be readily turned to the evaluation of the
issue of whether it is worth supplementing the existing obser-
vation network of eight observation wells with a new obser-
vation well. In our study, contenders for the new observation
point are each of the 146 sites that are represented by black
crosses in Fig. 1a. We establish the worth of including a new
point in the monitoring network by including heads at that
point in an expanded history-matching dataset, thereby as-
suming that observations from this well were available dur-
ing the calibration period that has formed the basis for all
investigations that have been discussed so far. The reduc-
tion in the uncertainty standard deviation of management-
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Figure 4. Percent increase in the standard deviation of posterior uncertainty of each of the three predictions discussed herein when one
existing observation well is removed from the current observation dataset.

pertinent predictions that is accrued through the expansion of
the history-matching dataset in this way is a measure of the
worth of the hypothesized new data. Recall from the discus-
sion in Sect. 2 of this paper that Eq. (21) does not require the
values of observation to assess their worth. It requires only
the sensitivities of corresponding model outputs to model pa-
rameters.

We base our exploration of data worth on a DSI surrogate
model. However, HGS model outputs on which this model
is based must be extended to include those at the candidate
observation wells. This enables the construction of an ex-
panded covariance matrix that links model outputs at these
sites to predictions of interest. In our case, these were avail-
able from archived output files of the 100 HGS model runs
which form the basis for results that are reported in previous
sections of this paper. In other cases, another suite of large
model runs may be required for the construction of a new
surrogate model. Note, however, that once these model runs
have been completed, all further analyses can be conducted
using the DSI surrogate model.

To verify this linear approach to data worth assessment, re-
ductions in predictive uncertainty that would result from up-
dating the calibration dataset to include heads from each of
the 146 potential observation wells that are shown in Fig. 1a
were calculated using an alternative (and much more labori-
ous) non-linear approach.

For each of the 100 prior realizations of HGS parameter
fields, heads were calculated at each of the 146 trial ob-
servation points. For each of these observation points and
for each of these parameter realizations, a new DSI model

was constructed using the methodology discussed above. The
history-matching dataset for each of these models included
the existing dataset (comprised of eight observation wells)
and the expanded dataset that is pertinent to that well and
that particular realization of the prior HGS parameter field.
Predictions were the same for each DSI surrogate model (i.e.
fast travel times to the production wells and surface water
infiltration). Each of these 14 600 DSI surrogate models was
then history-matched against its respective history-matching
dataset to obtain the posterior uncertainties of our predictions
of interest. This was done using the PESTPP-IES ensemble
smoother. For each trial observation well, the “total” poste-
rior uncertainty of a prediction of interest was calculated by
accumulating prediction realizations over all 100 DSI sur-
rogate models that pertained to each expanded observation
well. These were compared with the posterior uncertainties
calculated using the original DSI surrogate model that was
based on a history-matching dataset that did not include the
new well.

For both approaches, the percent reduction in the standard
deviations of the uncertainties of our predictions was calcu-
lated for each of the 154 observation wells. These were then
interpolated over the model grid for presentation purposes;
see Fig. 5.

Areas of high and low worth of installation of a new obser-
vation well are broadly similar between the upper and lower
sets of maps that comprise Fig. 5, especially for the surface
water infiltration prediction.

It is clear from Fig. 5 that the collection of new hydraulic
head data in the northern part of the model has the potential
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Figure 5. Percent decrease in posterior uncertainty of each of the three predictions accrued through supplementing the existing calibration
dataset with head measurements gathered in an extra well following (a) linear analysis and (b) non-linear analysis.

to reduce the uncertainty associated with predictions of sur-
face water infiltration. This also applies to fast travel times
to the northern extraction well and to a lesser extent for fast
travel times to the southern extraction well. The non-linear
analysis also suggests that the acquisition of head data in the
river corridor between the existing OBS110 and OBS83 ob-
servation wells may yield reductions in uncertainties of fast
travel time predictions for both water production wells. To
a lesser extent (especially for the southern production well),
this is also established through linear analysis. This makes
sense, as this zone is crossed by most of the particles that
arrive at the production wells.

Both methods for data worth analysis that are described
above are based on approximations. Non-linear analysis suf-

fers from the limited number of realizations on which it is
based. Obviously, linear analysis suffers from an assump-
tion of DSI surrogate model linearity. Nevertheless, despite
these approximations, the two approaches yield results that
are in broad agreement with each other. Furthermore, they
are both readily deployable in real-world contexts where hy-
draulic property distributions and processes are complex; this
applies especially to DSI-based linear analysis.

6 Discussion and conclusions

The purpose of this paper is to document and demonstrate the
use of data space inversion (DSI) as a means of quantifying
and reducing the posterior uncertainties of predictions made
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by complex models with complex parameter fields. Both
model attributes make the application of traditional uncer-
tainty analysis difficult. Model complexity increases model
run time; it can also increase the propensity of a model to
exhibit unstable numerical behaviour when endowed with a
stochastic parameter field. The complexity of parameteriza-
tion, especially when it involves the use of continuous, con-
nected hydraulic properties (as illustrated in our example),
can violate the assumptions upon which these properties are
adjusted in order for model outputs to respect measurements
of system behaviour.

Data space inversion addresses the first of these challenges
by replacing a numerical model with a fast-running DSI sur-
rogate model. This surrogate model is tuned to the decision-
support role for which the original, complex model was built.
This is because the DSI surrogate model is designed to repli-
cate the ability of a numerical model to simulate past mea-
surements of system behaviour and to make predictions of
future system behaviour that are of interest to management.
Both of these complex model outputs can be calculated us-
ing parameter fields of arbitrary complexity that represent as-
pects of the sub-surface that are critical to past and future
groundwater behaviour. In many cases, these will include
structural or alluvial features that can rapidly transport wa-
ter and dissolved contaminants to points of environmental
impact.

Realizations that compose the initial ensemble from which
model outputs are calculated do not have to be multi-
Gaussian. The multi-Gaussian assumption used to link mea-
surements of past system behaviour to predictions of future
system behaviour is independent of any assumptions about
the prior realizations. Because a direct link is made between
measurements and predictions (thereby bypassing parame-
ters), an assumption of multi-Gaussianality is likely to have a
weaker effect on the results of the predictive uncertainty anal-
ysis process than highly parameterized methods that rely im-
plicitly or explicitly on parameter adjustment (such as linear
Bayesian methods, randomized maximum likelihood meth-
ods and iterative ensemble smoother methods). Thus, prior
realizations used to start the DSI process can accommodate
both aleatory and epistemic uncertainties. Uncertainties in
prior parameter distributions can also be readily accommo-
dated.

A strength of the DSI methodology is that it does not re-
quire the adjustment of hydraulic property fields for model
outputs to replicate the past so that they can be used as a ba-
sis for posterior sampling of future groundwater behaviour.
Instead, the parameters and predictions of a DSI surrogate
model (rather than the original model) are subjected to ad-
justment and posterior sampling. The nature of these surro-
gate model parameters is such that they embody the parame-
terization complexity of the original model without replicat-
ing it. Instead, they are formulated to reproduce the effects
of that complexity on the model outputs used for both his-
tory matching and system management. Thus, the complex

nuances of system hydraulic properties are implicitly taken
into account as predictions of future system behaviour are
conditioned by measurements of past system behaviour.

This paper demonstrates that the use of a DSI surrogate
model can extend beyond that of sampling the posterior prob-
ability distribution of one or several predictions of interest.
Like a conventional numerical model, it can be used for the
rapid assessment of the worth of existing or new data. The
simplest (and most rapid) form of data worth analysis relies
on an assumed linear relationship between surrogate model
parameters and surrogate model outputs. There may be many
circumstances where this linearity assumption is more ap-
plicable than that of a linear relationship between conven-
tional model parameters and conventional model outputs, as
the latter relationships are bypassed in the definition and con-
struction of the DSI surrogate model and its parameters. The
DSI-based evaluation of data worth may therefore be more
reliable than the evaluation of data worth using a complex
model. In fact, if a complex model has many parameters (as
it should), and its run times are high (as they often are), the
calculation of sensitivities that are required for linear anal-
ysis may not be possible. Meanwhile, by construction, the
parameters of a DSI surrogate model can take the complex
dispositions and connectivity relationships of real-world hy-
draulic properties into account.

This paper also demonstrates more complex uses to which
a DSI surrogate model can be put. Tikhonov-regularized in-
version and constrained, non-linear prediction optimization
are demonstrated in Sect. 4. Section 5 demonstrates how
more complex assessments of data worth can be made than
that which relies on an assumption of surrogate model linear-
ity. While the numerical costs associated with these assess-
ments are high, they are far from prohibitive.

However, together with strength comes weakness. It is ac-
knowledged that while the DSI methodology enables rapid
and effective posterior uncertainty analysis in contexts that
may otherwise render such analyses approximate at best and
impossible at worst, a modeller is entitled to feel a sense of
frustration at not being able to “see for themself” the param-
eter fields that give rise to predictive extremes. Not only may
an understanding of these fields add to a modeller’s under-
standing of a system, but it may accomplish the same thing
for decision-makers and stakeholders as well.
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Appendix A: Prior realizations of alluvial structural
features

Figure A1. Prior realizations of alluvial structural features generated from ALLUVSIM and mapped into the HGS model for hydraulic
conductivity (K) parameterization.

Appendix B: Posterior estimates of hydraulic
conductivity fields

Figure B1. Posterior estimates (for realization numbers 10 and 16) of hydraulic conductivity (K) after applying the iterative ensemble
smoother over three iterations by adjusting the HGS model parameters with the existing dataset.
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Appendix C: Posterior uncertainty statistics

Table C1. Posterior uncertainty statistics of distributions shown in Fig. 3.

Bayesian Bayesian MAP estimates Non-linear analysis Linear analysis
history matching history matching on DSI model on DSI model on DSI model

on HGS model on DSI model

HGS model calls 1000 100 100 100 100

Fast travel times for well
no. 1
(“reality”= 9.57 d)

Min 4.82 6.59 6.24
Max 11.86 10.50 11.89
Mean 8.13 8.65 8.63
Standard
deviation

1.63 1.00 1.44

Fast travel times for well
no. 2
(“reality”= 7.90 d)

Min 4.67 6.23 5.65
Max 9.95 8.52 9.54
Mean 6.82 7.36 7.42
Standard
deviation

1.37 0.52 0.94

Surface water infiltration
(“reality”= 130.67 l s−1)

Min 128.30 128.33 124.06
Max 135.89 137.98 140.58
Mean 131.94 133.27 131.90
Standard
deviation

1.67 2.21 2.15

Code and data availability. The DSI source code that
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