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Abstract. Data assimilation techniques are one of the most
important ways to reduce the uncertainty in atmospheric
chemistry model input and improve the model forecast accu-
racy. In this paper, an ensemble optimal interpolation assim-
ilation (EnOI) system for a regional online chemical weather
numerical forecasting system (GRAPES_Meso5.1/CUACE)
is developed for operational use and efficient updating of the
initial fields of chemical components. A heavy haze episode
in eastern China was selected, and the key factors affect-
ing EnOI, such as localization length scale, ensemble size,
and assimilation moment, were calibrated by sensitivity ex-
periments. The impacts of assimilating ground-based PM2.5
observations on the model chemical initial field PM2.5 and
visibility forecasts were investigated. The results show that
assimilation of PM2.5 reduces the uncertainty in the initial
PM2.5 field considerably. Using only 50 % of observations in
the assimilation, the root mean square error (RMSE) of initial
PM2.5 for independent verification sites in mainland China
decreases from 73.7 to 46.4 µg m−3, and the correlation co-
efficient increases from 0.58 to 0.84. An even larger im-
provement appears in northern China. For the forecast fields,
assimilation of PM2.5 improves PM2.5 and visibility fore-
casts throughout the time window of 24 h. The PM2.5 RMSE
can be reduced by 10 %–21 % within 24 h, and the assimi-
lation effect is the most remarkable in the first 12 h. Within
the same assimilation time, the assimilation efficiency varies
with the discrepancy between model forecasts and observa-
tions at the moment of assimilation, and the larger the devia-
tion, the higher the efficiency. The assimilation of PM2.5 fur-
ther contributes to the improvement of the visibility forecast.

When the PM2.5 increment is negative, it corresponds to an
increase in visibility, and when the PM2.5 analysis increment
is positive, visibility decreases. It is worth noting that the im-
provement of visibility forecasting by assimilating PM2.5 is
more obvious in the light-pollution period than in the heavy-
pollution period. The results of this study show that EnOI
may provide a practical and cost-effective alternative to the
ensemble Kalman filter (EnKF) for the applications where
computational cost is the main limiting factor, especially for
real-time operational forecast.

1 Introduction

Air pollution is an intractable problem that most develop-
ing countries in the world with high populations are facing
at present. PM2.5 plays an important role in air pollution, and
its concentration will directly affect air quality. From a health
perspective, long-term exposure to high concentrations of
PM2.5 has adverse effects on the human body and respira-
tory system and can lead to cardiovascular disease and other
chronic diseases (Ghorani-Azam et al., 2016). From a meteo-
rological perspective, aerosol particles can absorb and scatter
solar radiation effectively, change the intensity and direction
of sunlight, and reduce atmospheric horizontal visibility (Liu
et al., 2019; Yadav et al., 2022; Ting et al., 2022), leading to
haze episodes, which are characterized by significant growth
in the concentration of aerosol particles and sharp reduction
in visibility.
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Accurate PM2.5 and visibility forecasts are critical for hu-
man health, air quality assessment, and public transporta-
tion safety issues (Hu et al., 2013). Chemistry transport
models (CTMs) or coupled chemistry–meteorology mod-
els (CCMMs) are important tools for PM2.5 and visibil-
ity forecasting and are pivotal in air quality and atmo-
spheric chemistry research. However, various uncertainties
exist in the simulation of atmospheric components by CTMs
or CCMMs, especially for aerosols (Lee et al., 2016). The
complexity of atmospheric pollution formation mechanisms
and model structure, the uncertainty in chemical initial con-
ditions (ICs), and the lag in emission inventories lead to a
deviation of air quality forecast results from observed com-
parisons.

Data assimilation (DA) is one of the most effective ways to
improve model predictions. Weather prediction has been re-
lying on data assimilation for many decades (Kalnay, 2003;
Navon, 2009). In comparison, the use of data assimilation in
atmospheric chemistry models to improve air quality fore-
casting is more recent, but important advances have been
made. Tombette et al. (2009) presented an experiment on
PM10 data assimilation using the optimal interpolation (OI)
method to improve PM10 forecasting. Tang et al. (2015)
used the same DA method to assimilate ozone, PM2.5, and
MODIS aerosol optical depth (AOD) data into the Commu-
nity Multiscale Air Quality (CMAQ) model to improve the
ozone and total aerosol concentration for the CMAQ simula-
tion over the contiguous United States. Liu et al. (2011) as-
similated AOD from the Terra and Aqua satellites using the
GSI 3D-Var assimilation system, showing that AOD data as-
similation systems can serve as a tool to improve simulations
of dust storms. Li et al. (2013) and Feng et al. (2018) as-
similated ground-based observations of PM2.5 using 3D-Var
to improve PM2.5 forecasting. 4D-Var has successfully been
implemented on CTMs and has improved the PM2.5 fore-
casting capability. Zhang et al. (2016) constructed a GEOS-
Chem adjoint model suitable for PM2.5 pollution diffusion
based on a 4D-Var algorithm, which was verified by the mon-
itoring data of the Asia-Pacific Economic Cooperation Sum-
mit in Beijing in 2014. Zhang et al. (2021) built a PM2.5 data
assimilation system based on the 4D-Var algorithm and the
WRF-CMAQ model, which can assimilate synchronous ob-
servations simultaneously to improve aerosol prediction ac-
curacy. Wang et al. (2021) established a 4D-Var assimilation
system based on GRAPES_CUACE to optimize black car-
bon (BC) daily emissions in northern China on 4 July 2016.
The ensemble Kalman filter (EnKF) also plays a significant
role in improving the accuracy of atmospheric chemistry
model forecasts. Lin et al. (2008) developed an EnKF sys-
tem for a regional dust transport model. Tang et al. (2011)
investigated a cross-variable ozone DA method based on an
EnKF for improving ozone forecasts over Beijing and sur-
rounding areas. Park et al. (2022) developed a DA system
for the CTM using the EnKF technique, where PM2.5 ob-
servations from ground stations are assimilated to ICs every

6 h to improve PM2.5 forecasting in the Korean region. Peng
et al. (2017) used EnKF to optimize ICs and emission in-
put, resulting in significant improvements in PM2.5 forecast.
Overviews of these achievements have been provided in the
literature (Bocquet et al., 2015; Benedetti et al., 2018; Zhu et
al., 2018; Sokhi et al., 2022).

Although previous studies have reported DA methods us-
ing ground-based or satellite-retrieved observation led to the
improvement of atmospheric composition prediction, each of
these DA methods has its own limitation. In OI and 3D-Var,
the background error covariance (BEC) matrix is estimated at
once, and the prediction error is statistically stationary. 4D-
Var and EnKF are advanced data assimilation methods that
provide the evolution of the forecast error covariance, but
when they are employed in the operation use, each of them
faces their own challenge. The CTM and CCMM are com-
plex systems with rapid updates, and the implementation of
4D-Var requires a large workload of adjoint model coding
(Ha, 2022). EnKF obtains a flow-dependent BEC using en-
semble forecast by integrating the model multiple times, and
that makes it approximately 100 times more computation-
ally expensive than the forward model when applied to non-
linear systems (Counillon and Bertino, 2009). Compared to
EnKF, EnOI is a suboptimal method for ensemble-based as-
similation (Evensen, 2003). EnOI uses a stationary ensemble
to estimate the BEC, and only one analysis field is updated at
a time, which makes the computation time greatly reduced.
EnOI can be used in conjunction with other DA methods and
may be an appropriate choice for coupled forecast systems
(Oke et al., 2010). EnOI has widely been used in ocean mod-
els with significant improvements to model forecast (Xie and
Zhu, 2010; Castruccio et al., 2020; Belyaev et al., 2021) but
not in the CTM or CCMM. To our knowledge, there have
only been a few papers involved in research of EnOI in at-
mospheric chemistry models so far. Zhang et al. (2014) im-
plement EnOI on an air quality numerical modelling for the
Pearl River Delta region in China. They found that EnOI pro-
duced the initial condition closer to the true situation, but
they did not investigate the effect of EnOI on forecast. Wang
et al. (2016) used EnOI to investigate the possibility of op-
timally recovering the spatially resolved emissions bias of
black carbon aerosol. Wu et al. (2021) applied EnOI to as-
similate hourly surface observations of CO concentrations
at 1107 sites over China in January 2015. They found that
simulations with the updated emissions revealed a decreased
bias of average CO concentrations at 349 independent val-
idation sites from 0.74 to 0.01 mg m−3 and a reduction in
the RMSE by 18 %. Results from these papers showed that
EnOI is a useful and computation-free method to reduce the
errors of the initial chemical condition or emissions. Since
the development of CCMMs is fairly recent, EnOI has not
applied for real-time CCMM yet. The GRAPES-CUACE is
an online CCMM system developed by the China Meteo-
rological Administration (Gong and Zhang, 2008; Zhou et
al., 2008; Wang et al., 2010a). This model plays an impor-
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tant role not only in the scientific research on air pollution
(Wang et al., 2015a, b), aerosol–cloud interaction (Wang et
al., 2018; Peng et al., 2021), and aerosols’ weather feedback
(Wang et al., 2010b; Zhang et al., 2022), but also in the oper-
ational forecasting of air quality, fog–haze weather, and dust
storms in China (Wang and Niu, 2013; Liu et al., 2017). Very
recently has this model system been updated to a new ver-
sion (GRAPES_Meso5.1/CUACE) with many improvements
(Wang et al., 2022). In this study, we established a real-time
EnOI chemistry initial field PM2.5 assimilation system for
this new version of the model, by assimilating PM2.5 data
from nearly 1500 ground stations in China into the model
chemical initial fields to improve the model forecasts of the
concentrations of PM2.5 and discuss the impact of assimilat-
ing PM2.5 on visibility.

2 Methods and data

2.1 The ensemble optimal interpolation algorithm

The EnOI algorithm used in this study is based on the work of
Evensen (2003). A brief recall of the EnKF and EnOI is given
in this section. DA methods are algorithms that combine ob-
servations and model results and their respective statistical
characteristics of errors to obtain a statistically optimal anal-
ysis value by minimizing the analysis variance. Based on
Kalman filter theory, the analysis stateψa is determined by
a linear combination of the vector of measurements y and
the forecasted model state vector or background ψ f, which is
given by Eqs. (1) and (2),

ψa
= ψ f

+K
(
y−Hψ f

)
, (1)

K= PHT
[
HPHT

+R
]−1

, (2)

where K is the Kalman gain matrix, P is the background error
covariance matrix, H is the observation operator that relates
the model state to the observation, and R is the observation
error covariance matrix.

Now we define A as the matrix holding the ensemble
members ψ i ,

A=
(
ψ1,ψ2, · · ·,ψN

)
∈ Rndim×N , (3)

whereN is the number of ensemble members, and ndim is the
size of the model state vector. Let A be the ensemble mean
of A; then the ensemble anomaly A′ is defined as

A′ = A−A. (4)

The ensemble covariance matrix P can be defined as

P=
A′A′T

N − 1
∈ Rndim×ndim . (5)

The vector of measurements y needs to be perturbed with its
error as the following:

dj = y+ εj , j = 1, · · ·,N, (6)

which can be stored in a matrix as

D= (d1,d2, · · ·,dn) ∈ Rm×N , (7)

where m is the number of measurements.
The EnKF analysis equation will be expressed as the fol-

lowing:

Aa = A+A′A′THT
[
HA′A′THT

+ (N − 1)R
]−1

(D−HA) . (8)

The analysis includes updating each ensemble and needs to
run the model N times in every forecast cycle to calculate P;
therefore it tends to be computationally demanding and has
limited use when the computer time is the main affecter to be
considered, especially in real-time operational forecast.

The EnOI analysis is computed with the ensemble covari-
ance matrix P spanned by a stationary ensemble of model
states sampled from a long time integration. It is computed
by solving an equation written as the following:

ψa
= ψ f

+αA′A′THT
[
αHA′A′THT

+ (N − 1)R
]−1

(
y−Hψ f

)
, (9)

where the scalar α ∈ (0, 1] is introduced to allow for dif-
ferent weights on the ensemble versus measurements. As
Evensen (2003) pointed out, an ensemble consisting of
model states sampled over a long time period will have a
climatological variance which is too large to represent the
actual error in the model forecast, and α, which mainly de-
pends on how the model forecast behaviour is used to reduce
the variance to a realistic level and can be tuned for opti-
mal performance. In this study, it is taken as 0.9 based on
our experience. Through Eq. (9) the EnOI analysis updates
only one model state at a time, so the computer time can be
reduced by 1 or 2 orders of magnitude.

2.2 The EnOI data assimilation system design

Using a set of ensemble forecasts with a finite number to cal-
culate the BEC will suffer from sample error and cause im-
perfect estimation or even filter divergence (Houtekamer and
Mitchell, 1998). There are two sorts of techniques to possibly
solve this problem. One is the distance-dependent covariance
localization, which is done by updating the analysis at all grid
points with the multiplication of the BEC by a correlation
function (Hamill et al., 2001). The other is done by updating
the analysis at each grid point simultaneously using the state
variables and the observations in the local region centred at
that point (Ott et al., 2004). In our EnOI DA system, we use
the second technique. First, we define the localization length
scale as L. For each model grid point, we find the observa-
tions within L which are called active observations, and then
calculate the corresponding innovation. This localization ef-
fect on the analysis is illustrated in Sect. 1 (Fig. 3).
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The observation error covariance matrix R is assumed to
be diagonal here; that is, the observation errors are not cor-
related. The diagonal elements of R are thus given by the
sum of the measurement error variance ε2

o and representa-
tiveness error variance ε2

r , following Elbern et al. (2007). The
measurement error εo is assigned as 7.5 % of the observed
value, and the representativeness error εr is formulated as

εr = εo ·
√
1x
Lr

, where1x is the model grid resolution (10 km
in this study), and Lr is the characteristic representativeness
length of the observation, defined as 2 km for urban sites,
10 km for rural sites, and 20 km for remote sites.

Based on Eq. (9), we built the EnOI initial field PM2.5
assimilation system, as shown in Fig. 1. The main proce-
dures can be divided into pre-processing, analysis, and post-
processing. Pre-processing involves the acquisition of ob-
served data and ensemble samples. Analysis is the revised
main module of EnOI where the main computational pro-
cesses are performed. Post-processing firstly verifies the as-
similation results using the validation observations which are
not used in EnOI and then processes the results obtained from
assimilation into model-readable chemical initial conditions.
Compared with the traditional EnOI, the time-continuous
model historical forecast before the assimilation moment is
selected as the ensemble samples for this study. The ensem-
ble design is set to be as follows: suppose the assimilation
will be done at time t, first we evolve the model from the
spin-up run at t−N1t and integrate the model into time t (in
our operational set-up, 1t is 1 h); therefore we get a time se-
ries of N -hourly model forecast outputs, At−N+1, At−N+2,
. . . , At−1, At . These hourly outputs before the assimilation
time t form the N -number ensemble A, which can be used to
calculate the average A and anomalous A′, and then the back-
ground error covariance matrices P is calculated. The BEC is
stationary for a particular analysis moment, but it changes
with the assimilation moment during a long assimilation pe-
riod. Because background error covariance statistics are de-
rived directly from forecasts, and the DA scheme does not
need to modify the original CCMM, EnOI is very easy to
apply and cost-free in terms of computation time.

2.3 GRAPES_Meso5.1/CUACE

In this study, the DA method EnOI was established for the
latest updated version of the regional atmospheric chemistry
model GRAPES_Meso5.1/CUACE developed by the China
Meteorological Administration (Wang et al., 2022). The
model system is established by online coupling the Chinese
Unified Atmospheric Chemistry Environment (CUACE)
model with the meteorology model GRAPES_Meso5.1.
GRAPES_Meso refers to a real-time operational weather
forecasting model used by the China Meteorological Admin-
istration (Chen et al., 2008; Zhang and Shen, 2008). Now,
the new version of it has been established with resolutions
ranging from 3 to 10 km for regional forecast (Shen et al.,

Table 1. Mass concentration limit of PM2.5 and its corresponding
air quality level and air pollution index (API).

PM2.5 concentration Air quality Level API
limit (µg m−3) description

35 Excellent I 0–50
75 Good II 51–100
115 Light pollution III 101–150
150 Moderate pollution IV 151–200
250 Heavy pollution V 201–300
> 250 Hazardous pollution VI > 300

2020). It uses fully compressible non-hydrostatic equations
as its model core. The vertical coordinates adopt the height-
based, terrain-following coordinates, and the horizontal co-
ordinates use the spherical coordinates of equal latitude–
longitude grid points. The horizontal discretization adopts an
Arakawa-C staggered grid arrangement and a central finite-
difference scheme with second-order accuracy, while the
vertical discretization adopts the vertically staggered vari-
able arrangement. The time integration discretization uses
a semi-implicit and semi-Lagrangian temporal advection
scheme. The transport and advection processes for all gases
and aerosols are calculated by the dynamic framework of
GRAPES_Meso5.1. The second component, CUACE, refers
to the atmospheric chemistry model, which mainly includes
three modules: the aerosol module, the gaseous chemistry
module, and the thermodynamic equilibrium module. In the
gaseous chemistry module, 63 gas species through 21 pho-
tochemical reactions and 136 gas-phase reactions partici-
pate in the calculations. The aerosol module considers the
dynamic, physical, and chemical processes of aerosols, in-
cluding hygroscopic growth, dry and wet depositions, con-
densation, nucleation, vertical mixing, cloud chemistry, and
coagulation and activation of cloud condensation nodules
from aerosols. Seven types of aerosols (sea salt, sand/dust,
black carbon, organic carbon, sulfate, nitrate, and ammonium
salt) are considered. The aerosol size spectrum (except for
ammonium salt) is divided into 12 bins with a particle ra-
dium of 0.005–0.01, 0.01–0.02, 0.02–0.04, 0.04–0.08, 0.08–
0.16, 0.16–0.32, 0.32–0.64, 0.64–1.28, 1.28–2.56, 2.56–
5.12, 5.12–10.24, and 10.24–20.48 µm. The interface pro-
gramme that connects CUACE and GRAPES_Meso trans-
mits the meteorological fields calculated in GRAPES_Meso
and the emission data processed as needed to each module of
CUACE.

2.4 Data

Based on the Ambient Air Quality Standards (GB 3095-
2012) of China, the mass concentration limit of PM2.5 and
its corresponding air quality level and air pollution index
(API) are shown in Table 1. Haze is defined as a weather
phenomenon caused by air pollution when visibility is less
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Figure 1. Flowchart of the main procedures for the EnOI initial field assimilation system. The obs. PM2.5 is the ground-based observation
of PM2.5. The CCMM is a coupled chemistry–meteorology model. SVD is the singular value decomposition.

Table 2. Experimental design.

Name Experiment Design

Control experiment
CR00 Model control run without DA begins at 00:00 UTC every day and is forecasted for 24 h

CR12 Model control run without DA begins at 12:00 UTC every day and is forecasted for 24 h

Sensitivity experiment

L km N 48 Assimilation begins at 00:00 UTC with a fixed ensemble size N of 48 and different
localization length scale L of 20, 40, 60, 80, 100 km

L 80 km N Assimilation begins at 00:00 UTC with a fixed localization length scale L of 80 km
and different ensemble size N of 24, 48, 72, 96, 120, 144

Cycling assimilation experiment
DA00 Model forecast with assimilation begins at 00:00 UTC every day

DA12 Model forecast with assimilation begins at 12:00 UTC every day

DA00 and 12 Model forecast with assimilation begins at 00:00 and 12:00 UTC every day

than 10 km according to the Observation and Forecasting
Levels of Haze (QX/T 113-2010) of China. Three pollu-
tion episodes occurred in China in December 2016, with
the most severe haze episode occurring in China from 16 to
21 December 2016 (see more details in Wang et al., 2022,
Table 3). During this pollution episode, the highest daily
PM2.5 concentration peaked to 600 µg m−3 in Shijiazhuang
and some other cities, reaching the severely polluted level
(250–500 µg m−3). In this study, 15–23 December 2016 was
selected as the main study period, and both model input
data and observation data used in this study are within this
month. Model input data include anthropogenic emission
data, model meteorological initial data, and boundary data.
The emission inventory used in this study is from the Multi-
resolution Emission Inventory for China (MEIC) in Decem-
ber 2016 (http://www.meicmodel.org/, last access: 16 May
2022). The emission inventory covers power plants, indus-
try (cement, iron and steel, industrial boilers, the petroleum
industry), the residential sector, transportation, solvent use
and agriculture, and in-field crop residue burning. The Na-

tional Centers for Environmental Prediction (NCEP) final
analysis (FNL) data (https://rda.ucar.edu/datasets/ds083.3/,
last access: 3 April 2022) are used for the model’s initial
and 6 h meteorological lateral boundary input fields. The ob-
servations include PM2.5 and visibility. Nearly 1500 ground-
based hourly PM2.5 (µg m−3) observations from the Chinese
Ministry of Environmental Protection with detailed locations
and spatial distributions of the stations are shown in Fig. 2.
The hourly meteorological automatic ground-based visibility
data (km) were obtained from the China Meteorological Ad-
ministration. The time format of these observations is pro-
cessed to UTC, and all the observational data are obtained
after quality control and rechecked before use.

2.5 Experimental set-up

The horizontal resolution, time step, forecast length, and
model domain of the GRAPES_Meso5.1/CUACE model are
optional. In this study, the horizontal resolution of the model
is 0.1◦× 0.1◦; the time step is 100 s considering the model’s

https://doi.org/10.5194/gmd-16-4171-2023 Geosci. Model Dev., 16, 4171–4191, 2023
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Figure 2. Simulation domain of GRAPES_Meso5.1/CUACE. The minor region represents northern China (NC). The locations of the ground
stations in mainland China are marked on the maps with blue and brown dots. The blue and brown dots represent verification sites and
assimilation sites, respectively. N = 743 means there are 743 verification sites. N = 742 means there are 742 DA sites.

integration stability and accuracy; and the model domain
is 70–145◦ N, 15–60◦ E (dashed grey box in Fig. 2). There
are 49 model layers ascending vertically from the surface to
31 km in height. The model warm restart time is 00:00 and
12:00 UTC, and the forecast length is 24 h. The model simu-
lation results are output on an hourly basis.

Three groups of experiments were performed in this study:
one set of control experiments (CRs), one set of sensitiv-
ity experiments, and one set of cyclic DA experiments, as
shown in Table 1. CR00 is the control experiment represent-
ing a model run without DA beginning at 00:00 UTC every
day and forecasted for 24 h (the initial field is the previous
day’s 24 h forecast field), simulated from 1 to 31 Decem-
ber 2016. CR12 is also a model run without DA but begins
at 12:00 UTC every day and is forecasted for 24 h. The lo-
calization length scale L and the ensemble size N are the
key parameters affecting EnOI. Based on CR00, two paral-
lel sensitivity experiments were designed to study the im-
pact of the localization length scale and ensemble size on
the assimilation effects. The chemical initial field ensemble
samples for the sensitivity experiments were obtained from
the CR00. The first group of sensitivity experiments is fixed
with ensemble size N of 48, and the length scale is selected
for 20, 40, 60, 80, and 100 km to investigate the impacts of
different localization length-scale choices on the optimized

chemical initial field; the second group is fixed with length
scale L of 80 km, and the 24, 48, 72, 96, 120, and 144 sim-
ulations before the assimilation moment (00:00 UTC) were
selected as ensemble samples, respectively, and the effect of
the number of ensemble samples on the assimilation effect
was discussed.

To investigate the impact of the assimilation moment on
the forecast fields, the optimal length scale and ensemble size
were selected based on the results of sensitivity experiments,
and two sets of cyclic DA experiments, DA00 and DA12,
were set up to represent the daily assimilation of the initial
fields at 00:00 and 12:00 UTC, respectively. The N -hourly
model forecasts before the assimilation moment were used
as the ensemble samples to approximate the BEC, and the
analysis increments were calculated by combining the model
forecasts and PM2.5 observations at 00:00 and 12:00 UTC,
and the analysis was used as the chemical initial fields for
the next forecast to achieve cyclic DA.

3 Results and discussion

3.1 Sensitivity experiments of localization length scale

The localization effect on the analysis is illustrated first, and
two observation sites, A (38.0◦ N, 114.5◦ E) and B (36.6◦ N,

Geosci. Model Dev., 16, 4171–4191, 2023 https://doi.org/10.5194/gmd-16-4171-2023
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Figure 3. Spatial distribution of PM2.5 analysis increments after assimilation of initial fields at 00:00 UTC on 15 December 2016 for
assimilation site A (38.0◦ N, 114.5◦ E) only (left column) and assimilation site B (36.6◦ N, 116.9◦ E) only (right column) with a fixed
ensemble size of 48 and different localization length scales of 20, 40, 60, 80, and 100 km.
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4178 S. Li et al.: Implementation and application of ensemble optimal interpolation

Table 3. Statistics of PM2.5 concentrations for verification sites of
the initial field without (CR) and with assimilation at 00:00 UTC
each day from 1 to 31 December 2016. Assimilation sensitivity ex-
periments were performed with 48 ensemble samples and length
scale L of 20, 40, 60, 80, and 100 km, respectively, and only assim-
ilated the assimilation sites.

CORR RMSE MB ME
(µg m−3) (µg m−3) (µg m−3)

CR 0.56 60.1 8.5 41.7
20 0.77 48.2 4.1 30.2
40 0.82 41.6 3.2 25.9
60 0.81 43.1 3.5 26.8
80 0.80 44.9 3.8 27.0
100 0.79 46.0 4.0 28.2

116.9◦ E), were selected to perform a length-scale single-
point experiment for the initial field at 00:00 UTC on 15 De-
cember 2016, corresponding to the left and right columns of
the analysis increments (ψa

−ψ f) shown in Fig. 3. The anal-
ysis increments are determined by both the observation in-
crements and the BEC based on Eq. (9). As shown in Fig. 3,
the increments are positive in the left and negative in the right
column, which represents the underestimation of PM2.5 con-
centration at site A and overestimation at site B before being
assimilated. As the length scale increases, the range of the
analysis increment expands, and the number of model grids
that can be affected increases gradually. Due to the sparse
distribution of PM2.5 sites, if the localization length scale is
too small, most of the model grids cannot be updated, which
reduces the assimilation efficiency, whereas if the localiza-
tion length scale is too large, the analysis increments between
distant sites will offset and superimpose, creating fake incre-
ments. With the experiments using length scales of L= 80
and 100 km, small negative analysis increments are found at
site A in the southeastern direction. Compared to site A, wide
positive analysis increments that do not match the actual sit-
uation are found at site B in the western direction for exper-
iments using L= 60, 80, and 100 km. It is worth noting that
there are differences in the shape of the analysis increment
fields at sites A and B, which are related to EnOI having a
flow-dependent BEC. The details of BEC will be discussed
in Sect. 3.2.

Ground-based PM2.5 sites are established according to the
population and economic development level of the region
and are not evenly distributed, such as Beijing, Shanghai,
Guangzhou, and other economically developed and popu-
lous megacities, which have a high density of PM2.5 sites,
while the western and central regions of China are sparsely
populated, and the sites are partially sparse. So, in order to
obtain the statistically optimal localization length scale, we
performed assimilation experiments on the initial fields at
00:00 UTC each day from 1 to 31 December. A total of 50 %
of PM2.5 sites were randomly selected as DA sites, and the

rest were used as verification sites (without DA). The blue
and brown sites shown in Fig. 2 represent the spatial dis-
tribution of verification and assimilation sites, respectively.
The statistics results of verification sites against the obser-
vation are shown in Table 3. Compared to the CR, the cor-
relation coefficient (CORR) of DA for verification sites in-
creases from 0.65 to 0.77 at least, and the root mean square
error (RMSE), mean bias (MB), and mean error (ME) of
the DA experiment are smaller than those of the CR. The
statistical data are different for different localization length
scales, indicating that localization can have an effect on the
assimilation. Compared with the CR, the RMSE of DA de-
creased from 60.1 to 41.6 µg m−3, MB decreased from 8.5 to
3.2 µg m−3, and ME decreased from 41.73 to 25.9 µg m−3 for
the localization length-scale selection of 40 km, which is the
best among all the experiments on different length scales. Lo-
calization length scales of 60 and 80 km have similar statis-
tics results, but the statistics of 20 and 100 km are not very
good. Using a localization length scale of 20 km prevents
most of the model data from being updated, while using too
large a length scale allows remote sites to interact with each
other and produce more spurious increments. In addition,
from the meteorological conditions, heavy-pollution weather
is always characterized by small or static winds and pollutant
transport over small distances. An observation site represents
a limited spatial extent, so a larger localized length-scale set-
ting may also not produce a very realistic initial field. From
this sensitivity experiment, we find that when the localiza-
tion length scale used is from 40 km to 80 km, the statistics
are relatively good, and the optimal assimilation effect can
be achieved.

3.2 Sensitivity experiments of ensemble size

We repeat the series of experiments presented in Fig. 3 but
with a localizing length scale of 80 km and 24, 48, 72, 96,
and 120 ensemble members. Figure 4 shows a map of the
BEC correlation field between observation sites (A, B) for
different ensemble sizes, overlaid with the 00:00 UTC sur-
face wind vector of 15 December 2016. Site A is controlled
by strong northern and northwestern winds, which makes
the CORR field show a northeast–southwest trend. The wind
speed at site B is less than 5 m s−1 in all directions with a
steady state, so the CORR field is approximately distributed
in concentric circles nearby the centre of the site. As the
number of ensemble samples increases, the area of positive
CORR greater than 0.7 gradually increases in A and B. The
ensembles of sizeN = 24 orN = 48 can be considered small
compared to the selection of other ensemble sizes in sen-
sitivity experiments. In this case, the CORRs between the
observation sites and the surrounding large-scale areas are
all greater than 0.7, and an extremely strong negative corre-
lation is found in the southwest. The success of ensemble-
based DA systems depends strongly on the number of sam-
ples. The smaller ensemble size fails to accurately estimate
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Figure 4. Spatial distribution of correlation coefficients of background error for site A (38.0◦ N, 114.5◦ E) (rows 1, 2) and site B (36.6◦ N,
116.9◦ E) (rows 3, 4) with different ensemble size N of 24, 48, 72, 96, 120, and 144 and wind vectors at 00:00 UTC on 15 December 2016.

the BEC and is prone to sampling error, resulting in an over-
estimation or underestimation of the initial field, and Natvik
and Evensen (2003) investigated the effect of the number
of samples on assimilation and showed that an ensemble of
fewer than 60 samples reduces the performance of assimila-

tion. When the hourly model forecasts of over 5 d (N = 120)
before assimilation are selected as the ensemble samples, the
correlations of both sites A and B with the BECs in a wide
area become positive.
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Figure 5. Scatterplot of PM2.5 concentrations from the control experiment (a, c) and the assimilation experiment (b, d). The ensemble size
in the assimilation experiment is 96, and the length scale L is 40 km. Brown (Da) and blue (Ver) dots are assimilation sites and validation
sites, respectively. Panels (a), (b) are for mainland China (Total), and (c), (d) are for northern China (NC).

The DA sites were used to assimilate the initial field at
00:00 UTC each day for December 2016, and six differ-
ent ensemble sizes were used to improve the initial field
as shown in Table 4. Compared with the initial field with-
out data assimilation, the RMSE, CORR, MB, and ME of
the initial field after assimilation had all been improved, and
the improvements were different depending on the ensemble
size. The priori initial field is shown in Table 4 CR. With
only 24 ensemble samples assimilated, the RMSE of verifi-
cation sites decreased from 60.1 to 48.6 µg m−3, the CORR
increased from 0.56 to 0.76, and the MB and ME decreased
from 8.5 to 4.2 and 41.7 to 30.8 µg m−3, respectively. As
seen in Table 3 the statistics of verification sites become pro-
gressively better as the ensemble members increase from 24
to 48, 72, and 96. The verification site RMSEs for 48, 72,
and 96 samples are 44.9, 42.4, and 40.70 µg m−3, respec-
tively; the CORRs are 0.80, 0.81, and 0.82; and the MEs
are 27.0, 25.9, and 25.7. When 120 samples or 144 sam-

ples were selected for assimilation, the analysis field PM2.5
DA and verification statistics were not better than those of
96 samples. The verification site RMSEs for 120 and 144
samples were 44.1 and 45.8 µg m−3, respectively, and the
CORRs also became smaller. The differences between the
statistics also indicate there is an optimal ensemble size; the
RMSE of the experiment using 96 samples is smaller than
the RMSE when using the other ensemble sizes, and the re-
maining statistics are better than the results when other sam-
ples are selected, so we consider that in these sensitivity ex-
periments the best assimilation is achieved when the num-
ber of the ensemble size is 96. It is noted from the exper-
imental results that the larger the ensemble does not mean
the better the results in this study. It could be influenced by
the following reasons: the atmospheric chemistry model used
in the study is coupled online with the mesoscale regional
weather model GRAPES_Mese5.1. The mesoscale regional
weather model differs from the climate model and the global
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Table 4. Statistics of PM2.5 concentrations for verification sites of
the initial field without (CR) and with assimilation at 00:00 UTC
each day from 1 to 31 December 2016. Assimilation sensitivity
experiments were performed with a localization length scale L of
80 km and an ensemble size of 24, 48, 72, 96, 120, and 144, respec-
tively, and only assimilated the assimilation sites.

CORR RMSE MB ME
(µg m−3) (µg m−3) (µg m−3)

CR 0.56 60.1 8.5 41.7
24 0.76 48.6 4.2 30.8
48 0.80 44.9 3.8 27.0
72 0.81 42.4 3.4 25.9
96 0.82 40.7 2.9 25.7
120 0.80 44.1 3.6 26.2
144 0.79 45.8 3.9 27.3

model in that the mesoscale model represents weather sys-
tems on timescales of 1 d to several days (Emanuel, 1986).
In addition, atmospheric chemical processes are fast-varying
processes with small timescales compared to climatic and
oceanic processes, so using model results from long time in-
tegrations as ensemble may average out the “error of the day”
and will not be a very good assessment of model background
errors.

3.3 Impact on initial fields

In order to verify the assimilation effect and quantitatively
evaluate the impact of the EnOI system on the initial fields,
DA experiments with a length scale of L= 40 and an en-
semble size of N = 96 were performed on the initial field
at each 00:00 UTC from 15 to 23 December 2016. The as-
similated observations were obtained from the DA sites in
Fig. 2, and the effect on both DA sites and verification sites
were evaluated. Figure 5 shows the statistics for the two re-
gions of the initial field, mainland China and northern China.
In mainland China, the CORRs of the verification sites and
DA sites before assimilation were 0.60 and 0.58, respec-
tively, and the RMSEs were 73.9 and 73.4 µg m−3, respec-
tively. After the DA sites were assimilated, the CORR of as-
similated sites increased to 0.99, and the RMSE decreased to
14.5 µg m−3, and the CORR of verification sites increased to
0.84 and the RMSE decreased to 46.4 µg m−3; meanwhile the
ME changed from 49.7 to 27.3 µg m−3. In northern China, af-
ter the DA sites were assimilated, each statistic of the valida-
tion site also changed, with the CORR increasing from 0.53
to 0.87 and RMSE decreasing from 105.5 to 65.7 µg m−3.
Only 50 % of the ground-based observations are assimilated,
and the statistics of the validation sites have also been im-
proved. These experimental results prove that the DA sys-
tem can indeed yield more accurate initial fields with an over
40 % increase in CORR and 37 % reduction in RMSE.

To illustrate the assimilation effect of different pollution
levels, we consider this episode from 15 to 23 Decem-
ber 2016, where 15 and 16 December is the period of pollu-
tion start, 17 to 21 December is the period of pollution, and
22 to 23 December is the period of pollution dissipation. We
compared the PM2.5 observations and initial conditions be-
fore and after DA within all the observation sites assimilated
during this episode. This was done to understand the impact
of DA on initial conditions in the system’s actual operating
situation. Figure 6 shows the spatial distribution of PM2.5 in
the observation field (OB), background field (BF), analysis
field (AF), and analysis field increments (AFIs) for 2 d of
light pollution (16 and 23 December) and 2 d of heavy pol-
lution (19 and 20 December). The black boxed area in Fig. 6
is the same as northern China (NC) in Fig. 2, including Bei-
jing, Tianjin, eastern Shanxi, southern Hebei, western Shan-
dong, and northern Henan, which has the highest simulated
PM2.5 concentration. Table 5 summarizes the corresponding
statistics of initial PM2.5 concentrations for assimilation sites
and verifications sites before and after EnOI. Figure 6 shows
that, compared with OBs, the model background PM2.5 with-
out DA can capture the spatial pattern of distribution over
China in general, which shows that the model performance is
moderately good. However, there are still errors between the
background and observations. PM2.5 concentrations are over-
estimated in NC and eastern China during the pollution start
and dissipation periods. During the heavy-pollution period,
the background PM2.5 concentrations are overestimated in
northeastern China and underestimated in NC. After assim-
ilating the ground-based PM2.5, the PM2.5 concentration in-
crements were distributed around the observation sites as ex-
pected and were more closer to the observation distributions.
Negative values of the AFI demonstrate that assimilation re-
duces PM2.5 concentrations, while positive values demon-
strate that assimilation increases PM2.5 concentrations. Dur-
ing the period before and after pollution, PM2.5 concentra-
tions decrease in eastern China and increase in western China
and NC, indicating a reduction in over- or under-prediction
of model PM2.5 concentrations after assimilation. Table 5
shows that assimilating 50 % of the ground-based observa-
tions improved the initial condition for other areas which
have no assimilated sites. Take 19 December 2016 as an ex-
ample; the CORR for verification sites increased from 0.66
to 0.85, RMSE decreased from 79.2 to 56.1 µg m−3, and MB
and ME also became smaller after EnOI. These results indi-
cate that the initial PM25 fields can be adjusted efficiently by
EnOI. What the impact of this innovation through the EnOI
system for forecasts is is discussed in the next section.

3.4 Impact on forecast

3.4.1 Impact on PM2.5 forecast

In this section, we will discuss the impact of assimilation ob-
servations on PM2.5 forecasts. As in Sect. 3.3, we assimilate
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Table 5. Statistics of initial PM2.5 concentrations for assimilation sites (DA) and verifications sites (Ve) before EnOI (BF) and after EnOI
(AF) at 00:00 UTC on 16, 19, 20, and 23 December 2016, respectively.

Date Site IC CORR RMSE (µg m−3) ME (µg m−3) MB (µg m−3)

16
DA

BF 0.50 50.8 9.1 38.2
AF 0.98 11.0 0.9 7.1

Ve
BF 0.48 56.5 9.7 42.8
AF 0.73 39.1 2.5 25.2

19
Da

BF 0.65 81.5 −9.3 55.2
AF 0.98 17.3 −1.2 10.4

Ve
BF 0.66 79.2 −5.7 50.2
AF 0.85 56.1 1.3 32.4

20
DA

BF 0.67 95.0 −24.2 64.5
AF 0.99 19.1 −2.7 10.2

Ve
BF 0.66 94.7 −20.5 60.5
AF 0.87 60.2 −5.1 35.1

23
DA

BF 0.52 47.6 20.6 36.9
AF 0.97 10.8 2.1 6.8

Ve
BF 0.50 50.3 23.3 37.9
AF 0.75 31.4 6.0 20.6

Figure 6. Snapshots of the horizontal distributions of PM2.5 observation (OB), before (BF) and after (AF) the application of the EnOI
technique, and analysis field increment (AFI) at 00:00 UTC on 16, 19, 20, and 23 December 2016. The black box area represents northern
China (NC).

Geosci. Model Dev., 16, 4171–4191, 2023 https://doi.org/10.5194/gmd-16-4171-2023



S. Li et al.: Implementation and application of ensemble optimal interpolation 4183

Figure 7. The average RMSE value of surface PM2.5 forecasts as a function of forecast time over (a) mainland China for DA sites, (b) main-
land China for verification sites, (c) northern China for DA sites, and (d) northern China for verification sites.

the DA sites at 00:00 UTC from 15 to 23 December 2016
and then analyse the following forecast of DA and the veri-
fication sites separately. The RMSE of the DA and verifica-
tion sites in mainland China and northern China for a com-
plete pollution-process-obtained average over 15 to 23 De-
cember 2016 is shown in Fig. 7. For the DA sites in main-
land China (Fig. 7a), the model forecast RMSE without DA
is about 75 µg m−3; after the assimilation, the model fore-
cast RMSE is decreased rapidly from 75.4 to 40.1 µg m−3,
which is an over 40 % reduction. This implies that assimila-
tion with EnOI can considerably improve the forecast accu-
racy. Meanwhile, it is notable that assimilation of DA sites
also has an impact on the forecast at the verification sites.
The trend of the RMSE series at the verification site is con-
sistent with the DA site but smaller in value. The RMSE of
verification sites at a 1 h forecast hour dropped from 75.5
to 51.0 µg m−3, about a 32 % reduction. For northern China,
which was shown in Fig. 7c and d, the model forecast RMSE
without DA is about 115 µg m−3. After the assimilation of

PM2.5 observation, the model forecast RMSE of DA sites
at the 1 h forecast time is decreased rapidly from 122.0 to
56.1 µg m−3, which is an over 54 % reduction. For verifi-
cation sites, the reduction amplitude is 33 %, smaller than
that of DA sites but still a moderate improvement consider-
ing only 50 % of ground-based observations were used to be
assimilated at 00:00 UTC. The results show that assimilation
with EnOI improves the forecast not only for the DA sites but
also for the verification sites. The improvements are mainly
within the first 12 h forecasts with an RMSE greater than
10 µg m−3. The improvement receded with forecast time,
changing from 46 % at the 1 h forecast hour to 7 % at the
24 h forecast hour. These results are consistent with previous
studies, which used either 4D-Var or EnKF (Skachko et al.,
2016; Bocquet et al., 2015; Park et al., 2022). As Bocquet et
al. (2015) pointed out, even with the improved analysis, the
impact of the initial state adjustment is generally limited to
the first day of the forecast, for pollutant transport and trans-
formation are strongly driven by uncertain external parame-
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ters, such as emissions, deposition, boundary conditions, and
meteorological fields.

Now we use all ground-based observation sites as DA
sites to investigate the performance of assimilating the ini-
tial field at 00:00 UTC each day (DA00) or 12:00 UTC each
day (DA12) on improving the PM2.5 forecasts. DA00 and
DA12 were performed in parallel. The daily average of the
24 h RMSE was obtained for the DA and CR experiments.
The rate of improvement (ROI) by data assimilation in 1 d
(24 h) predictions for 15 to 23 December 2016 for main-
land China and NC was calculated using the ratio of the
reduced RMSE statistical metrics to those for the CR sim-
ulation and was plotted in a daily time series histogram as
shown in Fig. 8. In this episode, the improvement of main-
land China PM2.5 forecasts by DA00 and DA12 is minimal
at 9 % and 10 %, respectively, on 15 December and maximal
at 15 % and 21 %, respectively, on 19 December. The mini-
mum and maximum improvements of assimilation on PM2.5
forecasts in NC both appear in DA12, which are 4 % and
25 %, respectively. The difference between DA12 and DA00
relative RMSEs is mostly positive, within 6 % in mainland
China, but in NC this difference can be up to 15 %. The aver-
age RMSE improvement of the 24 h forecast for the main-
land China and northern China assimilation at 00:00 UTC
is 12.3 % and 9.8 %, respectively, while that at 12:00 UTC
is 14.4 % and 14.0 %, respectively. In terms of the average
relative RMSE for this episode, assimilating the initial field
at 12:00 UTC improves the PM2.5 forecast more than that at
00:00 UTC, mainly because the model forecasts are not close
to the observations at 12:00 UTC in most cases; thus choos-
ing this time for assimilation will have a significant impact.
In addition, the DA effect varies for each day, and the larger
the error, the greater the improvement in RMSE from DA,
which means that the larger the a priori error, the greater the
improvement from DA. These results show that using EnOI
to assimilate ground-based PM2.5 observations for the model
chemical initial field can reduce over 9.8 % of RMSE for
the 24 h forecast on average. Park et al. (2022) implemented
an ensemble Kalman filter in the Community Multiscale Air
Quality model (CMAQ model v5.1) for data assimilation of
ground-level PM2.5. They found using EnKF with 40 ensem-
ble numbers can reduce 9.6 % of RMSE for a 24 h forecast.
Comparing their results with ours, we can find that, while
EnOI is suboptimal, it can give an improvement of forecast
that is comparable to that of the EnKF. Moreover, the com-
putational cost of EnOI is typically about N times less than
that of EnKF. Therefore, we suggest that EnOI may provide a
practical and cost-effective alternative to EnKF for the appli-
cations where computational cost is the main limiting factor,
especially for real-time operational forecast.

To achieve better performance of assimilation, we update
the initial field every 12 h. Figure 9 gives time series of
forecasts and observations in terms of PM2.5, together with
RMSE of CR and DA for northern China. Compared with
the observations, the forecast PM2.5 concentrations are 20 to

100 µg m−3 higher in the pollution start period (15–17 De-
cember) and the pollution fading period (21, 23 December),
about 100 µg m−3 lower on 19 December. The PM2.5 concen-
trations change immediately 1 h after 00:00 or 12:00 UTC.
It can be seen from Fig. 9b the RMSEs of the DA experi-
ments are always lower than those of the CR experiments,
and the difference in RMSE between the CR and DA exper-
iments recedes with forecast time. This proves that assimi-
lating the initial field can improve the PM2.5 forecast. Note
that the DA algorithm used here cannot produce an optimal
solution when there are larger errors in the model. On 19 De-
cember 2016, even with DA the model still cannot retrieve
the true variation very well for the first 12 h forecast. This
suggests that using DA on the initial field can only partially
remedy inherent model error. To improve the analysis capa-
bilities and prolong the impact of DA on PM2.5 forecasts, we
should extend the assimilation for adjusting emissions, me-
teorological fields, and other model uncertainty sources.

3.4.2 Impact on visibility forecast

The occurrence of low-visibility episodes is usually asso-
ciated with aerosol pollution. The horizontal spatial dis-
tribution of the OBs, forecast fields without assimilation
(CRs), forecast fields with assimilation (DAs), and incremen-
tal fields (DA–CRs) for visibility and PM2.5 at 01:00 UTC
on 16 and 20 December are shown in Fig. 10. During the
pollution start period (16 December 01:00 UTC) visibility
is above 10 km in most of China, and during the pollution
period (20 December 01:00 UTC) visibility is mostly below
7 km in eastern China. After assimilating the ground-based
PM2.5, the visibility distribution of DAs is more consistent
with the observation compared to the CRs. A positive PM2.5
concentration increment corresponds to a negative visibility
increment, which means that when the PM2.5 concentration
increases, the visibility decreases at the same moment. At
01:00 UTC on 16 December, the CR PM2.5 concentration
is underestimated in NC and overestimated in southeastern
China, and after assimilating PM2.5, the visibility is reduced
in NC with increased PM2.5 and increased in the southeast
with reduced PM2.5. In the period of light pollution, the abso-
lute value of the visibility increment is mostly in the range of
5–7 km when the PM2.5 increment is from 30 to 110 µg m−3

or from −30 to −110 µg m−3 in NC, while in the pollution
period (20 December 01:00 UTC for example), under the
same PM2.5 analysis increment, the visibility increment in
NC is between −3 and 3 km.

Four stations, Beijing (BJ), Shijiazhuang (SJZ), Xingtai
(XT), and Jinan (JN), were selected from the heavily pol-
luted NC to study the effect of assimilating the initial field
PM2.5 on the visibility forecasts. Since the assimilation ef-
fect is the most obvious in the first 12 h, we focus on the
improvement of visibility forecasts within 12 h. Figure 11
shows the observation, simulation, and assimilation of vis-
ibility, as well as the observation, simulation, and assimila-
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Figure 8. Rate of improvement (ROI; unit: %) by data assimilation in 1 d (24 h) predictions for 15 to 23 December 2016 over mainland
China (a) and northern China (b). The ROI is the ratio of the reduced RMSE statistical metrics to those for the CR simulation. DA00
and DA12 represent the initial field assimilation using EnOI at 00:00 and 12:00 UTC each day, respectively. DA00_mean and DA12_mean
represent the mean ROI from 15 to 23 December 2016 of DA00 and DA12, respectively.

Figure 9. Time series of hourly PM2.5 concentration (a) and RMSE between forecasts and observations (b) from 15 to 23 December 2016 in
northern China. Red dots, observations; black line, forecasts from the control experiment (CR); blue line, forecasts from the experiment with
initial field assimilation at 00:00 and 12:00 UTC (DA); black line with dots, RMSE between CR forecasts and observations; blue line with
dots, RMSE between CR forecasts and observations. The values are averages calculated against all the observation sites in northern China.
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Figure 10. Snapshots of PM2.5 and visibility horizontal distribution for control (CR), assimilation (DA), observation (OB), and increment
(DA–CR) at 01:00 UTC after assimilation of the initial field at 00:00 UTC on 16 and 20 December 2016. The upper box represents northern
China, and the lower box represents Guangxi and Hainan in China.

tion of PM2.5 concentration for the above cities from 01:00
to 12:00 UTC on 16 and 20 December 2016. On 16 Decem-
ber, when the PM2.5 concentration is less than 300 µg m−3

(16 December), visibility at all four stations is closer to the
observed value by assimilating PM2.5, among which BJ and
JN have decreased PM2.5 concentrations after assimilation,
and visibility has increased at the same time. SJZ and XT
have increased PM2.5 concentration and decreased visibil-

ity after assimilation. In the period of low PM2.5 concentra-
tion, about a 100 µg m−3 PM2.5 change causes a visibility
change of 11, 4, 5, and 7 km in BJ, SJZ, XT, and JN, respec-
tively. In the period of heavy pollution, the PM2.5 concen-
tration changes with 150 µg m−3 in Beijing and Shijiazhuang
at 01:00 UTC, while visibility changes with 3.5 and 0.5 km,
respectively. These results show that the improvement of vis-
ibility by assimilating PM2.5 is limited during the heavy-
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Figure 11. Comparison between PM2.5 and visibility observations and model forecast at four cities without (CR00) and with assimilation
(DA00) of the initial field at 00:00 UTC on 16 and 20 December 2016. The four cities are exemplified, from left to right: Beijing (BJ),
Shijiazhuang (SJZ), Xingtai (XT), and Jinan (JN). The labels on the x axis refer to the first 12 forecast hours of the day. PM2.5 observations,
grey line with circles; visibility observations, orange line with circles; PM2.5 and visibility model forecast without assimilation, black line;
PM2.5 model forecast with assimilation, blue line; visibility model forecast with assimilation, green line.

pollution period. It is worth noting that when the PM2.5 con-
centration is greater than 350 µg m−3 at the JN site, although
the decrease in PM2.5 concentration corresponds to the in-
crease in visibility, the gap between the assimilated visibility
and observation becomes larger at this time, which may be
related to the inaccuracy of the humidity simulation here and
inaccurate visibility parameterization scheme for the model.
Visibility is not linearly related to PM2.5, and visibility is
also affected by humidity and other factors. Assimilation of

the initial field PM2.5 can improve the visibility forecast, but
if we want to improve the visibility forecast significantly,
we need to improve not only the visibility parameterization
scheme, but also the humidity accuracy. The present study
focuses on data assimilation of chemical initial fields and is
the first step of implementation of EnOI for a regional online
chemical weather numerical forecasting system. Next, the
uncertainty in the emissions as well as physical and chem-
ical parameterization should also be considered. Moreover,
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the joint assimilation of meteorological and chemical vari-
ables and feedbacks between chemistry and meteorology are
worthwhile to be investigated in future studies.

4 Conclusions

To improve the accuracy of PM2.5 and visibility forecasting
in China, a real-time and efficient EnOI assimilation sys-
tem is established for the latest online operational chemistry
weather model GRAPES_Meso5.1/CUACE of the China
Meteorological Administration. The surface PM2.5 observa-
tion data from nearly 1500 ground stations across the country
are used for assimilation. PM2.5 and visibility simulation–
assimilation experiments were performed for a haze pollu-
tion episode from 15 to 23 December 2016. Parallel sensitiv-
ity experiments of a localization length scale and an ensem-
ble size were set up to determine two key parameters that
influence the effectiveness of the EnOI assimilation. Based
on the results of the sensitivity experiments, the initial fields
were assimilated at 00:00 UTC each day from 15 to 23 De-
cember 2016 to study the improvement of EnOI on the initial
field PM2.5. In addition to the analysis of the mainland China
assimilation effect, the heavily polluted northern China re-
gion was additionally divided to discuss the different impacts
of assimilation on the overall and regional chemical initial
fields. Cyclic assimilation experiments were performed at
00:00 (DA00) and 12:00 UTC (DA12) to investigate the im-
pacts of assimilation on the forecast fields, taking NC as an
example, to discuss the impacts of assimilation on PM2.5 and
visibility forecast fields.

The optimal localization length scale and the number
of ensemble samples are 40 km and 96, respectively, de-
rived from sensitivity experiments. Assimilating 50 % of the
ground-based observations improved the initial condition for
other areas which have no assimilated sites. The DA consid-
erably improved the model PM2.5 initial field, the CORR of
verification sites in mainland China improved from 0.58 to
0.84, and the RMSE decreased from 73.7 to 46.4 µg m−3.
The results of the DA00 and DA12 assimilation experi-
ments showed that the improved impacts of the DA worked
throughout the forecast time window, but the assimilation im-
pact was the most pronounced in the first 12 h and gradually
decreased in the subsequent time. Within the 24 h forecast
time window, the average RMSE improvement for the main-
land China PM2.5 forecast field ranges from 9 % to 21 % and
between 4 % and 25 % in NC, and the comprehensive com-
parison shows that the initial field of the 12:00 UTC assim-
ilation is superior to 00:00 UTC. Therefore, in this study, it
is considered that with limited computational resources, the
EnOI assimilation efficiency is the highest with the largest
distance between the model simulation and observation to
assimilate according to the model characteristics. When it
comes to operational use, the assimilation efficiency can be

improved by shortening the assimilation time interval due to
the small demand of EnOI computational resources.

The assimilation of PM2.5 also has a positive impact on
visibility forecasts. When the PM2.5 increment by assimila-
tion is negative, it corresponds to an increase in visibility,
and when the PM2.5 analysis increment is positive, visibility
decreases correspondingly. The greater the change in PM2.5
concentration during periods of light pollution, the more pro-
nounced the improvement in visibility. It is worth noting that
visibility is also related to a variety of factors, and assim-
ilating only ground-based PM2.5 sites has a limited effect
on visibility, and we will further consider assimilating PM10,
humidity, and other meteorology factors to improve visibility
forecasts in subsequent studies.
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