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Abstract. The prediction of river water temperature is of
key importance in the field of environmental science. Wa-
ter temperature datasets for low-order rivers are often in
short supply, leaving environmental modelers with the chal-
lenge of extracting as much information as possible from
existing datasets. Therefore, identifying a suitable model-
ing solution for the prediction of river water temperature
with a large scarcity of forcing datasets is of great im-
portance. In this study, five models, forced with the me-
teorological datasets obtained from the fifth-generation at-
mospheric reanalysis, ERA5-Land, are used to predict the
water temperature of 83 rivers (with 98 % missing data):
three machine learning algorithms (random forest, artificial
neural network and support vector regression), the hybrid
Air2stream model with all available parameterizations and
a multiple regression. The machine learning hyperparame-
ters were optimized with a tree-structured Parzen estimator,
and an oversampling–undersampling technique was used to
generate synthetic training datasets. In general terms, the re-
sults of the study demonstrate the vital importance of hy-
perparameter optimization and suggest that, from a prac-
tical modeling perspective, when the number of predictor
variables and observed river water temperature values are
limited, the application of all the models considered in this
study is crucial. Basically, all the models tested proved to be
the best for at least one station. The root mean square error
(RMSE) and the Nash–Sutcliffe efficiency (NSE) values ob-
tained for the ensemble of all model results were 2.75±1.00
and 0.56± 0.48 ◦C, respectively. The model that performed
the best overall was random forest (annual mean – RMSE:
3.18± 1.06 ◦C; NSE: 0.52± 0.23). With the application of
the oversampling–undersampling technique, the RMSE val-

ues obtained with the random forest model were reduced
from 0.00 % to 21.89 % (µ= 8.57 %; σ = 8.21 %) and the
NSE values increased from 1.1 % to 217.0 % (µ= 40 %;
σ = 63 %). These results suggest that the solution proposed
has the potential to significantly improve the modeling of wa-
ter temperature in rivers with machine learning methods, as
well as providing increased scope for its application to larger
training datasets and the prediction of other types of depen-
dent variables. The results also revealed the existence of a
logarithmic correlation among the RMSE between the ob-
served and predicted river water temperature and the water-
shed time of concentration. The RMSE increases by an av-
erage of 0.1 ◦C with a 1 h increase in the watershed time of
concentration (watershed area: µ= 106 km2; σ = 153).

1 Introduction

Water temperature (WT) is recognized as a key parameter in
aquatic systems due to its influence on water quality (e.g.,
chemical reaction rate, oxygen solubility), as well as the dis-
tribution and growth rate of aquatic organisms (e.g., primary
production; fish growth and habitat) (Smith, 1972; Webb et
al., 2003; Caissie, 2006). As such, the accurate prediction and
assessment of river WT are crucial parts of many Earth sci-
ence applications. The thermal dynamics in rivers are quite
complex as they depend on an array of physical and chem-
ical factors (Smith and Lavis, 1975; Jeppesen and Iversen,
1987). River WT follows a seasonal and a diurnal cycle,
driven by heat input and losses at the boundary conditions of
a river section (upstream and downstream transfer; air–water
and sediment–water interface; lateral contribution from trib-
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utaries and groundwater) under specific meteorological and
hydrological conditions (Walling and Webb, 1993; Wetzel,
2001). The complexity of river WT estimation is often more
pronounced for sub-daily temporal and spatial scales (Tof-
folon and Piccolroaz, 2015), and it is therefore common prac-
tice to average out sub-daily effects and to consider a daily
discretization for modeling purposes. This assumption can
have a significant impact on lake and reservoir water quality
modeling results, namely when lake and/or reservoir inflows
are large. The fall and spring turnover onset, stratification
strength and length, and the overall heat budget can be af-
fected; therefore, some caution is needed regarding this type
of approach. Air temperature correlates with the equilibrium
temperature of a river and is therefore frequently used as the
independent variable; hence, it is not unusual to find a strong
linear correlation between daily air temperature and stream
and river WT with a time lag (Smith, 1981; Crisp and How-
son, 1982). The existing body of literature includes a number
of examples of the successful implementation of linear re-
gression models correlating air and WT using data relating
to different time periods, mostly weekly and/or monthly, as
the serial dependency for these timescales is generally small
(e.g., Mackey and Berrie, 1991; Webb and Nobilis, 1997).
That said, several studies have shown departures from linear-
ity, showing that the rate of evaporative cooling increases at
peak air temperatures, which means that the river WT will
therefore not increase linearly with the mean air temperature
(Mohseni et al., 1998, 2002), thereby demonstrating the need
for more complex models and sampling of an increased num-
ber of independent variables. There are many sources of error
in the modeling of river WT, including those associated with
the definition of the input data and boundary conditions or
with the river WT measurements used in model calibration or
related to the model’s structure. The predictor variables can
represent a significant source of uncertainty, as river WT is
affected not only by local environmental conditions, but also
by upstream conditions (Moore et al., 2005). In order to min-
imize this source of uncertainty, some authors use a space-
averaging approach in which the predictor variables consider
a variety of buffer zones with different lengths and widths
(e.g., Macedo et al., 2013; Segura et al., 2014). However, the
extent of the area affecting the river energy balance at a cer-
tain point is still unclear (Moore et al., 2005; Gallice et al.,
2015).

In the past decades, different types of models have been
successfully used to model river WT under different spatial
and temporal scales. In general, the model selection depends
not only on the study’s requirements, namely the output
timescale, but also on the availability of the input data. These
include statistical models, such as linear regression (e.g.,
Neumann et al., 2003; Rehana and Mujumdar, 2011), multi-
ple regression (e.g., Jeppesen and Iversen, 1987; Jourdonnais
et al., 1992), nonlinear regression (e.g., Mohseni et al., 1998)
and stochastic regression models (e.g., Ahmadi-Nedushan et
al., 2007; Rabi et al., 2015) as well as hybrid models (statis-

tics methods combined with a physically based process, e.g.,
Gallice et al., 2015; Toffolon and Piccolroaz, 2015). Process-
based models, based on the concepts of heat advection, trans-
portation and equilibrium temperature, are quite accurate
when the boundary conditions are well characterized (e.g.,
Sinokrot and Stefan, 1993; Younus et al., 2000; Du et al.,
2018), although they do require a large amount of forcing
data, including stream geometry, air temperature, dew point
temperature (or relative humidity), cloud cover and short-
wave solar radiation, degree of shading, and wind direction
and velocity. Machine learning (ML) models, such as artifi-
cial neural networks (ANNs), have also proved to be a robust
option for river WT prediction (e.g., Piotrowski et al., 2015;
Temizyurek and Dadaser-Celik, 2018; Zhu et al., 2019c). In
general, results show the performance of ML models to be
comparable (Feigl et al., 2021; Zhu et al., 2018). Multi-layer
perception neural network models are, in most cases, not out-
performed by more complex and advanced neural network
models (Piotrowski et al., 2015; Zhu et al., 2019b). ML out-
performed standard modeling approaches, such as multiple
regression, the hybrid Air2stream model developed by Tof-
folon and Piccolroaz (2015) (Feigl et al., 2021), linear re-
gression, nonlinear regression, and stochastic models (Zhu
et al., 2018). This is not a prevailing rule as the Air2stream
model was also able to outperform ML, clearly indicating
its potential as a valid solution in certain conditions (Zhu
et al., 2019d). Table 1 describes the RMSE between ob-
served and predicted river WT obtained from several stud-
ies and using different models. Overall, the results are quite
impressive, varying from 0.42 to 2.30 ◦C in the case of the
ML models. The worst results, as expected, correspond to
the classical statistical models, namely multiple regression.
Oversampling–undersampling techniques are useful where
regression is applicable, but the values of interest are rare or
uncommon, producing an imbalanced dataset. Several avail-
able strategies exist, such as random undersampling (Torgo et
al., 2015), the Synthetic Minority Oversampling Technique
for Regression (SMOTER) (Torgo et al., 2013) and the in-
troduction of Gaussian noise (Branco et al., 2016). The the
Synthetic Minority Oversampling Technique for Regression
with Gaussian Noise (SMOGN) Python package combines
random undersampling with the two previously mentioned
oversampling techniques (SMOTER and the introduction of
Gaussian noise) as a function of K-nearest-neighbor (KNN)
distances underlying an observation. SMOGN was success-
fully implemented by Wang et al. (2021) to improve the
quantification of nonlinear relationships between monthly
burned area and biophysical factors in southeastern Aus-
tralian forests. SMOGN was applied to resample the propor-
tion of burned area. This algorithm was also successfully ap-
plied by Agrawal and Petersen (2021) to increase a satellite
imagery dataset required to identify arsenic contamination
and increase the performance of ML algorithms. Although
this type of solution is still not widely used, it should be con-
sidered as it has the potential to improve ML performance,
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particularly in cases in which the forcing datasets are small
and inconsistent. From an environmental science perspec-
tive, accurate time-varying boundary conditions are vital in
order to calibrate models or evaluate system evolution. For
WT calibration, this ideally means using continuous inflow
temperatures, although this is complicated by the fact that
WT measurements are often in short supply or completely
unavailable, particularly for low-order streams. Therefore,
the main objective of this study is to identify a suitable WT
modeling solution for rivers with limiting forcing data. Im-
proving this type of solution would deliver potential ben-
efits for a wide range of environmental modeling applica-
tions, such as the analysis of seasonal and diurnal trends as
well as biogeochemical processes in rivers based on observa-
tion datasets and the improvement of lake and reservoir water
quality model boundary conditions.

It is also important to note that the studies defined to eval-
uate the performance of different modeling approaches are
normally restricted to a very small number of test sites and
usually contain a reasonable amount of forcing data (Table 1)
– hence, the vital importance of increasing the number of test
sites and using a limited amount of forcing data to model
river WT. The methodological approach was therefore de-
fined to attempt to answer the following questions.

1. What is the best modeling solution to predict river WT
with limited forcing data?

2. How do the length of the calibration period and percent-
age of missing data affect model performance?

3. Can the performance of an ML model be improved
through the modification of the raw training dataset with
an oversampling–undersampling technique?

4. Is it possible to relate the modeling error to river and
watershed geomorphological and hydrological variables
(e.g., time of concentration; wet and dry season)?

To that end, 83 river sections with different geomorpho-
logical, meteorological and hydrological conditions were
modeled. These stations correspond to all the sections for
which the Portuguese Water Resources Information Sys-
tem (SNIRH) holds WT and discharge datasets, which are
also, coincidentally, characterized by 98 % missing data. The
modeling ensemble includes five different models, three of
which use ML algorithms optimized with a sequential model-
based optimization approach: random forest (RF), artificial
neural network (ANN) and support vector regression (SVR).
The remaining models include the hybrid Air2stream model
(using all model parametrization variations: three, four, five,
seven and eight parameters) (Toffolon and Piccolroaz, 2015)
and multiple regression (MR). The SMOGN algorithm was
also used to generate 100 synthetic samples from raw train-
ing datasets. These modified datasets were then considered
to force the best model.

Figure 1. Location of the watersheds considered in the study (from
a DEM, Shuttle Radar Topography Mission; Farr et al., 2007.)

The results of this study will hopefully prove useful from
a practical perspective by helping to improve the quality and
consistency of river WT datasets.

2 Study area and data

The watersheds considered in this study are located in Por-
tugal (Fig. 1). This southern European country has a typical
Mediterranean climate. Maximum daily mean air tempera-
ture ranges from 13 ◦C in the central highlands to 25 ◦C in
the southeastern region. The minimum daily mean air tem-
perature ranges from 5 ◦C in the northern and central regions
to 18 ◦C in the south (Soares et al., 2012). The spatial and
temporal heterogeneity of precipitation, which differs from a
relatively wet annual maximum of over 2500 mm yr−1 in the
mountainous northwest to a much drier 400 mm yr−1 in the
flat southeast, is defined by complex topography and coastal
processes (Cardoso et al., 2013; Soares et al., 2015).

The models used in this study were forced with daily
mean, maximum and minimum air temperature and global
radiation values obtained from the fifth-generation atmo-
spheric reanalysis, ERA5-Land, produced by the European
Centre for Medium-Range Weather Forecasts (ECMWF).
ERA5-Land is the ECMWF’s most advanced reanalysis
dataset for land applications (Muñoz-Sabater, 2019, 2021).
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Table 1. List of reviewed publications on river WT modeling and the corresponding RMSE between observed and modeled WT values.

Reference Geographic location Number of Temporal Model type RMSE (◦C)
sites scale

Chenard and Caissie (2008) Canada 1 day ANN 0.96
DeWeber and Wagner (2014) Eastern US 96 day ANN 1.82; 1.93
Rabi et al. (2015) Croatia 3 day ANN µ= 1.70 σ = 0.49; µ= 2.06

σ =0.35; µ= 2.30 σ = 0.76
Zhu et al. (2019c) US 3 day ANN 0.768; 0.948; 1.242
Feigl et al. (2021) Austria, Germany, Switzerland 10 day ANN Best results: 0.45; 0.42; 0.43
Zhu et al. (2019a) Croatia 2 day ANN 1.35; 1.70
Zhu et al. (2019d) Europe, US 8 day ANN [0.46,1.69]
Rehana (2019) India 1 day SVR 1.69
Rajesh and Rehana (2021) India 1 day SVR 0.99
Lu and Ma (2020) US 1 hour RF 1.04
Feigl et al. (2021) Austria, Germany, Switzerland 10 day RF 0.58
Rajesh and Rehana (2021) India 1 day RF 1.03
Rehana (2019) India 1 day MR 1.85
Moore et al. (2013) Western Canada 418 year MR 2.1
Ducharne (2008) France 88 month MR [1.4,1.9]
Zhu et al. (2019a) Croatia 2 day MR 2.33; 2.74
Toffolon and Piccolroaz (2015) Switzerland 3 day Air2stream 3 par [0.88, 1.05]; 4 par [0.87,1.04]

5 par [0.70, 1.05]; 7 par [0.65,0.78];
8 par [0.75,0.62]*

Zhu et al. (2019d) Europe, US 8 day Air2stream 3 par [0.64, 1.25]; 5 par [1.31,
0.76]; 8 par [1.37;0.93]*

Feigl et al. (2021) Austria Germany, Switzerland 10 day Air2stream 8 par [0.74,1.17]*

* The model can be applied with three, four, five, seven or eight parameters (3 par, 4 par, 5 par, 7 par or 8 par).

The horizontal resolution of this dataset (0.1◦× 0.1◦; na-
tive resolution is 9 km) is higher than that corresponding
to ERA-Interim and ERA5 (0.28◦× 0.28◦; native resolu-
tion 31 km grid). The vertical coverage ranges from 2 m
above surface level to a soil depth of 289 cm. The Carbon
Hydrology-Tiled ECMWF Scheme for Surface Exchanges
Over Land (CHTESSEL) forced with atmospheric forcing
derived from ERA5 near-surface meteorology state and flux
fields (10 m above ground level) is central to ERA5-Land.
The surface fluxes are linearly interpolated from the ERA5
resolution of approximately 31 km to the ERA5-Land resolu-
tion of 9 km. Land characteristics, such as soil and vegetation
type and vegetation cover, are described by time-invariant
fields (Muñoz-Sabater et al., 2021a). The air temperature re-
analysis dataset (hourly data) covering a period of 42 years
(1 January 1980 to 31 December 2021) was downloaded
from the Copernicus Climate Change Service (C3S) Climate
Data Store (Muñoz-Sabater, 2019, 2021). The watershed dis-
charge data used to force the models and the WT considered
for the model’s validation are also available from SNIRH
(http://snirh.apambiente.pt, last access: 17 July 2023). The
SNIRH provides data and WT values for 2471 water qual-
ity stations, only 98 of which have gauging stations with
discharge values, one of the conditions required to imple-
ment the Air2stream model. The missing discharge data were
replaced with the corresponding climatological year value;
hence, only the gauging stations with data spanning at least a
full year (365 or 366 values) were kept. Following this initial
analysis, the number of stations considered was reduced to

83. Data availability varies from station to station but gen-
erally covers a period of 42 years (1980–2021). However,
a significant number of daily river WT values are missing,
ranging from 96.9 % to 99.9 % (µ= 98.8 %; σ = 0.68).

Table 2 shows the number of WT values for the annual
data series for the dry season (April to September) and for
the wet season (October to March) separated into training
and test datasets, considering all stations.

3 Methodology

The definition of the methodological approach was supported
by the following.

1. It is important to model a significant number of water-
sheds to reduce the degree of uncertainty in the results.
This was minimized by modeling all the watersheds lo-
cated in Portugal for which river WT and discharge val-
ues were available.

2. The number and type of models are also key to gaining
a comprehensive understanding of the structural differ-
ences between the models and their performance. The
five models considered in this study include state-of-
the-art algorithms, with one classic modeling approach
(MR) included to establish a benchmark.

3. Generally speaking, there are no available sources of
observed meteorological data for either the watershed or
the area surrounding the lowest part of low-order rivers;
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Table 2. WT for the annual, dry and wet season, training, and test data series.

Temporal scale Phase Total number Mean Standard deviation Maximum Minimum

Annual Train 8384 101 60 237 11
Annual Test 3593 43 26 102 5
Dry season Train 4161 50 32 116 4
Dry season Test 1783 21 14 50 2
Wet season Train 4223 51 29 124 4
Wet season Test 1810 22 13 53 2

as such, the forcing meteorological datasets considered
in this study were obtained from the ERA5-Land reanal-
ysis.

The modeling reference is the watershed main gauging sta-
tion or water quality station. Therefore, the hourly air tem-
perature (◦C) and global radiation (shortwave) (J m−2) in-
put datasets of the nearest ERA5-Land grid point were ini-
tially downloaded before the air temperature datasets were
corrected according to the gauging station and the ERA5-
Land grid point altitude. This correction was achieved by
considering a linear variation of air temperature with altitude:
dT
dz =−6.0 ◦C km−1 (Fahrer and Harris, 2004). After this
correction, the mean, maximum and minimum daily air tem-
perature values and the mean global radiation values were
computed from the hourly meteorological datasets. Initially
the model predictors were selected on the basis of their avail-
ability and the results obtained with other studies (e.g., Zhu
et al., 2019c; Feigl et al., 2021). These included mean, max-
imum and minimum daily air temperature (◦C); mean daily
total radiation (shortwave) (J m−2); discharge (m3 s−1); and
two temporal features, the month (0–12) and the day (1–365)
of the year (MOY and DOY, respectively) (Table 3).

The Results section starts with the evaluation of the ERA5-
Land mean daily air temperature datasets. These datasets
were compared with ground measurements of mean daily
air temperature considering all the meteorological datasets
located within a 5 km radius of the stations considered in
this study. Following this initial analysis, the models (see
Sect. 3.1 to 3.6) were applied to each of the 83 input datasets,
divided between a training (70 % of the entire dataset) and
testing dataset (the remaining 30 %). The validation phase
was not considered due to the size of the available datasets.
It should be noted that, in the case of the Air2stream model,
70 % of the initial dataset corresponds to the calibration
dataset and the remaining 30 % to the validation dataset. Hy-
perparameter optimization was achieved for the ML models
through the application of the Tree-structured Parzen Estima-
tor (TPE) algorithm (see Sect. 3.6). Given the large number
of input datasets and the fact that the optimization process
can be very time-consuming, the following approach was im-
plemented (Fig. 2).

1. The 83 stations were ordered as a function of the num-
ber of samples (lowest to highest) and were divided into

four different classes (L≤ 50, 50< L≤ 100, 100<
L≤ 200, L > 200). Three stations were selected within
each class: (1) the station with the fewest samples,
(2) the station with the most samples and (3) the sta-
tion with the number of samples that most closely cor-
responded to the average sample number for each class.
The 12 datasets selected corresponded to stations 1, 7,
12, 13, 22, 29, 30, 46, 59, 60, 73 and 83.

2. The ML and TPE algorithms were applied to the 12
datasets. At this stage there were 12 optimized model
structures computed with the TPE algorithm for each
ML model.

3. The 12 optimized models obtained for each ML were
subsequently applied to the 83 datasets, and the best-
performing model at each station was calculated on the
basis of the computed root mean square error (RMSE).
Hence, the ensemble of the best results obtained across
the 12 different models for the 83 stations defines the
overall ML results.

To evaluate the possibility of further improving the results
obtained with the best model, 100 different training datasets
were then derived for each of the 12 datasets selected in
step (1) through the application of the Synthetic Minor-
ity Oversampling Technique for Regression with Gaussian
Noise (SMOGN) (Branco et al., 2017) (Sect. 3.7). The five
SMOGN parameters that drive the algorithm were randomly
derived within each model run considering a predefined pa-
rameter space (Table A2). A description of the model param-
eters is included in Table A2. The best ML model obtained in
step (3) was then forced with the modified training datasets
(100 for each station) and optimized with TPE.

Following this analysis, and in order to further investi-
gate the relevance of the predictor variables, the input fea-
ture importance was estimated for all stations by considering
the best-performing model. Additionally, the best model was
used to evaluate the differences between observed and model
river WT considering the sequential increase in the models’
predictors: (1) mean air temperature, (2) mean air temper-
ature+ discharge, (3) mean air temperature + discharge +
radiation, (4) mean air temperature + discharge + radiation
+maximum air temperature, (5) mean air temperature+ dis-
charge+ radiation+maximum air temperature+minimum
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Table 3. Model predictor variables.

Model Predictor variables Output variable

RF Mean, max. and min. daily air temperature (◦C)

Water temperature

Mean daily total radiation (shortwave) (J m−2)
Mean daily discharge (m3 s−1)
MOY and DOY

ANN Mean, max. and min. daily air temperature (◦C)
Mean daily total radiation (shortwave) (J m−2)
Mean daily discharge (m3 s−1)
MOY and DOY

SVR Mean, max. and min. daily air temperature (◦C)
Mean daily total radiation (shortwave) (J m−2)

Mean daily discharge (m3 s−1)
MOY and DOY

Air2stream Mean daily air temperature (◦C)
Mean daily discharge (m3 s−1)

MR Mean, max. and min. daily air temperature (◦C)
Mean daily total radiation (shortwave) (J m−2)
Discharge (m3 s−1)
MOY and DOY

air temperature, (6) mean air temperature + discharge + ra-
diation + maximum air temperature + minimum air temper-
ature + MOY, and (7) mean air temperature + discharge +
radiation + maximum air temperature + minimum air tem-
perature +MOY + DOY.

The effect of the watershed geomorphological and hydro-
logical variables was addressed with the analysis of the wa-
tershed time of concentration, a variable that encapsulates
some of the main watershed characteristics that affect the
river WT. The well-known Temez equation (Temez, 1978)
(Sect. 3.8) initially defined for small-scale Mediterranean
watersheds was selected for this analysis. Additionally, the
Gaussian mixture model algorithm implemented with the
machine learning Python package, scikit-learn (Pedregosa et
al., 2011), was used for cluster analysis. The algorithm as-
sumes that the data points belong to a mixture of normal dis-
tributions. The covariance structure of the data and the center
of the distributions are used to compute probabilistic cluster
assignments.

The results from the various models were evaluated with
six metrics considering the observed and predicted daily
datasets of river WT. During the evaluation of results three
types of datasets were considered.

– Annual datasets. All available daily averages of WT are
compared to field data.

– Wet season. Only the daily averages of WT correspond-
ing to the wet season are compared to field data (Octo-
ber to March).

– Dry season. Only the daily averages of WT correspond-
ing to the dry season are compared to field data (April
to September).

The metrics were selected in order to not only provide a con-
sistent interpretation of the models’ results, but also to fa-
cilitate comparison with the results obtained in other studies
(Sect. 3.9). The following sections describe each of the mod-
els and outline their relevant advantages and disadvantages.

3.1 Random forest

The RF algorithm (random forest regressor) was imple-
mented with the machine learning Python package, scikit-
learn (Pedregosa et al., 2011). This model fits classifying de-
cision trees on various subsamples of the datasets and then
combines the predictions. Decision trees can model complex
nonlinear relations. The algorithm uses averaging to control
overfitting and improve the algorithm predictive accuracy,
thus effectively balancing the bias–variance trade-off. They
are robust to outliers, missing values, and irrelevant or noisy
variables because the model implicitly performs feature se-
lection and generates uncorrelated decision trees. Beyond
these advantages, there is one major drawback common to
all the ML methods, with results difficult to interpret due to
the intrinsically black-box nature of the algorithm. More de-
tails about RF can be found in the literature (Breiman, 2001;
Louppe, 2014).
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Figure 2. Schematic and simplified representation of the modeling process. Initially, 12 stations were selected as a function of the number
of samples they contained. The ML models were trained and optimized for the 12 station datasets (model definition phase). The ML models
were then applied to the 83 stations (modeling phase). The ensemble of the best results as a function of the RMSE describes the final ML
results per station.

3.2 Artificial neural network

The ANN prototyping and building were achieved with the
NeuPy Python library (Shevchuk, 2022). This library uses
Tensorflow (an open-source platform for machine learning)
as a computational back end for deep learning models (Abadi
et al., 2016). The momentum algorithm was selected for the
ANN implementation because of the improved control it pro-
vides with regard to overfitting. This is an iterative first-order
optimization method that uses the gradient calculated from
the average loss of a neural network. This algorithm pro-
motes a gradual transition in the balance between stability
and rate of change (Qian, 1999); the result is faster conver-
gence and reduced oscillation. ANN has been successfully
used to model river WT (Chenard and Caissie, 2008; DeWe-
ber and Wagner, 2014; Piotrowski et al., 2015). This type
of model is reasonably accurate and does not require a large
number of input variables but does have two significant draw-
backs. The model has no capacity to provide information on
energy flux mechanisms within the river and has a tendency
to overfit the training dataset, thereby considerably diminish-
ing the model’s ability to generalize the features or patterns
present in the training dataset (Srivastava et al., 2014). For
the implementation of the model, the training data were shuf-
fled before training and the weights were randomly initiated.
The loss function included the MSE to measure the accuracy

of the results, as well as L2 regularization and dropout layers
to minimize overfitting. The step decay algorithm was used
to regularize the learning rate.

3.3 Support vector regression

The epsilon support vector regression algorithm was also
implemented using the machine learning Python package,
scikit-learn (Pedregosa et al., 2011). This type of algorithm
is generally characterized by the use of kernels functions,
sparseness of the solution and the absence of a local mini-
mum (Platt, 1998; Smola and Schölkopf, 2004). The algo-
rithm searches for a line or hyperplane in multidimensional
space that divides two or more variables. The hyperplane
with the optimum number of points is the best fit (Awad and
Khanna, 2015). The SVR training relays on the use of a sym-
metrical loss function, which penalizes high and low errors.
The algorithm also ignores errors that are lower than a cer-
tain threshold, ε. According to Awad and Khanna (2015), the
computational complexity of the algorithm does not depend
on the dimensionality of the input space, which is a relevant
advantage. It also offers good prediction accuracy and excel-
lent generalization capability. Regardless of the advantages,
this algorithm can be computationally expensive, which can
be a significant drawback.
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3.4 Air2stream

The Air2stream model solves a lumped heat-exchange bud-
get between an unknown river section volume, its tributaries,
groundwater and the atmosphere (Toffolon and Piccolroaz,
2015). The river WT variation is described by the following
equation:

ρCpV
dTW
dt
= AH + ρCp

(∑
i

QiTW,i −QTw

)
, (1)

where Tw is the WT of a river section with a volume V and
surface area A, and ρ and Cp are the water density and the
specific heat capacity, respectively. H is the net heat flux
at the air–water interface, and TW,i is the ith WT of the
discharge Qi tributary or groundwater. The model assumes
that air temperature can be used as a proxy for all surface
heat fluxes. A Taylor series expansion is used to include the
overall effect of air temperature. Q is the discharge down-
stream of the river section and t is time. Equation (2) is the
simplified form of Eq. (1) (Toffolon and Piccolroaz, 2015).
This equation, with eight parameters, forms the basis of the
Air2stream model:

dTW

dt
=

1
θa4

(a1+ a2 Ta− a3Tw

+θ

(
a5+ a6 cos

(
2π
(
t

ty
− a7

))
− a8Tw

))
, (2)

where Ta is the air temperature, θ is the dimensionless dis-
charge (θ =Q/Q)(3) and Q is the mean discharge. The pa-
rameter a4 is related to the exponent of the rating curve. The
model is fitted to the entire input dataset (air temperature,
WT and discharge), and the value of a4 and the value of all
others model parameters are estimated during the model opti-
mization process (calibration phase). In this study the Crank–
Nicolson scheme was used to solve the model equation. Fol-
lowing Toffolon and Piccolroaz (2015), the model param-
eters were estimated using the particle swarm optimization
method with inertia weight (Shi and Eberhart, 1998) with a
population size of 2000 particles and 2000 iterations. In this
study five versions of this model were considered to model
WT: the three-, four-, five-, seven- and eight-parameter ver-
sions. Please refer to Toffolon and Piccolroaz (2015) for a
full description of each one of the models’ parameterizations.

3.5 Multiple regression

This model was implemented using the machine learning
Python package, scikit-learn (Pedregosa et al., 2011). In this
model the predicted value is expected to result in a linear
combination of the input features:

ŷ = w0+w1x1+w2x2+ . . .+wpxp, (3)

where ŷ is the predicted value,w0 is the ŷ intercept (constant
term), w1 to wp are the model coefficients, and x1 to xp are

the model input features. The model fits a linear model with
coefficientsw1 towp to minimize the residual sum of squares
between the observed and predicted values.

3.6 Hyperparameter optimization

Hyperparameter optimization was achieved using the Tree-
structured Parzen Estimator (TPE) algorithm implemented
with the Hyperopt library (Bergstra et al., 2013). The op-
timization process is initiated with the selection of a prior
distribution (e.g., uniformly distributed); then, for the first
iterations, the TPE algorithm is warmed up with some ran-
dom iterations (random search). After this initial setup the
algorithm collects new observations, and on completion of
the iterations it selects the set of parameters that it will try
during the next iteration. The algorithm scores and divides
the collected observations into two groups. The first group
includes the best observations and the second group all the
others. The main objective is to identify a set of parameters
most likely to be in the first group. The TPE algorithm can
serve as a good alternative to the Gaussian process (GP) with
expected improvement (EI) as it fixes some of the disadvan-
tages associated with the latter. It can be difficult to select
the right hyperparameters for GP with EI due to the many
different kernel types associated with this process. TPE uses
simpler kernels as a building block, which facilitates hyper-
parameter selection. Furthermore, TPE is faster than GP with
EI when the number of hyperparameters increases. One no-
table drawback, however, is that the TPE algorithm selects
parameters independently from each other. It is a well-known
fact that the number of epochs of an ANN and regulariza-
tion are related and that these two parameters influence the
overfitting to a significant degree. To overcome this problem
two different choices for the epochs, with and without regu-
larization, were constructed. TPE hyperparameter optimiza-
tion consists of 20 random parameter samples and 200 itera-
tions. The Hyperopt algorithm samples 1000 candidates and
selects the candidate that has the highest expected improve-
ment (n_EI_candidates= 1000). The coefficient of determi-
nation (R2) was considered to be the algorithm score. The
algorithm uses 20 % of best observations to estimate the next
set of parameters (gamma= 0.2). Table A1 shows the model
parameters and the corresponding optimization range.

3.7 Synthetic Minority Oversampling Technique for
Regression with Gaussian Noise (SMOGN)

SMOGN (Branco et al., 2017) is highly effective when work-
ing with imbalanced regression datasets. The algorithm ap-
plied with the Python implementation obtained from the
SMOGN GitHub repository (SMOGN, 2022) combines ran-
dom undersampling with two oversampling approaches: the
Synthetic Minority Oversampling Technique for Regression
(SMOTER) (Torgo et al., 2013) and SMOTER with Gaus-
sian Noise (SMOTER-GN) (Branco et al., 2016). The al-
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gorithm selects between two sampling techniques, consider-
ing the K-nearest-neighbor (KNN) distances underlying an
observation: if the distance is too great, SMOTER-GN is
applied; otherwise SMOTER is applied. By combining the
two approaches to generate synthetic samples the authors
made the decision to apply SMOGN, a more conservative
approach which would minimize the potential risks incurred
with SMOTER (Branco et al., 2017). Table A2 describes
the parameter search space considered to derive the model
datasets.

3.8 Time of concentration

The time of concentration was estimated using the Temez
equation (Temez, 1978), which was defined for small natural
watersheds located in Spain. In this equation, TC is the time
of concentration in hours, L is the length of the main wa-
ter line (km) and J is the mean steepness (ratio between the
mean fall and the L length of the water line) (m m−1).

TC = 0.3
(
L

J 1/4

)0.76

(4)

3.9 Evaluation metrics

Model assessment was performed with six different metrics:
the mean absolute error (MAE), the root mean square error
(RMSE), the Nash–Sutcliffe efficiency (NSE) (Nash and Sut-
cliffe, 1970), the Kling–Gupta efficiency (KGE) (Kling et al.,
2012), the bias and the coefficient of determination (R2). The
metrics were computed using the following equations, where
mi and oi are the modeled and observed values, m and o are
their means, σm is the standard deviation of the modeled val-
ues, σo is the standard deviation of the observed values, and
r is the Pearson coefficient:

MAE=
1
N

N∑
i=1

|mi − oi | , (5)

RMSE=

√√√√ 1
N

N∑
i=1

(mi − oi)
2, (6)

NSE= 1−


N∑
i=1
(oi −mi)

2

N∑
i=1
(oi − ō)2

 , (7)

KGE= 1−

√
(r − 1)2+

(
σm

σo
− 1

)2

+

(
m̄

ō
− 1

)2

, (8)

bias= m̄− ō, (9)

R2
=

N∑
i=1
(mi − ō)

2

N∑
i=1
(oi − ō)

2
× 100. (10)

The RF and ANN algorithms use the mean square error to
measure the results accuracy:

MSE=
1
N

N∑
i=1

(mi − oi)
2. (11)

4 Results

4.1 Air temperature – ERA5-Land versus
ground-observed datasets

In this analysis the observed air temperature datasets of a
total of 11 meteorological stations were considered. These
are all the available air temperature datasets observed within
a 5 km radius of the stations considered in this study. The
results show that the mean RMSE obtained between the
two datasets considering all stations varied from 1.26 to
2.05 ◦C (µ= 1.54 ◦C; σ = 0.24 ◦C) and that, according to
the mean bias values, the ERA-Land datasets tend to over-
estimate the observed air temperature datasets at 91 % of
the stations. Overall, a mean RMSE value of 1.54 ◦C (σ =
0.24 ◦C) and a mean NSE value of 0.90 (σ = 0.07) are in-
dicative of a good performance. This conclusion corresponds
to the results obtained in other studies, namely Vannela et
al. (2022) (Italy, three regions – RMSE: 1.76, 1.82 and
1.97 ◦C), Araújo et al. (2022) (Brazil, three regions – RMSE:
0.60, 1.11 and 0.41 ◦C) and Zhao and He (2022) (China, one
region,−2.2 ◦C). However, as shown in Fig. 3, several signif-
icant sporadic discrepancies were produced between the two
datasets. The results also show a nationwide distribution of
stations with an RMSE of over 2 ◦C. Generally, these results
suggest that the consideration of the ERA5-Land air tem-
perature datasets for WT modeling can, sporadically, induce
some significant discrepancies between the two datasets.

4.2 Model intercomparison – annual datasets

The results obtained from all the models for the testing phase
and the annual datasets showed the RF model ensemble,
with a mean RMSE of 3.18 ◦C (σ = 1.06), to be the top-
performing model. The ANN model ensemble, with a mean
RMSE of 3.22 ◦C (σ = 1.05), and the SVR model ensemble,
with a mean RMSE of 3.37 ◦C (σ = 0.96), ranked second and
third, respectively (Table A3). The SVR model produced the
lowest RMSE of all the simulations run: 1.34 ◦C for station 8
with a training dataset of 20 values (SVR parameters: ker-
nel, “sigmoid”; degree, 3; C = 1000, gamma= 0.0001, ep-
silon= 0.005). The RF was also the best-performing model
based on a single model run (RF parameters: n_estimators,
50; max_depth, 485; min_samples_split, 5; max_features,
“auto”; bootstrap, true), with a mean RMSE of 3.37 ◦C (σ =
0.96).

The Air2stream model with three parameters is the best
of the hybrid model parameterizations, with a mean RMSE
of 4.06 ◦C (σ = 1.17), followed by the MR, with an annual
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Table 4. Evaluation of ERA5-Land daily air temperature datasets – MAE, RMSE, NSE, KGE, bias and R2 (with standard deviation) between
observed and ERA5-Land values.

Station Number of dataset values MAE, ◦C RMSE, ◦C NSE KGE Bias, ◦C R2

st4 80 1.10± 0.26 1.39± 0.28 0.91± 0.04 0.94± 0.05 0.74± 0.47 0.94± 0.02
st6 120 1.10± 0.37 1.34± 0.38 0.90± 0.17 0.92± 0.09 −0.15± 0.79 0.90± 0.11
st30 98 1.31± 0.29 1.72± 0.40 0.91± 0.07 0.95± 0.06 −0.48± 0.70 0.92± 0.05
st32 67 1.16± 0.52 1.43± 0.58 0.96± 0.04 0.94± 0.05 −0.75± 0.90 0.97± 0.02
st38 110 0.88± 0.34 1.26± 0.48 0.94± 0.09 0.96± 0.06 −0.46± 0.57 0.95± 0.04
st42 21 1.19± 0.47 1.53± 0.58 0.93± 45.49 0.87± 2.22 −0.42± 0.75 0.94± 0.03
st50 90 1.08± 0.30 1.45± 0.48 0.91± 0.06 0.89± 0.11 −0.14± 0.39 0.92± 0.04
st62 24 1.30± 0.74 1.67± 0.80 0.89± 6.28 0.94± 0.92 −0.17± 1.36 0.90± 0.04
st68 47 1.60± 1.18 2.05± 1.09 0.71± 9.81 0.86± 0.23 −1.47± 1.24 0.88± 0.2
st83 137 1.49± 0.40 1.79± 0.39 0.92± 0.03 0.94± 0.04 −0.60± 0.88 0.93± 0.02
st91 51 1.04± 0.13 1.33± 0.16 0.93± 0.04 0.96± 0.09 −0.46± 0.47 0.94± 0.04

Figure 3. Metric histograms of daily air temperature – ERA5-Land
versus ground-observed datasets.

mean RMSE of 4.28 ◦C (σ = 1.17). The NSE, KGE and R2

values are closely aligned with the RMSE variation among
the different models. Considering the performing ratings de-
fined by Moriasi et al. (2007), the results obtained with the
RF model ensemble, as described by the mean annual NSE
value (µ= 0.52; σ = 0.23), can be considered satisfactory
(0.50< NSE< 0.65). According to the same classification,

the ANN and the SVR, with a mean annual NSE value of
0.48 (σ = 0.28) and 0.47 (σ = 0.19), produce an unsatisfac-
tory modeling performance (NSE≤ 0.50). The same classi-
fication was obtained with all the parameterizations of the
Air2stream model and the MR, but with a significantly re-
duced NSE value. The mean annual RMSE for the ensem-
ble of all model results for the testing phase was 2.75 ◦C
(σ = 1.00), varying from 1.34 to 6.03 ◦C. Therefore, accord-
ing to the mean NSE value (µ= 0.56; σ = 0.48), the model
ensemble can be considered satisfactory. The contribution
of the individual models to the results ensemble consider-
ing the stations with the lowest mean annual RMSE was as
follows – RF: 35; ANN: 17; SVR: 14; Air2stream (3 par): 1;
Air2stream (8 par): 2; MR: 14. It is important to mention that
these results are not correlated with the number of values in
the training or testing datasets but are a consequence of the
dataset’s quality and of the model’s performance.

Figures 4 and 5 show the RMSE obtained with each model
during the training and testing phases, respectively. The in-
terannual variability is described by the standard deviation.
The stations are ordered as a function of the number of train-
ing and testing datasets, from the smallest to the largest.

The results help to explain the performance of the models
during the testing phase by showing the following.

1. During the training phase, all models exhibited a very
low mean RMSE and interannual variability, except the
Air2stream (three parameters) and the MR.

2. The RF underfitted the training datasets with fewer than
30 values, and consequently the predicted WT values
exhibited a high RMSE and interannual variability dur-
ing the testing phase (σ = 1.28) (Figs. 4 and 5).

3. During the training phase, the ANN exhibited the lowest
mean annual RMSE (µ= 0.44 ◦C; σ = 0.40) (Table 4).
This model clearly overfitted the training datasets, with
fewer than 30 values, which increased the RMSE ob-
tained for stations 1 to 11 (Figs. 4 and 5). The model

Geosci. Model Dev., 16, 4083–4112, 2023 https://doi.org/10.5194/gmd-16-4083-2023



M. Almeida and P. Coelho: Modeling river water temperature with limiting forcing data 4093

mean RMSE variability during the testing phase is equal
to that obtained for the RF, which exhibited the lowest
variability during the testing phase (σ = 1.28).

4. Like the ANN, the SVR overfitted the training datasets
of the first 10 stations, although the model had the low-
est mean RMSE interannual variability during the test-
ing phase (σ = 1.25), including for stations 1 to 10.

5. The Air2stream (three-parameter) model and the MR
exhibited the highest mean RMSE and interannual vari-
ability during both phases. In fact, the MR exhibited a
significant degree of interannual variability (σ = 4.10)
for the datasets with fewer than 30 values (stations 1 to
10), which was reflected in the results obtained during
the testing phase.

Figure 6 was included to provide greater insight into the un-
derfitting and overfitting associated with the ML models. The
training datasets with fewer than 30 values are clearly under-
fitted by the RF model (Fig. 6a) and overfitted by the ANN
and SVR (Fig. 6c and e). In the case of the ANN and the
SVR, the overfitting is stronger and more closely correlated
with the number of training datasets (RF: R2

= 0.13; ANN:
R2
= 0.52; SVR: R2

= 0.58).
It is also interesting to look at the results obtained from

the models with regard to levels of performance. Figure 7
shows the temporal evolution of the WT values obtained dur-
ing the training and testing datasets for stations 59 (138 train-
ing values) and 2 (11 training values). Based on the RF model
results, these are the stations with the best and worst mean
annual RMSE. There are clear, fundamental differences be-
tween the ML models and the Air2stream and MR models.
The ML models are highly effective. They describe a large
number of spurious observed values in the WT values that
can be associated with the sub-daily variation of the river
WT, underground inflows or a monitoring error, and, by do-
ing so, the predicted temporal evolution of the river WT os-
cillates widely (Fig. 7a, c and e). This was not the case with
the Air2stream or MR models. The results obtained from
these two models demonstrate the fact that, in the absence
of quality input training information (quantity plus quality),
their predictive performance is significantly lower than that
of the ML models. This is illustrated by the less oscillating si-
nusoidal evolution of the river WT (Fig. 7g and i). When con-
sidering very small training datasets, such as the dataset cor-
responding to station 2, with 11 training values and 5 testing
values, ML models tend to have a very unrealistic response
as they either overfit or underfit the training datasets (Fig. 7b,
d and f). In this example, the Air2stream (five-parameter)
model has a delayed but more realistic response. The MR
performed the worst, with the model unable to describe the
correlation between the predictor variables and the observed
river WT (Fig. 7j).

4.3 Model intercomparison – seasonal datasets

The results obtained for the dry and wet season testing
datasets, considering all metrics, suggest that model perfor-
mance is better for the dry season, with the exception of
the results obtained with the Air2stream model using three,
four and five parameters (Tables A4 and A5). The model us-
ing three and four parameters does not consider the effect
of river discharge, and the five-parameter version assumes
that the effect of the discharge can be retained using only a
constant value. This suggests that the inclusion of discharge
data increased the error in the wet season simulation for the
Air2stream model with seven and eight parameters. Follow-
ing the initial selection of the gauging and water quality
stations, the missing discharge values were replaced by the
corresponding climatological year value. Missing discharge
data replacement varied from 0.0 % to 82.6 % (µ= 30.0;
σ = 22.3). Approximately 28 % of the stations have missing
discharge values of over 50 %, which represents an important
source of uncertainty that probably affected the Air2stream
model performance.

The results obtained with the best-performing model (RF)
considering the annual datasets are in line with the previous
conclusion that model performance is better for the dry sea-
son, but only when the DOY predictor is excluded. The in-
clusion of the DOY predictor modified the correlation among
the different variables and the performance of the models
over the wet and dry season, enhancing the importance of
this variable in relation to the overall modeling performance.

Overall, the results are, as expected, similar to those ob-
tained for the annual datasets, showing that the ANN and the
SVR models overfitted the training datasets, in particular dur-
ing the wet season, which also contributed to the worst model
performance during this season. The differences regarding
the mean MAE and RMSE of the testing phase are very small
among the ML models, with the results of the ANN ensem-
ble coming out slightly ahead of those obtained through the
RF and SVR ensemble for both seasons. This deviation in
terms of the results obtained for the annual datasets is driven
by the difference in the length of the annual versus seasonal
datasets and, consequently, the computation of the metrics,
namely the MAE and the RMSE, highlighting the similarity
between the ML models results. This is further emphasized
by the mean NSE and KGE values, which, in the case of the
wet season testing datasets, provide a contradictory result.
According to the mean NSE, the RF and SVR model ensem-
bles produce the best results (NSE – RF: 0.13, ±1.91; SVR
– 0.13, ±1.10; ANN – 0.10, ±1.22); nonetheless, the mean
KGE values favor the ANN ensemble over the other ML re-
sults (KGE – RF: 0.46, ±0.26; SVR – 0.37, ±0.26; ANN –
0.48, ±0.36). The Air2stream model with three parameters
is the best of the hybrid model parameterizations, followed
by the MR (Tables A4 and A5).
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Figure 4. Root mean square error between observed and predicted WT values obtained during the training phase with all models (with
standard deviation of interannual RMSE), considering the model results and the ensemble of all models results. Stations are ordered by the
number of training dataset values, from smallest to largest.
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Figure 5. Root mean square error between observed and predicted WT values obtained during the testing phase with all models (with
standard deviation of interannual RMSE), considering the model results and the ensemble of all models results. Stations are ordered by the
number of testing dataset values, from smallest to largest.
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Figure 6. Root mean square error between observed and predicted
WT values obtained with all models during the training (black dots)
and testing (green dots) phases, ordered by the number of values in
the training and testing datasets (from smallest to largest).

4.4 Modified training datasets –
oversampling–undersampling technique

Based on the result obtained in Sect. 4.2, the best-performing
model was the RF, and this model was therefore considered
to evaluate the improvement of accuracy driven by the mod-
ified training datasets. The training datasets derived from the
application of SMOGN and the ML optimization modeling
approach have different characteristics due to the differences
in the degree of oversampling–undersampling conducted
(“extreme” versus “balanced”) and the selection of the do-

main region of WT values considered to be rare (“high”,
“both”, “low”). Table 5 shows the number of values in the
raw training datasets and in the training datasets obtained
with SMOGN corresponding to the best RF model perfor-
mance. In general terms, considering all stations, oversam-
pling had a more pronounced effect on 50 % of the stations
(six stations), while undersampling influenced the sampling
process in the case of 33 % of the stations. For the remaining
two stations oversampling and undersampling had an identi-
cal effect on the total number of raw training datasets. The
extreme–both parameterization was considered for the mod-
eling of 58 % of the stations (seven stations), suggesting that
more oversampling–undersampling was the best modeling
solution for both, high and low regions. This parameteriza-
tion was followed by extreme–high and balance-both, with
25 % (three stations) and 17 % (two stations), respectively
(Table A8). The WT range affected by both the oversam-
pling and undersampling process was similar for stations 46,
60 and 73, as described by the mean WT values (Table 5).
These results suggest the tendency for stations with a lower
number of values to be affected in different WT ranges, a
fact mainly driven by the availability of samples within each
region of the response variable WT.

The results obtained with the RF model forced with the
modified training datasets had a significant effect on the mod-
eling results. The RF model performance considering the raw
training datasets and the modified training datasets is shown
in Tables A6 and A7, respectively. The mean RMSE and
MAE values obtained between the predicted and observed
datasets were reduced from 0.0 % to 21.9 % (µ= 8.6± 8.2)
and from 0.0 % to 29.9 % (µ= 10.3±9.2), which can be con-
sidered a significant improvement of the RF model accuracy
(Table 6). In fact, the RMSE and MAE values were reduced
by more than 18 % and 15 %, respectively, for 50 % of the
stations with fewer than 80 training samples.

4.5 Feature importance

Table 7 shows the mean feature importance obtained with
the best-performing model (random forest regressor, Pe-
dregosa et al., 2011) considering the mean annual RMSE
and an RF with the following parameters, considering
all station datasets: n_estimators, 50; max_depth, 485;
min_samples_split, 5; max_features,“auto”; bootstrap, true;
random_state, 42. The maximum importance values show
that all features are relevant, at least for some stations, and
that they should not be discarded. The mean importance val-
ues indicate that the mean air temperature and the DOY are
of upmost importance in relation to the model training pro-
cess, followed by the maximum and minimum air temper-
ature. Discharge, global radiation and MOY clearly play a
secondary role, as described by the mean and standard devi-
ation values. Table A9 shows the evaluation of the RF model
performance during the training and testing phases consid-
ering the annual datasets and the sequential increase in the
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Table 5. Number of values in the raw training datasets and the training datasets obtained with SMOGN, corresponding to the best RF model
performance.

Station Train (raw
datasets) (num-
ber of values)

Oversampling Undersampling Train (modified
datasets) (num-
ber of values)

Test (number of
values)

Number of values Water temper-
ature range,
◦C (minimum;
maximum;
average with
standard devia-
tion)

Number of values Water temper-
ature range,
◦C (minimum;
maximum;
average with
standard devia-
tion)

1 10 0 – 0 – 10 5
7 14 15 16.00; 28.00;

19.27± 3.39
4 19.00; 28.00;

22.25± 4.27
25 7

12 35 4 12.94; 15.75;
14.20± 1.40

10 17.60; 22.40;
20.10± 1.54

29 15

13 35 16 16.13; 19.80;
17.54± 1.15

10 8.30; 15.30;
13.16± 2.28

41 16

22 50 39 8.00; 26.00;
16.36± 4.51

17 15.00; 26.00;
19.76± 2.95

72 22

29 69 23 16.75; 22.56;
18.93± 1.57

23 6.50; 16.00;
12.42± 2.54

69 30

30 71 41 8.87; 22.00;
16.60± 4.47

9 7.00; 22.00;
14.79± 4.84

103 31

46 98 12 8.20; 36.00;
19.21± 8.58

33 14.60; 22.00;
18.58± 2.06

77 43

59 137 120 8.60; 26.00;
17.91± 3.53

40 9.00; 23.00;
15.77± 4.23

217 60

60 141 27 10.03; 25.03;
16.64± 5.76

31 14.10; 21.20;
17.16± 2.18

137 61

73 177 15 8.52; 30.00;
16.79± 6.41

53 13.50; 19.10;
17.04± 1.22

139 76

83 236 353 8.50; 28.00;
16.96± 3.41

32 17.00; 26.00;
20.18± 2.19

557 102

Table 6. Percent variation between the metrics obtained with the raw training datasets and the modified training datasets with RF model.

Annual Train Test

Station/metric MAE RMSE NSE KGE Bias R2 MAE RMSE NSE KGE Bias R2

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 −153.6 −129.0 19.7 4.5 100.0 22.1 2.5 0.7 −217.0 −10.1 19.5 1.2
7 7.3 −51.6 41.3 16.0 100.0 45.7 18.0 18.0 −38.8 −28.5 −3185.7 −40.2
12 100.0 100.0 −8.9 −23.9 100.0 −5.8 14.8 7.8 −82.2 34.4 65.4 −17.1
13 −17.5 −25.8 8.5 −6.8 197.5 13.4 29.2 17.6 −77.2 −150.9 406.2 −26.5
22 92.6 89.9 −10.1 −24.5 100.0 −6.4 3.6 2.2 −5.2 4.9 0.3 −8.2
29 22.7 18.3 −1.4 −10.5 100.0 −0.4 7.5 21.9 −23.7 −40.6 −55.2 −20.0
30 60.6 37.8 −6.6 −15.9 100.0 −5.2 5.9 3.2 −8.1 −11.9 60.9 −1.1
46 −60.7 −79.6 3.6 1.8 1168.2 3.2 23.1 18.7 −23.1 −20.4 390.2 −26.5
59 20.9 5.5 0.0 −0.3 187.9 0.1 9.2 8.7 −3.1 −1.0 67.6 −2.3
60 −3.7 −10.2 −0.2 −0.5 53.4 −0.1 8.4 3.0 −2.5 −7.3 29.5 −0.3
73 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
83 0.1 −20.7 3.8 3.5 263.2 3.5 0.4 1.2 −1.1 −2.1 −161.8 −2.0

Average 5.7 −5.5 4 .2 −4.7 205.9 5.8 10.3 8.6 −40.2 −19.5 −196.9 −11.9
(±67.7) (±64.9) (±14.2) (±12.1) (±310.8) (±15.0) (±9.2) (±8.2) (±62.6) (±45.4) (±955.5) (±13.8)

Maximum 100 100 41 16 1168 46 29.2 21.9 0 34 406 1
Minimum −154 −129 −10 −25 0 −6 0.0 0.0 −217 −151 −3186 −40
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Figure 7. Root mean square error between observed (red dots) and predicted WT (blue line) values obtained during the calibration (blue
shading) and testing phase (white shading) with all models for station 59 (graphs on left) and station 2 (graphs on right). Air temperature is
represented by the black line.

model predictors. The results show that, on average, the in-
clusion of all predictor variables has a significant effect on
model performance.

4.6 Effect of the watershed time of concentration on
model performance

The results suggest that, tendentially, there are more train-
ing and testing datasets available for the largest watersheds
(Fig. 8a and b) and that the watershed time of concentration
increases with the watershed area according to a power law
(Fig. 8c). Additionally, the graphic correlation of the RMSE
between the observed river WT and the predicted WT (train-
ing datasets) obtained with the best-performing model run
– the RF ensemble model and the best individual RF run

with the watershed time of concentration – revealed the ex-
istence of a very specific linear pattern within the dataset
(Fig. 9a and b). Two different data samples were extracted
after the datasets’ z-score normalization and the application
of the Gaussian mixture model algorithm with the follow-
ing parameters: n_components, 2; covariance_type, “diag”;
init_params, “random”; warm_start, true (see Pedregosa et
al., 2011). This small set of values, 19 (watershed area:
µ= 106 km2; σ = 153) (Fig. 9a) and 19 (watershed area:
µ= 106 km2; σ = 153) (Fig. 9b), corresponds to 35 % of the
stations with fewer than 125 training values, a fact that en-
hances the non-random nature of this correlation. This corre-
lation shows how the RMSE obtained with the RF increases
with the watershed area, clearly showing the significant ef-
fect upstream conditions have on river WT. The RMSE in-
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Table 7. Mean input feature importance obtained with a random forest regressor.

Mean Air Maximum air Minimum air Discharge Global Month of Day of
temperature temperature temperature radiation the year the year

Mean 0.20 0.12 0.15 0.09 0.10 0.06 0.29
Standard deviation 0.16 0.10 0.10 0.09 0.07 0.07 0.20
Maximum 0.70 0.46 0.62 0.33 0.28 0.34 0.82
Minimum 0.02 0.01 0.02 0.01 0.01 0.00 0.01

Figure 8. (a) Number of training and testing datasets of each sta-
tion. (b) Watershed time of concentration and area of each station.
(c) Watershed time of concentration versus watershed area.

creases by an average of 0.1 ◦C with a 1 h increase in the wa-
tershed time of concentration, considering the RF ensemble
aggregation approach (Fig. 9b).

5 Discussion

Overall, the results of the model’s ensemble (mean RMSE:
2.75 ◦C; σ = 1.00) driven mainly by the predictions of the
ML algorithms are in line with the results obtained in other
studies, namely Rabi et al. (2015) (ANN – RMSE: µ=

Figure 9. (a) RMSE between observed and simulated river WT with
the random forest best model run versus the watershed time of con-
centration. (b) RMSE between observed and simulated river WT
with the random forest ensemble aggregation approach versus the
watershed time of concentration (Ct).

2.06 ◦C) and Zhu et al. (2019a) (MR – RMSE: 2.74 ◦C).
This is quite significant considering the scale of the missing
training and testing datasets corresponding to this study (µ=
98.8 %; σ = 0.68). These results are, as expected, worse than
the results obtained in some of the more recent studies in
which ML algorithms were used to predict river WT (Ta-
ble 1). However, the availability of training data for most of
these studies was impressively good in terms of quantity and
quality, which is, of course, reflected in the overall results.

The selection of the best approach to model river WT is
not an easy task, as ML algorithm performance levels are
very similar (Feigl et al., 2021). That said, considering all
the metrics, the RF model ensemble produced the best re-
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sults for the annual datasets and was the model that provided
the greatest contribution in relation to overall ensemble re-
sults. As such, this was selected as the best model for model-
ing river WT for stations with limited forcing data. However,
this is not in line with the findings of other studies. Rajesh
and Rehana (2021) and Rehana (2019) concluded that the
SVR model was the most robust model for predicting river
WT temperature on a daily timescale. Feigl et al. (2021) con-
cluded that the feed-forward neural networks (FNNs) and the
recurrent neural networks (RNNs) performed better than the
RF model. It is, however, important to highlight the signifi-
cant variations in terms of the number of watersheds studied
and the overall length of the training datasets used across all
the different studies, which could effectively explain the dif-
ferent findings in relation to model performance.

One of this study’s most significant conclusions is that,
from a practical point of view, the application of all the mod-
els considered in this study is relevant. In fact, our results
show that all models considered were best performers for
some of the station datasets, including the MR, which was the
best model for 14 stations. The results show that the advan-
tages of the state-of-the-art ML models and the Air2stream
model are reduced when the training datasets are very small
(< 200 values) and span a long period of time. The infor-
mation contained in the training datasets is not sufficient for
the definition of the unknown underlying function that best
relates the input variables to the output variable. Hence, the
less complex approaches, such as MR, may surpass the re-
sults produced by ML algorithms.

The ML algorithms can considerably improve on the
prediction results produced by the current state-of-the-art
Air2stream model, regardless of the model parametrization.
This finding concurs with that of Feigl et al. (2021) but is
contrary to the results of the study carried out by Zhu et
al. (2019d), which assessed the performance of a suite of ma-
chine learning models for daily stream WT. However, in the
case of our study the performance of the Air2stream model
was affected by the missing training data, namely the dis-
charge datasets, which proved to be a significant obstacle for
this model. When the dataset gap is very large, the struc-
ture of the Air2stream model with six or more parameters
may become very complex when compared to the number of
observed WT values, increasing the risk of overfitting (Pic-
colroaz, 2016). This explains the fact that, considering all
the metrics, the best results were obtained with the three-
parameter model, the simplest version of the Air2stream
model. The three-parameter model does not consider the
river discharge and depth on a daily timescale and, as such,
can be successfully applied if the longitudinal gradient of
temperature is small (Toffolon and Piccolroaz, 2015). The re-
sults of our study correspond to those obtained by Piccolroaz
(2016) regarding the effect of missing data during the model-
ing of the WT of two lakes located in the USA (Lake Erie and
Lake Superior) with the four- and six-parameter Air2stream
model. When the length of the calibration period is 1 year

and the percentage of missing data is in the range of 99 %, the
RMSE between observed and predicted lake WT is> 3.5 ◦C.
It is also relevant to mention that the results of this study sug-
gest that, besides the WT dataset gaps, the modeling results
were also affected by the presence of a large number of WT
outliers, by the uncertainty induced by the mean air temper-
ature ERA5-Land reanalysis datasets and by upstream con-
ditions, which increase with the watershed area. In terms of
input dataset quality, the results of this study suggests that
when the missing datasets reach 98 %, RMSE< 3.0 ◦C is in-
dicative of a good modeling performance. Importantly, this
error can also be further decreased by the generation of syn-
thetic samples to some poorly represented ranges within the
datasets by applying a model such as SMOGN (Branco et al.,
2017).

The success of the models considered in this study, namely
the ML algorithms, is undoubtedly linked to the hyperpa-
rameter optimization algorithm, a conclusion that is in line
with the findings of Feigl et al. (2021). The feature impor-
tance analysis showed that all the predictors (mean, max. and
min. daily air temperature, mean daily total radiation, dis-
charge, MOY and DOY) are relevant to model performance,
a conclusion that also concurs with the findings of Feigl et
al. (2021). Nonetheless the results highlight the importance
of the daily mean air temperature and DOY. The DOY was
the most relevant variable. In fact, the inclusion of the DOY
modified the correlation among the different variables and
the performance of the models across the wet and dry sea-
son, increasing the importance of this variable to the overall
modeling performance, which is in line with the findings of
Zhu et al. (2019d). This suggests that the correlation associ-
ated with the other input variables and the observed river WT
is, in fact, rather weak, which relates to the length and qual-
ity of the training datasets, as well as the uncertainty caused
by the fact that a river’s upstream environmental conditions
can have a significant effect on WT predictions. However,
it is also worth mentioning the lack of clarity in relation to
the exact extent of the upstream area controlling the river
energy balance at a given point (Moore et al., 2005), and,
as such, the averaging of the predictor variables over the
watershed area might not be the best solution. There are a
number of limitations associated with our study that should
be addressed in future studies. Firstly, regardless of the hy-
perparameter optimization and the inclusion of regulariza-
tion and dropout layers to minimize overfitting in the ANN
model, the results show that when the training datasets con-
tain fewer than 30 values, the model will considerably overfit
the datasets and considerably reduce the model’s predictive
capacity. This limitation might be minimized with more ef-
fective control of the number of training epochs and the reg-
ularization algorithm. It is also important to mention the fact
that the hyperparameter optimization algorithm was not ap-
plied to all the station datasets; hence, the ML algorithms
might be further improved. Due to the lack of physical re-
straints, ML models might fail when extrapolating outside
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the range of their training datasets. This was not fully eval-
uated in this study due to the number of watersheds stud-
ied but certainly requires further investigation in the future.
The modeling of 100 synthetic training datasets per station
with the RF model to evaluate the SMOGN algorithm per-
formance was very time-consuming. In fact, the average time
required to model each station considered was 4.0± 0.45 h.
Therefore, the accuracy of the RF model can probably be fur-
ther increased if the number of training datasets is higher. If
possible, this sensitive analysis should be combined with the
evaluation of the loss of quality and consistency of the train-
ing datasets due to undersampling. The results of this study
demonstrate the feasibility of finding a correlation between
the prediction error for observed and predicted river WT val-
ues and the watershed time of concentration. However, the
number of samples that form this correlation is small (19),
and, as such, the number of watersheds studied needs to be
increased to strengthen this correlation and scale it to other
watersheds. The inclusion of the watershed soil type as a
predictor variable would also be of relevance. It is also im-
portant to note that the results of this study are restricted to
the Mediterranean region, and therefore the expansion of the
study area to other latitudes to consider different climate and
soil conditions would also be interesting, namely the north of
Europe and Africa where data scarcity is quite relevant.

6 Conclusion

The results obtained with this study demonstrate, from a
practical modeling perspective, the validity of applying all
the models considered in this study – random forest, artifi-
cial neural network, support vector regression, Air2stream
and multiple regression – when the number of predictor vari-
ables and observed river WT values is limited. It is also of up-
most importance to optimize the ML algorithm hyperparam-
eters. The Tree-structured Parzen Estimator algorithm has
proved to be a good solution. The results of this study also
show the viability of using all available predictor variables
and highlights the importance of the day of the year and the
mean daily air temperature. Regardless of the greater degree
of modeling performance that can be attained with an en-
semble of all the different models, the random forest model
with the following parameters produces the best performance
and may represent an effective solution for modeling river
WT with limiting forcing data: n_estimators, 50; max_depth,
485; min_samples_split, 5; max_features, “auto”; bootstrap,
true; random_state, 42. Importantly, our study further con-
firmed that the accuracy of the random forest can be signif-
icantly improved by the generation of synthetic samples to
some poorly represented ranges within the training datasets
by applying an oversampling–undersampling technique.

It is also relevant to mention that a logarithmic correla-
tion exists in relation to the RMSE between the observed
and predicted river WT and the watershed time of concen-

tration. The RMSE increases by an average of 0.1 ◦C with
a 1 h increase in the watershed time of concentration (wa-
tershed area: µ= 106 km2; σ = 153), a conclusion that may
prove useful for increasing our understanding of the effects
of catchment size and landscape on runoff generation and,
consequently, on river energy balance.
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Appendix A

Table A1. Model parameters and optimization range.

Model Prior distribution Parameter Optimization range

RF uniform “n_estimators” [50, 2000]
uniform “max_depth” [10, 1000]
uniform “min_samples_split” [2, 10]
– “max_features” [auto, sqrt]
– “bootstrap” [True, False]

ANN categorical “n_layers” [1, 2]
uniform integer “n_units_layer” [10, 50]
categorical “act_func_type” [“Relu”, “PRelu”, “Elu”, “Tanh”, “Sigmoid”]
categorical “regularization” [True, False]
quantized distribution “n_epochs” With regularization: [500, 1000]; without regularization: [20, 300]
uniform “dropout” [0, 1.0]
loguniform “batch_size” [5, 20]
uniform “initial_value” [0.001, 0.1]
uniform “reduction_freq” [10, 200]
uniform “decay_rate” (regularization) [0.0001, 0.001]

SVR Categorical “C” [0.1,1, 100, 1000]
Categorical “kernel” [“rbf”, “poly”, “sigmoid”, “linear”]
Categorical “degree” [1, 2, 3, 4, 5, 6]
Categorical “gamma” [1, 0.1, 0.01, 0.001, 0.0001]
Categorical “epsilon” [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10]

Table A2. Description and optimization range (SMOGN, 2022) of modeling parameters considered for the application of SMOGN.

Parameter Description Parameter search space

k Specifies the number of neighbors to consider for interpolation
used in oversampling

uniform [1, 10]

samp_method If “balance” is specified, less oversampling–undersampling
is applied. If “extreme” is specified, more oversampling–
undersampling is applied

Categorical [extreme, balance]

rel_thres Specifies the threshold of rarity, takes a real number between 0
and 1

uniform [0, 1]

rel_coef Corresponds to the box plot coefficient used to automatically
determine extreme and therefore rare “minority” values in y,
when rel_method= “auto”

uniform [0.01, 0.4]

rel_method rel_method argument takes a string, either “auto” or “manual”;
it specifies how relevant or rare “minority” values in y are deter-
mined – if “auto” is specified, “minority” values are automati-
cally determined by box plot extremes

“auto”

rel_xtrm_type The rel_xtrm_type argument takes a string, ei-
ther “low” or “both” or “high”; it indicates which region
of the response variable y should be considered rare or a
“minority”, when rel_method= “auto”

Categorical [high, both, low]
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Table A3. Evaluation of model performance during the training and testing phases considering the annual datasets. Mean MAE, RMSE,
NSE, KGE, bias and R2 (with standard deviation) between observed and predicted WT values.

Annual Train

Model/metric MAE (◦C) RMSE (◦C) NSE KGE Bias (◦C) R2

RF 0.86 (±0.25) 1.13 (±0.30) 0.93 (±0.03) 0.85 (±0.07) −0.01 (±0.06) 0.96 (±0.02)
ANN 0.29 (±0.29) 0.44 (±0.40) 0.99 (±0.03) 0.98 (±0.03) 0.01 (±0.02) 0.99 (±0.03)
SVR 0.82 (±0.54) 1.19 (±0.64) 0.91 (±0.06) 0.88 (±0.09) 0.00 (±0.11) 0.92 (±0.05)
Air2stream (3 par) 2.82 (±0.86) 3.65 (±0.96) 0.33 (±0.25) 0.33 (±0.32) 0.01 (±0.01) 0.33 (±0.25)
Air2stream (4 par) 2.83 (±0.86) 3.65 (±0.97) 0.33 (±0.25) 0.34 (±0.31) 0.00 (±0.01) 0.33 (±0.25)
Air2stream (5 par) 2.72 (±0.88) 3.54 (±0.98) 0.36 (±0.25) 0.38 (±0.29) 0.00 (±0.01) 0.36 (±0.25)
Air2stream (7 par) 2.67 (±0.86) 3.50 (±0.99) 0.38 (±0.25) 0.42 (±0.28) 0.01 (±0.02) 0.38 (±0.25)
Air2stream (8 par) 2.68 (±0.87) 3.49 (±0.99) 0.39 (±0.24) 0.43 (±0.28) 0.01 (±0.04) 0.39 (±0.24)
MR 2.55 (±0.79) 3.33 (±0.95) 0.47 (±0.27) 0.49 (±0.24) 0.00 (±0.00) 0.44 (±0.22)

Ensemble 0.28 (±1.07) 0.41 (±1.36) 0.99 (±0.32) 0.98 (±0.27) 0.01 (±0.04) 0.99 (±0.30)

Annual Test

Model/metric MAE (◦C) RMSE (◦C) NSE KGE Bias (◦C) R2

RF 2.44 (±0.91) 3.18 (±1.06) 0.52 (±0.23) 0.60 (±0.20) −0.07 (±1.11) 0.60 (±0.18)
ANN 2.50 (±0.86) 3.22 (±1.05) 0.48 (±0.28) 0.66 (±0.18) −0.12 (±0.94) 0.55 (±0.22)
SVR 2.60 (±0.86) 3.37 (±0.96) 0.47 (±0.19) 0.53 (±0.21) 0.00 (±0.83) 0.54 (±0.18)
Air2stream (3 par) 3.17 (±1.06) 4.07 (±1.18) 0.21 (±0.32) 0.29 (±0.32) −0.18 (±1.15) 0.34 (±0.22)
Air2stream (4 par) 3.30 (±1.15) 4.24 (±1.37) 0.11 (±0.73) 0.30 (±0.29) −0.04 (±1.30) 0.32 (±0.23)
Air2stream (5 par) 3.53 (±1.08) 4.37 (±1.13) 0.06 (±0.59) 0.18 (±0.38) −0.12 (±1.03) 0.30 (±0.22)
Air2stream (7 par) 3.74 (±1.15) 4.73 (±1.36) −0.13 (±0.81) 0.19 (±0.32) −0.50 (±1.51) 0.24 (±0.22)
Air2stream (8 par) 3.94 (±1.35) 5.06 (±1.73) −0.56 (±2.27) 0.16 (±0.44) −0.42 (±1.65) 0.23 (±0.22)
MR 3.34 (±1.29) 4.28 (±1.62) 0.32 (±0.34) 0.36 (±0.27) −0.46 (±2.14) 0.34 (±0.22)

Ensemble 2.14 (±0.83) 2.75 (±1.00) 0.56 (±0.48) 0.61 (±0.25) −0.16 (±0.73) 0.60 (±0.18)
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Table A4. Evaluation of model performance during the training and testing phases considering the dry season datasets. Mean MAE, RMSE,
NSE, KGE, bias and R2 (with standard deviation) between observed and predicted WT values.

Dry season Train

Model/metric MAE (◦C) RMSE (◦C) NSE KGE Bias (◦C) R2

RF 0.87 (±0.28) 1.13 (±0.34) 0.91 (±0.09) 0.83 (±0.88) 0.09 (±0.28) 0.95 (±0.02)
ANN 0.33 (±0.30) 0.47 (±0.41) 0.98 (±0.03) 0.97 (±0.03) 0.01 (±0.03) 0.98 (±0.03)
SVR 0.84 (±0.54) 1.20 (±0.68) 0.89 (±0.07) 0.86 (±0.10) 0.07 (±0.15) 0.91 (±0.06)
Air2stream (3 par) 2.93 (±0.95) 3.67 (±1.08) 0.21 (±0.25) 0.23 (±0.34) 0.30 (±0.45) 0.26 (±0.25)
Air2stream (4 par) 2.96 (±0.93) 3.69 (±1.06) 0.21 (±0.25) 0.23 (±0.32) 0.37 (±0.52) 0.27 (±0.25)
Air2stream (5 par) 2.81 (±0.95) 3.55 (±1.07) 0.25 (±0.24) 0.23 (±0.31) 0.04 (±0.19) 0.28 (±0.24)
Air2stream (7 par) 2.80 (±0.92) 3.55 (±1.05) 0.27 (±0.24) 0.29 (±0.30) 0.13 (±0.28) 0.29 (±0.23)
Air2stream (8 par) 2.82 (±0.92) 3.55 (±1.04) 0.27 (±0.24) 0.30 (±0.30) 0.19 (±0.32) 0.29 (±0.24)
MR 2.55 (±0.80) 3.22 (±0.96) 0.37 (±0.27) 0.39 (±0.24) 0.13 (±0.19) 0.41 (±0.22)
Ensemble 0.31 (±1.12) 0.44 (±1.37) 0.98 (±0.37) 0.97 (±0.33) 0.01 (±0.22) 0.98 (±0.34)

Dry season Test

Model/metric MAE (◦C) RMSE (◦C) NSE KGE Bias (◦C) R2

RF 2.37 (±1.17) 3.01 (±1.30) 0.33 (±0.62) 0.55 (±0.24) 0.29 (±1.55) 0.57 (±0.22)
ANN 2.19 (±0.93) 2.80 (±1.10) 0.31 (±0.71) 0.57 (±0.31) 0.01 (±1.03) 0.54 (±0.22)
SVR 2.39 (±0.95) 3.02 (±1.06) 0.37 (±0.34) 0.50 (±0.22) 0.29 (±1.04) 0.52 (±0.22)
Air2stream (3 par) 3.29 (±1.27) 4.12 (±1.32) −0.13 (±0.47) 0.09 (±0.35) 0.30 (±1.73) 0.21 (±0.23)
Air2stream (4 par) 3.65 (±2.57) 4.49 (±2.51) −0.28 (±0.87) 0.11 (±0.34) 0.79 (±3.20) 0.24 (±0.26)
Air2stream (5 par) 3.69 (±1.35) 4.48 (±1.38) −0.41 (±1.00) 0.04 (±0.33) 0.79 (±2.15) 0.18 (±0.22)
Air2stream (7 par) 3.77 (±2.55) 4.58 (±2.50) −0.29 (±0.75) 0.06 (±0.31) 0.57 (±3.23) 0.17 (±0.21)
Air2stream (8 par) 3.97 (±2.66) 4.84 (±2.67) −0.59 (±1.78) 0.06 (±0.35) 0.75 (±3.36) 0.18 (±0.22)
MR 3.39 (±2.58) 4.21 (±2.71) 0.21 (±0.35) 0.22 (±0.33) −0.44 (±3.26) 0.30 (±0.22)

Ensemble 1.98 (±0.96) 2.51 (±1.08) 0.50 (±0.55) 0.63 (±0.28) 0.12 (±1.17) 0.63 (±0.21)
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Table A5. Evaluation of model performance during the training and testing phases considering the wet season datasets. Mean MAE, RMSE,
NSE, KGE, bias and R2 (with standard deviation) between observed and predicted WT values.

Wet season Train

Model/metric MAE (◦C) RMSE (◦C) NSE KGE Bias (◦C) R2

RF 0.84 (±0.27) 1.11 (±0.33) 0.91 (±0.06) 0.80 (±0.09) −0.07 (±0.15) 0.94 (±0.04)
ANN 0.25 (±0.28) 0.37 (±0.40) 0.98 (±0.04) 0.98 (±0.04) 0.01 (±0.03) 0.98 (±0.03)
SVR 0.75 (±0.53) 1.06 (±0.66) 0.91 (±0.07) 0.88 (±0.10) −0.03 (±0.17) 0.92 (±0.06)
Air2stream (3 par) 2.72 (±0.93) 3.57 (±1.07) 0.15 (±0.26) 0.14 (±0.32) −0.22 (±0.35) 0.20 (±0.22)
Air2stream (4 par) 2.70 (±0.92) 3.55 (±1.06) 0.15 (±0.26) 0.18 (±0.31) −0.28 (±0.40) 0.20 (±0.22)
Air2stream (5 par) 2.64 (±0.95) 3.48 (±1.11) 0.20 (±0.25) 0.18 (±0.29) −0.02 (±0.16) 0.23 (±0.24)
Air2stream (7 par) 2.56 (±0.96) 3.41 (±1.14) 0.24 (±0.25) 0.24 (±0.29) −0.10 (±0.25) 0.27 (±0.25)
Air2stream (8 par) 2.55 (±0.97) 3.38 (±1.16) 0.25 (±0.26) 0.27 (±0.31) −0.14 (±0.27) 0.28 (±0.25)
MR 2.58 (±0.89) 3.40 (±1.09) 0.30 (±0.28) 0.32 (±0.28) −0.11 (±0.18) 0.27 (±0.23)

Ensemble 0.23 (±1.06) 0.35 (±1.37) 0.99 (±0.39) 0.98 (±0.36) 0.01 (±0.19) 0.99 (±0.37)

Wet season Test

Model/metric MAE (◦C) RMSE (◦C) NSE KGE Bias (◦C) R2

RF 2.38 (±1.07) 3.04 (±1.19) 0.13 (±1.91) 0.46 (±0.26) −0.36 (±1.37) 0.49 (±0.23)
ANN 2.38 (±1.04) 3.03 (±1.26) 0.10 (±1.22) 0.48 (±0.36) −0.23 (±1.06) 0.48 (±0.23)
SVR 2.52 (±0.94) 3.20 (±1.12) 0.13 (±1.10) 0.37 (±0.26) −0.42 (±0.96) 0.40 (±0.23)
Air2stream (3 par) 3.13 (±1.47) 3.95 (±1.55) 0.02 (±0.29) 0.14 (±0.30) −0.42 (±1.92) 0.25 (±0.22)
Air2stream (4 par) 3.15 (±1.29) 4.01 (±1.40) −0.14 (±1.01) 0.14 (±0.29) −0.49 (±1.77) 0.24 (±0.23)
Air2stream (5 par) 3.36 (±1.09) 4.13 (±1.18) −0.19 (±0.64) 0.06 (±0.32) −0.81 (±1.65) 0.21 (±0.22)
Air2stream (7 par) 3.85 (±1.23) 4.81 (±1.45) −0.80 (±1.41) 0.01 (±0.30) −1.27 (±2.15) 0.15 (±0.20)
Air2stream (8 par) 3.99 (±1.37) 5.10 (±1.92) −1.27 (±3.46) −0.04 (±0.48) −1.25 (±2.18) 0.13 (±0.19)
MR 3.55 (±2.00) 4.42 (±2.22) 0.13 (±0.35) 0.13 (±0.36) −0.28 (±2.61) 0.20 (±0.23)

Ensemble 2.09 (±0.86) 2.65 (±1.04) 0.31 (±0.78) 0.52 (±0.28) −0.33 (±1.07) 0.55 (±0.18)
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Table A6. Evaluation of RF model performance during the training (raw datasets) and testing (raw datasets) phases considering the annual
datasets. Mean MAE, RMSE, NSE, KGE, bias and R2 (with standard deviation) between observed and predicted WT values.

Annual Train (raw datasets) Test (raw datasets)

Station/metric MAE (◦C) RMSE (◦C) NSE KGE Bias (◦C) R2 MAE (◦C) RMSE (◦C) NSE KGE Bias (◦C) R2

1 1.18 1.40 0.96 0.80 0.15 0.99 3.53 5.03 −0.01 0.33 1.56 0.17
(±1.77) (±2.13) (±0.40) (±0.37) (±0.15) (±0.29) (±0.56) (±0.48) (±0.22) (±0.20) (±1.02) (±0.06)

7 1.07 1.55 0.84 0.69 −0.08 0.91 2.26 3.19 0.46 0.50 0.01 0.46
(±0.65) (±0.61) (±0.20) (±0.19) (±0.08) (±0.11) (±0.36) (±0.28) (±0.11) (±0.17) (±0.16) (±0.09)

12 0.78 0.97 0.92 0.81 0.03 0.95 2.98 3.53 0.15 0.35 −1.56 0.32
(±0.22) (±0.30) (±0.07) (±0.06) (±0.03) (±0.07) (±0.06) (±0.10) (±0.05) (±0.08) (±0.05) (±0.05)

13 0.83 1.04 0.86 0.71 0.04 0.93 2.51 3.09 0.29 0.20 0.28 0.50
(±0.20) (±0.26) (±0.09) (±0.08) (±0.03) (±0.08) (±0.09) (±0.09) (±0.05) (±0.04) (±0.15) (±0.09)

22 1.22 1.66 0.91 0.79 −0.19 0.94 2.57 3.30 0.45 0.57 −1.67 0.60
(±0.69) (±0.49) (±0.08) (±0.07) (±0.03) (±0.07) (±0.09) (±0.11) (±0.04) (±0.05) (±0.06) (±0.05)

29 0.61 0.88 0.95 0.88 −0.02 0.96 1.47 2.32 0.62 0.60 −0.16 0.65
(±0.16) (±0.19) (±0.03) (±0.03) (±0.01) (±0.03) (±0.06) (±0.06) (±0.02) (±0.03) (±0.05) (±0.02)

30 0.85 0.92 0.92 0.85 0.01 0.93 1.56 2.31 0.44 0.67 −1.09 0.56
(±0.16) (±0.20) (±0.05) (±0.04) (±0.01) (±0.05) (±0.06) (±0.06) (±0.03) (±0.03) (±0.05) (±0.03)

46 0.69 0.94 0.96 0.91 0.01 0.97 2.79 3.63 0.60 0.61 0.32 0.61
(±0.25) (±0.34) (±0.04) (±0.06) (±0.02) (±0.03) (±0.09) (±0.14) (±0.03) (±0.07) (±0.54) (±0.02)

59 0.65 0.83 0.96 0.90 0.01 0.97 1.20 1.57 0.84 0.90 0.33 0.85
(±0.18) (±0.25) (±0.03) (±0.04) (±0.02) (±0.03) (±0.06) (±0.11) (±0.02) (±0.05) (±0.06) (±0.02)

60 0.71 0.92 0.96 0.90 −0.03 0.97 2.00 2.48 0.70 0.78 0.85 0.74
(±0.23) (±0.30) (±0.04) (±0.06) (±0.02) (±0.03) (±0.05) (±0.07) (±0.02) (±0.06) (±0.13) (±0.02)

73 0.84 1.16 0.92 0.81 0.04 0.95 1.92 2.47 0.58 0.63 0.28 0.58
(±0.24) (±0.27) (±0.05) (±0.05) (±0.01) (±0.04) (±0.14) (±0.12) (±0.04) (±0.07) (±0.05) (±0.04)

83 0.65 0.88 0.95 0.87 0.00 0.96 1.61 2.07 0.69 0.72 −0.13 0.69
(±0.15) (±0.20) (±0.03) (±0.03) (±0.02) (±0.03) (±0.08) (±0.12) (±0.04) (±0.05) (±0.04) (±0.04)

Average 0.84 1.09 0.93 0.83 0.00 0.95 2.20 2.92 0.48 0.57 −0.08 0.56
(±0.21) (±0.28) (±0.04) (±0.07) (±0.08) (±0.02) (±0.70) (±0.92) (±0.24) (±0.20) (±0.95) (±0.18)
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Table A7. Evaluation of RF model performance during the training (modified datasets) and testing (raw datasets) phases considering the
annual datasets. Mean MAE, RMSE, NSE, KGE, bias and R2 (with standard deviation) between observed and predicted WT values.

Annual Train (modified datasets) Test (raw datasets)

Station/metric MAE (◦C) RMSE (◦C) NSE KGE Bias (◦C) R2 MAE (◦C) RMSE (◦C) NSE KGE Bias (◦C) R2

1 2.99 3.20 0.77 0.77 0.00 0.77 3.44 5.00 −0.04 0.37 1.26 0.17
(±1.24) (±1.47) (±0.31) (±0.30) (±0.15) (±0.15) (±0.34) (±0.31) (±0.14) (±0.22) (±1.28) (±0.07)

7 0.99 2.35 0.49 0.58 0.00 0.49 1.86 2.62 0.64 0.65 0.16 0.65
(±0.45) (±0.66) (±0.09) (±0.12) (±0.07) (±0.08) (±0.43) (±0.38) (±0.14) (±0.12) (±0.62) (±0.11)

12 0.00 0.00 1.00 1.00 0.00 1.00 2.54 3.25 0.28 0.23 −0.54 0.37
(±0.38) (±0.57) (±0.08) (±0.11) (±0.05) (±0.07) (±0.62) (±0.78) (±0.50) (±0.21) (±0.98) (±0.12)

13 0.98 1.31 0.79 0.75 −0.04 0.80 1.78 2.55 0.52 0.51 −0.86 0.63
(±0.33) (±0.45) (±0.13) (±0.15) (±0.05) (±0.11) (±0.50) (±0.54) (±0.29) (±0.34) (±1.08) (±0.19)

22 0.09 0.17 1.00 0.99 0.00 1.00 2.47 3.23 0.47 0.54 −1.66 0.65
(±0.69) (±0.89) (±0.11) (±0.15) (±0.07) (±0.09) (±0.78) (±0.90) (±0.43) (±0.15) (±1.57) (±0.15)

29 0.47 0.72 0.96 0.97 0.00 0.96 1.36 1.81 0.77 0.85 −0.25 0.77
(±0.36) (±0.54) (±0.06) (±0.08) (±0.05) (±0.05) (±0.41) (±0.52) (±0.21) (±0.13) (±1.00) (±0.13)

30 0.33 0.57 0.98 0.98 0.00 0.98 1.47 2.24 0.47 0.75 −0.43 0.57
(±0.29) (±0.47) (±0.07) (±0.09) (±0.03) (±0.06) (±0.47) (±0.50) (±0.32) (±0.11) (±0.71) (±0.09)

46 1.11 1.68 0.93 0.90 −0.09 0.94 2.15 2.95 0.73 0.73 −0.92 0.77
(±0.40) (±0.58) (±0.05) (±0.06) (±0.05) (±0.04) (±0.66) (±0.85) (±0.23) (±0.13) (±1.50) (±0.11)

59 0.51 0.78 0.96 0.90 −0.01 0.97 1.09 1.43 0.87 0.91 0.11 0.87
(±0.33) (±0.44) (±0.04) (±0.07) (±0.05) (±0.04) (±0.40) (±0.52) (±0.16) (±0.12) (±0.67) (±0.10)

60 0.73 1.02 0.96 0.91 −0.02 0.97 1.83 2.41 0.72 0.83 0.60 0.74
(±0.35) (±0.47) (±0.04) (±0.05) (±0.03) (±0.04) (±0.36) (±0.53) (±0.17) (±0.11) (±0.99) (±0.12)

73 0.84 1.16 0.92 0.81 0.04 0.95 1.92 2.47 0.58 0.69 0.28 0.58
(±0.39) (±0.52) (±0.06) (±0.08) (±0.05) (±0.04) (±0.39) (±0.47) (±0.21) (±0.13) (±1.17) (±0.11)

83 0.65 1.06 0.91 0.84 0.01 0.93 1.61 2.05 0.69 0.73 −0.34 0.70
(±0.28) (±0.37) (±0.04) (±0.06) (±0.03) (±0.03) (±0.41) (±0.49) (±0.21) (±0.14) (±0.72) (±0.10)

Average 0.81 1.17 0.89 0.87 −0.01 0.90 1.96 2.67 0.56 0.65 −0.22 0.62
(±0.77) (±0.90) (±0.15) (±0.12) (±0.03) (±0.15) (±0.63) (±0.91) (±0.25) (±0.20) (±0.77) (±0.19)

Table A8. SMOGN parameters for the best RF predictions.

Station k samp_method rel_thres rel_coef rel_xtrm_type

1 4.0 extreme 0.53 0.02 high
7 3.0 extreme 0.46 0.36 both
12 2.0 extreme 0.29 0.17 both
13 7.0 extreme 0.81 0.02 high
22 3.0 balance 0.46 0.01 both
29 7.0 extreme 0.63 0.14 high
30 6.0 extreme 0.98 0.40 both
46 2.0 balance 0.62 0.29 both
59 5.0 extreme 0.40 0.10 both
60 5.0 extreme 0.77 0.17 both
73 5.0 extreme 0.53 0.38 both
83 5.0 extreme 0.04 0.28 both
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Table A9. Evaluation of the random forest performance during the training and testing phases considering the annual datasets and the
sequential increase in the models’ predictors. Mean MAE, RMSE, NSE, KGE, bias and R2 (with standard deviation) between observed and
predicted WT values. (1) Mean air temperature; (2) mean air temperature + discharge; (3) mean air temperature + discharge + radiation;
(4) mean air temperature+ discharge+ radiation+maximum air temperature; (5) mean air temperature+ discharge+ radiation+maximum
air temperature + minimum air temperature; (6) mean air temperature + discharge + radiation + maximum air temperature + minimum air
temperature + MOY; (7) mean air temperature + discharge + radiation + maximum air temperature + minimum air temperature + MOY
+ DOY.

Annual Train

Metric/predictor (1) (2) (3) (4) (5) (6) (7)

MAE (◦C) 1.84 (±0.51) 1.61 (±0.45) 1.50 (±0.41) 1.48 (±0.40) 1.44 (±0.40) 1.41 (±0.40) 1.07 (±0.30)
RMSE (◦C) 2.35 (±0.57) 2.09 (±0.51) 1.98 (±0.47) 1.94 (±0.47) 1.90 (±0.46) 1.86 (±0.46) 1.43 (±0.38)
NSE 0.72 (±0.10) 0.78 (±0.09) 0.80 (±0.07) 0.81 (±0.07) 0.82 (±0.07) 0.82 (±0.07) 0.89 (±0.06)
KGE 0.67 (±0.12) 0.70 (±0.11) 0.71 (±0.11) 0.71 (±0.10) 0.72 (±0.10) 0.72 (±0.10) 0.82 (±0.09)
Bias (◦C) 0.00 (±0.11) 0.01 (±0.09) 0.01 (±0.08) 0.01 (±0.09) 0.01 (±0.11) 0.00 (±0.08) 0.00 (±0.08)
R2 0.76 (±0.08) 0.82 (±0.0.7) 0.85 (±0.05) 0.86 (±0.04) 0.87 (±0.04) 0.87 (±0.05) 0.92 (±0.04)

Annual Test

Metric/predictor (1) (2) (3) (4) (5) (6) (7)

MAE (◦C) 3.55 (±0.97) 3.43 (±1.01) 3.37 (±1.10) 3.35 (±1.08) 3.35 (±1.10) 3.29 (±1.10) 2.51 (±0.95)
RMSE (◦C) 4.54 (±1.18) 4.40 (±1.17) 4.30 (±1.19) 4.29 (±1.19) 4.30 (±1.23) 4.23 (±1.21) 3.29 (±1.12)
NSE 0.03 (±0.35) 0.08 (±0.34) 0.12 (±0.35) 0.13 (±0.34) 0.13 (±0.34) 0.16 (±0.33) 0.48 (±0.26)
KGE 0.32 (±0.25) 0.32 (±0.26) 0.31 (±0.28) 0.32 (±0.27) 0.31 (±0.28) 0.33 (±0.28) 0.60 (±0.20)
Bias (◦C) −0.15 (±1.33) −0.26 (±1.37) −0.25 (±1.18) −0.22 (±1.21) −0.22 (±1.26) −0.21 (±1.21) −0.10 (±1.25)
R2 0.23 (±0.20) 0.26 (±0.21) 0.28 (±0.22) 0.28 (±0.23) 0.28 (±0.23) 0.29 (±0.23) 0.58 (±0.18)
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