
Geosci. Model Dev., 16, 407–425, 2023
https://doi.org/10.5194/gmd-16-407-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odeldescription

paperSUHMO: an adaptive mesh refinement SUbglacial Hydrology
MOdel v1.0
Anne M. Felden, Daniel F. Martin, and Esmond G. Ng
Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory,
Berkeley, California, USA

Correspondence: Anne M. Felden (amfelden@lbl.gov)

Received: 20 July 2022 – Discussion started: 27 July 2022
Revised: 29 November 2022 – Accepted: 23 December 2022 – Published: 16 January 2023

Abstract. Water flowing under ice sheets and glaciers can
have a strong influence on ice dynamics, particularly through
pressure changes, suggesting that a comprehensive ice sheet
model should include the effect of basal hydrology. Modeling
subglacial hydrology remains a challenge, however, mainly
due to the range of spatial and temporal scales involved –
from subglacial channels to vast subglacial lakes. Addition-
ally, networks of subglacial drainage channels dynamically
evolve over time. To address some of these challenges, we
have developed an adaptive mesh refinement (AMR) model
based on the Chombo software framework. We extend the
model proposed by Sommers et al. (2018) with a small but
significant change to accommodate the transition from unre-
solved to resolved flow features. We handle the strong non-
linearities present in the equations by resorting to an effi-
cient nonlinear full approximation scheme multigrid (FAS-
MG) algorithm. We outline the details of the algorithm and
present convergence analysis results demonstrating its good
performance. Additionally, we present results validating our
approach, using test cases from the Subglacial Hydrology
Model Intercomparison Project (SHMIP) (de Fleurian et al.,
2018). We finish by presenting a more complex, 100 km-by-
100 km synthetic test case with peaks and valleys that we use
to investigate the effective pressure distribution as the num-
ber of AMR levels increases. These preliminary results sug-
gest that a minimum spatial resolution is needed to properly
capture channel features, but additional work is required to
precisely quantify this and its impact on accurately modeling
the coupled ice sheet–hydrology system. The efficiency of
our approach, relying on localized refinement, is also demon-
strated. Future work will include coupling the SUbglacial
Hydrology MOdel (SUHMO) with the BISICLES AMR ice

sheet model (Cornford et al., 2013), both built on the same
numerical framework.

1 Introduction

The extensive and accelerating retreat of glaciers observed
over the last 150 years has fueled interest in the behavior
of the cryosphere. It is common knowledge that ice sheets
have grown and retreated many times over the past 2.6 mil-
lion years, but some studies suggest that the current inter-
glacial period is straying from its expected course and could
last much longer than originally anticipated (e.g., Berger and
Loutre, 2002; Ganopolski et al., 2016). The amount of water
stored in the Greenland Ice Sheet alone has the potential to
raise the global-mean sea level (GMSL) by about 7 m (As-
chwanden et al., 2019) at a rate being characterized by deep
uncertainties to external factors (Edwards et al., 2021). The
contribution of glaciers and ice sheets to GMSL has been
increasing over the past decades, combining to more than
50 % of the total change over the period 2006–2018 (Ed-
wards et al., 2021; Masson-Delmotte et al., 2021). Recent
studies predict a likely GMSL rise of about 0.6 m by 2100
under intermediate greenhouse gas emissions scenarios, but
ice sheet processes could drive GMSL to rise up to about
2 m by 2100 and 5 m by 2150 under a very high emissions
scenario (Masson-Delmotte et al., 2021). Since more than
30 % of the world’s population today lives in what can be
considered coastal areas, predicting and understanding the
mechanics governing the melting of the cryosphere can be
considered a problem of pressing scientific and societal im-
portance.
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The evolution of the cryosphere can hardly be decoupled
from that of its environment, and numerical ice sheet mod-
els should ideally include simplified but accurate represen-
tations of the interactions with the other components of the
Earth system (see, e.g., Fig. 1 of Goelzer et al., 2017). In par-
ticular, it is now widely accepted – through observational ev-
idence and theoretical considerations – that basal hydrology
strongly influences the dynamics of glaciers and ice sheets,
mainly through changes in the basal pressure (e.g., Iken,
1981; Bindschadler, 1983; Fricker et al., 2007; Stearns et al.,
2008; Doyle et al., 2018). Concurrent ice uplift and accelera-
tion have been observed in both Greenland and the Antarctic
Ice Sheet (Das et al., 2008; Nienow et al., 2017; Tuckett et al.,
2019), suggesting significant routing of surface lake water
to the base and an active and dynamic subglacial hydrology
network. Persistent subglacial water structures like conduits
– from one draining event to the next – and lakes have also
been postulated to exist in Antarctica, which could be of criti-
cal importance in the estimation of the ice sheet mass balance
and, eventually, GMSL projections (Siegfried and Fricker,
2018; Kirkham et al., 2019; Malczyk et al., 2020).

Modeling subglacial hydrology remains a challenge,
mainly due to the large discrepancy in spatial and tempo-
ral scales between the physics driving subglacial phenomena
versus those driving ice sheet dynamics. Relevant timescales
for the latter are on the order of tens to thousands of years,
while subglacial water cycles occur over days or months.
Englacial structures can organize into channels a few meters
wide, while Antarctica covers an area of over 10 million km2.
Additionally, the variety of subglacial and englacial wa-
ter structures, including sheets (Weertman, 1962) and cavi-
ties (Walder, 1986; Kamb, 1987), ice-walled conduits (Röth-
lisberger, 1972), bedrock channels, lakes and everything in
between, makes it difficult to construct a comprehensive sub-
glacial hydrology model (see, for example, Fig. 2 of Flowers,
2015). Complicating matters further, existing observations
are insufficient to fully validate any modeling effort and, to
date, no complete, physically based theory has been devel-
oped. Most models follow more or less the same “recipe”
made up from drainage-system elements that are combined
depending on what is thought to be physically relevant and
on the numerical framework at hand. These models typically
resort to a differentiation between inefficient flow configura-
tions (linked cavities) and efficient ones (channels). Both are
described by a balance between opening and closing terms:
cavities typically open up due to sliding over the bedrock,
while channels open up due to dissipative heating and melt-
ing of their walls, and closing in both configurations is due to
ice creep. While a review of all subglacial modeling efforts
is out of the scope of the present paper, we briefly discuss re-
cent relevant two-dimensional, multi-element efforts which
share the ultimate goal of coupling with an ice sheet model,
to provide context to our study. The reader is referred to the
thorough review of Flowers (2015) as well as to the refer-
ences and participating models in the Subglacial Hydrology

Model Intercomparison Project (SHMIP) (de Fleurian et al.,
2018) for additional information.

“Next-generation” efforts (terminology from Flowers
(2015)) started emerging in the early 2000s, with pioneer-
ing work to simulate the Weichselian Scandinavian Ice Sheet
by Arnold and Sharp (2002). In their study, ice velocities
relied on calculations of subglacial water pressures and the
use of a water-pressure-dependent sliding law. The two-
dimensional basal hydrology is made up of either inefficient
(linked cavities) or efficient (Röthlisberger channels) flow
configurations – both cannot coexist in the same cell, and
findings highlighted that the spatial distribution of ice flow
is greatly impacted by the presence of the subglacial wa-
ter. More recently, mainly motivated by observations made
in Greenland linking surface meltwater and basal sliding, the
last decade has seen a sustained interest in comprehensive
subglacial hydrology models. Schoof (2010) used a model
with a single equation for the cross-sectional area of discrete
conduits that could behave as either cavities or channels to
investigate the link between ice velocities and subglacial wa-
ter channelization patterns generated by seasonal and short-
term water supply variations. Hewitt et al. (2012) and He-
witt (2013) introduced a two-dimensional subglacial hydrol-
ogy model coupling a continuum sheet and discrete channel
elements – each requiring a different set of equations. This
model is linked to an ice flow model, enabling a parametric
study on a synthetic sheet-like geometry emulating Green-
land Ice Sheet margins. Werder et al. (2013) extended this
effort to an unstructured finite-element mesh where the dis-
tributed continuum sheet is solved using finite elements on
a set of triangular cells while channels are located along the
edges of the cells. The resulting model, the Glacier Drainage
System (GlaDS) model, is coupled to both the Ice-sheet and
Sea-level System Model (ISSM) (Larour et al., 2012) and the
Elmer/Ice ice sheet model (Gagliardini et al., 2013) and has
been successfully employed to study both the Greenland and
Antarctic ice sheets (e.g., Dow et al., 2016; Gagliardini and
Werder, 2018). SHAKTI (Sommers et al., 2018), also cou-
pled to ISSM, removes the distinction between channels and
cavities/sheets by using a single set of equations to evolve
the water gap height (unlike the model of Schoof (2010) that
evolves a drainage cross-sectional area). Such an approach
is attractive because water structures are free to evolve and
merge anywhere in the domain (without being restricted to
cell faces, for example), without the need for an explicit cou-
pling between them. It does, however, raise the question of
how fine the mesh must be to properly resolve the various
subglacial features. The cost of finer resolution to accommo-
date the formation of channels could very quickly become
prohibitive. Fortunately, fine structures are expected to be lo-
calized both spatially and temporally, making this a promis-
ing target for adaptive mesh refinement (AMR).

We follow the approach of Sommers et al. (2018) with
adaptations to implement a subglacial hydrology model
based on the Chombo AMR framework (Adams et al., 2001–

Geosci. Model Dev., 16, 407–425, 2023 https://doi.org/10.5194/gmd-16-407-2023



A. M. Felden et al.: SUHMO: an AMR SUbglacial Hydrology MOdel v1.0 409

2021). Chombo provides a set of tools for implementing
finite-volume methods for the solution of partial differential
equations on block-structured adaptively refined rectangular
grids. We propose a small but significant modification to the
set of equations presented in Sommers et al. (2018) in or-
der to seamlessly transition from underresolved to resolved
channels, alleviating an unphysical asymptotic behavior as
the mesh size begins to allow resolution of typical channel
scales. Building on the AMR framework allows development
of a robust numerical approach to solve the resulting non-
linear system of PDEs which achieves second-order conver-
gence in space.

The paper is structured as follows. In Sect. 2, we summa-
rize the set of equations used in the SUbglacial Hydrology
MOdel (SUHMO). In Sect. 3 we provide the details of the
nonlinear full approximation scheme (FAS) algorithm em-
ployed to solve the governing equations of Sect. 2. Conver-
gence analyses demonstrating the efficiency and accuracy of
our implementation are presented in Sect. 4. In Sect. 5, we
present additional validating results, choosing three repre-
sentative test cases extracted from SHMIP (de Fleurian et al.,
2018). Results from a transient, larger-scale AMR simulation
with random bed roughness and interesting topographic fea-
tures are discussed in the final Sect. 6. We finish with con-
cluding remarks.

2 Conservation equations for the subglacial drainage
system

We start with a set of equations similar to that used in
SHAKTI (Sommers et al., 2018), which is a parallelized,
finite-element subglacial hydrology model currently imple-
mented as part of the open-source Ice-sheet and Sea-level
System Model (Larour et al., 2012). We provide a brief
overview before introducing a novel diffusion component
that we believe represents an improvement to the existing
model. For additional details concerning the derivation of the
original equations, the reader is referred to Sommers et al.
(2018) or to earlier work by, e.g., Hewitt (2011) or Hewitt
et al. (2012).

2.1 Equations

The governing equation set starts with a two-dimensional
expression for the conservation of mass – assuming we are
dealing with an incompressible fluid:

∂b

∂t
+
∂be

∂t
+∇ · q =

ṁ

ρw
+ es, (1)

where b is the subglacial water-filled gap height (m), be is the
volume of water stored englacially per unit area of bed (m), q
is the gap-integrated basal water flux (m2 s−1), ṁ is the melt
rate (kg m−2 s−1), ρw is the density of water (kg m−3), and
es encompasses all external sources of meltwater (produced
englacially or surface meltwater, for example) (m s−1).

An approximate momentum equation for water velocity
integrated over the gap height gives rise to an expression for
the water flux, based on equations developed for flow in rock
fractures (e.g., Zimmerman et al., 2004):

q =
−b3g

12ν(1+ωRe)
∇h, (2)

where g is the gravitational acceleration (m s−2), ν is the
kinematic viscosity of water (m2 s−1), ω is a dimensionless
parameter controlling the nonlinear transition from laminar
to turbulent flow and Re is the Reynolds number. The hy-
draulic head h (m) is defined as

h=
Pw

ρwg
+ zb, (3)

where Pw is the water pressure (Pa) and zb is the bed eleva-
tion (m). The Reynolds number follows a classical definition:

Re=
|v|b

ν
=
|q|

ν
, (4)

where v is the average flow velocity across the gap
height. Equation (2) is an important piece in the SHAKTI
model (Sommers et al., 2018). It allows for a spatially and
temporally variable hydraulic transmissivity in the system
and facilitates the representation of the simultaneous coex-
istence of laminar, transitional, and turbulent flow in subre-
gions of the domain. The reader is referred to the aforemen-
tioned publication for additional details.

The melt rate ṁ includes heat produced at the bed
(geothermal flux and frictional heat due to sliding over the
bed) along with heat generated through internal dissipation
(mechanical energy converted to thermal energy by the flow),
which is effectively melting the drainage system’s walls and
ceiling:

ṁ=
1
L
(G+ |ub · τ b| − ρwgq · ∇h+ ctcwρwq · ∇Pw), (5)

where L is the latent heat of fusion of water (J kg−1),G is the
geothermal flux (W m−2), ub is the ice basal velocity vector
(m s−1), τ b is the stress exerted by the bed onto the ice (Pa),
ct is the change in pressure-melting point with temperature
(K Pa−1) and cw is the heat capacity of water (J kg−1 K−1).
Note that the last term takes into account changes in sensible
heat due to pressure-melting point variations. It can become
important when considering realistic topographies with sharp
changes in bed elevation (zb) but is often neglected in similar
models (de Fleurian et al., 2018). We also neglect this term in
SUHMO, unless explicitly stated otherwise (such as for the
AMR test case in Sect. 6).

Since we do not allow for the drainage space to be par-
tially filled, b also evolves according to opening and closing
terms that are typically model-specific. As in Sommers et al.
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(2018), opening can be due to melt and sliding over bumps
on the bed, while closing is solely due to ice creep:

∂b

∂t
=
ṁ

ρi
+βub−A|Pi−Pw|

n−1(Pi−Pw)lc, (6)

where ρi is the ice density (kg m−3), ub is the magnitude
of the sliding velocity (m s−1), A is the ice flow parame-
ter (Pa−3 s−1), n is the flow law exponent (typically, n= 3)
and Pi is the ice overburden pressure (Pa). The parameter
β =max((br−b)/lr,0) is dimensionless; it governs opening
by sliding and is a function of the typical bed bump height
(br) and bump spacing (lr) in such a way that opening by
sliding only occurs where the gap height is less than the typ-
ical local bump height (Werder et al., 2013). The quantity lc
is the creep length scale, which is defined as follows:

lc =

{
b
(

1.0− (bc−b)
bc

)
, if b ≤ bc,

b, otherwise,
(7)

with bc a critical gap height controlling the creep. Note that
previous work, including SHAKTI (Sommers et al., 2018),
typically sets lc = b. By using Eq. (7) to define the ice creep
length scale, we ensure that ice creep can be more rapidly
cut off as soon as b ≤ bc, thus enabling sheet-like systems to
survive. This can be useful, for instance, when the bed topog-
raphy is such that big lubricated areas are known to persist.

Equations (1) and (6) can then be combined to produce an
equation for the evolution of the hydraulic head:

∇ ·

[
−b3g

12ν(1+ωRe)
∇h
]
+
∂be

∂t
= ṁ

[ 1
ρw
−

1
ρi

]
+A|Pi−Pw|

n−1(Pi−Pw)lc−βub+ es. (8)

2.2 Model parameters

Constants and parameters presented in the previous section
are summarized in Table 1, along with typical values. Note
that the englacial storage volume, be, present in the original
set of equations (Sommers et al., 2018) is not currently used
in SUHMO. Under this assumption, Eq. (8) becomes a stan-
dard elliptic partial differential equation (PDE).

2.3 Introduction of a diffusion term

As described in the introduction, the subglacial drainage sys-
tem is made of various coexisting and dynamically evolv-
ing subglacial drainage structures. These are typically broken
into two categories: distributed (or inefficient) flow structures
and channelized (or efficient) flow structures. The advantage
of this set of governing equations is that only one equation
(i.e., Eq. 6) is necessary to model the drainage space, and
this equation accommodates both inefficient and efficient el-
ements. One drawback from Eq. (6), however, is that it was
originally derived by considering a sheet drainage system,
central to which is the growth of the water sheet thickness,

while equations governing channel growth are intrinsically
two-dimensional. In practice, adding a simple melt-opening
term in Eq. (6) to accommodate channels causes the water
sheet thickness to grow locally (e.g., in each computational
cell), because the second dimension, the channel width, has
been dropped from the problem formulation.

This behavior is not an issue if relatively coarse meshes
are used in configurations where the primary interest is ef-
fective pressure fields, but it does prevent channel geometries
from converging with mesh resolution. Convergence with
mesh resolution is an important feature of consistent numer-
ical methods; additionally, AMR requires consistent conver-
gence with mesh resolution to be effective. As a first step
towards addressing this issue, we modify Eq. (6) by adding a
diffusion-like term as follows:

∂b

∂t
=
ṁ

ρi
+βub−A|Pi−Pw|

n−1(Pi−Pw)lc+∇ ·D∇b, (9)

where the diffusion coefficient depends on the dissipation
term of the melt rate:

D =
b

ρiL
(−ρwgq · ∇h+ ctcwρwq · ∇Pw). (10)

With this formulation, we aim to represent melting of chan-
nel walls as heat dissipation is no longer limited to chan-
nel/cavity ceilings. Adding this diffusion term and neglecting
englacial storage, Eq. (8) then becomes

∇ ·

[
−b3g

12ν(1+ωRe)
∇h
]
= ṁ

[ 1
ρw
−

1
ρi

]
+A|Pi−Pw|

n−1(Pi−Pw)lc−∇ ·D∇b−βub+ es. (11)

3 Algorithm details

We solve Eqs. (9) and (11) on a hierarchy of block-structured,
Cartesian meshes using a finite-volume discretization, facili-
tated by the Chombo framework (Adams et al., 2001–2021).
We extend the Chombo toolbox to solve the nonlinear evolu-
tion equation for the hydraulic head implicitly using the full
approximation scheme (Briggs et al., 2000). The resulting al-
gorithm accuracy is second order in space and first order in
time. For completeness, Appendix A gives a brief summary
of the main features of our AMR framework. We adopt the
notation used in several previous studies (Berger and Colella,
1989; Martin et al., 2008; Cornford et al., 2013; Parkinson
et al., 2020), and the reader is referred to these prior pub-
lications for additional details. All that follows is specific
to a two-dimensional application with an isotropic Cartesian
mesh.

Geosci. Model Dev., 16, 407–425, 2023 https://doi.org/10.5194/gmd-16-407-2023



A. M. Felden et al.: SUHMO: an AMR SUbglacial Hydrology MOdel v1.0 411

Table 1. List of constants and parameters employed in SUHMO. a The expression for the basal drag follows a modified Weertman law (Weert-
man, 1957): Cbu

2
bN , where the value for Cb is typically set to 400 s2 m−2. b This value is chosen in accordance with a closure of the form

AlNn (de Fleurian et al., 2018).

Symbol Description Units Typical value

zb Bed elevation m –
τb Stress exerted by the bed onto the ice Pa a

g Gravitational acceleration m s−2 9.81
ρw Bulk density of water kg m−3 1000
ρi Bulk density of ice kg m−3 910
ν Kinematic viscosity of water m2 s−1 1.787× 10−6

ω Transition between laminar and turbulent flow – 0.001
A Ice flow law parameter Pa−3 s−1 2.5× 10−25 b

n Ice flow law exponent – 3
br Typical height of bed bumps m 0.1
lr Typical spacing between bed bumps m 2.0
bc Creep cutoff length scale m 0.0
ub Sliding velocity m s−1 (10−6,0)
L Latent heat of fusion of water J kg −1 3.34× 105

G Geothermal flux W m−2 0.05
ct Change in pressure-melting point with temperature kg Pa−1 7.5× 10−8

cw Heat capacity of water J kg−1 K−1 4.22× 103

es External meltwater source m s−1 –

3.1 Full approximation scheme for variable-coefficient,
nonlinear elliptic PDE

3.1.1 Multigrid methods

Multigrid (MG) methods are commonly employed to solve
linear or nonlinear problems which can be expressed as

A(u)= F . (12)

If we denote by ũ an approximation to the exact solution u of
this problem, we can define the error e as e = u− ũ and the
residual r as r = F−A(ũ). If A is a linear operator, then we
obtain the residual equation:

A(e)= r, (13)

with which we can start a recursive process of “restricting”
(averaging) the residual onto a coarser grid to solve for a
coarse correction of the error that we then interpolate back
(usually referred to as “prolongation”) to the fine grid (Briggs
et al., 2000). For linear systems, multigrid is highly effi-
cient and can be implemented using a matrix-free approach.
It is also straightforward to extend to AMR mesh hierar-
chies (Martin and Cartwright, 1996).

3.1.2 FAS multigrid

If A is a nonlinear operator, we cannot make use of Eq. (13).
Instead we use the residual in a new problem formulation:

A(h)= r +A(h̃), (14)

with which we can follow a similar recursive process to a
traditional MG method. For completeness, the main steps of
one FAS MG iteration are described here and illustrated in
Fig. 1, focusing on the V-cycle scheduling of events; a more
thorough description can be found elsewhere (Briggs et al.,
2000; Henson, 2003). We have chosen to work with h instead
of u to be consistent with our main variable – the hydraulic
head. We will use the following general expression for the
nonlinear operator A:

A(h)= (αAI −β∇ ·B∇)h+G(h), (15)

where the nonlinear piece is contained in G(h). The restric-
tion process is illustrated on the left of Fig. 1, by the arrow
pointing down, while the prolongation is illustrated on the
right with the arrow going up. The original level is labeled
the finest level, and it has a mesh spacing of 1x0. This level
is coarsened n times by a factor of 2, so that coarsened grid
n has a grid size of 2n1x0.

We start by finding an approximate solution h̃ to the orig-
inal problem Eq. (12) on the finest grid by using a few iter-
ations of an iterative method (the relaxation method is de-
scribed in Appendix B). The residual r is then evaluated,
and both h̃ and r are averaged down to the first coarsened
grid via a restriction operator denoted as R21x0

1x0
. We rewrite

the problem as in Eq. (14) (where the new right-hand side
– RHS – is denoted F21x0 in Fig. 1) and perform a num-
ber of relaxation iterations to find an approximate solution,
h̃21x0 . This process is repeated until we reach the coarsest
level. The coarsest error, e2n1x0 , can then be extracted from
the solution and interpolated up to the next finer grid to be
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Figure 1. Illustration of one FAS MG iteration, following a V-cycle schedule of grids. See text for further explanations.

used to correct the local approximation ˜
h2n−11x0 (see Fig. 1).

This “prolongation” process is repeated, going up the levels
until we reach the finest level again. We usually perform be-
tween two and four relaxation iterations while correcting the
solution at each level.

3.1.3 Special treatment for the variable coefficient

We rewrite Eq. (11) to make it consistent with the operator
that has been described in Fig. 1:

linear︷ ︸︸ ︷
∇ ·

[ B︷ ︸︸ ︷
−b3g

12ν(1+ωRe)
∇h
]

−

nonlinear︷ ︸︸ ︷
A|Pi− ρwg(h− zb)|

n−1(Pi− ρwg(h− zb))lc

=

nonlinear lagged︷ ︸︸ ︷
−
ρc

L
ρwg

[
1− ctcwρw

]
q · ∇h

+
ρc

L
(G+ |ub · τ b| − ctcwρ

2
wgq · ∇zb)

−∇ ·D∇b−βub+ es, (16)

where ρc =
(

1
ρw
−

1
ρi

)
. We discuss our treatment of the re-

maining nonlinearity and h dependencies in the RHS in
Sect. 3.2. Note that the coefficient B is both spatially vari-
able and a function of the primary variable h, via the cou-
pling with Re. In our final implementation of the algorithm,
B is recomputed on the finest grid at the beginning of every V
cycle and then averaged down on all coarser grids. We exper-
imented with fully lagging B, estimating the Reynolds num-
ber before the first V-cycle iteration and freezing its value for
the remaining of the solve, but this resulted in poor overall
algorithmic efficiency, as discussed in Appendix C.

3.2 Map of the algorithm

In order to solve the coupled set of Eqs. (9) and (16), we use
a combination of FAS-MG iterations as described in Sect. 3.1
to solve for the hydraulic head and traditional MG to solve
for the gap height. We note that the lagged term in Eq. (16),
as well as any term involving the water flux, will depend on
h in a non-trivial way. To ensure these are treated properly,
we embed the FAS-MG solve for h in external Picard iter-
ations (in which the value of the gap height is frozen). We
have found that the required number of Picard iterations is,
on average, typically one or two. This number can occasion-
ally increase, particularly during transient phases.

We use a backward Euler method to discretize the tem-
poral term in Eq. (9), reorganizing to be consistent with
Eq. (12):

A(bn+1)︷ ︸︸ ︷
(I −1t∇ ·D∇)bn+1

= bn+1t
[ ṁ
ρi
+βub−AN

3lc

]
, (17)

where we have replaced the effective pressure (Pi−Pw) with
N , and n= 3 has been assumed.

The main steps required to advance our main variables
from t = tn to t = tn+1 are summarized in Algorithm 1. The
superscripts n and k refer to the current time step and the
current Picard iteration, respectively. For better readability, n
is omitted when discussing Picard iterations. When relevant,
“CC” will refer to cell-centered variables, while “FC” will
refer to face-centered variables.

Following common usage (for example, in Martin and
Colella, 2000), we enforce boundary conditions at domain
boundaries and between AMR grid patches (both at the same
refinement level and between levels) through the use of a
ring of ghost cells (“GC”) around each logically rectangular
patch.
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Algorithm 1 Skeleton of a SUHMO time step (tn→ tn+1).

(I) Start the time step
(a) Fill GC of hn and bn

(b) hold← hn and bold← bn

(II) Evaluate hn+1

while ! converged do
(a) hlagged← hk

(b) Compute ∇hcc/fc
k

and ∇zb
cc/fc
k

(c) Re-q dependency

– Compute Recc
k

by solving the quadratic equation ωRe2
+Re− b3g

12ν2 (|∇h|)= 0

– Evaluate Refc
k

– Update qfc
k

based on Eq. (2)
– Evaluate qcc

k
(d) Compute the external source term esk based on the type of external water input (localized/distributed)
(e) Compute the RHS of Eq. (16)

– Update ṁk using Eq. (5). All dot products are computed at FC before being interpolated to CC
– Evaluate the FC diffusive coefficient based on Eq. (10), Dk = f(∇hfc

k
, ∇zb

fc
k

, qfc
k

)
(f) Solve for hk+1 (Eq. 16) using the FAS-MG method described in Sect. 3.1
(g) Average down and fill GC of hk+1
(h) Check for convergence

if
∥∥hk+1−hlagged

∥∥
∞

‖hold‖∞
≤ ε then

hn+1
← hk+1

converged= true
end if

end while
(III) Evaluate bn+1

(a) Re-evaluate ∇hn+1,cc, Ren+1,cc/fc, qn+1,cc/fc based on hn+1

(b) Compute the RHS of Eq. (17)
– Update ṁn+1 based on Eq. (5)

(c) Solve for bn+1 (Eq. 5) using a traditional MG method with a Gauss–Seidel relaxation method
– Re-evaluate Dn+1 using Eq. (10) and hold fixed during the solve

(IV) End the time step
(a) Write a plot/checkpoint file or perform post processing analysis

Figure 2. Panels (a) and (b) are sketches of synthetic glacier to-
pographies used in SHMIP (de Fleurian et al., 2018): (a) 100 km-
long ice sheet margin with a maximum thickness of 1500 m and
(b) 6 km-long valley glacier with a 600 m altitude difference be-
tween summit and terminus. The orange region in panel (b) outlines
the intersection of zb = 0 with the ice – note the bed overdeepen-
ing. Panel (c) is a sketch of the channelizing test case geometry
used for convergence analysis. Note the thickness of the ice and the
smaller horizontal spatial scale. The red dot shows the location of
the moulin, which has a diameter of 1.5 m.

4 Analysis of the algorithm efficiency

4.1 Distributed test case

We start by analyzing a simple distributed-flow test case. The
topography considered is the synthetic representation of a
land-terminating ice sheet margin from SHMIP (de Fleurian
et al., 2018), illustrated in Fig. 2a. The ice sheet domain mea-
sures 100 km in the x direction and 20 km in the y direction,
the bed is flat, and a parabolic ice surface zs is prescribed by

zs(x,y)= 6(
√
x+ 5000−

√
5000)+ 1. (18)

In order to evaluate the convergence properties of the com-
plete algorithm, we evolve the system to a fixed time with
increasing resolution, halving 1x with each refinement. The
solution error is then computed by comparing 8c, the solu-
tion at resolution 1x, with the finer solution φf computed
using 1x/2 and averaged onto the coarser grid (8f→c). The
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L2 norm of the error for a simulation with ntot cells is

ErrL2 =

√√√√ 1
ntot

ntot∑
i=0
(8c

i −8
f→c
i )2. (19)

Figure 3a shows the error convergence using six grid resolu-
tions for two variables of interest: h and N . The slope of the
error demonstrates second-order convergence for both vari-
ables.

4.2 Channelized test case

We now turn our attention to a channelizing test case. The
domain is a rectangle of 64 m in the x direction by 16 m in
the y direction. The bed is sloped in the x direction (with a
+2 % slope) and is topped with a slab of ice of constant thick-
ness everywhere (500 m). A moulin delivering 30 m3 s−1 of
water is located 16 m from the outlet of the domain in the
x direction. The geometry is shown in Fig. 2c. Periodic-
ity is assumed in the y direction, a homogeneous Dirichlet
boundary condition (outlet) is prescribed at x = 0 m, and a
homogeneous Neumann boundary condition is prescribed at
x = 64 m. Note that the moulin source term follows a spatial
Gaussian profile, as shown in the top plot of Fig. 4a – the
convergence of which is exactly second order. Additionally,
the moulin input is gradually increased in time, from 0 at
time t = 0 s to the maximum value after about a month, and
the simulation proceeds until steady state is reached.

We use Eq. (19) to evaluate the convergence properties of
SUHMO in this slightly more challenging test case. Results
using seven grid resolutions are presented in Fig. 3b and c.
The original formulation (Eqs. 6 and 8) fails to converge: as
the resolution increases, the channel width becomes smaller
and smaller, with the limit being the cell size 1x. This phe-
nomenon is illustrated in the middle plot of Fig. 4a and in
Fig. 4b for a simulation with 1x = 0.125 m. In this case, the
gap height is seen to exceed 12 m, a situation deemed un-
physical in most cases, and we clearly observe that all the
flow is routed through a single cell. As can be seen in Fig. 3b,
adding the diffusion term to the formulation (Eqs. 9 and 16)
enables second-order convergence of all the variables of in-
terest. In this case, as is evidenced by the bottom plot of
Fig. 4a and by Fig. 4b, the channel width can extend over
several 1x and the overall shape and aspect ratio of the con-
duit better fit the idea of what a channel should be.

To demonstrate our AMR implementation, we also per-
form a numerical convergence analysis using several levels
of refinement. The AMR scheme should ideally produce so-
lutions with comparable accuracy to a uniform mesh solu-
tion with the same (finest) resolution. Using the previously
described test case, a refinement criterion based on the local
melting rate enables refinement of the region where channel-
ization occurs. Starting from a baseline, single-level simu-
lation with a cell size of 1x, we enable the computation to
continue and allow either one or two extra level(s) of refine-

ment, where the finest level will have a cell size of either
1x/2 or1x/4, respectively. This two- or three-level simula-
tion is then compared to results at a finer resolution,1x/4 or
1x/8, respectively. The results shown in Fig. 3b indicate that
the error using two or three AMR levels is comparable to that
of the single-level solution with the same effective resolution.
The entire plot can be read horizontally, where an imaginary
line drawn from a point on the one-level line should intersect
the corresponding equivalent resolution on the two-level or
three-level line, as is the case here.

5 SHMIP suite of test cases

Having demonstrated the convergence and efficiency of
SUHMO, we turn our attention to a set of simple test cases
from SHMIP (de Fleurian et al., 2018) to demonstrate the
validity of our implementation. SHMIP is built around six
synthetic suites of experiments (labeled from A to F), each
consisting of a set of four to six numerical experiments de-
signed to show the formation and evolution of the differ-
ent drainage elements (sheets and channels) in the context
of different input scenarios. Two geometries are considered,
a land-terminating ice sheet margin and a synthetic valley
glacier geometry, as shown in Fig. 2a and b, respectively. In
the paper, the results from 13 different models are presented,
including the SHAKTI model from Sommers et al. (2018).

We show steady-state cases (Suites A, B and E) in Sect. 5.1
and use Suite F in Sect. 5.2 to explore seasonal forcing. We
compare all of our results to those obtained with SHAKTI
(all results from the SHMIP project are open source and
freely available online; see Werder et al., 2018). We believe
that such comparisons are appropriate since SHAKTI is the
closest in formulation to SUHMO, and so, by tuning to the
same set of parameters and showing that we exhibit similar
behavior, we hope to validate our approach. Note that the
diffusion term is included in what follows, but its impact is
negligible in these non-channelizing test cases. Additionally,
the geothermal flux is not used in Suites A and B, in order to
reach a steady state and retrieve the prescribed discharge, and
the creep cutoff length scale bc is always set to 0 so that the
creep length scale lc reverts to b (see Eq. 7), consistent with
the SHAKTI contribution in de Fleurian et al. (2018). Finally,
while Suite E has been designed in part to investigate the ef-
fect of bed slope on model predictions, we elected to turn off
the pressure-melting contribution and focus on validating our
implementation on this challenging geometry (our numerical
implementation uses a structured, unskewed mesh). Results
for Suite E with an added pressure-melting contribution are
available in the Supplement.

5.1 Steady-state test cases

Results for the SHMIP test cases A, B and E are presented in
Figs. 5, 6 and 7, respectively. The longitudinal evolution of
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Figure 3. Convergence results for (a) the distributed test case, (b) the channelized test case with the diffusion term and (c) the original
channelized test case without diffusion. The variables shown are the effective pressure (N ) in blue, the head (h) in red and the gap height (b)
in green. The x axis is the number of cells in the computational domain in the x direction, n1x .

Figure 4. (a) Two-dimensional fields of moulin input and gap height
(b) extracted from computations with mesh size 1x = 0.125 m.
(b) One-dimensional plots of gap height (b) and head (h) extracted
from the two-dimensional fields, at location x = 10 m, highlighted
by the blue line in panel (a). Note that original refers to the formu-
lation without the diffusion term, while with D refers to the formu-
lation including the diffusion term.

the width-averaged effective pressure N is displayed on the
left-hand side of all the figures. The right-hand side shows
the total discharge and its various contributions to be com-
pared with the total recharge. The discharge is the evolution
along the x axis of the y integral of the face-centered water
flux qx , while the volumetric recharge contains contributions
from both moulin input (when applicable) and melting. Us-
ing the notation introduced in Sect. A2, the discharge at each
xi location can be computed on the coarsest grid as

dis(xi)=
∑

p∈(i,Z)
p∈�0,x

qxp1x
0, (20)

while the recharge is the cell-integrated right-hand side of
Eq. 1):

rech(xi)=
∑

p∈(i,Z)
p∈�0

(
ṁp

ρw
+ es,p

)
1x01x0. (21)

At steady state, the recharge and discharge at the domain out-
let should be exactly the same. Some figures also display
efficient and inefficient contributions to the total discharge,
which are computed based on a degree of channelization
(DoC) variable. The DoC is a cell-centered variable used
to quantify the relative contribution of the two ice-opening
terms in the RHS of Eq. (9):

DoC=
ṁ
ρi

ṁ
ρi
+βub

, (22)

with values between 0 and 1 in each cell. A DoC close to
1 indicates a high degree of channelization, while a value
close to 0 is indicative of a sheet-like drainage system. The
efficient and inefficient contributions to the total discharge at
xi are expressed as dis(xi)DoC(xi) and dis(xi)(1−DoC(xi)),
respectively.

Suites A and B use the land-terminating ice sheet margin
geometry (Fig. 2a). In Suite A, a steady and spatially uni-
form water input is prescribed, with total recharge increas-
ing as we progress from A1 to A6. In Suite B, the same
amount of water as in case A5 is fed into an increasing num-
ber of moulins (from 1 in B1 to a 100 in B5). For additional
details on the parameterization of the different suites, the
reader is referred to the online instructions (https://shmip.
bitbucket.io/instructions.html, last access: 1 January 2023).
Single-level (no AMR) simulations are performed, with a
fixed cell size 1x0

= 312.5 m and a fixed time step dt = 1 h,
which is consistent with values reported from other two-
dimensional models in de Fleurian et al. (2018). We apply a
Dirichlet boundary condition h= zb at the left edge (outlet)
of the domain and Neumann boundary conditions with 0 pre-
scribed flux on all other domain boundaries. The steady state
is quickly reached in all cases, and simulations are run for
approximately 400 d. Results obtained with SUHMO com-
pare well to those obtained with SHAKTI, as expected since
both models are built on the same set of equations. We note
from Figs. 5b and 6b that SUHMO exhibits slightly smaller
contributions from the efficient system in cases that display
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Figure 5. Steady-state results for the SHMIP suite of test cases A: (a) y-average evolution of effective pressure N with distance from the
outlet and (b) volumetric discharge, to be compared to the total recharge the system receives (see text for further explanation). Cases A5
and A6 also display the contributions from the inefficient and efficient systems (their sum gives the total discharge). For validation purposes,
results from SHAKTI (Sommers et al., 2018) as presented in de Fleurian et al. (2018) are also shown.

a hybrid flow configuration (see A6 in Fig. 5b, for exam-
ple). These discrepancies are attributed to discretization dif-
ferences between both models. SHAKTI uses an unstruc-
tured mesh, while SUHMO uses regular Cartesian meshes.
We note that discretization features are probably the cause of
the overshoot observed in Fig. 6b for case B1 with SHAKTI.
The recharge provided by each moulin in Suite B is another
potential source of inconsistency. In this study, a Gaussian
distribution is assumed.

Suite E uses the synthetic valley glacier geometry
(Fig. 2b). In this experiment, water input is uniformly dis-
tributed at the bed of the glacier. Here also, single-level sim-
ulations are performed, with1x0

= 23.4375 m and dt = 1 h.
The boundary conditions are similar to those in Suites A and
B. As already specified, the value of ct is set to 0 for this
suite of experiments (removing the pressure-melting term in
Eq. 5). The steady state is quickly reached in all cases, and

simulations are run for approximately 400 d. While the effec-
tive pressure distributions obtained using SUHMO compare
well to those obtained using SHAKTI, we note bigger dif-
ferences in the spatial distribution of the hybrid flow config-
uration in Fig. 7b. These are again attributed to differences
in mesh and cell size between SUHMO and SHAKTI. We
note the same tendencies as the over-deepening of the val-
ley increases (from E1 to E5), however, with an increasingly
sheet-like distribution throughout.

5.2 Suite F: seasonal cycle with valley topography

We turn our attention to SHMIP Suite F. The results pre-
sented in Sect. 5.1 focused on the effects of the geometry and
water input type on otherwise steady-state configurations.
Suite F prescribes a seasonal water forcing in the synthetic
valley glacier geometry of case E1 (Bench Glacier reference
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Figure 6. Steady-state results for the SHMIP suite of test cases B: (a) y-average evolution of effective pressure N with distance from
the outlet and (b) volumetric discharge, to be compared to the total recharge the system receives (see text for further explanation). The
contributions from the inefficient and efficient systems (their sum gives the total discharge) are also featured. For comparison, results from
SHAKTI (Sommers et al., 2018) as presented in de Fleurian et al. (2018) are also shown.

geometry). The water input increases from run F1 to run F5,
as can be seen in Fig. 8b. The setup follows that of Suite E.
A total of 6 years are simulated, allowing sufficient time to
settle into a periodic state. Year 6 results are presented in
Fig. 8a. Time evolutions of the averaged effective pressure
N are extracted at three locations of interest, labeled low,
middle, and high bands, depicted in color in Fig. 2b. As be-
fore, results obtained with SUHMO closely follow those of
SHAKTI.

Overall, while comparisons with SHMIP do not enable a
true validation of our results, they do help validate our algo-
rithm and provide an idea of how SUHMO compares to other
subglacial hydrology models available in the literature.

6 AMR synthetic experiment

6.1 Case description

The test cases in Sect. 5 were all single-level experiments. In
the present section, we now consider a synthetic square to-
pography of 100 km by 100 km, generated with the intent of

emulating catchment areas found at ice sheet margins. Both
the bed geometry and ice thickness are shown in Fig. 9a. The
bed height varies from 0 m to just under 1000 m, while the
ice thickness increases from 100 m in the bottom-left corner
(red dot location) to 700 m in the top-right corner. Zero flow
via a homogeneous Neumann boundary condition is imposed
on the two interior boundaries (y = 0 and x = 100 km), while
Dirichlet boundary conditions are prescribed on the other two
boundaries (with h= zb, so that Pw = 0).

Five runs will be presented hereafter – labeled from R0
to R4 (see Table D1), all using a base mesh with 256 cells
in both the x and y directions. This value is chosen so
1x0
= 390.625 m, which is typical of many ice sheet simu-

lations. The runs are forced by 63 randomly placed moulins,
delivering a total water input of 5180 m3 s−1. The location
of the moulins is shown in Fig. 9b. We emphasize that the
topography, moulin location and amount of water input used
here have not been designed to reproduce an existing glacier
area. The water delivered by the moulins is constant, no sea-
sonal cycle is considered, and it is also quite high: this ex-
periment should be taken as a demonstration of the robust
behavior of the system even under prolonged high melting
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Figure 7. Steady-state results for the SHMIP suite of test cases E: (a) y-average evolution of effective pressure N with distance from
the outlet and (b) volumetric discharge, to be compared to the total recharge the system receives (see text for further explanation). The
contributions from the inefficient and efficient systems (their sum gives the total discharge) are also featured. For validation purposes, results
from SHAKTI (Sommers et al., 2018) as presented in de Fleurian et al. (2018) are also plotted.

scenarios, when a high degree of channelization is expected.
Our purpose is to demonstrate the importance of spatial res-
olution when looking at subglacial water patterns and ulti-
mately to examine the impact of resolution on the effective
pressure distribution.

All runs start from an established, steady-state, single-
level simulation with no moulins. The moulins activate at
t = 0 s and the influx ramps up over a period of 2 months un-
til the maximum is reached. The simulations are run for an-
other 22 months after that, bringing the total simulated time
to 2 years. The time step is dt = 2 h in the first year before
increasing to 5 h for the remainder of the simulation.

6.2 Overview of computational requirements

An example of mesh configuration for runs R1 to R3 is
shown in Fig. 10b. In every case, a regridding operation is
performed each simulated week, so that the dynamic mesh-
ing can follow the water patterns and add or remove refine-
ment around the channels as they develop or retract. We use
both the gap heights and melting rates to tag cells for refine-
ment, for this example, cells in which the melt rate exceeds

2× 10−5 kg m−2 s−1 are tagged for refinement, along with
cells in which the gap height exceeds 0.1 m (this is effectively
only active for R4, since the gap height is smaller for R3 and
under). As can be seen, this criterion is very efficient, and
only a small area of our entire computational domain ends
up requiring up to four levels of refinement (due to the very
small cell size reached, R4 does not provide any additional
visual insight and is therefore omitted from the figures).

A single-level run with the same resolution as R4 (4096×
4096) would require evolving over 16 million cells, when
20 times fewer cells are required in the AMR run to cap-
ture what we believe to be most of the important features,
as can be seen in Fig. 10a (the cell count in the AMR runs
is obtained by averaging the total number of cells evolved
over the course of the simulation). The total time to solu-
tion is also shown in Fig. 10a. For completeness, results from
single-level simulations with resolution matching each finest
level of refinement k of Rk are also reported. The total time
to solution in this case does not scale exactly with the in-
crease in resolution: the simulation contains a transient ramp
up where moulins activate, and refining means creating more
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Figure 8. Steady-state results for the SHMIP suite of test cases F: (a) time evolution of the averaged effective pressure N at three locations
of interest (see text and Fig. 2b) and (b) time evolution of the seasonal water forcing. For comparison, results from SHAKTI (Sommers et al.,
2018) as presented in de Fleurian et al. (2018) are also shown.

Figure 9. Synthetic square topography for runs R0 to R4: (a) ex-
truded bed elevation (showing two valley regions) and ice height
and (b) location of the moulins and isocontours of bed elevation.
The red dot in both images shows the location of the lowest eleva-
tion – the outlet.

channels and spatial stiffness, as evidenced by the increas-
ing number of FAS MG iterations (not reported here). The
time-to-solution ratio of single level versus AMR simula-
tions, however, increases with refinement and is well over
an order of magnitude for the most refined case presented

here. Additionally, note that despite being performed very
frequently, the cost of regridding never accounts for more
than 0.7 % of the total computational time.

6.3 Results and analysis of the effective pressure
distribution

The first three rows of Fig. 11 show fields of gap height (b)
and effective pressure (N ) for runs R0 and R2 to R4. A close-
up on the valley 1 area (see Fig. 9) illustrates the extent and
shape of the central channel. One interesting observation is
that no channel forms in R0; no channelization ever occurs,
even if the simulation is extended for another 10 years. R1
is very similar to R0 in that no real channel inception can
be seen and is therefore omitted in Fig. 11. This appears
to demonstrate a “minimum resolution requirement” to cap-
ture channelization behavior in this example. Similar mini-
mum resolution requirements were demonstrated for marine
ice sheets in Cornford et al. (2016). Such a minimum reso-
lution is, however, difficult to quantify in practice and may
be case-dependent. More investigation (currently ongoing) is
required to understand tendencies in resolution requirements,
but a design criterion could be a much needed numerical tool.
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Figure 10. (a) Log–log plot of cell counts (plain lines with triangles) and execution times (dotted lines) versus resolution for the synthetic
experiment and (b) example of mesh distribution for runs R1 to R3 overlayed on the locations of the moulins, normalized diffusive term
(Sect. 2.3), and isocontours of bed elevation.

Figure 11. Fields of gap height (top two rows) and effective pressure (third row) for runs R0 and R2 to R4, with overlayed isocontours of
bed elevation. For each run, a close-up of the channelizing area in the valley 1 region (see Fig. 9) is also displayed. The bottom row shows
fields of effective pressure differences between R0 and R2 to R4, from left to right.

The bottom row of Fig. 11 displays differences in effec-
tive pressure (1N ) between R0 and, respectively, R2, R3 and
R4, from left to right. As expected, N increases significantly
in the valley 1 area and near the top boundary (y = 100 km)
for Rk,k>1, where channels are seen to develop. For R3 and
R4, 1N can reach up to 10 % of the global maximum of N
and, more importantly, up to 25 % of the local N value (up
to 0.6 MPa). These differences are deemed non-negligible in
the context of evaluating a locally varying friction law, such
as the ones from Schoof (2005) or Tsai et al. (2015). Figure 1
in Brondex et al. (2017), for example, shows strong nonlin-
earities in certain low-pressure regimes, where a difference
of this order could result in very different basal drag profiles.
Such sensitive areas are more likely to be located near the

grounding line, where ice is thinner, and the potential impact
on ice velocity warrants further investigation.

Note that all flow features may not be properly resolved in
the present configuration. Indeed, even the run with the most
AMR levels (R4) still has a resolution of about 25 m (see
Table D1), when channels are commonly believed to have
a diameter of about 1–10 m. The extent to which channels
need to be resolved to sufficiently account for their impact in
a coupled subglacial hydrology–ice sheet modeling system
is still an open question. For example, are friction law results
sufficiently accurate when, say, differences of less than 5 %
are observed in the N profile as the resolution is doubled (or
a new AMR level is added)? Regardless, this suite of simu-
lations demonstrates that commonly used resolutions (on the
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order of 300–500 m) can sometimes fail to even reveal chan-
nelized features.

7 Concluding remarks

In this paper, we present and validate a novel AMR sub-
glacial hydrology model, SUHMO, based on the Chombo
framework (Adams et al., 2001–2021). We solve equations
similar to those in Sommers et al. (2018), with the addi-
tion of a pseudo-diffusion to recover the wall melting in
channels that was discarded in the derivation of the origi-
nal equations. We demonstrate the usefulness of this addi-
tional term in achieving consistent spatial convergence as
finer resolution begins to resolve flow configurations. Our al-
gorithm uses an efficient combination of nonlinear MG it-
erations embedded in external Picard iterations. We show
that results with SUHMO closely follow those obtained with
SHAKTI (Sommers et al., 2018) on a broad selection of
the SHMIP suite of test cases (de Fleurian et al., 2018). A
more complex, multi-level test case is also presented which
hints at the need for sufficient spatial resolution to correctly
resolve subglacial system dynamics; computational perfor-
mance analysis demonstrates the efficiency of AMR on such
large-scale hydrologic problems when compared to a single-
level run with the same spatial discretization. The AMR ap-
proach will eventually enable better ice-bed boundary condi-
tions for ice sheet simulations at a reasonable computational
cost.

With that in mind, future work will focus on the coupling
of SUHMO with the BISICLES AMR ice sheet model (Corn-
ford et al., 2013) in order to further investigate the sensitivity
of model predictions to spatially accurate modeling of basal
conditions. Indeed, while the precise topography of the sub-
glacial network is generally deemed unimportant to the over-
all ice sheet dynamics, there is to our knowledge no real nu-
merical proof of this assessment, and the results presented
here allude to the potential impact of the finer resolution
of these systems. A numerical tool capable of resolving the
structure of channels, following them as they emerge and dis-
appear, will be an asset in helping to determine whether this
is indeed the case. The efficiency provided by AMR can also
be leveraged if and when it is determined that sufficient res-
olution in specific regions is important.

Appendix A: AMR structure and notation

A1 Proper nesting

Calculations are performed on a hierarchy of `max nested,
cell-centered level domains. For each AMR level `=
0, . . .,`max, the problem domain �` is discretized by a uni-
form Cartesian grid 0` with grid spacing 1x`. Level 0 is the
coarsest level, encompassing the entire geometry, while each
subsequent finer level, `+ 1, is a factor n`ref =

1x`

1x`+1 finer

Figure A1. (a) Example of a block-structured mesh composed of
three levels. Discrete-level domain �0 comprises the cell centers of
the coarsest grid, 00. Level domains�1 and�2 are each built from
two separate rectangular blocks, each with their own separate grids.
(b) Focus on the coarse–fine interface between �0 and �1. Loca-
tions of cell- and face-centered data are represented with circles and
crosses, respectively. Face-centered data belonging to �0,x on the
interface are replaced by averaging of �1,x (finer) data.

than level ` (n`ref is a power of 2, usually 2). Each �` is con-
structed from one or more rectangular subsets of 0`, as can
be seen in Fig. A1a: �1, for example, is built from two sep-
arate rectangular blocks, each with their own subgrid 0`,∗.
An important property is that each domain level is properly
nested; that is, no interfaces exist between�` and�`±2, only
between two subsequent levels or the domain boundary.

Certain derived quantities, such as fluxes, are located on
two supplementary hierarchies of face-centered level do-
mains that will be denoted �`,x and �`,y for x- and y-
centered faces, respectively, on level `.

A2 Cell- and face-centered data

Variables can be cell-centered or face-centered. We define
a grid vector, p ∈ Z2, choosing to number cells starting at
(0, 0), and grid basis vectors ex = (1,0) and ey = (0,1).
Cell centers within �` are then located at x`p =1x

`(p+
1
2 (ex + ey)) and the midpoints of cell faces within �`,∗ at

x`p ±
1x`

2 e∗. Cell-centered level variables φ`p = φ(x
`
p) and

face-centered level variables φ`,∗p = φ(x`p −
1x`

2 e∗) follow

naturally. Notice that φ`,xp is located on the “western” face
of the cell p and that φ`,yp is located on the “southern” face
of the cell p.

A3 Coarsening operator

We identify cells at different levels which occupy the same
geometric regions by means of the coarsening operator
Cr(p)= p

r
and its inverse, the refinement operator. In that

sense, C−1
r (p) is the set of all cells in a grid r times finer

that represent the same geometric region (in a finite-volume
sense) as the cell p (Martin and Colella, 2000).
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A4 Composite variables

Discrete representations of continuous fields are then cell-
and face-centered composite variables φcomp, made up of
“valid” (or uncovered by a finer level) portions of the level
variables. First, level domains �` are divided into valid
(�`valid) and invalid (�`invalid) regions, such that�`valid =�

`
−

Cn`ref
(�`+1). Valid level domains for face-centered quantities

are defined in the same way,�`,∗valid =�
`,∗
−Cn`ref

(�`+1,∗). A
composite variable is then defined on the union of all valid re-
gions, �=

⋃
`�

`
valid, where φcomp(�)=

⋃
`φ

comp(�`valid).
Likewise, composite vector fields are valid on all faces not
overlain by finer faces.

We also construct ghost regions �`ghost that surround �`.
These usually contain one or two extra cells and exist purely
for numerical convenience – to compute gradients or other
face-centered quantities. These buffer regions contain either
boundary-specified values or are used to store extrapolated
data or data calculated by interpolation from valid regions
of a coarser level. Details pertaining to the computation of
composite operators such as gradients and Laplacians can be
found in prior publications (Martin and Colella, 2000).

A5 Level variables – averaging down

It is sometimes necessary to transfer information from finer
grids to coarser ones: Cn`ref

(�`+1) is typically filled from ap-
propriate cell-centered (or face-centered) arithmetic averag-
ing of level `+ 1 data. An example case is illustrated in
Fig. A1b: where levels 0 and 1 meet, face-centered quantity

φ
0,x
p+1 would be replaced by

φ
1,x
2p+2ex+φ

1,x
2p+2ex+ey

2 .

A6 Regridding

We regrid every nregrid time step. nregrid is typically fixed at
the beginning of a run. During this process, the solution at
each grid cell and on each level, whether valid or currently
covered, is tested against some specified criteria (or combi-
nation thereof) to determine whether refinement is required,
in which case the cell is tagged for refinement. A new set
of grids is then generated to ensure all tagged cells are cov-
ered by a finer level whilst still satisfying the rules introduced
above regarding proper nesting. This procedure enables the
refinement or coarsening of the grids over time, following
regions of interest. The appropriate refinement criteria vary
depending on the type of application. In the case of SUHMO,
we typically refine based on high values of the melting rate
and/or gap height to ensure we resolve the channelization
process.

Appendix B: Relaxation method in the FAS-MG
algorithm

To relax Eq. (14) on each FAS level, we employ nonlinear
Gauss–Seidel method with multicolor ordering. With the for-
mulation of Eq. (15) for the nonlinear operator, and using the
notation introduced in Sect. A, we obtain the following dis-
cretized equation for each p cell on a given level where the
notation ` has been omitted:

αAphp

+
β

1x2

[
Bxp+ex (hp+ex −hp)−Bxp(hp −hp−ex )

+Byp+ey (hp+ey −hp)−Byp(hp −hp−ey )
]

+G(hp)= Fp, (B1)

which can be rewritten as H(hp)= 0, where

H(hp)= αAphp

+
β

1x2

[
Bxp+ex (hp+ex −hp)−Bxp(hp −hp−ex )

+Byp+ey (hp+ey −hp)−Byp(hp −hp−ey )
]

+G(hp)−Fp. (B2)

Equation (B2) can be solved by resorting to Newton’s
method (for a scalar):

hp← hp −
H(hp)
H′(hp)

, (B3)

where

H′(hp)= αAp −
β

1x2 (B
x
p+ex
+Bxp +Byp+eyByp)+G′(hp). (B4)

Appendix C: A case for the treatment of the B
coefficient in the FAS-MG algorithm

As mentioned in Sect. 3.1.3, the variable coefficient in the
PDE Eq. (16) requires special treatment due to coupling with
the main variable h. We tested two different approaches for
the treatment of B. In the first, which we will callB fixed, the
value of B is evaluated once per Picard iteration and is frozen
during the FAS solve. With the second approach, which we
will call B on the fly, B is recomputed and averaged down
on each MG grid at the beginning of each V cycle. We inves-
tigate the overall efficiency of the algorithm in terms of the
number of Picard and total FAS iterations and CPU time as a
function of the FAS solve tolerance. While keeping the (rela-
tive) tolerance of the outer Picard solver at a constant value of
10−8, statistics are collected for about 20 time steps in a tran-
sient simulation (using the channelized test case described
in Sect. 4.2), and the average per time step is presented in
Fig. C1. Across the entire range of FAS tolerances consid-
ered, B on the fly is found to be more efficient, with a lower
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Figure C1. Average of the (a) number of FAS iterations, (b) number of Picard iterations and (c) total computational time required to complete
one time step with SUHMO as a function of the FAS solve tolerance. The tolerance of the Picard iterations is held fixed at 10−8.

average number of FAS iterations per step and smaller com-
putational time (albeit by a smaller margin due to the small
computational overhead of recomputing B and updating the
FAS multigrid hierarchy). When using the B fixed approach,
tight FAS tolerances lead to a large increase in the average
FAS iteration count without having a significant effect on the
Picard iteration count. In contrast, B on the fly leads to a sig-
nificant reduction of the Picard iteration count, because part
of the nonlinearity is handled by the FAS.

Based on these results, we opt to use the B on the fly ap-
proach for all of our computations, and we fix the FAS toler-
ances to 10−10, appearing to provide a good compromise in
terms of computational time.

Appendix D: Details of runs R0 to R4

Table D1. Details of the five AMR runs Rn.

Name Number Base grid Fine grid 1xn

(Rn) of levels

R0 1 256× 256 – 390.625
R1 2 256× 256 512× 512 195.3125
R2 3 256× 256 1024× 1024 97.65625
R3 4 256× 256 2048× 2048 48.828125
R4 5 256× 256 4096× 4096 24.4140625

Code and data availability. We used the released v1.1 version
of the publicly available repository of the SUHMO sub-
glacial hydrology model that can be found on GitHub https://
github.com/EnnaDelfen/SUHMO (last access: 1 January 2023).
SUHMO is written in a combination of C++ and FOR-
TRAN and is built upon the Chombo AMR software frame-
work (Adams et al., 2001–2021). We have registered both SUHMO
v1.1 (https://doi.org/10.5281/zenodo.7487485; Felden and Martin,
2022) and the specific forked SUHMO version of Chombo v3.2
(https://doi.org/10.5281/zenodo.7487502; Adams et al., 2022) on
Zenodo, including scripts (in Python), inputs and post-processing

tools enabling any user to reproduce all results presented in the
paper. Results will be produced either in plain text (for all one-
dimensional plots presented in this manuscript) or in a HDF5 format
(two-dimensional plots). For convenience and easy testing of repro-
ducibility, we have added plain text results for all one-dimensional
plots reported in Sects. 4 and 5.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-16-407-2023-supplement.
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